mm/vmscan.c: prevent useless kswapd loops
[linux/fpc-iii.git] / fs / userfaultfd.c
blobe1ebdbe40032e35e1d1dbd0bb05a33687aa161ba
1 /*
2 * fs/userfaultfd.c
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
35 enum userfaultfd_state {
36 UFFD_STATE_WAIT_API,
37 UFFD_STATE_RUNNING,
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
44 * Locking order:
45 * fd_wqh.lock
46 * fault_pending_wqh.lock
47 * fault_wqh.lock
48 * event_wqh.lock
50 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
51 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
52 * also taken in IRQ context.
54 struct userfaultfd_ctx {
55 /* waitqueue head for the pending (i.e. not read) userfaults */
56 wait_queue_head_t fault_pending_wqh;
57 /* waitqueue head for the userfaults */
58 wait_queue_head_t fault_wqh;
59 /* waitqueue head for the pseudo fd to wakeup poll/read */
60 wait_queue_head_t fd_wqh;
61 /* waitqueue head for events */
62 wait_queue_head_t event_wqh;
63 /* a refile sequence protected by fault_pending_wqh lock */
64 struct seqcount refile_seq;
65 /* pseudo fd refcounting */
66 atomic_t refcount;
67 /* userfaultfd syscall flags */
68 unsigned int flags;
69 /* features requested from the userspace */
70 unsigned int features;
71 /* state machine */
72 enum userfaultfd_state state;
73 /* released */
74 bool released;
75 /* memory mappings are changing because of non-cooperative event */
76 bool mmap_changing;
77 /* mm with one ore more vmas attached to this userfaultfd_ctx */
78 struct mm_struct *mm;
81 struct userfaultfd_fork_ctx {
82 struct userfaultfd_ctx *orig;
83 struct userfaultfd_ctx *new;
84 struct list_head list;
87 struct userfaultfd_unmap_ctx {
88 struct userfaultfd_ctx *ctx;
89 unsigned long start;
90 unsigned long end;
91 struct list_head list;
94 struct userfaultfd_wait_queue {
95 struct uffd_msg msg;
96 wait_queue_entry_t wq;
97 struct userfaultfd_ctx *ctx;
98 bool waken;
101 struct userfaultfd_wake_range {
102 unsigned long start;
103 unsigned long len;
106 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
107 int wake_flags, void *key)
109 struct userfaultfd_wake_range *range = key;
110 int ret;
111 struct userfaultfd_wait_queue *uwq;
112 unsigned long start, len;
114 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
115 ret = 0;
116 /* len == 0 means wake all */
117 start = range->start;
118 len = range->len;
119 if (len && (start > uwq->msg.arg.pagefault.address ||
120 start + len <= uwq->msg.arg.pagefault.address))
121 goto out;
122 WRITE_ONCE(uwq->waken, true);
124 * The Program-Order guarantees provided by the scheduler
125 * ensure uwq->waken is visible before the task is woken.
127 ret = wake_up_state(wq->private, mode);
128 if (ret) {
130 * Wake only once, autoremove behavior.
132 * After the effect of list_del_init is visible to the other
133 * CPUs, the waitqueue may disappear from under us, see the
134 * !list_empty_careful() in handle_userfault().
136 * try_to_wake_up() has an implicit smp_mb(), and the
137 * wq->private is read before calling the extern function
138 * "wake_up_state" (which in turns calls try_to_wake_up).
140 list_del_init(&wq->entry);
142 out:
143 return ret;
147 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
148 * context.
149 * @ctx: [in] Pointer to the userfaultfd context.
151 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
153 if (!atomic_inc_not_zero(&ctx->refcount))
154 BUG();
158 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
159 * context.
160 * @ctx: [in] Pointer to userfaultfd context.
162 * The userfaultfd context reference must have been previously acquired either
163 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
165 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
167 if (atomic_dec_and_test(&ctx->refcount)) {
168 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
169 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
170 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
171 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
172 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
173 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
174 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
175 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
176 mmdrop(ctx->mm);
177 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
181 static inline void msg_init(struct uffd_msg *msg)
183 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
185 * Must use memset to zero out the paddings or kernel data is
186 * leaked to userland.
188 memset(msg, 0, sizeof(struct uffd_msg));
191 static inline struct uffd_msg userfault_msg(unsigned long address,
192 unsigned int flags,
193 unsigned long reason,
194 unsigned int features)
196 struct uffd_msg msg;
197 msg_init(&msg);
198 msg.event = UFFD_EVENT_PAGEFAULT;
199 msg.arg.pagefault.address = address;
200 if (flags & FAULT_FLAG_WRITE)
202 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
203 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
204 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
205 * was a read fault, otherwise if set it means it's
206 * a write fault.
208 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
209 if (reason & VM_UFFD_WP)
211 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
212 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
213 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
214 * a missing fault, otherwise if set it means it's a
215 * write protect fault.
217 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
218 if (features & UFFD_FEATURE_THREAD_ID)
219 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
220 return msg;
223 #ifdef CONFIG_HUGETLB_PAGE
225 * Same functionality as userfaultfd_must_wait below with modifications for
226 * hugepmd ranges.
228 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
229 struct vm_area_struct *vma,
230 unsigned long address,
231 unsigned long flags,
232 unsigned long reason)
234 struct mm_struct *mm = ctx->mm;
235 pte_t *ptep, pte;
236 bool ret = true;
238 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
240 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
242 if (!ptep)
243 goto out;
245 ret = false;
246 pte = huge_ptep_get(ptep);
249 * Lockless access: we're in a wait_event so it's ok if it
250 * changes under us.
252 if (huge_pte_none(pte))
253 ret = true;
254 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
255 ret = true;
256 out:
257 return ret;
259 #else
260 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
261 struct vm_area_struct *vma,
262 unsigned long address,
263 unsigned long flags,
264 unsigned long reason)
266 return false; /* should never get here */
268 #endif /* CONFIG_HUGETLB_PAGE */
271 * Verify the pagetables are still not ok after having reigstered into
272 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
273 * userfault that has already been resolved, if userfaultfd_read and
274 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
275 * threads.
277 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
278 unsigned long address,
279 unsigned long flags,
280 unsigned long reason)
282 struct mm_struct *mm = ctx->mm;
283 pgd_t *pgd;
284 p4d_t *p4d;
285 pud_t *pud;
286 pmd_t *pmd, _pmd;
287 pte_t *pte;
288 bool ret = true;
290 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
292 pgd = pgd_offset(mm, address);
293 if (!pgd_present(*pgd))
294 goto out;
295 p4d = p4d_offset(pgd, address);
296 if (!p4d_present(*p4d))
297 goto out;
298 pud = pud_offset(p4d, address);
299 if (!pud_present(*pud))
300 goto out;
301 pmd = pmd_offset(pud, address);
303 * READ_ONCE must function as a barrier with narrower scope
304 * and it must be equivalent to:
305 * _pmd = *pmd; barrier();
307 * This is to deal with the instability (as in
308 * pmd_trans_unstable) of the pmd.
310 _pmd = READ_ONCE(*pmd);
311 if (pmd_none(_pmd))
312 goto out;
314 ret = false;
315 if (!pmd_present(_pmd))
316 goto out;
318 if (pmd_trans_huge(_pmd))
319 goto out;
322 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
323 * and use the standard pte_offset_map() instead of parsing _pmd.
325 pte = pte_offset_map(pmd, address);
327 * Lockless access: we're in a wait_event so it's ok if it
328 * changes under us.
330 if (pte_none(*pte))
331 ret = true;
332 pte_unmap(pte);
334 out:
335 return ret;
339 * The locking rules involved in returning VM_FAULT_RETRY depending on
340 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
341 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
342 * recommendation in __lock_page_or_retry is not an understatement.
344 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
345 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
346 * not set.
348 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
349 * set, VM_FAULT_RETRY can still be returned if and only if there are
350 * fatal_signal_pending()s, and the mmap_sem must be released before
351 * returning it.
353 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
355 struct mm_struct *mm = vmf->vma->vm_mm;
356 struct userfaultfd_ctx *ctx;
357 struct userfaultfd_wait_queue uwq;
358 vm_fault_t ret = VM_FAULT_SIGBUS;
359 bool must_wait, return_to_userland;
360 long blocking_state;
363 * We don't do userfault handling for the final child pid update.
365 * We also don't do userfault handling during
366 * coredumping. hugetlbfs has the special
367 * follow_hugetlb_page() to skip missing pages in the
368 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
369 * the no_page_table() helper in follow_page_mask(), but the
370 * shmem_vm_ops->fault method is invoked even during
371 * coredumping without mmap_sem and it ends up here.
373 if (current->flags & (PF_EXITING|PF_DUMPCORE))
374 goto out;
377 * Coredumping runs without mmap_sem so we can only check that
378 * the mmap_sem is held, if PF_DUMPCORE was not set.
380 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
382 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
383 if (!ctx)
384 goto out;
386 BUG_ON(ctx->mm != mm);
388 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
389 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
391 if (ctx->features & UFFD_FEATURE_SIGBUS)
392 goto out;
395 * If it's already released don't get it. This avoids to loop
396 * in __get_user_pages if userfaultfd_release waits on the
397 * caller of handle_userfault to release the mmap_sem.
399 if (unlikely(READ_ONCE(ctx->released))) {
401 * Don't return VM_FAULT_SIGBUS in this case, so a non
402 * cooperative manager can close the uffd after the
403 * last UFFDIO_COPY, without risking to trigger an
404 * involuntary SIGBUS if the process was starting the
405 * userfaultfd while the userfaultfd was still armed
406 * (but after the last UFFDIO_COPY). If the uffd
407 * wasn't already closed when the userfault reached
408 * this point, that would normally be solved by
409 * userfaultfd_must_wait returning 'false'.
411 * If we were to return VM_FAULT_SIGBUS here, the non
412 * cooperative manager would be instead forced to
413 * always call UFFDIO_UNREGISTER before it can safely
414 * close the uffd.
416 ret = VM_FAULT_NOPAGE;
417 goto out;
421 * Check that we can return VM_FAULT_RETRY.
423 * NOTE: it should become possible to return VM_FAULT_RETRY
424 * even if FAULT_FLAG_TRIED is set without leading to gup()
425 * -EBUSY failures, if the userfaultfd is to be extended for
426 * VM_UFFD_WP tracking and we intend to arm the userfault
427 * without first stopping userland access to the memory. For
428 * VM_UFFD_MISSING userfaults this is enough for now.
430 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
432 * Validate the invariant that nowait must allow retry
433 * to be sure not to return SIGBUS erroneously on
434 * nowait invocations.
436 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
437 #ifdef CONFIG_DEBUG_VM
438 if (printk_ratelimit()) {
439 printk(KERN_WARNING
440 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
441 vmf->flags);
442 dump_stack();
444 #endif
445 goto out;
449 * Handle nowait, not much to do other than tell it to retry
450 * and wait.
452 ret = VM_FAULT_RETRY;
453 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
454 goto out;
456 /* take the reference before dropping the mmap_sem */
457 userfaultfd_ctx_get(ctx);
459 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
460 uwq.wq.private = current;
461 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
462 ctx->features);
463 uwq.ctx = ctx;
464 uwq.waken = false;
466 return_to_userland =
467 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
468 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
469 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
470 TASK_KILLABLE;
472 spin_lock_irq(&ctx->fault_pending_wqh.lock);
474 * After the __add_wait_queue the uwq is visible to userland
475 * through poll/read().
477 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
479 * The smp_mb() after __set_current_state prevents the reads
480 * following the spin_unlock to happen before the list_add in
481 * __add_wait_queue.
483 set_current_state(blocking_state);
484 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
486 if (!is_vm_hugetlb_page(vmf->vma))
487 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
488 reason);
489 else
490 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
491 vmf->address,
492 vmf->flags, reason);
493 up_read(&mm->mmap_sem);
495 if (likely(must_wait && !READ_ONCE(ctx->released) &&
496 (return_to_userland ? !signal_pending(current) :
497 !fatal_signal_pending(current)))) {
498 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
499 schedule();
500 ret |= VM_FAULT_MAJOR;
503 * False wakeups can orginate even from rwsem before
504 * up_read() however userfaults will wait either for a
505 * targeted wakeup on the specific uwq waitqueue from
506 * wake_userfault() or for signals or for uffd
507 * release.
509 while (!READ_ONCE(uwq.waken)) {
511 * This needs the full smp_store_mb()
512 * guarantee as the state write must be
513 * visible to other CPUs before reading
514 * uwq.waken from other CPUs.
516 set_current_state(blocking_state);
517 if (READ_ONCE(uwq.waken) ||
518 READ_ONCE(ctx->released) ||
519 (return_to_userland ? signal_pending(current) :
520 fatal_signal_pending(current)))
521 break;
522 schedule();
526 __set_current_state(TASK_RUNNING);
528 if (return_to_userland) {
529 if (signal_pending(current) &&
530 !fatal_signal_pending(current)) {
532 * If we got a SIGSTOP or SIGCONT and this is
533 * a normal userland page fault, just let
534 * userland return so the signal will be
535 * handled and gdb debugging works. The page
536 * fault code immediately after we return from
537 * this function is going to release the
538 * mmap_sem and it's not depending on it
539 * (unlike gup would if we were not to return
540 * VM_FAULT_RETRY).
542 * If a fatal signal is pending we still take
543 * the streamlined VM_FAULT_RETRY failure path
544 * and there's no need to retake the mmap_sem
545 * in such case.
547 down_read(&mm->mmap_sem);
548 ret = VM_FAULT_NOPAGE;
553 * Here we race with the list_del; list_add in
554 * userfaultfd_ctx_read(), however because we don't ever run
555 * list_del_init() to refile across the two lists, the prev
556 * and next pointers will never point to self. list_add also
557 * would never let any of the two pointers to point to
558 * self. So list_empty_careful won't risk to see both pointers
559 * pointing to self at any time during the list refile. The
560 * only case where list_del_init() is called is the full
561 * removal in the wake function and there we don't re-list_add
562 * and it's fine not to block on the spinlock. The uwq on this
563 * kernel stack can be released after the list_del_init.
565 if (!list_empty_careful(&uwq.wq.entry)) {
566 spin_lock_irq(&ctx->fault_pending_wqh.lock);
568 * No need of list_del_init(), the uwq on the stack
569 * will be freed shortly anyway.
571 list_del(&uwq.wq.entry);
572 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
576 * ctx may go away after this if the userfault pseudo fd is
577 * already released.
579 userfaultfd_ctx_put(ctx);
581 out:
582 return ret;
585 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
586 struct userfaultfd_wait_queue *ewq)
588 struct userfaultfd_ctx *release_new_ctx;
590 if (WARN_ON_ONCE(current->flags & PF_EXITING))
591 goto out;
593 ewq->ctx = ctx;
594 init_waitqueue_entry(&ewq->wq, current);
595 release_new_ctx = NULL;
597 spin_lock_irq(&ctx->event_wqh.lock);
599 * After the __add_wait_queue the uwq is visible to userland
600 * through poll/read().
602 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
603 for (;;) {
604 set_current_state(TASK_KILLABLE);
605 if (ewq->msg.event == 0)
606 break;
607 if (READ_ONCE(ctx->released) ||
608 fatal_signal_pending(current)) {
610 * &ewq->wq may be queued in fork_event, but
611 * __remove_wait_queue ignores the head
612 * parameter. It would be a problem if it
613 * didn't.
615 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
616 if (ewq->msg.event == UFFD_EVENT_FORK) {
617 struct userfaultfd_ctx *new;
619 new = (struct userfaultfd_ctx *)
620 (unsigned long)
621 ewq->msg.arg.reserved.reserved1;
622 release_new_ctx = new;
624 break;
627 spin_unlock_irq(&ctx->event_wqh.lock);
629 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
630 schedule();
632 spin_lock_irq(&ctx->event_wqh.lock);
634 __set_current_state(TASK_RUNNING);
635 spin_unlock_irq(&ctx->event_wqh.lock);
637 if (release_new_ctx) {
638 struct vm_area_struct *vma;
639 struct mm_struct *mm = release_new_ctx->mm;
641 /* the various vma->vm_userfaultfd_ctx still points to it */
642 down_write(&mm->mmap_sem);
643 /* no task can run (and in turn coredump) yet */
644 VM_WARN_ON(!mmget_still_valid(mm));
645 for (vma = mm->mmap; vma; vma = vma->vm_next)
646 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
647 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
648 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
650 up_write(&mm->mmap_sem);
652 userfaultfd_ctx_put(release_new_ctx);
656 * ctx may go away after this if the userfault pseudo fd is
657 * already released.
659 out:
660 WRITE_ONCE(ctx->mmap_changing, false);
661 userfaultfd_ctx_put(ctx);
664 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
665 struct userfaultfd_wait_queue *ewq)
667 ewq->msg.event = 0;
668 wake_up_locked(&ctx->event_wqh);
669 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
672 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
674 struct userfaultfd_ctx *ctx = NULL, *octx;
675 struct userfaultfd_fork_ctx *fctx;
677 octx = vma->vm_userfaultfd_ctx.ctx;
678 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
679 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
680 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
681 return 0;
684 list_for_each_entry(fctx, fcs, list)
685 if (fctx->orig == octx) {
686 ctx = fctx->new;
687 break;
690 if (!ctx) {
691 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
692 if (!fctx)
693 return -ENOMEM;
695 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
696 if (!ctx) {
697 kfree(fctx);
698 return -ENOMEM;
701 atomic_set(&ctx->refcount, 1);
702 ctx->flags = octx->flags;
703 ctx->state = UFFD_STATE_RUNNING;
704 ctx->features = octx->features;
705 ctx->released = false;
706 ctx->mmap_changing = false;
707 ctx->mm = vma->vm_mm;
708 mmgrab(ctx->mm);
710 userfaultfd_ctx_get(octx);
711 WRITE_ONCE(octx->mmap_changing, true);
712 fctx->orig = octx;
713 fctx->new = ctx;
714 list_add_tail(&fctx->list, fcs);
717 vma->vm_userfaultfd_ctx.ctx = ctx;
718 return 0;
721 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
723 struct userfaultfd_ctx *ctx = fctx->orig;
724 struct userfaultfd_wait_queue ewq;
726 msg_init(&ewq.msg);
728 ewq.msg.event = UFFD_EVENT_FORK;
729 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
731 userfaultfd_event_wait_completion(ctx, &ewq);
734 void dup_userfaultfd_complete(struct list_head *fcs)
736 struct userfaultfd_fork_ctx *fctx, *n;
738 list_for_each_entry_safe(fctx, n, fcs, list) {
739 dup_fctx(fctx);
740 list_del(&fctx->list);
741 kfree(fctx);
745 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
746 struct vm_userfaultfd_ctx *vm_ctx)
748 struct userfaultfd_ctx *ctx;
750 ctx = vma->vm_userfaultfd_ctx.ctx;
752 if (!ctx)
753 return;
755 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
756 vm_ctx->ctx = ctx;
757 userfaultfd_ctx_get(ctx);
758 WRITE_ONCE(ctx->mmap_changing, true);
759 } else {
760 /* Drop uffd context if remap feature not enabled */
761 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
762 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
766 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
767 unsigned long from, unsigned long to,
768 unsigned long len)
770 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
771 struct userfaultfd_wait_queue ewq;
773 if (!ctx)
774 return;
776 if (to & ~PAGE_MASK) {
777 userfaultfd_ctx_put(ctx);
778 return;
781 msg_init(&ewq.msg);
783 ewq.msg.event = UFFD_EVENT_REMAP;
784 ewq.msg.arg.remap.from = from;
785 ewq.msg.arg.remap.to = to;
786 ewq.msg.arg.remap.len = len;
788 userfaultfd_event_wait_completion(ctx, &ewq);
791 bool userfaultfd_remove(struct vm_area_struct *vma,
792 unsigned long start, unsigned long end)
794 struct mm_struct *mm = vma->vm_mm;
795 struct userfaultfd_ctx *ctx;
796 struct userfaultfd_wait_queue ewq;
798 ctx = vma->vm_userfaultfd_ctx.ctx;
799 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
800 return true;
802 userfaultfd_ctx_get(ctx);
803 WRITE_ONCE(ctx->mmap_changing, true);
804 up_read(&mm->mmap_sem);
806 msg_init(&ewq.msg);
808 ewq.msg.event = UFFD_EVENT_REMOVE;
809 ewq.msg.arg.remove.start = start;
810 ewq.msg.arg.remove.end = end;
812 userfaultfd_event_wait_completion(ctx, &ewq);
814 return false;
817 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
818 unsigned long start, unsigned long end)
820 struct userfaultfd_unmap_ctx *unmap_ctx;
822 list_for_each_entry(unmap_ctx, unmaps, list)
823 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
824 unmap_ctx->end == end)
825 return true;
827 return false;
830 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
831 unsigned long start, unsigned long end,
832 struct list_head *unmaps)
834 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
835 struct userfaultfd_unmap_ctx *unmap_ctx;
836 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
838 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
839 has_unmap_ctx(ctx, unmaps, start, end))
840 continue;
842 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
843 if (!unmap_ctx)
844 return -ENOMEM;
846 userfaultfd_ctx_get(ctx);
847 WRITE_ONCE(ctx->mmap_changing, true);
848 unmap_ctx->ctx = ctx;
849 unmap_ctx->start = start;
850 unmap_ctx->end = end;
851 list_add_tail(&unmap_ctx->list, unmaps);
854 return 0;
857 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
859 struct userfaultfd_unmap_ctx *ctx, *n;
860 struct userfaultfd_wait_queue ewq;
862 list_for_each_entry_safe(ctx, n, uf, list) {
863 msg_init(&ewq.msg);
865 ewq.msg.event = UFFD_EVENT_UNMAP;
866 ewq.msg.arg.remove.start = ctx->start;
867 ewq.msg.arg.remove.end = ctx->end;
869 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
871 list_del(&ctx->list);
872 kfree(ctx);
876 static int userfaultfd_release(struct inode *inode, struct file *file)
878 struct userfaultfd_ctx *ctx = file->private_data;
879 struct mm_struct *mm = ctx->mm;
880 struct vm_area_struct *vma, *prev;
881 /* len == 0 means wake all */
882 struct userfaultfd_wake_range range = { .len = 0, };
883 unsigned long new_flags;
885 WRITE_ONCE(ctx->released, true);
887 if (!mmget_not_zero(mm))
888 goto wakeup;
891 * Flush page faults out of all CPUs. NOTE: all page faults
892 * must be retried without returning VM_FAULT_SIGBUS if
893 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
894 * changes while handle_userfault released the mmap_sem. So
895 * it's critical that released is set to true (above), before
896 * taking the mmap_sem for writing.
898 down_write(&mm->mmap_sem);
899 if (!mmget_still_valid(mm))
900 goto skip_mm;
901 prev = NULL;
902 for (vma = mm->mmap; vma; vma = vma->vm_next) {
903 cond_resched();
904 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
905 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
906 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
907 prev = vma;
908 continue;
910 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
911 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
912 new_flags, vma->anon_vma,
913 vma->vm_file, vma->vm_pgoff,
914 vma_policy(vma),
915 NULL_VM_UFFD_CTX);
916 if (prev)
917 vma = prev;
918 else
919 prev = vma;
920 vma->vm_flags = new_flags;
921 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
923 skip_mm:
924 up_write(&mm->mmap_sem);
925 mmput(mm);
926 wakeup:
928 * After no new page faults can wait on this fault_*wqh, flush
929 * the last page faults that may have been already waiting on
930 * the fault_*wqh.
932 spin_lock_irq(&ctx->fault_pending_wqh.lock);
933 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
934 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
935 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
937 /* Flush pending events that may still wait on event_wqh */
938 wake_up_all(&ctx->event_wqh);
940 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
941 userfaultfd_ctx_put(ctx);
942 return 0;
945 /* fault_pending_wqh.lock must be hold by the caller */
946 static inline struct userfaultfd_wait_queue *find_userfault_in(
947 wait_queue_head_t *wqh)
949 wait_queue_entry_t *wq;
950 struct userfaultfd_wait_queue *uwq;
952 VM_BUG_ON(!spin_is_locked(&wqh->lock));
954 uwq = NULL;
955 if (!waitqueue_active(wqh))
956 goto out;
957 /* walk in reverse to provide FIFO behavior to read userfaults */
958 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
959 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
960 out:
961 return uwq;
964 static inline struct userfaultfd_wait_queue *find_userfault(
965 struct userfaultfd_ctx *ctx)
967 return find_userfault_in(&ctx->fault_pending_wqh);
970 static inline struct userfaultfd_wait_queue *find_userfault_evt(
971 struct userfaultfd_ctx *ctx)
973 return find_userfault_in(&ctx->event_wqh);
976 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
978 struct userfaultfd_ctx *ctx = file->private_data;
979 __poll_t ret;
981 poll_wait(file, &ctx->fd_wqh, wait);
983 switch (ctx->state) {
984 case UFFD_STATE_WAIT_API:
985 return EPOLLERR;
986 case UFFD_STATE_RUNNING:
988 * poll() never guarantees that read won't block.
989 * userfaults can be waken before they're read().
991 if (unlikely(!(file->f_flags & O_NONBLOCK)))
992 return EPOLLERR;
994 * lockless access to see if there are pending faults
995 * __pollwait last action is the add_wait_queue but
996 * the spin_unlock would allow the waitqueue_active to
997 * pass above the actual list_add inside
998 * add_wait_queue critical section. So use a full
999 * memory barrier to serialize the list_add write of
1000 * add_wait_queue() with the waitqueue_active read
1001 * below.
1003 ret = 0;
1004 smp_mb();
1005 if (waitqueue_active(&ctx->fault_pending_wqh))
1006 ret = EPOLLIN;
1007 else if (waitqueue_active(&ctx->event_wqh))
1008 ret = EPOLLIN;
1010 return ret;
1011 default:
1012 WARN_ON_ONCE(1);
1013 return EPOLLERR;
1017 static const struct file_operations userfaultfd_fops;
1019 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
1020 struct userfaultfd_ctx *new,
1021 struct uffd_msg *msg)
1023 int fd;
1025 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
1026 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
1027 if (fd < 0)
1028 return fd;
1030 msg->arg.reserved.reserved1 = 0;
1031 msg->arg.fork.ufd = fd;
1032 return 0;
1035 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1036 struct uffd_msg *msg)
1038 ssize_t ret;
1039 DECLARE_WAITQUEUE(wait, current);
1040 struct userfaultfd_wait_queue *uwq;
1042 * Handling fork event requires sleeping operations, so
1043 * we drop the event_wqh lock, then do these ops, then
1044 * lock it back and wake up the waiter. While the lock is
1045 * dropped the ewq may go away so we keep track of it
1046 * carefully.
1048 LIST_HEAD(fork_event);
1049 struct userfaultfd_ctx *fork_nctx = NULL;
1051 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1052 spin_lock_irq(&ctx->fd_wqh.lock);
1053 __add_wait_queue(&ctx->fd_wqh, &wait);
1054 for (;;) {
1055 set_current_state(TASK_INTERRUPTIBLE);
1056 spin_lock(&ctx->fault_pending_wqh.lock);
1057 uwq = find_userfault(ctx);
1058 if (uwq) {
1060 * Use a seqcount to repeat the lockless check
1061 * in wake_userfault() to avoid missing
1062 * wakeups because during the refile both
1063 * waitqueue could become empty if this is the
1064 * only userfault.
1066 write_seqcount_begin(&ctx->refile_seq);
1069 * The fault_pending_wqh.lock prevents the uwq
1070 * to disappear from under us.
1072 * Refile this userfault from
1073 * fault_pending_wqh to fault_wqh, it's not
1074 * pending anymore after we read it.
1076 * Use list_del() by hand (as
1077 * userfaultfd_wake_function also uses
1078 * list_del_init() by hand) to be sure nobody
1079 * changes __remove_wait_queue() to use
1080 * list_del_init() in turn breaking the
1081 * !list_empty_careful() check in
1082 * handle_userfault(). The uwq->wq.head list
1083 * must never be empty at any time during the
1084 * refile, or the waitqueue could disappear
1085 * from under us. The "wait_queue_head_t"
1086 * parameter of __remove_wait_queue() is unused
1087 * anyway.
1089 list_del(&uwq->wq.entry);
1090 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1092 write_seqcount_end(&ctx->refile_seq);
1094 /* careful to always initialize msg if ret == 0 */
1095 *msg = uwq->msg;
1096 spin_unlock(&ctx->fault_pending_wqh.lock);
1097 ret = 0;
1098 break;
1100 spin_unlock(&ctx->fault_pending_wqh.lock);
1102 spin_lock(&ctx->event_wqh.lock);
1103 uwq = find_userfault_evt(ctx);
1104 if (uwq) {
1105 *msg = uwq->msg;
1107 if (uwq->msg.event == UFFD_EVENT_FORK) {
1108 fork_nctx = (struct userfaultfd_ctx *)
1109 (unsigned long)
1110 uwq->msg.arg.reserved.reserved1;
1111 list_move(&uwq->wq.entry, &fork_event);
1113 * fork_nctx can be freed as soon as
1114 * we drop the lock, unless we take a
1115 * reference on it.
1117 userfaultfd_ctx_get(fork_nctx);
1118 spin_unlock(&ctx->event_wqh.lock);
1119 ret = 0;
1120 break;
1123 userfaultfd_event_complete(ctx, uwq);
1124 spin_unlock(&ctx->event_wqh.lock);
1125 ret = 0;
1126 break;
1128 spin_unlock(&ctx->event_wqh.lock);
1130 if (signal_pending(current)) {
1131 ret = -ERESTARTSYS;
1132 break;
1134 if (no_wait) {
1135 ret = -EAGAIN;
1136 break;
1138 spin_unlock_irq(&ctx->fd_wqh.lock);
1139 schedule();
1140 spin_lock_irq(&ctx->fd_wqh.lock);
1142 __remove_wait_queue(&ctx->fd_wqh, &wait);
1143 __set_current_state(TASK_RUNNING);
1144 spin_unlock_irq(&ctx->fd_wqh.lock);
1146 if (!ret && msg->event == UFFD_EVENT_FORK) {
1147 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1148 spin_lock_irq(&ctx->event_wqh.lock);
1149 if (!list_empty(&fork_event)) {
1151 * The fork thread didn't abort, so we can
1152 * drop the temporary refcount.
1154 userfaultfd_ctx_put(fork_nctx);
1156 uwq = list_first_entry(&fork_event,
1157 typeof(*uwq),
1158 wq.entry);
1160 * If fork_event list wasn't empty and in turn
1161 * the event wasn't already released by fork
1162 * (the event is allocated on fork kernel
1163 * stack), put the event back to its place in
1164 * the event_wq. fork_event head will be freed
1165 * as soon as we return so the event cannot
1166 * stay queued there no matter the current
1167 * "ret" value.
1169 list_del(&uwq->wq.entry);
1170 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1173 * Leave the event in the waitqueue and report
1174 * error to userland if we failed to resolve
1175 * the userfault fork.
1177 if (likely(!ret))
1178 userfaultfd_event_complete(ctx, uwq);
1179 } else {
1181 * Here the fork thread aborted and the
1182 * refcount from the fork thread on fork_nctx
1183 * has already been released. We still hold
1184 * the reference we took before releasing the
1185 * lock above. If resolve_userfault_fork
1186 * failed we've to drop it because the
1187 * fork_nctx has to be freed in such case. If
1188 * it succeeded we'll hold it because the new
1189 * uffd references it.
1191 if (ret)
1192 userfaultfd_ctx_put(fork_nctx);
1194 spin_unlock_irq(&ctx->event_wqh.lock);
1197 return ret;
1200 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1201 size_t count, loff_t *ppos)
1203 struct userfaultfd_ctx *ctx = file->private_data;
1204 ssize_t _ret, ret = 0;
1205 struct uffd_msg msg;
1206 int no_wait = file->f_flags & O_NONBLOCK;
1208 if (ctx->state == UFFD_STATE_WAIT_API)
1209 return -EINVAL;
1211 for (;;) {
1212 if (count < sizeof(msg))
1213 return ret ? ret : -EINVAL;
1214 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1215 if (_ret < 0)
1216 return ret ? ret : _ret;
1217 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1218 return ret ? ret : -EFAULT;
1219 ret += sizeof(msg);
1220 buf += sizeof(msg);
1221 count -= sizeof(msg);
1223 * Allow to read more than one fault at time but only
1224 * block if waiting for the very first one.
1226 no_wait = O_NONBLOCK;
1230 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1231 struct userfaultfd_wake_range *range)
1233 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1234 /* wake all in the range and autoremove */
1235 if (waitqueue_active(&ctx->fault_pending_wqh))
1236 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1237 range);
1238 if (waitqueue_active(&ctx->fault_wqh))
1239 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1240 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1243 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1244 struct userfaultfd_wake_range *range)
1246 unsigned seq;
1247 bool need_wakeup;
1250 * To be sure waitqueue_active() is not reordered by the CPU
1251 * before the pagetable update, use an explicit SMP memory
1252 * barrier here. PT lock release or up_read(mmap_sem) still
1253 * have release semantics that can allow the
1254 * waitqueue_active() to be reordered before the pte update.
1256 smp_mb();
1259 * Use waitqueue_active because it's very frequent to
1260 * change the address space atomically even if there are no
1261 * userfaults yet. So we take the spinlock only when we're
1262 * sure we've userfaults to wake.
1264 do {
1265 seq = read_seqcount_begin(&ctx->refile_seq);
1266 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1267 waitqueue_active(&ctx->fault_wqh);
1268 cond_resched();
1269 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1270 if (need_wakeup)
1271 __wake_userfault(ctx, range);
1274 static __always_inline int validate_range(struct mm_struct *mm,
1275 __u64 start, __u64 len)
1277 __u64 task_size = mm->task_size;
1279 if (start & ~PAGE_MASK)
1280 return -EINVAL;
1281 if (len & ~PAGE_MASK)
1282 return -EINVAL;
1283 if (!len)
1284 return -EINVAL;
1285 if (start < mmap_min_addr)
1286 return -EINVAL;
1287 if (start >= task_size)
1288 return -EINVAL;
1289 if (len > task_size - start)
1290 return -EINVAL;
1291 return 0;
1294 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1296 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1297 vma_is_shmem(vma);
1300 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1301 unsigned long arg)
1303 struct mm_struct *mm = ctx->mm;
1304 struct vm_area_struct *vma, *prev, *cur;
1305 int ret;
1306 struct uffdio_register uffdio_register;
1307 struct uffdio_register __user *user_uffdio_register;
1308 unsigned long vm_flags, new_flags;
1309 bool found;
1310 bool basic_ioctls;
1311 unsigned long start, end, vma_end;
1313 user_uffdio_register = (struct uffdio_register __user *) arg;
1315 ret = -EFAULT;
1316 if (copy_from_user(&uffdio_register, user_uffdio_register,
1317 sizeof(uffdio_register)-sizeof(__u64)))
1318 goto out;
1320 ret = -EINVAL;
1321 if (!uffdio_register.mode)
1322 goto out;
1323 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1324 UFFDIO_REGISTER_MODE_WP))
1325 goto out;
1326 vm_flags = 0;
1327 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1328 vm_flags |= VM_UFFD_MISSING;
1329 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1330 vm_flags |= VM_UFFD_WP;
1332 * FIXME: remove the below error constraint by
1333 * implementing the wprotect tracking mode.
1335 ret = -EINVAL;
1336 goto out;
1339 ret = validate_range(mm, uffdio_register.range.start,
1340 uffdio_register.range.len);
1341 if (ret)
1342 goto out;
1344 start = uffdio_register.range.start;
1345 end = start + uffdio_register.range.len;
1347 ret = -ENOMEM;
1348 if (!mmget_not_zero(mm))
1349 goto out;
1351 down_write(&mm->mmap_sem);
1352 if (!mmget_still_valid(mm))
1353 goto out_unlock;
1354 vma = find_vma_prev(mm, start, &prev);
1355 if (!vma)
1356 goto out_unlock;
1358 /* check that there's at least one vma in the range */
1359 ret = -EINVAL;
1360 if (vma->vm_start >= end)
1361 goto out_unlock;
1364 * If the first vma contains huge pages, make sure start address
1365 * is aligned to huge page size.
1367 if (is_vm_hugetlb_page(vma)) {
1368 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1370 if (start & (vma_hpagesize - 1))
1371 goto out_unlock;
1375 * Search for not compatible vmas.
1377 found = false;
1378 basic_ioctls = false;
1379 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1380 cond_resched();
1382 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1383 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1385 /* check not compatible vmas */
1386 ret = -EINVAL;
1387 if (!vma_can_userfault(cur))
1388 goto out_unlock;
1391 * UFFDIO_COPY will fill file holes even without
1392 * PROT_WRITE. This check enforces that if this is a
1393 * MAP_SHARED, the process has write permission to the backing
1394 * file. If VM_MAYWRITE is set it also enforces that on a
1395 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1396 * F_WRITE_SEAL can be taken until the vma is destroyed.
1398 ret = -EPERM;
1399 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1400 goto out_unlock;
1403 * If this vma contains ending address, and huge pages
1404 * check alignment.
1406 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1407 end > cur->vm_start) {
1408 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1410 ret = -EINVAL;
1412 if (end & (vma_hpagesize - 1))
1413 goto out_unlock;
1417 * Check that this vma isn't already owned by a
1418 * different userfaultfd. We can't allow more than one
1419 * userfaultfd to own a single vma simultaneously or we
1420 * wouldn't know which one to deliver the userfaults to.
1422 ret = -EBUSY;
1423 if (cur->vm_userfaultfd_ctx.ctx &&
1424 cur->vm_userfaultfd_ctx.ctx != ctx)
1425 goto out_unlock;
1428 * Note vmas containing huge pages
1430 if (is_vm_hugetlb_page(cur))
1431 basic_ioctls = true;
1433 found = true;
1435 BUG_ON(!found);
1437 if (vma->vm_start < start)
1438 prev = vma;
1440 ret = 0;
1441 do {
1442 cond_resched();
1444 BUG_ON(!vma_can_userfault(vma));
1445 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1446 vma->vm_userfaultfd_ctx.ctx != ctx);
1447 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1450 * Nothing to do: this vma is already registered into this
1451 * userfaultfd and with the right tracking mode too.
1453 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1454 (vma->vm_flags & vm_flags) == vm_flags)
1455 goto skip;
1457 if (vma->vm_start > start)
1458 start = vma->vm_start;
1459 vma_end = min(end, vma->vm_end);
1461 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1462 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1463 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1464 vma_policy(vma),
1465 ((struct vm_userfaultfd_ctx){ ctx }));
1466 if (prev) {
1467 vma = prev;
1468 goto next;
1470 if (vma->vm_start < start) {
1471 ret = split_vma(mm, vma, start, 1);
1472 if (ret)
1473 break;
1475 if (vma->vm_end > end) {
1476 ret = split_vma(mm, vma, end, 0);
1477 if (ret)
1478 break;
1480 next:
1482 * In the vma_merge() successful mprotect-like case 8:
1483 * the next vma was merged into the current one and
1484 * the current one has not been updated yet.
1486 vma->vm_flags = new_flags;
1487 vma->vm_userfaultfd_ctx.ctx = ctx;
1489 skip:
1490 prev = vma;
1491 start = vma->vm_end;
1492 vma = vma->vm_next;
1493 } while (vma && vma->vm_start < end);
1494 out_unlock:
1495 up_write(&mm->mmap_sem);
1496 mmput(mm);
1497 if (!ret) {
1499 * Now that we scanned all vmas we can already tell
1500 * userland which ioctls methods are guaranteed to
1501 * succeed on this range.
1503 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1504 UFFD_API_RANGE_IOCTLS,
1505 &user_uffdio_register->ioctls))
1506 ret = -EFAULT;
1508 out:
1509 return ret;
1512 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1513 unsigned long arg)
1515 struct mm_struct *mm = ctx->mm;
1516 struct vm_area_struct *vma, *prev, *cur;
1517 int ret;
1518 struct uffdio_range uffdio_unregister;
1519 unsigned long new_flags;
1520 bool found;
1521 unsigned long start, end, vma_end;
1522 const void __user *buf = (void __user *)arg;
1524 ret = -EFAULT;
1525 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1526 goto out;
1528 ret = validate_range(mm, uffdio_unregister.start,
1529 uffdio_unregister.len);
1530 if (ret)
1531 goto out;
1533 start = uffdio_unregister.start;
1534 end = start + uffdio_unregister.len;
1536 ret = -ENOMEM;
1537 if (!mmget_not_zero(mm))
1538 goto out;
1540 down_write(&mm->mmap_sem);
1541 if (!mmget_still_valid(mm))
1542 goto out_unlock;
1543 vma = find_vma_prev(mm, start, &prev);
1544 if (!vma)
1545 goto out_unlock;
1547 /* check that there's at least one vma in the range */
1548 ret = -EINVAL;
1549 if (vma->vm_start >= end)
1550 goto out_unlock;
1553 * If the first vma contains huge pages, make sure start address
1554 * is aligned to huge page size.
1556 if (is_vm_hugetlb_page(vma)) {
1557 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1559 if (start & (vma_hpagesize - 1))
1560 goto out_unlock;
1564 * Search for not compatible vmas.
1566 found = false;
1567 ret = -EINVAL;
1568 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1569 cond_resched();
1571 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1572 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1575 * Check not compatible vmas, not strictly required
1576 * here as not compatible vmas cannot have an
1577 * userfaultfd_ctx registered on them, but this
1578 * provides for more strict behavior to notice
1579 * unregistration errors.
1581 if (!vma_can_userfault(cur))
1582 goto out_unlock;
1584 found = true;
1586 BUG_ON(!found);
1588 if (vma->vm_start < start)
1589 prev = vma;
1591 ret = 0;
1592 do {
1593 cond_resched();
1595 BUG_ON(!vma_can_userfault(vma));
1598 * Nothing to do: this vma is already registered into this
1599 * userfaultfd and with the right tracking mode too.
1601 if (!vma->vm_userfaultfd_ctx.ctx)
1602 goto skip;
1604 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1606 if (vma->vm_start > start)
1607 start = vma->vm_start;
1608 vma_end = min(end, vma->vm_end);
1610 if (userfaultfd_missing(vma)) {
1612 * Wake any concurrent pending userfault while
1613 * we unregister, so they will not hang
1614 * permanently and it avoids userland to call
1615 * UFFDIO_WAKE explicitly.
1617 struct userfaultfd_wake_range range;
1618 range.start = start;
1619 range.len = vma_end - start;
1620 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1623 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1624 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1625 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1626 vma_policy(vma),
1627 NULL_VM_UFFD_CTX);
1628 if (prev) {
1629 vma = prev;
1630 goto next;
1632 if (vma->vm_start < start) {
1633 ret = split_vma(mm, vma, start, 1);
1634 if (ret)
1635 break;
1637 if (vma->vm_end > end) {
1638 ret = split_vma(mm, vma, end, 0);
1639 if (ret)
1640 break;
1642 next:
1644 * In the vma_merge() successful mprotect-like case 8:
1645 * the next vma was merged into the current one and
1646 * the current one has not been updated yet.
1648 vma->vm_flags = new_flags;
1649 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1651 skip:
1652 prev = vma;
1653 start = vma->vm_end;
1654 vma = vma->vm_next;
1655 } while (vma && vma->vm_start < end);
1656 out_unlock:
1657 up_write(&mm->mmap_sem);
1658 mmput(mm);
1659 out:
1660 return ret;
1664 * userfaultfd_wake may be used in combination with the
1665 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1667 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1668 unsigned long arg)
1670 int ret;
1671 struct uffdio_range uffdio_wake;
1672 struct userfaultfd_wake_range range;
1673 const void __user *buf = (void __user *)arg;
1675 ret = -EFAULT;
1676 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1677 goto out;
1679 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1680 if (ret)
1681 goto out;
1683 range.start = uffdio_wake.start;
1684 range.len = uffdio_wake.len;
1687 * len == 0 means wake all and we don't want to wake all here,
1688 * so check it again to be sure.
1690 VM_BUG_ON(!range.len);
1692 wake_userfault(ctx, &range);
1693 ret = 0;
1695 out:
1696 return ret;
1699 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1700 unsigned long arg)
1702 __s64 ret;
1703 struct uffdio_copy uffdio_copy;
1704 struct uffdio_copy __user *user_uffdio_copy;
1705 struct userfaultfd_wake_range range;
1707 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1709 ret = -EAGAIN;
1710 if (READ_ONCE(ctx->mmap_changing))
1711 goto out;
1713 ret = -EFAULT;
1714 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1715 /* don't copy "copy" last field */
1716 sizeof(uffdio_copy)-sizeof(__s64)))
1717 goto out;
1719 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1720 if (ret)
1721 goto out;
1723 * double check for wraparound just in case. copy_from_user()
1724 * will later check uffdio_copy.src + uffdio_copy.len to fit
1725 * in the userland range.
1727 ret = -EINVAL;
1728 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1729 goto out;
1730 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1731 goto out;
1732 if (mmget_not_zero(ctx->mm)) {
1733 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1734 uffdio_copy.len, &ctx->mmap_changing);
1735 mmput(ctx->mm);
1736 } else {
1737 return -ESRCH;
1739 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1740 return -EFAULT;
1741 if (ret < 0)
1742 goto out;
1743 BUG_ON(!ret);
1744 /* len == 0 would wake all */
1745 range.len = ret;
1746 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1747 range.start = uffdio_copy.dst;
1748 wake_userfault(ctx, &range);
1750 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1751 out:
1752 return ret;
1755 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1756 unsigned long arg)
1758 __s64 ret;
1759 struct uffdio_zeropage uffdio_zeropage;
1760 struct uffdio_zeropage __user *user_uffdio_zeropage;
1761 struct userfaultfd_wake_range range;
1763 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1765 ret = -EAGAIN;
1766 if (READ_ONCE(ctx->mmap_changing))
1767 goto out;
1769 ret = -EFAULT;
1770 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1771 /* don't copy "zeropage" last field */
1772 sizeof(uffdio_zeropage)-sizeof(__s64)))
1773 goto out;
1775 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1776 uffdio_zeropage.range.len);
1777 if (ret)
1778 goto out;
1779 ret = -EINVAL;
1780 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1781 goto out;
1783 if (mmget_not_zero(ctx->mm)) {
1784 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1785 uffdio_zeropage.range.len,
1786 &ctx->mmap_changing);
1787 mmput(ctx->mm);
1788 } else {
1789 return -ESRCH;
1791 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1792 return -EFAULT;
1793 if (ret < 0)
1794 goto out;
1795 /* len == 0 would wake all */
1796 BUG_ON(!ret);
1797 range.len = ret;
1798 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1799 range.start = uffdio_zeropage.range.start;
1800 wake_userfault(ctx, &range);
1802 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1803 out:
1804 return ret;
1807 static inline unsigned int uffd_ctx_features(__u64 user_features)
1810 * For the current set of features the bits just coincide
1812 return (unsigned int)user_features;
1816 * userland asks for a certain API version and we return which bits
1817 * and ioctl commands are implemented in this kernel for such API
1818 * version or -EINVAL if unknown.
1820 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1821 unsigned long arg)
1823 struct uffdio_api uffdio_api;
1824 void __user *buf = (void __user *)arg;
1825 int ret;
1826 __u64 features;
1828 ret = -EINVAL;
1829 if (ctx->state != UFFD_STATE_WAIT_API)
1830 goto out;
1831 ret = -EFAULT;
1832 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1833 goto out;
1834 features = uffdio_api.features;
1835 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1836 memset(&uffdio_api, 0, sizeof(uffdio_api));
1837 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1838 goto out;
1839 ret = -EINVAL;
1840 goto out;
1842 /* report all available features and ioctls to userland */
1843 uffdio_api.features = UFFD_API_FEATURES;
1844 uffdio_api.ioctls = UFFD_API_IOCTLS;
1845 ret = -EFAULT;
1846 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1847 goto out;
1848 ctx->state = UFFD_STATE_RUNNING;
1849 /* only enable the requested features for this uffd context */
1850 ctx->features = uffd_ctx_features(features);
1851 ret = 0;
1852 out:
1853 return ret;
1856 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1857 unsigned long arg)
1859 int ret = -EINVAL;
1860 struct userfaultfd_ctx *ctx = file->private_data;
1862 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1863 return -EINVAL;
1865 switch(cmd) {
1866 case UFFDIO_API:
1867 ret = userfaultfd_api(ctx, arg);
1868 break;
1869 case UFFDIO_REGISTER:
1870 ret = userfaultfd_register(ctx, arg);
1871 break;
1872 case UFFDIO_UNREGISTER:
1873 ret = userfaultfd_unregister(ctx, arg);
1874 break;
1875 case UFFDIO_WAKE:
1876 ret = userfaultfd_wake(ctx, arg);
1877 break;
1878 case UFFDIO_COPY:
1879 ret = userfaultfd_copy(ctx, arg);
1880 break;
1881 case UFFDIO_ZEROPAGE:
1882 ret = userfaultfd_zeropage(ctx, arg);
1883 break;
1885 return ret;
1888 #ifdef CONFIG_PROC_FS
1889 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1891 struct userfaultfd_ctx *ctx = f->private_data;
1892 wait_queue_entry_t *wq;
1893 unsigned long pending = 0, total = 0;
1895 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1896 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1897 pending++;
1898 total++;
1900 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1901 total++;
1903 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1906 * If more protocols will be added, there will be all shown
1907 * separated by a space. Like this:
1908 * protocols: aa:... bb:...
1910 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1911 pending, total, UFFD_API, ctx->features,
1912 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1914 #endif
1916 static const struct file_operations userfaultfd_fops = {
1917 #ifdef CONFIG_PROC_FS
1918 .show_fdinfo = userfaultfd_show_fdinfo,
1919 #endif
1920 .release = userfaultfd_release,
1921 .poll = userfaultfd_poll,
1922 .read = userfaultfd_read,
1923 .unlocked_ioctl = userfaultfd_ioctl,
1924 .compat_ioctl = userfaultfd_ioctl,
1925 .llseek = noop_llseek,
1928 static void init_once_userfaultfd_ctx(void *mem)
1930 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1932 init_waitqueue_head(&ctx->fault_pending_wqh);
1933 init_waitqueue_head(&ctx->fault_wqh);
1934 init_waitqueue_head(&ctx->event_wqh);
1935 init_waitqueue_head(&ctx->fd_wqh);
1936 seqcount_init(&ctx->refile_seq);
1939 SYSCALL_DEFINE1(userfaultfd, int, flags)
1941 struct userfaultfd_ctx *ctx;
1942 int fd;
1944 BUG_ON(!current->mm);
1946 /* Check the UFFD_* constants for consistency. */
1947 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1948 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1950 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1951 return -EINVAL;
1953 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1954 if (!ctx)
1955 return -ENOMEM;
1957 atomic_set(&ctx->refcount, 1);
1958 ctx->flags = flags;
1959 ctx->features = 0;
1960 ctx->state = UFFD_STATE_WAIT_API;
1961 ctx->released = false;
1962 ctx->mmap_changing = false;
1963 ctx->mm = current->mm;
1964 /* prevent the mm struct to be freed */
1965 mmgrab(ctx->mm);
1967 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1968 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1969 if (fd < 0) {
1970 mmdrop(ctx->mm);
1971 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1973 return fd;
1976 static int __init userfaultfd_init(void)
1978 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1979 sizeof(struct userfaultfd_ctx),
1981 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1982 init_once_userfaultfd_ctx);
1983 return 0;
1985 __initcall(userfaultfd_init);