usbnet: increase URB reference count before usb_unlink_urb
[linux/fpc-iii.git] / sound / soc / soc-cache.c
blob039b9532b270cb8c1bb300efd0d1a7f385d95aa4
1 /*
2 * soc-cache.c -- ASoC register cache helpers
4 * Copyright 2009 Wolfson Microelectronics PLC.
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
14 #include <linux/i2c.h>
15 #include <linux/spi/spi.h>
16 #include <sound/soc.h>
17 #include <linux/lzo.h>
18 #include <linux/bitmap.h>
19 #include <linux/rbtree.h>
21 #include <trace/events/asoc.h>
23 #ifdef CONFIG_SPI_MASTER
24 static int do_spi_write(void *control, const char *data, int len)
26 struct spi_device *spi = control;
27 int ret;
29 ret = spi_write(spi, data, len);
30 if (ret < 0)
31 return ret;
33 return len;
35 #endif
37 static int do_hw_write(struct snd_soc_codec *codec, unsigned int reg,
38 unsigned int value, const void *data, int len)
40 int ret;
42 if (!snd_soc_codec_volatile_register(codec, reg) &&
43 reg < codec->driver->reg_cache_size &&
44 !codec->cache_bypass) {
45 ret = snd_soc_cache_write(codec, reg, value);
46 if (ret < 0)
47 return -1;
50 if (codec->cache_only) {
51 codec->cache_sync = 1;
52 return 0;
55 ret = codec->hw_write(codec->control_data, data, len);
56 if (ret == len)
57 return 0;
58 if (ret < 0)
59 return ret;
60 else
61 return -EIO;
64 static unsigned int do_hw_read(struct snd_soc_codec *codec, unsigned int reg)
66 int ret;
67 unsigned int val;
69 if (reg >= codec->driver->reg_cache_size ||
70 snd_soc_codec_volatile_register(codec, reg) ||
71 codec->cache_bypass) {
72 if (codec->cache_only)
73 return -1;
75 BUG_ON(!codec->hw_read);
76 return codec->hw_read(codec, reg);
79 ret = snd_soc_cache_read(codec, reg, &val);
80 if (ret < 0)
81 return -1;
82 return val;
85 static unsigned int snd_soc_4_12_read(struct snd_soc_codec *codec,
86 unsigned int reg)
88 return do_hw_read(codec, reg);
91 static int snd_soc_4_12_write(struct snd_soc_codec *codec, unsigned int reg,
92 unsigned int value)
94 u16 data;
96 data = cpu_to_be16((reg << 12) | (value & 0xffffff));
98 return do_hw_write(codec, reg, value, &data, 2);
101 static unsigned int snd_soc_7_9_read(struct snd_soc_codec *codec,
102 unsigned int reg)
104 return do_hw_read(codec, reg);
107 static int snd_soc_7_9_write(struct snd_soc_codec *codec, unsigned int reg,
108 unsigned int value)
110 u8 data[2];
112 data[0] = (reg << 1) | ((value >> 8) & 0x0001);
113 data[1] = value & 0x00ff;
115 return do_hw_write(codec, reg, value, data, 2);
118 static int snd_soc_8_8_write(struct snd_soc_codec *codec, unsigned int reg,
119 unsigned int value)
121 u8 data[2];
123 reg &= 0xff;
124 data[0] = reg;
125 data[1] = value & 0xff;
127 return do_hw_write(codec, reg, value, data, 2);
130 static unsigned int snd_soc_8_8_read(struct snd_soc_codec *codec,
131 unsigned int reg)
133 return do_hw_read(codec, reg);
136 static int snd_soc_8_16_write(struct snd_soc_codec *codec, unsigned int reg,
137 unsigned int value)
139 u8 data[3];
141 data[0] = reg;
142 data[1] = (value >> 8) & 0xff;
143 data[2] = value & 0xff;
145 return do_hw_write(codec, reg, value, data, 3);
148 static unsigned int snd_soc_8_16_read(struct snd_soc_codec *codec,
149 unsigned int reg)
151 return do_hw_read(codec, reg);
154 #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
155 static unsigned int do_i2c_read(struct snd_soc_codec *codec,
156 void *reg, int reglen,
157 void *data, int datalen)
159 struct i2c_msg xfer[2];
160 int ret;
161 struct i2c_client *client = codec->control_data;
163 /* Write register */
164 xfer[0].addr = client->addr;
165 xfer[0].flags = 0;
166 xfer[0].len = reglen;
167 xfer[0].buf = reg;
169 /* Read data */
170 xfer[1].addr = client->addr;
171 xfer[1].flags = I2C_M_RD;
172 xfer[1].len = datalen;
173 xfer[1].buf = data;
175 ret = i2c_transfer(client->adapter, xfer, 2);
176 if (ret == 2)
177 return 0;
178 else if (ret < 0)
179 return ret;
180 else
181 return -EIO;
183 #endif
185 #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
186 static unsigned int snd_soc_8_8_read_i2c(struct snd_soc_codec *codec,
187 unsigned int r)
189 u8 reg = r;
190 u8 data;
191 int ret;
193 ret = do_i2c_read(codec, &reg, 1, &data, 1);
194 if (ret < 0)
195 return 0;
196 return data;
198 #else
199 #define snd_soc_8_8_read_i2c NULL
200 #endif
202 #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
203 static unsigned int snd_soc_8_16_read_i2c(struct snd_soc_codec *codec,
204 unsigned int r)
206 u8 reg = r;
207 u16 data;
208 int ret;
210 ret = do_i2c_read(codec, &reg, 1, &data, 2);
211 if (ret < 0)
212 return 0;
213 return (data >> 8) | ((data & 0xff) << 8);
215 #else
216 #define snd_soc_8_16_read_i2c NULL
217 #endif
219 #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
220 static unsigned int snd_soc_16_8_read_i2c(struct snd_soc_codec *codec,
221 unsigned int r)
223 u16 reg = r;
224 u8 data;
225 int ret;
227 ret = do_i2c_read(codec, &reg, 2, &data, 1);
228 if (ret < 0)
229 return 0;
230 return data;
232 #else
233 #define snd_soc_16_8_read_i2c NULL
234 #endif
236 static unsigned int snd_soc_16_8_read(struct snd_soc_codec *codec,
237 unsigned int reg)
239 return do_hw_read(codec, reg);
242 static int snd_soc_16_8_write(struct snd_soc_codec *codec, unsigned int reg,
243 unsigned int value)
245 u8 data[3];
247 data[0] = (reg >> 8) & 0xff;
248 data[1] = reg & 0xff;
249 data[2] = value;
251 return do_hw_write(codec, reg, value, data, 3);
254 #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
255 static unsigned int snd_soc_16_16_read_i2c(struct snd_soc_codec *codec,
256 unsigned int r)
258 u16 reg = cpu_to_be16(r);
259 u16 data;
260 int ret;
262 ret = do_i2c_read(codec, &reg, 2, &data, 2);
263 if (ret < 0)
264 return 0;
265 return be16_to_cpu(data);
267 #else
268 #define snd_soc_16_16_read_i2c NULL
269 #endif
271 static unsigned int snd_soc_16_16_read(struct snd_soc_codec *codec,
272 unsigned int reg)
274 return do_hw_read(codec, reg);
277 static int snd_soc_16_16_write(struct snd_soc_codec *codec, unsigned int reg,
278 unsigned int value)
280 u8 data[4];
282 data[0] = (reg >> 8) & 0xff;
283 data[1] = reg & 0xff;
284 data[2] = (value >> 8) & 0xff;
285 data[3] = value & 0xff;
287 return do_hw_write(codec, reg, value, data, 4);
290 /* Primitive bulk write support for soc-cache. The data pointed to by
291 * `data' needs to already be in the form the hardware expects
292 * including any leading register specific data. Any data written
293 * through this function will not go through the cache as it only
294 * handles writing to volatile or out of bounds registers.
296 static int snd_soc_hw_bulk_write_raw(struct snd_soc_codec *codec, unsigned int reg,
297 const void *data, size_t len)
299 int ret;
301 /* To ensure that we don't get out of sync with the cache, check
302 * whether the base register is volatile or if we've directly asked
303 * to bypass the cache. Out of bounds registers are considered
304 * volatile.
306 if (!codec->cache_bypass
307 && !snd_soc_codec_volatile_register(codec, reg)
308 && reg < codec->driver->reg_cache_size)
309 return -EINVAL;
311 switch (codec->control_type) {
312 #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
313 case SND_SOC_I2C:
314 ret = i2c_master_send(codec->control_data, data, len);
315 break;
316 #endif
317 #if defined(CONFIG_SPI_MASTER)
318 case SND_SOC_SPI:
319 ret = spi_write(codec->control_data, data, len);
320 break;
321 #endif
322 default:
323 BUG();
326 if (ret == len)
327 return 0;
328 if (ret < 0)
329 return ret;
330 else
331 return -EIO;
334 static struct {
335 int addr_bits;
336 int data_bits;
337 int (*write)(struct snd_soc_codec *codec, unsigned int, unsigned int);
338 unsigned int (*read)(struct snd_soc_codec *, unsigned int);
339 unsigned int (*i2c_read)(struct snd_soc_codec *, unsigned int);
340 } io_types[] = {
342 .addr_bits = 4, .data_bits = 12,
343 .write = snd_soc_4_12_write, .read = snd_soc_4_12_read,
346 .addr_bits = 7, .data_bits = 9,
347 .write = snd_soc_7_9_write, .read = snd_soc_7_9_read,
350 .addr_bits = 8, .data_bits = 8,
351 .write = snd_soc_8_8_write, .read = snd_soc_8_8_read,
352 .i2c_read = snd_soc_8_8_read_i2c,
355 .addr_bits = 8, .data_bits = 16,
356 .write = snd_soc_8_16_write, .read = snd_soc_8_16_read,
357 .i2c_read = snd_soc_8_16_read_i2c,
360 .addr_bits = 16, .data_bits = 8,
361 .write = snd_soc_16_8_write, .read = snd_soc_16_8_read,
362 .i2c_read = snd_soc_16_8_read_i2c,
365 .addr_bits = 16, .data_bits = 16,
366 .write = snd_soc_16_16_write, .read = snd_soc_16_16_read,
367 .i2c_read = snd_soc_16_16_read_i2c,
372 * snd_soc_codec_set_cache_io: Set up standard I/O functions.
374 * @codec: CODEC to configure.
375 * @addr_bits: Number of bits of register address data.
376 * @data_bits: Number of bits of data per register.
377 * @control: Control bus used.
379 * Register formats are frequently shared between many I2C and SPI
380 * devices. In order to promote code reuse the ASoC core provides
381 * some standard implementations of CODEC read and write operations
382 * which can be set up using this function.
384 * The caller is responsible for allocating and initialising the
385 * actual cache.
387 * Note that at present this code cannot be used by CODECs with
388 * volatile registers.
390 int snd_soc_codec_set_cache_io(struct snd_soc_codec *codec,
391 int addr_bits, int data_bits,
392 enum snd_soc_control_type control)
394 int i;
396 for (i = 0; i < ARRAY_SIZE(io_types); i++)
397 if (io_types[i].addr_bits == addr_bits &&
398 io_types[i].data_bits == data_bits)
399 break;
400 if (i == ARRAY_SIZE(io_types)) {
401 printk(KERN_ERR
402 "No I/O functions for %d bit address %d bit data\n",
403 addr_bits, data_bits);
404 return -EINVAL;
407 codec->write = io_types[i].write;
408 codec->read = io_types[i].read;
409 codec->bulk_write_raw = snd_soc_hw_bulk_write_raw;
411 switch (control) {
412 case SND_SOC_I2C:
413 #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
414 codec->hw_write = (hw_write_t)i2c_master_send;
415 #endif
416 if (io_types[i].i2c_read)
417 codec->hw_read = io_types[i].i2c_read;
419 codec->control_data = container_of(codec->dev,
420 struct i2c_client,
421 dev);
422 break;
424 case SND_SOC_SPI:
425 #ifdef CONFIG_SPI_MASTER
426 codec->hw_write = do_spi_write;
427 #endif
429 codec->control_data = container_of(codec->dev,
430 struct spi_device,
431 dev);
432 break;
435 return 0;
437 EXPORT_SYMBOL_GPL(snd_soc_codec_set_cache_io);
439 static bool snd_soc_set_cache_val(void *base, unsigned int idx,
440 unsigned int val, unsigned int word_size)
442 switch (word_size) {
443 case 1: {
444 u8 *cache = base;
445 if (cache[idx] == val)
446 return true;
447 cache[idx] = val;
448 break;
450 case 2: {
451 u16 *cache = base;
452 if (cache[idx] == val)
453 return true;
454 cache[idx] = val;
455 break;
457 default:
458 BUG();
460 return false;
463 static unsigned int snd_soc_get_cache_val(const void *base, unsigned int idx,
464 unsigned int word_size)
466 if (!base)
467 return -1;
469 switch (word_size) {
470 case 1: {
471 const u8 *cache = base;
472 return cache[idx];
474 case 2: {
475 const u16 *cache = base;
476 return cache[idx];
478 default:
479 BUG();
481 /* unreachable */
482 return -1;
485 struct snd_soc_rbtree_node {
486 struct rb_node node;
487 unsigned int reg;
488 unsigned int value;
489 unsigned int defval;
490 } __attribute__ ((packed));
492 struct snd_soc_rbtree_ctx {
493 struct rb_root root;
496 static struct snd_soc_rbtree_node *snd_soc_rbtree_lookup(
497 struct rb_root *root, unsigned int reg)
499 struct rb_node *node;
500 struct snd_soc_rbtree_node *rbnode;
502 node = root->rb_node;
503 while (node) {
504 rbnode = container_of(node, struct snd_soc_rbtree_node, node);
505 if (rbnode->reg < reg)
506 node = node->rb_left;
507 else if (rbnode->reg > reg)
508 node = node->rb_right;
509 else
510 return rbnode;
513 return NULL;
516 static int snd_soc_rbtree_insert(struct rb_root *root,
517 struct snd_soc_rbtree_node *rbnode)
519 struct rb_node **new, *parent;
520 struct snd_soc_rbtree_node *rbnode_tmp;
522 parent = NULL;
523 new = &root->rb_node;
524 while (*new) {
525 rbnode_tmp = container_of(*new, struct snd_soc_rbtree_node,
526 node);
527 parent = *new;
528 if (rbnode_tmp->reg < rbnode->reg)
529 new = &((*new)->rb_left);
530 else if (rbnode_tmp->reg > rbnode->reg)
531 new = &((*new)->rb_right);
532 else
533 return 0;
536 /* insert the node into the rbtree */
537 rb_link_node(&rbnode->node, parent, new);
538 rb_insert_color(&rbnode->node, root);
540 return 1;
543 static int snd_soc_rbtree_cache_sync(struct snd_soc_codec *codec)
545 struct snd_soc_rbtree_ctx *rbtree_ctx;
546 struct rb_node *node;
547 struct snd_soc_rbtree_node *rbnode;
548 unsigned int val;
549 int ret;
551 rbtree_ctx = codec->reg_cache;
552 for (node = rb_first(&rbtree_ctx->root); node; node = rb_next(node)) {
553 rbnode = rb_entry(node, struct snd_soc_rbtree_node, node);
554 if (rbnode->value == rbnode->defval)
555 continue;
556 WARN_ON(codec->writable_register &&
557 codec->writable_register(codec, rbnode->reg));
558 ret = snd_soc_cache_read(codec, rbnode->reg, &val);
559 if (ret)
560 return ret;
561 codec->cache_bypass = 1;
562 ret = snd_soc_write(codec, rbnode->reg, val);
563 codec->cache_bypass = 0;
564 if (ret)
565 return ret;
566 dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
567 rbnode->reg, val);
570 return 0;
573 static int snd_soc_rbtree_cache_write(struct snd_soc_codec *codec,
574 unsigned int reg, unsigned int value)
576 struct snd_soc_rbtree_ctx *rbtree_ctx;
577 struct snd_soc_rbtree_node *rbnode;
579 rbtree_ctx = codec->reg_cache;
580 rbnode = snd_soc_rbtree_lookup(&rbtree_ctx->root, reg);
581 if (rbnode) {
582 if (rbnode->value == value)
583 return 0;
584 rbnode->value = value;
585 } else {
586 /* bail out early, no need to create the rbnode yet */
587 if (!value)
588 return 0;
590 * for uninitialized registers whose value is changed
591 * from the default zero, create an rbnode and insert
592 * it into the tree.
594 rbnode = kzalloc(sizeof *rbnode, GFP_KERNEL);
595 if (!rbnode)
596 return -ENOMEM;
597 rbnode->reg = reg;
598 rbnode->value = value;
599 snd_soc_rbtree_insert(&rbtree_ctx->root, rbnode);
602 return 0;
605 static int snd_soc_rbtree_cache_read(struct snd_soc_codec *codec,
606 unsigned int reg, unsigned int *value)
608 struct snd_soc_rbtree_ctx *rbtree_ctx;
609 struct snd_soc_rbtree_node *rbnode;
611 rbtree_ctx = codec->reg_cache;
612 rbnode = snd_soc_rbtree_lookup(&rbtree_ctx->root, reg);
613 if (rbnode) {
614 *value = rbnode->value;
615 } else {
616 /* uninitialized registers default to 0 */
617 *value = 0;
620 return 0;
623 static int snd_soc_rbtree_cache_exit(struct snd_soc_codec *codec)
625 struct rb_node *next;
626 struct snd_soc_rbtree_ctx *rbtree_ctx;
627 struct snd_soc_rbtree_node *rbtree_node;
629 /* if we've already been called then just return */
630 rbtree_ctx = codec->reg_cache;
631 if (!rbtree_ctx)
632 return 0;
634 /* free up the rbtree */
635 next = rb_first(&rbtree_ctx->root);
636 while (next) {
637 rbtree_node = rb_entry(next, struct snd_soc_rbtree_node, node);
638 next = rb_next(&rbtree_node->node);
639 rb_erase(&rbtree_node->node, &rbtree_ctx->root);
640 kfree(rbtree_node);
643 /* release the resources */
644 kfree(codec->reg_cache);
645 codec->reg_cache = NULL;
647 return 0;
650 static int snd_soc_rbtree_cache_init(struct snd_soc_codec *codec)
652 struct snd_soc_rbtree_node *rbtree_node;
653 struct snd_soc_rbtree_ctx *rbtree_ctx;
654 unsigned int val;
655 unsigned int word_size;
656 int i;
657 int ret;
659 codec->reg_cache = kmalloc(sizeof *rbtree_ctx, GFP_KERNEL);
660 if (!codec->reg_cache)
661 return -ENOMEM;
663 rbtree_ctx = codec->reg_cache;
664 rbtree_ctx->root = RB_ROOT;
666 if (!codec->reg_def_copy)
667 return 0;
670 * populate the rbtree with the initialized registers. All other
671 * registers will be inserted when they are first modified.
673 word_size = codec->driver->reg_word_size;
674 for (i = 0; i < codec->driver->reg_cache_size; ++i) {
675 val = snd_soc_get_cache_val(codec->reg_def_copy, i, word_size);
676 if (!val)
677 continue;
678 rbtree_node = kzalloc(sizeof *rbtree_node, GFP_KERNEL);
679 if (!rbtree_node) {
680 ret = -ENOMEM;
681 snd_soc_cache_exit(codec);
682 break;
684 rbtree_node->reg = i;
685 rbtree_node->value = val;
686 rbtree_node->defval = val;
687 snd_soc_rbtree_insert(&rbtree_ctx->root, rbtree_node);
690 return 0;
693 #ifdef CONFIG_SND_SOC_CACHE_LZO
694 struct snd_soc_lzo_ctx {
695 void *wmem;
696 void *dst;
697 const void *src;
698 size_t src_len;
699 size_t dst_len;
700 size_t decompressed_size;
701 unsigned long *sync_bmp;
702 int sync_bmp_nbits;
705 #define LZO_BLOCK_NUM 8
706 static int snd_soc_lzo_block_count(void)
708 return LZO_BLOCK_NUM;
711 static int snd_soc_lzo_prepare(struct snd_soc_lzo_ctx *lzo_ctx)
713 lzo_ctx->wmem = kmalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
714 if (!lzo_ctx->wmem)
715 return -ENOMEM;
716 return 0;
719 static int snd_soc_lzo_compress(struct snd_soc_lzo_ctx *lzo_ctx)
721 size_t compress_size;
722 int ret;
724 ret = lzo1x_1_compress(lzo_ctx->src, lzo_ctx->src_len,
725 lzo_ctx->dst, &compress_size, lzo_ctx->wmem);
726 if (ret != LZO_E_OK || compress_size > lzo_ctx->dst_len)
727 return -EINVAL;
728 lzo_ctx->dst_len = compress_size;
729 return 0;
732 static int snd_soc_lzo_decompress(struct snd_soc_lzo_ctx *lzo_ctx)
734 size_t dst_len;
735 int ret;
737 dst_len = lzo_ctx->dst_len;
738 ret = lzo1x_decompress_safe(lzo_ctx->src, lzo_ctx->src_len,
739 lzo_ctx->dst, &dst_len);
740 if (ret != LZO_E_OK || dst_len != lzo_ctx->dst_len)
741 return -EINVAL;
742 return 0;
745 static int snd_soc_lzo_compress_cache_block(struct snd_soc_codec *codec,
746 struct snd_soc_lzo_ctx *lzo_ctx)
748 int ret;
750 lzo_ctx->dst_len = lzo1x_worst_compress(PAGE_SIZE);
751 lzo_ctx->dst = kmalloc(lzo_ctx->dst_len, GFP_KERNEL);
752 if (!lzo_ctx->dst) {
753 lzo_ctx->dst_len = 0;
754 return -ENOMEM;
757 ret = snd_soc_lzo_compress(lzo_ctx);
758 if (ret < 0)
759 return ret;
760 return 0;
763 static int snd_soc_lzo_decompress_cache_block(struct snd_soc_codec *codec,
764 struct snd_soc_lzo_ctx *lzo_ctx)
766 int ret;
768 lzo_ctx->dst_len = lzo_ctx->decompressed_size;
769 lzo_ctx->dst = kmalloc(lzo_ctx->dst_len, GFP_KERNEL);
770 if (!lzo_ctx->dst) {
771 lzo_ctx->dst_len = 0;
772 return -ENOMEM;
775 ret = snd_soc_lzo_decompress(lzo_ctx);
776 if (ret < 0)
777 return ret;
778 return 0;
781 static inline int snd_soc_lzo_get_blkindex(struct snd_soc_codec *codec,
782 unsigned int reg)
784 const struct snd_soc_codec_driver *codec_drv;
786 codec_drv = codec->driver;
787 return (reg * codec_drv->reg_word_size) /
788 DIV_ROUND_UP(codec->reg_size, snd_soc_lzo_block_count());
791 static inline int snd_soc_lzo_get_blkpos(struct snd_soc_codec *codec,
792 unsigned int reg)
794 const struct snd_soc_codec_driver *codec_drv;
796 codec_drv = codec->driver;
797 return reg % (DIV_ROUND_UP(codec->reg_size, snd_soc_lzo_block_count()) /
798 codec_drv->reg_word_size);
801 static inline int snd_soc_lzo_get_blksize(struct snd_soc_codec *codec)
803 const struct snd_soc_codec_driver *codec_drv;
805 codec_drv = codec->driver;
806 return DIV_ROUND_UP(codec->reg_size, snd_soc_lzo_block_count());
809 static int snd_soc_lzo_cache_sync(struct snd_soc_codec *codec)
811 struct snd_soc_lzo_ctx **lzo_blocks;
812 unsigned int val;
813 int i;
814 int ret;
816 lzo_blocks = codec->reg_cache;
817 for_each_set_bit(i, lzo_blocks[0]->sync_bmp, lzo_blocks[0]->sync_bmp_nbits) {
818 WARN_ON(codec->writable_register &&
819 codec->writable_register(codec, i));
820 ret = snd_soc_cache_read(codec, i, &val);
821 if (ret)
822 return ret;
823 codec->cache_bypass = 1;
824 ret = snd_soc_write(codec, i, val);
825 codec->cache_bypass = 0;
826 if (ret)
827 return ret;
828 dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
829 i, val);
832 return 0;
835 static int snd_soc_lzo_cache_write(struct snd_soc_codec *codec,
836 unsigned int reg, unsigned int value)
838 struct snd_soc_lzo_ctx *lzo_block, **lzo_blocks;
839 int ret, blkindex, blkpos;
840 size_t blksize, tmp_dst_len;
841 void *tmp_dst;
843 /* index of the compressed lzo block */
844 blkindex = snd_soc_lzo_get_blkindex(codec, reg);
845 /* register index within the decompressed block */
846 blkpos = snd_soc_lzo_get_blkpos(codec, reg);
847 /* size of the compressed block */
848 blksize = snd_soc_lzo_get_blksize(codec);
849 lzo_blocks = codec->reg_cache;
850 lzo_block = lzo_blocks[blkindex];
852 /* save the pointer and length of the compressed block */
853 tmp_dst = lzo_block->dst;
854 tmp_dst_len = lzo_block->dst_len;
856 /* prepare the source to be the compressed block */
857 lzo_block->src = lzo_block->dst;
858 lzo_block->src_len = lzo_block->dst_len;
860 /* decompress the block */
861 ret = snd_soc_lzo_decompress_cache_block(codec, lzo_block);
862 if (ret < 0) {
863 kfree(lzo_block->dst);
864 goto out;
867 /* write the new value to the cache */
868 if (snd_soc_set_cache_val(lzo_block->dst, blkpos, value,
869 codec->driver->reg_word_size)) {
870 kfree(lzo_block->dst);
871 goto out;
874 /* prepare the source to be the decompressed block */
875 lzo_block->src = lzo_block->dst;
876 lzo_block->src_len = lzo_block->dst_len;
878 /* compress the block */
879 ret = snd_soc_lzo_compress_cache_block(codec, lzo_block);
880 if (ret < 0) {
881 kfree(lzo_block->dst);
882 kfree(lzo_block->src);
883 goto out;
886 /* set the bit so we know we have to sync this register */
887 set_bit(reg, lzo_block->sync_bmp);
888 kfree(tmp_dst);
889 kfree(lzo_block->src);
890 return 0;
891 out:
892 lzo_block->dst = tmp_dst;
893 lzo_block->dst_len = tmp_dst_len;
894 return ret;
897 static int snd_soc_lzo_cache_read(struct snd_soc_codec *codec,
898 unsigned int reg, unsigned int *value)
900 struct snd_soc_lzo_ctx *lzo_block, **lzo_blocks;
901 int ret, blkindex, blkpos;
902 size_t blksize, tmp_dst_len;
903 void *tmp_dst;
905 *value = 0;
906 /* index of the compressed lzo block */
907 blkindex = snd_soc_lzo_get_blkindex(codec, reg);
908 /* register index within the decompressed block */
909 blkpos = snd_soc_lzo_get_blkpos(codec, reg);
910 /* size of the compressed block */
911 blksize = snd_soc_lzo_get_blksize(codec);
912 lzo_blocks = codec->reg_cache;
913 lzo_block = lzo_blocks[blkindex];
915 /* save the pointer and length of the compressed block */
916 tmp_dst = lzo_block->dst;
917 tmp_dst_len = lzo_block->dst_len;
919 /* prepare the source to be the compressed block */
920 lzo_block->src = lzo_block->dst;
921 lzo_block->src_len = lzo_block->dst_len;
923 /* decompress the block */
924 ret = snd_soc_lzo_decompress_cache_block(codec, lzo_block);
925 if (ret >= 0)
926 /* fetch the value from the cache */
927 *value = snd_soc_get_cache_val(lzo_block->dst, blkpos,
928 codec->driver->reg_word_size);
930 kfree(lzo_block->dst);
931 /* restore the pointer and length of the compressed block */
932 lzo_block->dst = tmp_dst;
933 lzo_block->dst_len = tmp_dst_len;
934 return 0;
937 static int snd_soc_lzo_cache_exit(struct snd_soc_codec *codec)
939 struct snd_soc_lzo_ctx **lzo_blocks;
940 int i, blkcount;
942 lzo_blocks = codec->reg_cache;
943 if (!lzo_blocks)
944 return 0;
946 blkcount = snd_soc_lzo_block_count();
948 * the pointer to the bitmap used for syncing the cache
949 * is shared amongst all lzo_blocks. Ensure it is freed
950 * only once.
952 if (lzo_blocks[0])
953 kfree(lzo_blocks[0]->sync_bmp);
954 for (i = 0; i < blkcount; ++i) {
955 if (lzo_blocks[i]) {
956 kfree(lzo_blocks[i]->wmem);
957 kfree(lzo_blocks[i]->dst);
959 /* each lzo_block is a pointer returned by kmalloc or NULL */
960 kfree(lzo_blocks[i]);
962 kfree(lzo_blocks);
963 codec->reg_cache = NULL;
964 return 0;
967 static int snd_soc_lzo_cache_init(struct snd_soc_codec *codec)
969 struct snd_soc_lzo_ctx **lzo_blocks;
970 size_t bmp_size;
971 const struct snd_soc_codec_driver *codec_drv;
972 int ret, tofree, i, blksize, blkcount;
973 const char *p, *end;
974 unsigned long *sync_bmp;
976 ret = 0;
977 codec_drv = codec->driver;
980 * If we have not been given a default register cache
981 * then allocate a dummy zero-ed out region, compress it
982 * and remember to free it afterwards.
984 tofree = 0;
985 if (!codec->reg_def_copy)
986 tofree = 1;
988 if (!codec->reg_def_copy) {
989 codec->reg_def_copy = kzalloc(codec->reg_size, GFP_KERNEL);
990 if (!codec->reg_def_copy)
991 return -ENOMEM;
994 blkcount = snd_soc_lzo_block_count();
995 codec->reg_cache = kzalloc(blkcount * sizeof *lzo_blocks,
996 GFP_KERNEL);
997 if (!codec->reg_cache) {
998 ret = -ENOMEM;
999 goto err_tofree;
1001 lzo_blocks = codec->reg_cache;
1004 * allocate a bitmap to be used when syncing the cache with
1005 * the hardware. Each time a register is modified, the corresponding
1006 * bit is set in the bitmap, so we know that we have to sync
1007 * that register.
1009 bmp_size = codec_drv->reg_cache_size;
1010 sync_bmp = kmalloc(BITS_TO_LONGS(bmp_size) * sizeof(long),
1011 GFP_KERNEL);
1012 if (!sync_bmp) {
1013 ret = -ENOMEM;
1014 goto err;
1016 bitmap_zero(sync_bmp, bmp_size);
1018 /* allocate the lzo blocks and initialize them */
1019 for (i = 0; i < blkcount; ++i) {
1020 lzo_blocks[i] = kzalloc(sizeof **lzo_blocks,
1021 GFP_KERNEL);
1022 if (!lzo_blocks[i]) {
1023 kfree(sync_bmp);
1024 ret = -ENOMEM;
1025 goto err;
1027 lzo_blocks[i]->sync_bmp = sync_bmp;
1028 lzo_blocks[i]->sync_bmp_nbits = bmp_size;
1029 /* alloc the working space for the compressed block */
1030 ret = snd_soc_lzo_prepare(lzo_blocks[i]);
1031 if (ret < 0)
1032 goto err;
1035 blksize = snd_soc_lzo_get_blksize(codec);
1036 p = codec->reg_def_copy;
1037 end = codec->reg_def_copy + codec->reg_size;
1038 /* compress the register map and fill the lzo blocks */
1039 for (i = 0; i < blkcount; ++i, p += blksize) {
1040 lzo_blocks[i]->src = p;
1041 if (p + blksize > end)
1042 lzo_blocks[i]->src_len = end - p;
1043 else
1044 lzo_blocks[i]->src_len = blksize;
1045 ret = snd_soc_lzo_compress_cache_block(codec,
1046 lzo_blocks[i]);
1047 if (ret < 0)
1048 goto err;
1049 lzo_blocks[i]->decompressed_size =
1050 lzo_blocks[i]->src_len;
1053 if (tofree) {
1054 kfree(codec->reg_def_copy);
1055 codec->reg_def_copy = NULL;
1057 return 0;
1058 err:
1059 snd_soc_cache_exit(codec);
1060 err_tofree:
1061 if (tofree) {
1062 kfree(codec->reg_def_copy);
1063 codec->reg_def_copy = NULL;
1065 return ret;
1067 #endif
1069 static int snd_soc_flat_cache_sync(struct snd_soc_codec *codec)
1071 int i;
1072 int ret;
1073 const struct snd_soc_codec_driver *codec_drv;
1074 unsigned int val;
1076 codec_drv = codec->driver;
1077 for (i = 0; i < codec_drv->reg_cache_size; ++i) {
1078 WARN_ON(codec->writable_register &&
1079 codec->writable_register(codec, i));
1080 ret = snd_soc_cache_read(codec, i, &val);
1081 if (ret)
1082 return ret;
1083 if (codec->reg_def_copy)
1084 if (snd_soc_get_cache_val(codec->reg_def_copy,
1085 i, codec_drv->reg_word_size) == val)
1086 continue;
1087 ret = snd_soc_write(codec, i, val);
1088 if (ret)
1089 return ret;
1090 dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
1091 i, val);
1093 return 0;
1096 static int snd_soc_flat_cache_write(struct snd_soc_codec *codec,
1097 unsigned int reg, unsigned int value)
1099 snd_soc_set_cache_val(codec->reg_cache, reg, value,
1100 codec->driver->reg_word_size);
1101 return 0;
1104 static int snd_soc_flat_cache_read(struct snd_soc_codec *codec,
1105 unsigned int reg, unsigned int *value)
1107 *value = snd_soc_get_cache_val(codec->reg_cache, reg,
1108 codec->driver->reg_word_size);
1109 return 0;
1112 static int snd_soc_flat_cache_exit(struct snd_soc_codec *codec)
1114 if (!codec->reg_cache)
1115 return 0;
1116 kfree(codec->reg_cache);
1117 codec->reg_cache = NULL;
1118 return 0;
1121 static int snd_soc_flat_cache_init(struct snd_soc_codec *codec)
1123 const struct snd_soc_codec_driver *codec_drv;
1125 codec_drv = codec->driver;
1127 if (codec->reg_def_copy)
1128 codec->reg_cache = kmemdup(codec->reg_def_copy,
1129 codec->reg_size, GFP_KERNEL);
1130 else
1131 codec->reg_cache = kzalloc(codec->reg_size, GFP_KERNEL);
1132 if (!codec->reg_cache)
1133 return -ENOMEM;
1135 return 0;
1138 /* an array of all supported compression types */
1139 static const struct snd_soc_cache_ops cache_types[] = {
1140 /* Flat *must* be the first entry for fallback */
1142 .id = SND_SOC_FLAT_COMPRESSION,
1143 .name = "flat",
1144 .init = snd_soc_flat_cache_init,
1145 .exit = snd_soc_flat_cache_exit,
1146 .read = snd_soc_flat_cache_read,
1147 .write = snd_soc_flat_cache_write,
1148 .sync = snd_soc_flat_cache_sync
1150 #ifdef CONFIG_SND_SOC_CACHE_LZO
1152 .id = SND_SOC_LZO_COMPRESSION,
1153 .name = "LZO",
1154 .init = snd_soc_lzo_cache_init,
1155 .exit = snd_soc_lzo_cache_exit,
1156 .read = snd_soc_lzo_cache_read,
1157 .write = snd_soc_lzo_cache_write,
1158 .sync = snd_soc_lzo_cache_sync
1160 #endif
1162 .id = SND_SOC_RBTREE_COMPRESSION,
1163 .name = "rbtree",
1164 .init = snd_soc_rbtree_cache_init,
1165 .exit = snd_soc_rbtree_cache_exit,
1166 .read = snd_soc_rbtree_cache_read,
1167 .write = snd_soc_rbtree_cache_write,
1168 .sync = snd_soc_rbtree_cache_sync
1172 int snd_soc_cache_init(struct snd_soc_codec *codec)
1174 int i;
1176 for (i = 0; i < ARRAY_SIZE(cache_types); ++i)
1177 if (cache_types[i].id == codec->compress_type)
1178 break;
1180 /* Fall back to flat compression */
1181 if (i == ARRAY_SIZE(cache_types)) {
1182 dev_warn(codec->dev, "Could not match compress type: %d\n",
1183 codec->compress_type);
1184 i = 0;
1187 mutex_init(&codec->cache_rw_mutex);
1188 codec->cache_ops = &cache_types[i];
1190 if (codec->cache_ops->init) {
1191 if (codec->cache_ops->name)
1192 dev_dbg(codec->dev, "Initializing %s cache for %s codec\n",
1193 codec->cache_ops->name, codec->name);
1194 return codec->cache_ops->init(codec);
1196 return -ENOSYS;
1200 * NOTE: keep in mind that this function might be called
1201 * multiple times.
1203 int snd_soc_cache_exit(struct snd_soc_codec *codec)
1205 if (codec->cache_ops && codec->cache_ops->exit) {
1206 if (codec->cache_ops->name)
1207 dev_dbg(codec->dev, "Destroying %s cache for %s codec\n",
1208 codec->cache_ops->name, codec->name);
1209 return codec->cache_ops->exit(codec);
1211 return -ENOSYS;
1215 * snd_soc_cache_read: Fetch the value of a given register from the cache.
1217 * @codec: CODEC to configure.
1218 * @reg: The register index.
1219 * @value: The value to be returned.
1221 int snd_soc_cache_read(struct snd_soc_codec *codec,
1222 unsigned int reg, unsigned int *value)
1224 int ret;
1226 mutex_lock(&codec->cache_rw_mutex);
1228 if (value && codec->cache_ops && codec->cache_ops->read) {
1229 ret = codec->cache_ops->read(codec, reg, value);
1230 mutex_unlock(&codec->cache_rw_mutex);
1231 return ret;
1234 mutex_unlock(&codec->cache_rw_mutex);
1235 return -ENOSYS;
1237 EXPORT_SYMBOL_GPL(snd_soc_cache_read);
1240 * snd_soc_cache_write: Set the value of a given register in the cache.
1242 * @codec: CODEC to configure.
1243 * @reg: The register index.
1244 * @value: The new register value.
1246 int snd_soc_cache_write(struct snd_soc_codec *codec,
1247 unsigned int reg, unsigned int value)
1249 int ret;
1251 mutex_lock(&codec->cache_rw_mutex);
1253 if (codec->cache_ops && codec->cache_ops->write) {
1254 ret = codec->cache_ops->write(codec, reg, value);
1255 mutex_unlock(&codec->cache_rw_mutex);
1256 return ret;
1259 mutex_unlock(&codec->cache_rw_mutex);
1260 return -ENOSYS;
1262 EXPORT_SYMBOL_GPL(snd_soc_cache_write);
1265 * snd_soc_cache_sync: Sync the register cache with the hardware.
1267 * @codec: CODEC to configure.
1269 * Any registers that should not be synced should be marked as
1270 * volatile. In general drivers can choose not to use the provided
1271 * syncing functionality if they so require.
1273 int snd_soc_cache_sync(struct snd_soc_codec *codec)
1275 int ret;
1276 const char *name;
1278 if (!codec->cache_sync) {
1279 return 0;
1282 if (!codec->cache_ops || !codec->cache_ops->sync)
1283 return -ENOSYS;
1285 if (codec->cache_ops->name)
1286 name = codec->cache_ops->name;
1287 else
1288 name = "unknown";
1290 if (codec->cache_ops->name)
1291 dev_dbg(codec->dev, "Syncing %s cache for %s codec\n",
1292 codec->cache_ops->name, codec->name);
1293 trace_snd_soc_cache_sync(codec, name, "start");
1294 ret = codec->cache_ops->sync(codec);
1295 if (!ret)
1296 codec->cache_sync = 0;
1297 trace_snd_soc_cache_sync(codec, name, "end");
1298 return ret;
1300 EXPORT_SYMBOL_GPL(snd_soc_cache_sync);
1302 static int snd_soc_get_reg_access_index(struct snd_soc_codec *codec,
1303 unsigned int reg)
1305 const struct snd_soc_codec_driver *codec_drv;
1306 unsigned int min, max, index;
1308 codec_drv = codec->driver;
1309 min = 0;
1310 max = codec_drv->reg_access_size - 1;
1311 do {
1312 index = (min + max) / 2;
1313 if (codec_drv->reg_access_default[index].reg == reg)
1314 return index;
1315 if (codec_drv->reg_access_default[index].reg < reg)
1316 min = index + 1;
1317 else
1318 max = index;
1319 } while (min <= max);
1320 return -1;
1323 int snd_soc_default_volatile_register(struct snd_soc_codec *codec,
1324 unsigned int reg)
1326 int index;
1328 if (reg >= codec->driver->reg_cache_size)
1329 return 1;
1330 index = snd_soc_get_reg_access_index(codec, reg);
1331 if (index < 0)
1332 return 0;
1333 return codec->driver->reg_access_default[index].vol;
1335 EXPORT_SYMBOL_GPL(snd_soc_default_volatile_register);
1337 int snd_soc_default_readable_register(struct snd_soc_codec *codec,
1338 unsigned int reg)
1340 int index;
1342 if (reg >= codec->driver->reg_cache_size)
1343 return 1;
1344 index = snd_soc_get_reg_access_index(codec, reg);
1345 if (index < 0)
1346 return 0;
1347 return codec->driver->reg_access_default[index].read;
1349 EXPORT_SYMBOL_GPL(snd_soc_default_readable_register);
1351 int snd_soc_default_writable_register(struct snd_soc_codec *codec,
1352 unsigned int reg)
1354 int index;
1356 if (reg >= codec->driver->reg_cache_size)
1357 return 1;
1358 index = snd_soc_get_reg_access_index(codec, reg);
1359 if (index < 0)
1360 return 0;
1361 return codec->driver->reg_access_default[index].write;
1363 EXPORT_SYMBOL_GPL(snd_soc_default_writable_register);