2 * Register map access API
4 * Copyright 2011 Wolfson Microelectronics plc
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 #include <linux/log2.h>
23 #include <linux/hwspinlock.h>
25 #define CREATE_TRACE_POINTS
31 * Sometimes for failures during very early init the trace
32 * infrastructure isn't available early enough to be used. For this
33 * sort of problem defining LOG_DEVICE will add printks for basic
34 * register I/O on a specific device.
38 static int _regmap_update_bits(struct regmap
*map
, unsigned int reg
,
39 unsigned int mask
, unsigned int val
,
40 bool *change
, bool force_write
);
42 static int _regmap_bus_reg_read(void *context
, unsigned int reg
,
44 static int _regmap_bus_read(void *context
, unsigned int reg
,
46 static int _regmap_bus_formatted_write(void *context
, unsigned int reg
,
48 static int _regmap_bus_reg_write(void *context
, unsigned int reg
,
50 static int _regmap_bus_raw_write(void *context
, unsigned int reg
,
53 bool regmap_reg_in_ranges(unsigned int reg
,
54 const struct regmap_range
*ranges
,
57 const struct regmap_range
*r
;
60 for (i
= 0, r
= ranges
; i
< nranges
; i
++, r
++)
61 if (regmap_reg_in_range(reg
, r
))
65 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges
);
67 bool regmap_check_range_table(struct regmap
*map
, unsigned int reg
,
68 const struct regmap_access_table
*table
)
70 /* Check "no ranges" first */
71 if (regmap_reg_in_ranges(reg
, table
->no_ranges
, table
->n_no_ranges
))
74 /* In case zero "yes ranges" are supplied, any reg is OK */
75 if (!table
->n_yes_ranges
)
78 return regmap_reg_in_ranges(reg
, table
->yes_ranges
,
81 EXPORT_SYMBOL_GPL(regmap_check_range_table
);
83 bool regmap_writeable(struct regmap
*map
, unsigned int reg
)
85 if (map
->max_register
&& reg
> map
->max_register
)
88 if (map
->writeable_reg
)
89 return map
->writeable_reg(map
->dev
, reg
);
92 return regmap_check_range_table(map
, reg
, map
->wr_table
);
97 bool regmap_cached(struct regmap
*map
, unsigned int reg
)
102 if (map
->cache_type
== REGCACHE_NONE
)
108 if (map
->max_register
&& reg
> map
->max_register
)
111 map
->lock(map
->lock_arg
);
112 ret
= regcache_read(map
, reg
, &val
);
113 map
->unlock(map
->lock_arg
);
120 bool regmap_readable(struct regmap
*map
, unsigned int reg
)
125 if (map
->max_register
&& reg
> map
->max_register
)
128 if (map
->format
.format_write
)
131 if (map
->readable_reg
)
132 return map
->readable_reg(map
->dev
, reg
);
135 return regmap_check_range_table(map
, reg
, map
->rd_table
);
140 bool regmap_volatile(struct regmap
*map
, unsigned int reg
)
142 if (!map
->format
.format_write
&& !regmap_readable(map
, reg
))
145 if (map
->volatile_reg
)
146 return map
->volatile_reg(map
->dev
, reg
);
148 if (map
->volatile_table
)
149 return regmap_check_range_table(map
, reg
, map
->volatile_table
);
157 bool regmap_precious(struct regmap
*map
, unsigned int reg
)
159 if (!regmap_readable(map
, reg
))
162 if (map
->precious_reg
)
163 return map
->precious_reg(map
->dev
, reg
);
165 if (map
->precious_table
)
166 return regmap_check_range_table(map
, reg
, map
->precious_table
);
171 bool regmap_readable_noinc(struct regmap
*map
, unsigned int reg
)
173 if (map
->readable_noinc_reg
)
174 return map
->readable_noinc_reg(map
->dev
, reg
);
176 if (map
->rd_noinc_table
)
177 return regmap_check_range_table(map
, reg
, map
->rd_noinc_table
);
182 static bool regmap_volatile_range(struct regmap
*map
, unsigned int reg
,
187 for (i
= 0; i
< num
; i
++)
188 if (!regmap_volatile(map
, reg
+ regmap_get_offset(map
, i
)))
194 static void regmap_format_2_6_write(struct regmap
*map
,
195 unsigned int reg
, unsigned int val
)
197 u8
*out
= map
->work_buf
;
199 *out
= (reg
<< 6) | val
;
202 static void regmap_format_4_12_write(struct regmap
*map
,
203 unsigned int reg
, unsigned int val
)
205 __be16
*out
= map
->work_buf
;
206 *out
= cpu_to_be16((reg
<< 12) | val
);
209 static void regmap_format_7_9_write(struct regmap
*map
,
210 unsigned int reg
, unsigned int val
)
212 __be16
*out
= map
->work_buf
;
213 *out
= cpu_to_be16((reg
<< 9) | val
);
216 static void regmap_format_10_14_write(struct regmap
*map
,
217 unsigned int reg
, unsigned int val
)
219 u8
*out
= map
->work_buf
;
222 out
[1] = (val
>> 8) | (reg
<< 6);
226 static void regmap_format_8(void *buf
, unsigned int val
, unsigned int shift
)
233 static void regmap_format_16_be(void *buf
, unsigned int val
, unsigned int shift
)
237 b
[0] = cpu_to_be16(val
<< shift
);
240 static void regmap_format_16_le(void *buf
, unsigned int val
, unsigned int shift
)
244 b
[0] = cpu_to_le16(val
<< shift
);
247 static void regmap_format_16_native(void *buf
, unsigned int val
,
250 *(u16
*)buf
= val
<< shift
;
253 static void regmap_format_24(void *buf
, unsigned int val
, unsigned int shift
)
264 static void regmap_format_32_be(void *buf
, unsigned int val
, unsigned int shift
)
268 b
[0] = cpu_to_be32(val
<< shift
);
271 static void regmap_format_32_le(void *buf
, unsigned int val
, unsigned int shift
)
275 b
[0] = cpu_to_le32(val
<< shift
);
278 static void regmap_format_32_native(void *buf
, unsigned int val
,
281 *(u32
*)buf
= val
<< shift
;
285 static void regmap_format_64_be(void *buf
, unsigned int val
, unsigned int shift
)
289 b
[0] = cpu_to_be64((u64
)val
<< shift
);
292 static void regmap_format_64_le(void *buf
, unsigned int val
, unsigned int shift
)
296 b
[0] = cpu_to_le64((u64
)val
<< shift
);
299 static void regmap_format_64_native(void *buf
, unsigned int val
,
302 *(u64
*)buf
= (u64
)val
<< shift
;
306 static void regmap_parse_inplace_noop(void *buf
)
310 static unsigned int regmap_parse_8(const void *buf
)
317 static unsigned int regmap_parse_16_be(const void *buf
)
319 const __be16
*b
= buf
;
321 return be16_to_cpu(b
[0]);
324 static unsigned int regmap_parse_16_le(const void *buf
)
326 const __le16
*b
= buf
;
328 return le16_to_cpu(b
[0]);
331 static void regmap_parse_16_be_inplace(void *buf
)
335 b
[0] = be16_to_cpu(b
[0]);
338 static void regmap_parse_16_le_inplace(void *buf
)
342 b
[0] = le16_to_cpu(b
[0]);
345 static unsigned int regmap_parse_16_native(const void *buf
)
350 static unsigned int regmap_parse_24(const void *buf
)
353 unsigned int ret
= b
[2];
354 ret
|= ((unsigned int)b
[1]) << 8;
355 ret
|= ((unsigned int)b
[0]) << 16;
360 static unsigned int regmap_parse_32_be(const void *buf
)
362 const __be32
*b
= buf
;
364 return be32_to_cpu(b
[0]);
367 static unsigned int regmap_parse_32_le(const void *buf
)
369 const __le32
*b
= buf
;
371 return le32_to_cpu(b
[0]);
374 static void regmap_parse_32_be_inplace(void *buf
)
378 b
[0] = be32_to_cpu(b
[0]);
381 static void regmap_parse_32_le_inplace(void *buf
)
385 b
[0] = le32_to_cpu(b
[0]);
388 static unsigned int regmap_parse_32_native(const void *buf
)
394 static unsigned int regmap_parse_64_be(const void *buf
)
396 const __be64
*b
= buf
;
398 return be64_to_cpu(b
[0]);
401 static unsigned int regmap_parse_64_le(const void *buf
)
403 const __le64
*b
= buf
;
405 return le64_to_cpu(b
[0]);
408 static void regmap_parse_64_be_inplace(void *buf
)
412 b
[0] = be64_to_cpu(b
[0]);
415 static void regmap_parse_64_le_inplace(void *buf
)
419 b
[0] = le64_to_cpu(b
[0]);
422 static unsigned int regmap_parse_64_native(const void *buf
)
428 static void regmap_lock_hwlock(void *__map
)
430 struct regmap
*map
= __map
;
432 hwspin_lock_timeout(map
->hwlock
, UINT_MAX
);
435 static void regmap_lock_hwlock_irq(void *__map
)
437 struct regmap
*map
= __map
;
439 hwspin_lock_timeout_irq(map
->hwlock
, UINT_MAX
);
442 static void regmap_lock_hwlock_irqsave(void *__map
)
444 struct regmap
*map
= __map
;
446 hwspin_lock_timeout_irqsave(map
->hwlock
, UINT_MAX
,
447 &map
->spinlock_flags
);
450 static void regmap_unlock_hwlock(void *__map
)
452 struct regmap
*map
= __map
;
454 hwspin_unlock(map
->hwlock
);
457 static void regmap_unlock_hwlock_irq(void *__map
)
459 struct regmap
*map
= __map
;
461 hwspin_unlock_irq(map
->hwlock
);
464 static void regmap_unlock_hwlock_irqrestore(void *__map
)
466 struct regmap
*map
= __map
;
468 hwspin_unlock_irqrestore(map
->hwlock
, &map
->spinlock_flags
);
471 static void regmap_lock_unlock_none(void *__map
)
476 static void regmap_lock_mutex(void *__map
)
478 struct regmap
*map
= __map
;
479 mutex_lock(&map
->mutex
);
482 static void regmap_unlock_mutex(void *__map
)
484 struct regmap
*map
= __map
;
485 mutex_unlock(&map
->mutex
);
488 static void regmap_lock_spinlock(void *__map
)
489 __acquires(&map
->spinlock
)
491 struct regmap
*map
= __map
;
494 spin_lock_irqsave(&map
->spinlock
, flags
);
495 map
->spinlock_flags
= flags
;
498 static void regmap_unlock_spinlock(void *__map
)
499 __releases(&map
->spinlock
)
501 struct regmap
*map
= __map
;
502 spin_unlock_irqrestore(&map
->spinlock
, map
->spinlock_flags
);
505 static void dev_get_regmap_release(struct device
*dev
, void *res
)
508 * We don't actually have anything to do here; the goal here
509 * is not to manage the regmap but to provide a simple way to
510 * get the regmap back given a struct device.
514 static bool _regmap_range_add(struct regmap
*map
,
515 struct regmap_range_node
*data
)
517 struct rb_root
*root
= &map
->range_tree
;
518 struct rb_node
**new = &(root
->rb_node
), *parent
= NULL
;
521 struct regmap_range_node
*this =
522 rb_entry(*new, struct regmap_range_node
, node
);
525 if (data
->range_max
< this->range_min
)
526 new = &((*new)->rb_left
);
527 else if (data
->range_min
> this->range_max
)
528 new = &((*new)->rb_right
);
533 rb_link_node(&data
->node
, parent
, new);
534 rb_insert_color(&data
->node
, root
);
539 static struct regmap_range_node
*_regmap_range_lookup(struct regmap
*map
,
542 struct rb_node
*node
= map
->range_tree
.rb_node
;
545 struct regmap_range_node
*this =
546 rb_entry(node
, struct regmap_range_node
, node
);
548 if (reg
< this->range_min
)
549 node
= node
->rb_left
;
550 else if (reg
> this->range_max
)
551 node
= node
->rb_right
;
559 static void regmap_range_exit(struct regmap
*map
)
561 struct rb_node
*next
;
562 struct regmap_range_node
*range_node
;
564 next
= rb_first(&map
->range_tree
);
566 range_node
= rb_entry(next
, struct regmap_range_node
, node
);
567 next
= rb_next(&range_node
->node
);
568 rb_erase(&range_node
->node
, &map
->range_tree
);
572 kfree(map
->selector_work_buf
);
575 int regmap_attach_dev(struct device
*dev
, struct regmap
*map
,
576 const struct regmap_config
*config
)
582 regmap_debugfs_init(map
, config
->name
);
584 /* Add a devres resource for dev_get_regmap() */
585 m
= devres_alloc(dev_get_regmap_release
, sizeof(*m
), GFP_KERNEL
);
587 regmap_debugfs_exit(map
);
595 EXPORT_SYMBOL_GPL(regmap_attach_dev
);
597 static enum regmap_endian
regmap_get_reg_endian(const struct regmap_bus
*bus
,
598 const struct regmap_config
*config
)
600 enum regmap_endian endian
;
602 /* Retrieve the endianness specification from the regmap config */
603 endian
= config
->reg_format_endian
;
605 /* If the regmap config specified a non-default value, use that */
606 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
609 /* Retrieve the endianness specification from the bus config */
610 if (bus
&& bus
->reg_format_endian_default
)
611 endian
= bus
->reg_format_endian_default
;
613 /* If the bus specified a non-default value, use that */
614 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
617 /* Use this if no other value was found */
618 return REGMAP_ENDIAN_BIG
;
621 enum regmap_endian
regmap_get_val_endian(struct device
*dev
,
622 const struct regmap_bus
*bus
,
623 const struct regmap_config
*config
)
625 struct device_node
*np
;
626 enum regmap_endian endian
;
628 /* Retrieve the endianness specification from the regmap config */
629 endian
= config
->val_format_endian
;
631 /* If the regmap config specified a non-default value, use that */
632 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
635 /* If the dev and dev->of_node exist try to get endianness from DT */
636 if (dev
&& dev
->of_node
) {
639 /* Parse the device's DT node for an endianness specification */
640 if (of_property_read_bool(np
, "big-endian"))
641 endian
= REGMAP_ENDIAN_BIG
;
642 else if (of_property_read_bool(np
, "little-endian"))
643 endian
= REGMAP_ENDIAN_LITTLE
;
644 else if (of_property_read_bool(np
, "native-endian"))
645 endian
= REGMAP_ENDIAN_NATIVE
;
647 /* If the endianness was specified in DT, use that */
648 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
652 /* Retrieve the endianness specification from the bus config */
653 if (bus
&& bus
->val_format_endian_default
)
654 endian
= bus
->val_format_endian_default
;
656 /* If the bus specified a non-default value, use that */
657 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
660 /* Use this if no other value was found */
661 return REGMAP_ENDIAN_BIG
;
663 EXPORT_SYMBOL_GPL(regmap_get_val_endian
);
665 struct regmap
*__regmap_init(struct device
*dev
,
666 const struct regmap_bus
*bus
,
668 const struct regmap_config
*config
,
669 struct lock_class_key
*lock_key
,
670 const char *lock_name
)
674 enum regmap_endian reg_endian
, val_endian
;
680 map
= kzalloc(sizeof(*map
), GFP_KERNEL
);
687 map
->name
= kstrdup_const(config
->name
, GFP_KERNEL
);
694 if (config
->disable_locking
) {
695 map
->lock
= map
->unlock
= regmap_lock_unlock_none
;
696 regmap_debugfs_disable(map
);
697 } else if (config
->lock
&& config
->unlock
) {
698 map
->lock
= config
->lock
;
699 map
->unlock
= config
->unlock
;
700 map
->lock_arg
= config
->lock_arg
;
701 } else if (config
->use_hwlock
) {
702 map
->hwlock
= hwspin_lock_request_specific(config
->hwlock_id
);
708 switch (config
->hwlock_mode
) {
709 case HWLOCK_IRQSTATE
:
710 map
->lock
= regmap_lock_hwlock_irqsave
;
711 map
->unlock
= regmap_unlock_hwlock_irqrestore
;
714 map
->lock
= regmap_lock_hwlock_irq
;
715 map
->unlock
= regmap_unlock_hwlock_irq
;
718 map
->lock
= regmap_lock_hwlock
;
719 map
->unlock
= regmap_unlock_hwlock
;
725 if ((bus
&& bus
->fast_io
) ||
727 spin_lock_init(&map
->spinlock
);
728 map
->lock
= regmap_lock_spinlock
;
729 map
->unlock
= regmap_unlock_spinlock
;
730 lockdep_set_class_and_name(&map
->spinlock
,
731 lock_key
, lock_name
);
733 mutex_init(&map
->mutex
);
734 map
->lock
= regmap_lock_mutex
;
735 map
->unlock
= regmap_unlock_mutex
;
736 lockdep_set_class_and_name(&map
->mutex
,
737 lock_key
, lock_name
);
743 * When we write in fast-paths with regmap_bulk_write() don't allocate
744 * scratch buffers with sleeping allocations.
746 if ((bus
&& bus
->fast_io
) || config
->fast_io
)
747 map
->alloc_flags
= GFP_ATOMIC
;
749 map
->alloc_flags
= GFP_KERNEL
;
751 map
->format
.reg_bytes
= DIV_ROUND_UP(config
->reg_bits
, 8);
752 map
->format
.pad_bytes
= config
->pad_bits
/ 8;
753 map
->format
.val_bytes
= DIV_ROUND_UP(config
->val_bits
, 8);
754 map
->format
.buf_size
= DIV_ROUND_UP(config
->reg_bits
+
755 config
->val_bits
+ config
->pad_bits
, 8);
756 map
->reg_shift
= config
->pad_bits
% 8;
757 if (config
->reg_stride
)
758 map
->reg_stride
= config
->reg_stride
;
761 if (is_power_of_2(map
->reg_stride
))
762 map
->reg_stride_order
= ilog2(map
->reg_stride
);
764 map
->reg_stride_order
= -1;
765 map
->use_single_read
= config
->use_single_rw
|| !bus
|| !bus
->read
;
766 map
->use_single_write
= config
->use_single_rw
|| !bus
|| !bus
->write
;
767 map
->can_multi_write
= config
->can_multi_write
&& bus
&& bus
->write
;
769 map
->max_raw_read
= bus
->max_raw_read
;
770 map
->max_raw_write
= bus
->max_raw_write
;
774 map
->bus_context
= bus_context
;
775 map
->max_register
= config
->max_register
;
776 map
->wr_table
= config
->wr_table
;
777 map
->rd_table
= config
->rd_table
;
778 map
->volatile_table
= config
->volatile_table
;
779 map
->precious_table
= config
->precious_table
;
780 map
->rd_noinc_table
= config
->rd_noinc_table
;
781 map
->writeable_reg
= config
->writeable_reg
;
782 map
->readable_reg
= config
->readable_reg
;
783 map
->volatile_reg
= config
->volatile_reg
;
784 map
->precious_reg
= config
->precious_reg
;
785 map
->readable_noinc_reg
= config
->readable_noinc_reg
;
786 map
->cache_type
= config
->cache_type
;
788 spin_lock_init(&map
->async_lock
);
789 INIT_LIST_HEAD(&map
->async_list
);
790 INIT_LIST_HEAD(&map
->async_free
);
791 init_waitqueue_head(&map
->async_waitq
);
793 if (config
->read_flag_mask
||
794 config
->write_flag_mask
||
795 config
->zero_flag_mask
) {
796 map
->read_flag_mask
= config
->read_flag_mask
;
797 map
->write_flag_mask
= config
->write_flag_mask
;
799 map
->read_flag_mask
= bus
->read_flag_mask
;
803 map
->reg_read
= config
->reg_read
;
804 map
->reg_write
= config
->reg_write
;
806 map
->defer_caching
= false;
807 goto skip_format_initialization
;
808 } else if (!bus
->read
|| !bus
->write
) {
809 map
->reg_read
= _regmap_bus_reg_read
;
810 map
->reg_write
= _regmap_bus_reg_write
;
812 map
->defer_caching
= false;
813 goto skip_format_initialization
;
815 map
->reg_read
= _regmap_bus_read
;
816 map
->reg_update_bits
= bus
->reg_update_bits
;
819 reg_endian
= regmap_get_reg_endian(bus
, config
);
820 val_endian
= regmap_get_val_endian(dev
, bus
, config
);
822 switch (config
->reg_bits
+ map
->reg_shift
) {
824 switch (config
->val_bits
) {
826 map
->format
.format_write
= regmap_format_2_6_write
;
834 switch (config
->val_bits
) {
836 map
->format
.format_write
= regmap_format_4_12_write
;
844 switch (config
->val_bits
) {
846 map
->format
.format_write
= regmap_format_7_9_write
;
854 switch (config
->val_bits
) {
856 map
->format
.format_write
= regmap_format_10_14_write
;
864 map
->format
.format_reg
= regmap_format_8
;
868 switch (reg_endian
) {
869 case REGMAP_ENDIAN_BIG
:
870 map
->format
.format_reg
= regmap_format_16_be
;
872 case REGMAP_ENDIAN_LITTLE
:
873 map
->format
.format_reg
= regmap_format_16_le
;
875 case REGMAP_ENDIAN_NATIVE
:
876 map
->format
.format_reg
= regmap_format_16_native
;
884 if (reg_endian
!= REGMAP_ENDIAN_BIG
)
886 map
->format
.format_reg
= regmap_format_24
;
890 switch (reg_endian
) {
891 case REGMAP_ENDIAN_BIG
:
892 map
->format
.format_reg
= regmap_format_32_be
;
894 case REGMAP_ENDIAN_LITTLE
:
895 map
->format
.format_reg
= regmap_format_32_le
;
897 case REGMAP_ENDIAN_NATIVE
:
898 map
->format
.format_reg
= regmap_format_32_native
;
907 switch (reg_endian
) {
908 case REGMAP_ENDIAN_BIG
:
909 map
->format
.format_reg
= regmap_format_64_be
;
911 case REGMAP_ENDIAN_LITTLE
:
912 map
->format
.format_reg
= regmap_format_64_le
;
914 case REGMAP_ENDIAN_NATIVE
:
915 map
->format
.format_reg
= regmap_format_64_native
;
927 if (val_endian
== REGMAP_ENDIAN_NATIVE
)
928 map
->format
.parse_inplace
= regmap_parse_inplace_noop
;
930 switch (config
->val_bits
) {
932 map
->format
.format_val
= regmap_format_8
;
933 map
->format
.parse_val
= regmap_parse_8
;
934 map
->format
.parse_inplace
= regmap_parse_inplace_noop
;
937 switch (val_endian
) {
938 case REGMAP_ENDIAN_BIG
:
939 map
->format
.format_val
= regmap_format_16_be
;
940 map
->format
.parse_val
= regmap_parse_16_be
;
941 map
->format
.parse_inplace
= regmap_parse_16_be_inplace
;
943 case REGMAP_ENDIAN_LITTLE
:
944 map
->format
.format_val
= regmap_format_16_le
;
945 map
->format
.parse_val
= regmap_parse_16_le
;
946 map
->format
.parse_inplace
= regmap_parse_16_le_inplace
;
948 case REGMAP_ENDIAN_NATIVE
:
949 map
->format
.format_val
= regmap_format_16_native
;
950 map
->format
.parse_val
= regmap_parse_16_native
;
957 if (val_endian
!= REGMAP_ENDIAN_BIG
)
959 map
->format
.format_val
= regmap_format_24
;
960 map
->format
.parse_val
= regmap_parse_24
;
963 switch (val_endian
) {
964 case REGMAP_ENDIAN_BIG
:
965 map
->format
.format_val
= regmap_format_32_be
;
966 map
->format
.parse_val
= regmap_parse_32_be
;
967 map
->format
.parse_inplace
= regmap_parse_32_be_inplace
;
969 case REGMAP_ENDIAN_LITTLE
:
970 map
->format
.format_val
= regmap_format_32_le
;
971 map
->format
.parse_val
= regmap_parse_32_le
;
972 map
->format
.parse_inplace
= regmap_parse_32_le_inplace
;
974 case REGMAP_ENDIAN_NATIVE
:
975 map
->format
.format_val
= regmap_format_32_native
;
976 map
->format
.parse_val
= regmap_parse_32_native
;
984 switch (val_endian
) {
985 case REGMAP_ENDIAN_BIG
:
986 map
->format
.format_val
= regmap_format_64_be
;
987 map
->format
.parse_val
= regmap_parse_64_be
;
988 map
->format
.parse_inplace
= regmap_parse_64_be_inplace
;
990 case REGMAP_ENDIAN_LITTLE
:
991 map
->format
.format_val
= regmap_format_64_le
;
992 map
->format
.parse_val
= regmap_parse_64_le
;
993 map
->format
.parse_inplace
= regmap_parse_64_le_inplace
;
995 case REGMAP_ENDIAN_NATIVE
:
996 map
->format
.format_val
= regmap_format_64_native
;
997 map
->format
.parse_val
= regmap_parse_64_native
;
1006 if (map
->format
.format_write
) {
1007 if ((reg_endian
!= REGMAP_ENDIAN_BIG
) ||
1008 (val_endian
!= REGMAP_ENDIAN_BIG
))
1010 map
->use_single_write
= true;
1013 if (!map
->format
.format_write
&&
1014 !(map
->format
.format_reg
&& map
->format
.format_val
))
1017 map
->work_buf
= kzalloc(map
->format
.buf_size
, GFP_KERNEL
);
1018 if (map
->work_buf
== NULL
) {
1023 if (map
->format
.format_write
) {
1024 map
->defer_caching
= false;
1025 map
->reg_write
= _regmap_bus_formatted_write
;
1026 } else if (map
->format
.format_val
) {
1027 map
->defer_caching
= true;
1028 map
->reg_write
= _regmap_bus_raw_write
;
1031 skip_format_initialization
:
1033 map
->range_tree
= RB_ROOT
;
1034 for (i
= 0; i
< config
->num_ranges
; i
++) {
1035 const struct regmap_range_cfg
*range_cfg
= &config
->ranges
[i
];
1036 struct regmap_range_node
*new;
1039 if (range_cfg
->range_max
< range_cfg
->range_min
) {
1040 dev_err(map
->dev
, "Invalid range %d: %d < %d\n", i
,
1041 range_cfg
->range_max
, range_cfg
->range_min
);
1045 if (range_cfg
->range_max
> map
->max_register
) {
1046 dev_err(map
->dev
, "Invalid range %d: %d > %d\n", i
,
1047 range_cfg
->range_max
, map
->max_register
);
1051 if (range_cfg
->selector_reg
> map
->max_register
) {
1053 "Invalid range %d: selector out of map\n", i
);
1057 if (range_cfg
->window_len
== 0) {
1058 dev_err(map
->dev
, "Invalid range %d: window_len 0\n",
1063 /* Make sure, that this register range has no selector
1064 or data window within its boundary */
1065 for (j
= 0; j
< config
->num_ranges
; j
++) {
1066 unsigned sel_reg
= config
->ranges
[j
].selector_reg
;
1067 unsigned win_min
= config
->ranges
[j
].window_start
;
1068 unsigned win_max
= win_min
+
1069 config
->ranges
[j
].window_len
- 1;
1071 /* Allow data window inside its own virtual range */
1075 if (range_cfg
->range_min
<= sel_reg
&&
1076 sel_reg
<= range_cfg
->range_max
) {
1078 "Range %d: selector for %d in window\n",
1083 if (!(win_max
< range_cfg
->range_min
||
1084 win_min
> range_cfg
->range_max
)) {
1086 "Range %d: window for %d in window\n",
1092 new = kzalloc(sizeof(*new), GFP_KERNEL
);
1099 new->name
= range_cfg
->name
;
1100 new->range_min
= range_cfg
->range_min
;
1101 new->range_max
= range_cfg
->range_max
;
1102 new->selector_reg
= range_cfg
->selector_reg
;
1103 new->selector_mask
= range_cfg
->selector_mask
;
1104 new->selector_shift
= range_cfg
->selector_shift
;
1105 new->window_start
= range_cfg
->window_start
;
1106 new->window_len
= range_cfg
->window_len
;
1108 if (!_regmap_range_add(map
, new)) {
1109 dev_err(map
->dev
, "Failed to add range %d\n", i
);
1114 if (map
->selector_work_buf
== NULL
) {
1115 map
->selector_work_buf
=
1116 kzalloc(map
->format
.buf_size
, GFP_KERNEL
);
1117 if (map
->selector_work_buf
== NULL
) {
1124 ret
= regcache_init(map
, config
);
1129 ret
= regmap_attach_dev(dev
, map
, config
);
1133 regmap_debugfs_init(map
, config
->name
);
1141 regmap_range_exit(map
);
1142 kfree(map
->work_buf
);
1145 hwspin_lock_free(map
->hwlock
);
1147 kfree_const(map
->name
);
1151 return ERR_PTR(ret
);
1153 EXPORT_SYMBOL_GPL(__regmap_init
);
1155 static void devm_regmap_release(struct device
*dev
, void *res
)
1157 regmap_exit(*(struct regmap
**)res
);
1160 struct regmap
*__devm_regmap_init(struct device
*dev
,
1161 const struct regmap_bus
*bus
,
1163 const struct regmap_config
*config
,
1164 struct lock_class_key
*lock_key
,
1165 const char *lock_name
)
1167 struct regmap
**ptr
, *regmap
;
1169 ptr
= devres_alloc(devm_regmap_release
, sizeof(*ptr
), GFP_KERNEL
);
1171 return ERR_PTR(-ENOMEM
);
1173 regmap
= __regmap_init(dev
, bus
, bus_context
, config
,
1174 lock_key
, lock_name
);
1175 if (!IS_ERR(regmap
)) {
1177 devres_add(dev
, ptr
);
1184 EXPORT_SYMBOL_GPL(__devm_regmap_init
);
1186 static void regmap_field_init(struct regmap_field
*rm_field
,
1187 struct regmap
*regmap
, struct reg_field reg_field
)
1189 rm_field
->regmap
= regmap
;
1190 rm_field
->reg
= reg_field
.reg
;
1191 rm_field
->shift
= reg_field
.lsb
;
1192 rm_field
->mask
= GENMASK(reg_field
.msb
, reg_field
.lsb
);
1193 rm_field
->id_size
= reg_field
.id_size
;
1194 rm_field
->id_offset
= reg_field
.id_offset
;
1198 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1200 * @dev: Device that will be interacted with
1201 * @regmap: regmap bank in which this register field is located.
1202 * @reg_field: Register field with in the bank.
1204 * The return value will be an ERR_PTR() on error or a valid pointer
1205 * to a struct regmap_field. The regmap_field will be automatically freed
1206 * by the device management code.
1208 struct regmap_field
*devm_regmap_field_alloc(struct device
*dev
,
1209 struct regmap
*regmap
, struct reg_field reg_field
)
1211 struct regmap_field
*rm_field
= devm_kzalloc(dev
,
1212 sizeof(*rm_field
), GFP_KERNEL
);
1214 return ERR_PTR(-ENOMEM
);
1216 regmap_field_init(rm_field
, regmap
, reg_field
);
1221 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc
);
1224 * devm_regmap_field_free() - Free a register field allocated using
1225 * devm_regmap_field_alloc.
1227 * @dev: Device that will be interacted with
1228 * @field: regmap field which should be freed.
1230 * Free register field allocated using devm_regmap_field_alloc(). Usually
1231 * drivers need not call this function, as the memory allocated via devm
1232 * will be freed as per device-driver life-cyle.
1234 void devm_regmap_field_free(struct device
*dev
,
1235 struct regmap_field
*field
)
1237 devm_kfree(dev
, field
);
1239 EXPORT_SYMBOL_GPL(devm_regmap_field_free
);
1242 * regmap_field_alloc() - Allocate and initialise a register field.
1244 * @regmap: regmap bank in which this register field is located.
1245 * @reg_field: Register field with in the bank.
1247 * The return value will be an ERR_PTR() on error or a valid pointer
1248 * to a struct regmap_field. The regmap_field should be freed by the
1249 * user once its finished working with it using regmap_field_free().
1251 struct regmap_field
*regmap_field_alloc(struct regmap
*regmap
,
1252 struct reg_field reg_field
)
1254 struct regmap_field
*rm_field
= kzalloc(sizeof(*rm_field
), GFP_KERNEL
);
1257 return ERR_PTR(-ENOMEM
);
1259 regmap_field_init(rm_field
, regmap
, reg_field
);
1263 EXPORT_SYMBOL_GPL(regmap_field_alloc
);
1266 * regmap_field_free() - Free register field allocated using
1267 * regmap_field_alloc.
1269 * @field: regmap field which should be freed.
1271 void regmap_field_free(struct regmap_field
*field
)
1275 EXPORT_SYMBOL_GPL(regmap_field_free
);
1278 * regmap_reinit_cache() - Reinitialise the current register cache
1280 * @map: Register map to operate on.
1281 * @config: New configuration. Only the cache data will be used.
1283 * Discard any existing register cache for the map and initialize a
1284 * new cache. This can be used to restore the cache to defaults or to
1285 * update the cache configuration to reflect runtime discovery of the
1288 * No explicit locking is done here, the user needs to ensure that
1289 * this function will not race with other calls to regmap.
1291 int regmap_reinit_cache(struct regmap
*map
, const struct regmap_config
*config
)
1294 regmap_debugfs_exit(map
);
1296 map
->max_register
= config
->max_register
;
1297 map
->writeable_reg
= config
->writeable_reg
;
1298 map
->readable_reg
= config
->readable_reg
;
1299 map
->volatile_reg
= config
->volatile_reg
;
1300 map
->precious_reg
= config
->precious_reg
;
1301 map
->readable_noinc_reg
= config
->readable_noinc_reg
;
1302 map
->cache_type
= config
->cache_type
;
1304 regmap_debugfs_init(map
, config
->name
);
1306 map
->cache_bypass
= false;
1307 map
->cache_only
= false;
1309 return regcache_init(map
, config
);
1311 EXPORT_SYMBOL_GPL(regmap_reinit_cache
);
1314 * regmap_exit() - Free a previously allocated register map
1316 * @map: Register map to operate on.
1318 void regmap_exit(struct regmap
*map
)
1320 struct regmap_async
*async
;
1323 regmap_debugfs_exit(map
);
1324 regmap_range_exit(map
);
1325 if (map
->bus
&& map
->bus
->free_context
)
1326 map
->bus
->free_context(map
->bus_context
);
1327 kfree(map
->work_buf
);
1328 while (!list_empty(&map
->async_free
)) {
1329 async
= list_first_entry_or_null(&map
->async_free
,
1330 struct regmap_async
,
1332 list_del(&async
->list
);
1333 kfree(async
->work_buf
);
1337 hwspin_lock_free(map
->hwlock
);
1338 kfree_const(map
->name
);
1341 EXPORT_SYMBOL_GPL(regmap_exit
);
1343 static int dev_get_regmap_match(struct device
*dev
, void *res
, void *data
)
1345 struct regmap
**r
= res
;
1351 /* If the user didn't specify a name match any */
1353 return (*r
)->name
== data
;
1359 * dev_get_regmap() - Obtain the regmap (if any) for a device
1361 * @dev: Device to retrieve the map for
1362 * @name: Optional name for the register map, usually NULL.
1364 * Returns the regmap for the device if one is present, or NULL. If
1365 * name is specified then it must match the name specified when
1366 * registering the device, if it is NULL then the first regmap found
1367 * will be used. Devices with multiple register maps are very rare,
1368 * generic code should normally not need to specify a name.
1370 struct regmap
*dev_get_regmap(struct device
*dev
, const char *name
)
1372 struct regmap
**r
= devres_find(dev
, dev_get_regmap_release
,
1373 dev_get_regmap_match
, (void *)name
);
1379 EXPORT_SYMBOL_GPL(dev_get_regmap
);
1382 * regmap_get_device() - Obtain the device from a regmap
1384 * @map: Register map to operate on.
1386 * Returns the underlying device that the regmap has been created for.
1388 struct device
*regmap_get_device(struct regmap
*map
)
1392 EXPORT_SYMBOL_GPL(regmap_get_device
);
1394 static int _regmap_select_page(struct regmap
*map
, unsigned int *reg
,
1395 struct regmap_range_node
*range
,
1396 unsigned int val_num
)
1398 void *orig_work_buf
;
1399 unsigned int win_offset
;
1400 unsigned int win_page
;
1404 win_offset
= (*reg
- range
->range_min
) % range
->window_len
;
1405 win_page
= (*reg
- range
->range_min
) / range
->window_len
;
1408 /* Bulk write shouldn't cross range boundary */
1409 if (*reg
+ val_num
- 1 > range
->range_max
)
1412 /* ... or single page boundary */
1413 if (val_num
> range
->window_len
- win_offset
)
1417 /* It is possible to have selector register inside data window.
1418 In that case, selector register is located on every page and
1419 it needs no page switching, when accessed alone. */
1421 range
->window_start
+ win_offset
!= range
->selector_reg
) {
1422 /* Use separate work_buf during page switching */
1423 orig_work_buf
= map
->work_buf
;
1424 map
->work_buf
= map
->selector_work_buf
;
1426 ret
= _regmap_update_bits(map
, range
->selector_reg
,
1427 range
->selector_mask
,
1428 win_page
<< range
->selector_shift
,
1431 map
->work_buf
= orig_work_buf
;
1437 *reg
= range
->window_start
+ win_offset
;
1442 static void regmap_set_work_buf_flag_mask(struct regmap
*map
, int max_bytes
,
1448 if (!mask
|| !map
->work_buf
)
1451 buf
= map
->work_buf
;
1453 for (i
= 0; i
< max_bytes
; i
++)
1454 buf
[i
] |= (mask
>> (8 * i
)) & 0xff;
1457 static int _regmap_raw_write_impl(struct regmap
*map
, unsigned int reg
,
1458 const void *val
, size_t val_len
)
1460 struct regmap_range_node
*range
;
1461 unsigned long flags
;
1462 void *work_val
= map
->work_buf
+ map
->format
.reg_bytes
+
1463 map
->format
.pad_bytes
;
1465 int ret
= -ENOTSUPP
;
1471 /* Check for unwritable registers before we start */
1472 if (map
->writeable_reg
)
1473 for (i
= 0; i
< val_len
/ map
->format
.val_bytes
; i
++)
1474 if (!map
->writeable_reg(map
->dev
,
1475 reg
+ regmap_get_offset(map
, i
)))
1478 if (!map
->cache_bypass
&& map
->format
.parse_val
) {
1480 int val_bytes
= map
->format
.val_bytes
;
1481 for (i
= 0; i
< val_len
/ val_bytes
; i
++) {
1482 ival
= map
->format
.parse_val(val
+ (i
* val_bytes
));
1483 ret
= regcache_write(map
,
1484 reg
+ regmap_get_offset(map
, i
),
1488 "Error in caching of register: %x ret: %d\n",
1493 if (map
->cache_only
) {
1494 map
->cache_dirty
= true;
1499 range
= _regmap_range_lookup(map
, reg
);
1501 int val_num
= val_len
/ map
->format
.val_bytes
;
1502 int win_offset
= (reg
- range
->range_min
) % range
->window_len
;
1503 int win_residue
= range
->window_len
- win_offset
;
1505 /* If the write goes beyond the end of the window split it */
1506 while (val_num
> win_residue
) {
1507 dev_dbg(map
->dev
, "Writing window %d/%zu\n",
1508 win_residue
, val_len
/ map
->format
.val_bytes
);
1509 ret
= _regmap_raw_write_impl(map
, reg
, val
,
1511 map
->format
.val_bytes
);
1516 val_num
-= win_residue
;
1517 val
+= win_residue
* map
->format
.val_bytes
;
1518 val_len
-= win_residue
* map
->format
.val_bytes
;
1520 win_offset
= (reg
- range
->range_min
) %
1522 win_residue
= range
->window_len
- win_offset
;
1525 ret
= _regmap_select_page(map
, ®
, range
, val_num
);
1530 map
->format
.format_reg(map
->work_buf
, reg
, map
->reg_shift
);
1531 regmap_set_work_buf_flag_mask(map
, map
->format
.reg_bytes
,
1532 map
->write_flag_mask
);
1535 * Essentially all I/O mechanisms will be faster with a single
1536 * buffer to write. Since register syncs often generate raw
1537 * writes of single registers optimise that case.
1539 if (val
!= work_val
&& val_len
== map
->format
.val_bytes
) {
1540 memcpy(work_val
, val
, map
->format
.val_bytes
);
1544 if (map
->async
&& map
->bus
->async_write
) {
1545 struct regmap_async
*async
;
1547 trace_regmap_async_write_start(map
, reg
, val_len
);
1549 spin_lock_irqsave(&map
->async_lock
, flags
);
1550 async
= list_first_entry_or_null(&map
->async_free
,
1551 struct regmap_async
,
1554 list_del(&async
->list
);
1555 spin_unlock_irqrestore(&map
->async_lock
, flags
);
1558 async
= map
->bus
->async_alloc();
1562 async
->work_buf
= kzalloc(map
->format
.buf_size
,
1563 GFP_KERNEL
| GFP_DMA
);
1564 if (!async
->work_buf
) {
1572 /* If the caller supplied the value we can use it safely. */
1573 memcpy(async
->work_buf
, map
->work_buf
, map
->format
.pad_bytes
+
1574 map
->format
.reg_bytes
+ map
->format
.val_bytes
);
1576 spin_lock_irqsave(&map
->async_lock
, flags
);
1577 list_add_tail(&async
->list
, &map
->async_list
);
1578 spin_unlock_irqrestore(&map
->async_lock
, flags
);
1580 if (val
!= work_val
)
1581 ret
= map
->bus
->async_write(map
->bus_context
,
1583 map
->format
.reg_bytes
+
1584 map
->format
.pad_bytes
,
1585 val
, val_len
, async
);
1587 ret
= map
->bus
->async_write(map
->bus_context
,
1589 map
->format
.reg_bytes
+
1590 map
->format
.pad_bytes
+
1591 val_len
, NULL
, 0, async
);
1594 dev_err(map
->dev
, "Failed to schedule write: %d\n",
1597 spin_lock_irqsave(&map
->async_lock
, flags
);
1598 list_move(&async
->list
, &map
->async_free
);
1599 spin_unlock_irqrestore(&map
->async_lock
, flags
);
1605 trace_regmap_hw_write_start(map
, reg
, val_len
/ map
->format
.val_bytes
);
1607 /* If we're doing a single register write we can probably just
1608 * send the work_buf directly, otherwise try to do a gather
1611 if (val
== work_val
)
1612 ret
= map
->bus
->write(map
->bus_context
, map
->work_buf
,
1613 map
->format
.reg_bytes
+
1614 map
->format
.pad_bytes
+
1616 else if (map
->bus
->gather_write
)
1617 ret
= map
->bus
->gather_write(map
->bus_context
, map
->work_buf
,
1618 map
->format
.reg_bytes
+
1619 map
->format
.pad_bytes
,
1622 /* If that didn't work fall back on linearising by hand. */
1623 if (ret
== -ENOTSUPP
) {
1624 len
= map
->format
.reg_bytes
+ map
->format
.pad_bytes
+ val_len
;
1625 buf
= kzalloc(len
, GFP_KERNEL
);
1629 memcpy(buf
, map
->work_buf
, map
->format
.reg_bytes
);
1630 memcpy(buf
+ map
->format
.reg_bytes
+ map
->format
.pad_bytes
,
1632 ret
= map
->bus
->write(map
->bus_context
, buf
, len
);
1635 } else if (ret
!= 0 && !map
->cache_bypass
&& map
->format
.parse_val
) {
1636 /* regcache_drop_region() takes lock that we already have,
1637 * thus call map->cache_ops->drop() directly
1639 if (map
->cache_ops
&& map
->cache_ops
->drop
)
1640 map
->cache_ops
->drop(map
, reg
, reg
+ 1);
1643 trace_regmap_hw_write_done(map
, reg
, val_len
/ map
->format
.val_bytes
);
1649 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1651 * @map: Map to check.
1653 bool regmap_can_raw_write(struct regmap
*map
)
1655 return map
->bus
&& map
->bus
->write
&& map
->format
.format_val
&&
1656 map
->format
.format_reg
;
1658 EXPORT_SYMBOL_GPL(regmap_can_raw_write
);
1661 * regmap_get_raw_read_max - Get the maximum size we can read
1663 * @map: Map to check.
1665 size_t regmap_get_raw_read_max(struct regmap
*map
)
1667 return map
->max_raw_read
;
1669 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max
);
1672 * regmap_get_raw_write_max - Get the maximum size we can read
1674 * @map: Map to check.
1676 size_t regmap_get_raw_write_max(struct regmap
*map
)
1678 return map
->max_raw_write
;
1680 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max
);
1682 static int _regmap_bus_formatted_write(void *context
, unsigned int reg
,
1686 struct regmap_range_node
*range
;
1687 struct regmap
*map
= context
;
1689 WARN_ON(!map
->bus
|| !map
->format
.format_write
);
1691 range
= _regmap_range_lookup(map
, reg
);
1693 ret
= _regmap_select_page(map
, ®
, range
, 1);
1698 map
->format
.format_write(map
, reg
, val
);
1700 trace_regmap_hw_write_start(map
, reg
, 1);
1702 ret
= map
->bus
->write(map
->bus_context
, map
->work_buf
,
1703 map
->format
.buf_size
);
1705 trace_regmap_hw_write_done(map
, reg
, 1);
1710 static int _regmap_bus_reg_write(void *context
, unsigned int reg
,
1713 struct regmap
*map
= context
;
1715 return map
->bus
->reg_write(map
->bus_context
, reg
, val
);
1718 static int _regmap_bus_raw_write(void *context
, unsigned int reg
,
1721 struct regmap
*map
= context
;
1723 WARN_ON(!map
->bus
|| !map
->format
.format_val
);
1725 map
->format
.format_val(map
->work_buf
+ map
->format
.reg_bytes
1726 + map
->format
.pad_bytes
, val
, 0);
1727 return _regmap_raw_write_impl(map
, reg
,
1729 map
->format
.reg_bytes
+
1730 map
->format
.pad_bytes
,
1731 map
->format
.val_bytes
);
1734 static inline void *_regmap_map_get_context(struct regmap
*map
)
1736 return (map
->bus
) ? map
: map
->bus_context
;
1739 int _regmap_write(struct regmap
*map
, unsigned int reg
,
1743 void *context
= _regmap_map_get_context(map
);
1745 if (!regmap_writeable(map
, reg
))
1748 if (!map
->cache_bypass
&& !map
->defer_caching
) {
1749 ret
= regcache_write(map
, reg
, val
);
1752 if (map
->cache_only
) {
1753 map
->cache_dirty
= true;
1759 if (map
->dev
&& strcmp(dev_name(map
->dev
), LOG_DEVICE
) == 0)
1760 dev_info(map
->dev
, "%x <= %x\n", reg
, val
);
1763 trace_regmap_reg_write(map
, reg
, val
);
1765 return map
->reg_write(context
, reg
, val
);
1769 * regmap_write() - Write a value to a single register
1771 * @map: Register map to write to
1772 * @reg: Register to write to
1773 * @val: Value to be written
1775 * A value of zero will be returned on success, a negative errno will
1776 * be returned in error cases.
1778 int regmap_write(struct regmap
*map
, unsigned int reg
, unsigned int val
)
1782 if (!IS_ALIGNED(reg
, map
->reg_stride
))
1785 map
->lock(map
->lock_arg
);
1787 ret
= _regmap_write(map
, reg
, val
);
1789 map
->unlock(map
->lock_arg
);
1793 EXPORT_SYMBOL_GPL(regmap_write
);
1796 * regmap_write_async() - Write a value to a single register asynchronously
1798 * @map: Register map to write to
1799 * @reg: Register to write to
1800 * @val: Value to be written
1802 * A value of zero will be returned on success, a negative errno will
1803 * be returned in error cases.
1805 int regmap_write_async(struct regmap
*map
, unsigned int reg
, unsigned int val
)
1809 if (!IS_ALIGNED(reg
, map
->reg_stride
))
1812 map
->lock(map
->lock_arg
);
1816 ret
= _regmap_write(map
, reg
, val
);
1820 map
->unlock(map
->lock_arg
);
1824 EXPORT_SYMBOL_GPL(regmap_write_async
);
1826 int _regmap_raw_write(struct regmap
*map
, unsigned int reg
,
1827 const void *val
, size_t val_len
)
1829 size_t val_bytes
= map
->format
.val_bytes
;
1830 size_t val_count
= val_len
/ val_bytes
;
1831 size_t chunk_count
, chunk_bytes
;
1832 size_t chunk_regs
= val_count
;
1838 if (map
->use_single_write
)
1840 else if (map
->max_raw_write
&& val_len
> map
->max_raw_write
)
1841 chunk_regs
= map
->max_raw_write
/ val_bytes
;
1843 chunk_count
= val_count
/ chunk_regs
;
1844 chunk_bytes
= chunk_regs
* val_bytes
;
1846 /* Write as many bytes as possible with chunk_size */
1847 for (i
= 0; i
< chunk_count
; i
++) {
1848 ret
= _regmap_raw_write_impl(map
, reg
, val
, chunk_bytes
);
1852 reg
+= regmap_get_offset(map
, chunk_regs
);
1854 val_len
-= chunk_bytes
;
1857 /* Write remaining bytes */
1859 ret
= _regmap_raw_write_impl(map
, reg
, val
, val_len
);
1865 * regmap_raw_write() - Write raw values to one or more registers
1867 * @map: Register map to write to
1868 * @reg: Initial register to write to
1869 * @val: Block of data to be written, laid out for direct transmission to the
1871 * @val_len: Length of data pointed to by val.
1873 * This function is intended to be used for things like firmware
1874 * download where a large block of data needs to be transferred to the
1875 * device. No formatting will be done on the data provided.
1877 * A value of zero will be returned on success, a negative errno will
1878 * be returned in error cases.
1880 int regmap_raw_write(struct regmap
*map
, unsigned int reg
,
1881 const void *val
, size_t val_len
)
1885 if (!regmap_can_raw_write(map
))
1887 if (val_len
% map
->format
.val_bytes
)
1890 map
->lock(map
->lock_arg
);
1892 ret
= _regmap_raw_write(map
, reg
, val
, val_len
);
1894 map
->unlock(map
->lock_arg
);
1898 EXPORT_SYMBOL_GPL(regmap_raw_write
);
1901 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1904 * @field: Register field to write to
1905 * @mask: Bitmask to change
1906 * @val: Value to be written
1907 * @change: Boolean indicating if a write was done
1908 * @async: Boolean indicating asynchronously
1909 * @force: Boolean indicating use force update
1911 * Perform a read/modify/write cycle on the register field with change,
1912 * async, force option.
1914 * A value of zero will be returned on success, a negative errno will
1915 * be returned in error cases.
1917 int regmap_field_update_bits_base(struct regmap_field
*field
,
1918 unsigned int mask
, unsigned int val
,
1919 bool *change
, bool async
, bool force
)
1921 mask
= (mask
<< field
->shift
) & field
->mask
;
1923 return regmap_update_bits_base(field
->regmap
, field
->reg
,
1924 mask
, val
<< field
->shift
,
1925 change
, async
, force
);
1927 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base
);
1930 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
1931 * register field with port ID
1933 * @field: Register field to write to
1935 * @mask: Bitmask to change
1936 * @val: Value to be written
1937 * @change: Boolean indicating if a write was done
1938 * @async: Boolean indicating asynchronously
1939 * @force: Boolean indicating use force update
1941 * A value of zero will be returned on success, a negative errno will
1942 * be returned in error cases.
1944 int regmap_fields_update_bits_base(struct regmap_field
*field
, unsigned int id
,
1945 unsigned int mask
, unsigned int val
,
1946 bool *change
, bool async
, bool force
)
1948 if (id
>= field
->id_size
)
1951 mask
= (mask
<< field
->shift
) & field
->mask
;
1953 return regmap_update_bits_base(field
->regmap
,
1954 field
->reg
+ (field
->id_offset
* id
),
1955 mask
, val
<< field
->shift
,
1956 change
, async
, force
);
1958 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base
);
1961 * regmap_bulk_write() - Write multiple registers to the device
1963 * @map: Register map to write to
1964 * @reg: First register to be write from
1965 * @val: Block of data to be written, in native register size for device
1966 * @val_count: Number of registers to write
1968 * This function is intended to be used for writing a large block of
1969 * data to the device either in single transfer or multiple transfer.
1971 * A value of zero will be returned on success, a negative errno will
1972 * be returned in error cases.
1974 int regmap_bulk_write(struct regmap
*map
, unsigned int reg
, const void *val
,
1978 size_t val_bytes
= map
->format
.val_bytes
;
1980 if (!IS_ALIGNED(reg
, map
->reg_stride
))
1984 * Some devices don't support bulk write, for them we have a series of
1985 * single write operations.
1987 if (!map
->bus
|| !map
->format
.parse_inplace
) {
1988 map
->lock(map
->lock_arg
);
1989 for (i
= 0; i
< val_count
; i
++) {
1992 switch (val_bytes
) {
1994 ival
= *(u8
*)(val
+ (i
* val_bytes
));
1997 ival
= *(u16
*)(val
+ (i
* val_bytes
));
2000 ival
= *(u32
*)(val
+ (i
* val_bytes
));
2004 ival
= *(u64
*)(val
+ (i
* val_bytes
));
2012 ret
= _regmap_write(map
,
2013 reg
+ regmap_get_offset(map
, i
),
2019 map
->unlock(map
->lock_arg
);
2023 wval
= kmemdup(val
, val_count
* val_bytes
, map
->alloc_flags
);
2027 for (i
= 0; i
< val_count
* val_bytes
; i
+= val_bytes
)
2028 map
->format
.parse_inplace(wval
+ i
);
2030 ret
= regmap_raw_write(map
, reg
, wval
, val_bytes
* val_count
);
2036 EXPORT_SYMBOL_GPL(regmap_bulk_write
);
2039 * _regmap_raw_multi_reg_write()
2041 * the (register,newvalue) pairs in regs have not been formatted, but
2042 * they are all in the same page and have been changed to being page
2043 * relative. The page register has been written if that was necessary.
2045 static int _regmap_raw_multi_reg_write(struct regmap
*map
,
2046 const struct reg_sequence
*regs
,
2053 size_t val_bytes
= map
->format
.val_bytes
;
2054 size_t reg_bytes
= map
->format
.reg_bytes
;
2055 size_t pad_bytes
= map
->format
.pad_bytes
;
2056 size_t pair_size
= reg_bytes
+ pad_bytes
+ val_bytes
;
2057 size_t len
= pair_size
* num_regs
;
2062 buf
= kzalloc(len
, GFP_KERNEL
);
2066 /* We have to linearise by hand. */
2070 for (i
= 0; i
< num_regs
; i
++) {
2071 unsigned int reg
= regs
[i
].reg
;
2072 unsigned int val
= regs
[i
].def
;
2073 trace_regmap_hw_write_start(map
, reg
, 1);
2074 map
->format
.format_reg(u8
, reg
, map
->reg_shift
);
2075 u8
+= reg_bytes
+ pad_bytes
;
2076 map
->format
.format_val(u8
, val
, 0);
2080 *u8
|= map
->write_flag_mask
;
2082 ret
= map
->bus
->write(map
->bus_context
, buf
, len
);
2086 for (i
= 0; i
< num_regs
; i
++) {
2087 int reg
= regs
[i
].reg
;
2088 trace_regmap_hw_write_done(map
, reg
, 1);
2093 static unsigned int _regmap_register_page(struct regmap
*map
,
2095 struct regmap_range_node
*range
)
2097 unsigned int win_page
= (reg
- range
->range_min
) / range
->window_len
;
2102 static int _regmap_range_multi_paged_reg_write(struct regmap
*map
,
2103 struct reg_sequence
*regs
,
2108 struct reg_sequence
*base
;
2109 unsigned int this_page
= 0;
2110 unsigned int page_change
= 0;
2112 * the set of registers are not neccessarily in order, but
2113 * since the order of write must be preserved this algorithm
2114 * chops the set each time the page changes. This also applies
2115 * if there is a delay required at any point in the sequence.
2118 for (i
= 0, n
= 0; i
< num_regs
; i
++, n
++) {
2119 unsigned int reg
= regs
[i
].reg
;
2120 struct regmap_range_node
*range
;
2122 range
= _regmap_range_lookup(map
, reg
);
2124 unsigned int win_page
= _regmap_register_page(map
, reg
,
2128 this_page
= win_page
;
2129 if (win_page
!= this_page
) {
2130 this_page
= win_page
;
2135 /* If we have both a page change and a delay make sure to
2136 * write the regs and apply the delay before we change the
2140 if (page_change
|| regs
[i
].delay_us
) {
2142 /* For situations where the first write requires
2143 * a delay we need to make sure we don't call
2144 * raw_multi_reg_write with n=0
2145 * This can't occur with page breaks as we
2146 * never write on the first iteration
2148 if (regs
[i
].delay_us
&& i
== 0)
2151 ret
= _regmap_raw_multi_reg_write(map
, base
, n
);
2155 if (regs
[i
].delay_us
)
2156 udelay(regs
[i
].delay_us
);
2162 ret
= _regmap_select_page(map
,
2175 return _regmap_raw_multi_reg_write(map
, base
, n
);
2179 static int _regmap_multi_reg_write(struct regmap
*map
,
2180 const struct reg_sequence
*regs
,
2186 if (!map
->can_multi_write
) {
2187 for (i
= 0; i
< num_regs
; i
++) {
2188 ret
= _regmap_write(map
, regs
[i
].reg
, regs
[i
].def
);
2192 if (regs
[i
].delay_us
)
2193 udelay(regs
[i
].delay_us
);
2198 if (!map
->format
.parse_inplace
)
2201 if (map
->writeable_reg
)
2202 for (i
= 0; i
< num_regs
; i
++) {
2203 int reg
= regs
[i
].reg
;
2204 if (!map
->writeable_reg(map
->dev
, reg
))
2206 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2210 if (!map
->cache_bypass
) {
2211 for (i
= 0; i
< num_regs
; i
++) {
2212 unsigned int val
= regs
[i
].def
;
2213 unsigned int reg
= regs
[i
].reg
;
2214 ret
= regcache_write(map
, reg
, val
);
2217 "Error in caching of register: %x ret: %d\n",
2222 if (map
->cache_only
) {
2223 map
->cache_dirty
= true;
2230 for (i
= 0; i
< num_regs
; i
++) {
2231 unsigned int reg
= regs
[i
].reg
;
2232 struct regmap_range_node
*range
;
2234 /* Coalesce all the writes between a page break or a delay
2237 range
= _regmap_range_lookup(map
, reg
);
2238 if (range
|| regs
[i
].delay_us
) {
2239 size_t len
= sizeof(struct reg_sequence
)*num_regs
;
2240 struct reg_sequence
*base
= kmemdup(regs
, len
,
2244 ret
= _regmap_range_multi_paged_reg_write(map
, base
,
2251 return _regmap_raw_multi_reg_write(map
, regs
, num_regs
);
2255 * regmap_multi_reg_write() - Write multiple registers to the device
2257 * @map: Register map to write to
2258 * @regs: Array of structures containing register,value to be written
2259 * @num_regs: Number of registers to write
2261 * Write multiple registers to the device where the set of register, value
2262 * pairs are supplied in any order, possibly not all in a single range.
2264 * The 'normal' block write mode will send ultimately send data on the
2265 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2266 * addressed. However, this alternative block multi write mode will send
2267 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2268 * must of course support the mode.
2270 * A value of zero will be returned on success, a negative errno will be
2271 * returned in error cases.
2273 int regmap_multi_reg_write(struct regmap
*map
, const struct reg_sequence
*regs
,
2278 map
->lock(map
->lock_arg
);
2280 ret
= _regmap_multi_reg_write(map
, regs
, num_regs
);
2282 map
->unlock(map
->lock_arg
);
2286 EXPORT_SYMBOL_GPL(regmap_multi_reg_write
);
2289 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2290 * device but not the cache
2292 * @map: Register map to write to
2293 * @regs: Array of structures containing register,value to be written
2294 * @num_regs: Number of registers to write
2296 * Write multiple registers to the device but not the cache where the set
2297 * of register are supplied in any order.
2299 * This function is intended to be used for writing a large block of data
2300 * atomically to the device in single transfer for those I2C client devices
2301 * that implement this alternative block write mode.
2303 * A value of zero will be returned on success, a negative errno will
2304 * be returned in error cases.
2306 int regmap_multi_reg_write_bypassed(struct regmap
*map
,
2307 const struct reg_sequence
*regs
,
2313 map
->lock(map
->lock_arg
);
2315 bypass
= map
->cache_bypass
;
2316 map
->cache_bypass
= true;
2318 ret
= _regmap_multi_reg_write(map
, regs
, num_regs
);
2320 map
->cache_bypass
= bypass
;
2322 map
->unlock(map
->lock_arg
);
2326 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed
);
2329 * regmap_raw_write_async() - Write raw values to one or more registers
2332 * @map: Register map to write to
2333 * @reg: Initial register to write to
2334 * @val: Block of data to be written, laid out for direct transmission to the
2335 * device. Must be valid until regmap_async_complete() is called.
2336 * @val_len: Length of data pointed to by val.
2338 * This function is intended to be used for things like firmware
2339 * download where a large block of data needs to be transferred to the
2340 * device. No formatting will be done on the data provided.
2342 * If supported by the underlying bus the write will be scheduled
2343 * asynchronously, helping maximise I/O speed on higher speed buses
2344 * like SPI. regmap_async_complete() can be called to ensure that all
2345 * asynchrnous writes have been completed.
2347 * A value of zero will be returned on success, a negative errno will
2348 * be returned in error cases.
2350 int regmap_raw_write_async(struct regmap
*map
, unsigned int reg
,
2351 const void *val
, size_t val_len
)
2355 if (val_len
% map
->format
.val_bytes
)
2357 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2360 map
->lock(map
->lock_arg
);
2364 ret
= _regmap_raw_write(map
, reg
, val
, val_len
);
2368 map
->unlock(map
->lock_arg
);
2372 EXPORT_SYMBOL_GPL(regmap_raw_write_async
);
2374 static int _regmap_raw_read(struct regmap
*map
, unsigned int reg
, void *val
,
2375 unsigned int val_len
)
2377 struct regmap_range_node
*range
;
2382 if (!map
->bus
|| !map
->bus
->read
)
2385 range
= _regmap_range_lookup(map
, reg
);
2387 ret
= _regmap_select_page(map
, ®
, range
,
2388 val_len
/ map
->format
.val_bytes
);
2393 map
->format
.format_reg(map
->work_buf
, reg
, map
->reg_shift
);
2394 regmap_set_work_buf_flag_mask(map
, map
->format
.reg_bytes
,
2395 map
->read_flag_mask
);
2396 trace_regmap_hw_read_start(map
, reg
, val_len
/ map
->format
.val_bytes
);
2398 ret
= map
->bus
->read(map
->bus_context
, map
->work_buf
,
2399 map
->format
.reg_bytes
+ map
->format
.pad_bytes
,
2402 trace_regmap_hw_read_done(map
, reg
, val_len
/ map
->format
.val_bytes
);
2407 static int _regmap_bus_reg_read(void *context
, unsigned int reg
,
2410 struct regmap
*map
= context
;
2412 return map
->bus
->reg_read(map
->bus_context
, reg
, val
);
2415 static int _regmap_bus_read(void *context
, unsigned int reg
,
2419 struct regmap
*map
= context
;
2420 void *work_val
= map
->work_buf
+ map
->format
.reg_bytes
+
2421 map
->format
.pad_bytes
;
2423 if (!map
->format
.parse_val
)
2426 ret
= _regmap_raw_read(map
, reg
, work_val
, map
->format
.val_bytes
);
2428 *val
= map
->format
.parse_val(work_val
);
2433 static int _regmap_read(struct regmap
*map
, unsigned int reg
,
2437 void *context
= _regmap_map_get_context(map
);
2439 if (!map
->cache_bypass
) {
2440 ret
= regcache_read(map
, reg
, val
);
2445 if (map
->cache_only
)
2448 if (!regmap_readable(map
, reg
))
2451 ret
= map
->reg_read(context
, reg
, val
);
2454 if (map
->dev
&& strcmp(dev_name(map
->dev
), LOG_DEVICE
) == 0)
2455 dev_info(map
->dev
, "%x => %x\n", reg
, *val
);
2458 trace_regmap_reg_read(map
, reg
, *val
);
2460 if (!map
->cache_bypass
)
2461 regcache_write(map
, reg
, *val
);
2468 * regmap_read() - Read a value from a single register
2470 * @map: Register map to read from
2471 * @reg: Register to be read from
2472 * @val: Pointer to store read value
2474 * A value of zero will be returned on success, a negative errno will
2475 * be returned in error cases.
2477 int regmap_read(struct regmap
*map
, unsigned int reg
, unsigned int *val
)
2481 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2484 map
->lock(map
->lock_arg
);
2486 ret
= _regmap_read(map
, reg
, val
);
2488 map
->unlock(map
->lock_arg
);
2492 EXPORT_SYMBOL_GPL(regmap_read
);
2495 * regmap_raw_read() - Read raw data from the device
2497 * @map: Register map to read from
2498 * @reg: First register to be read from
2499 * @val: Pointer to store read value
2500 * @val_len: Size of data to read
2502 * A value of zero will be returned on success, a negative errno will
2503 * be returned in error cases.
2505 int regmap_raw_read(struct regmap
*map
, unsigned int reg
, void *val
,
2508 size_t val_bytes
= map
->format
.val_bytes
;
2509 size_t val_count
= val_len
/ val_bytes
;
2515 if (val_len
% map
->format
.val_bytes
)
2517 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2522 map
->lock(map
->lock_arg
);
2524 if (regmap_volatile_range(map
, reg
, val_count
) || map
->cache_bypass
||
2525 map
->cache_type
== REGCACHE_NONE
) {
2526 size_t chunk_count
, chunk_bytes
;
2527 size_t chunk_regs
= val_count
;
2529 if (!map
->bus
->read
) {
2534 if (map
->use_single_read
)
2536 else if (map
->max_raw_read
&& val_len
> map
->max_raw_read
)
2537 chunk_regs
= map
->max_raw_read
/ val_bytes
;
2539 chunk_count
= val_count
/ chunk_regs
;
2540 chunk_bytes
= chunk_regs
* val_bytes
;
2542 /* Read bytes that fit into whole chunks */
2543 for (i
= 0; i
< chunk_count
; i
++) {
2544 ret
= _regmap_raw_read(map
, reg
, val
, chunk_bytes
);
2548 reg
+= regmap_get_offset(map
, chunk_regs
);
2550 val_len
-= chunk_bytes
;
2553 /* Read remaining bytes */
2555 ret
= _regmap_raw_read(map
, reg
, val
, val_len
);
2560 /* Otherwise go word by word for the cache; should be low
2561 * cost as we expect to hit the cache.
2563 for (i
= 0; i
< val_count
; i
++) {
2564 ret
= _regmap_read(map
, reg
+ regmap_get_offset(map
, i
),
2569 map
->format
.format_val(val
+ (i
* val_bytes
), v
, 0);
2574 map
->unlock(map
->lock_arg
);
2578 EXPORT_SYMBOL_GPL(regmap_raw_read
);
2581 * regmap_noinc_read(): Read data from a register without incrementing the
2584 * @map: Register map to read from
2585 * @reg: Register to read from
2586 * @val: Pointer to data buffer
2587 * @val_len: Length of output buffer in bytes.
2589 * The regmap API usually assumes that bulk bus read operations will read a
2590 * range of registers. Some devices have certain registers for which a read
2591 * operation read will read from an internal FIFO.
2593 * The target register must be volatile but registers after it can be
2594 * completely unrelated cacheable registers.
2596 * This will attempt multiple reads as required to read val_len bytes.
2598 * A value of zero will be returned on success, a negative errno will be
2599 * returned in error cases.
2601 int regmap_noinc_read(struct regmap
*map
, unsigned int reg
,
2602 void *val
, size_t val_len
)
2609 if (!map
->bus
->read
)
2611 if (val_len
% map
->format
.val_bytes
)
2613 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2618 map
->lock(map
->lock_arg
);
2620 if (!regmap_volatile(map
, reg
) || !regmap_readable_noinc(map
, reg
)) {
2626 if (map
->max_raw_read
&& map
->max_raw_read
< val_len
)
2627 read_len
= map
->max_raw_read
;
2630 ret
= _regmap_raw_read(map
, reg
, val
, read_len
);
2633 val
= ((u8
*)val
) + read_len
;
2634 val_len
-= read_len
;
2638 map
->unlock(map
->lock_arg
);
2641 EXPORT_SYMBOL_GPL(regmap_noinc_read
);
2644 * regmap_field_read(): Read a value to a single register field
2646 * @field: Register field to read from
2647 * @val: Pointer to store read value
2649 * A value of zero will be returned on success, a negative errno will
2650 * be returned in error cases.
2652 int regmap_field_read(struct regmap_field
*field
, unsigned int *val
)
2655 unsigned int reg_val
;
2656 ret
= regmap_read(field
->regmap
, field
->reg
, ®_val
);
2660 reg_val
&= field
->mask
;
2661 reg_val
>>= field
->shift
;
2666 EXPORT_SYMBOL_GPL(regmap_field_read
);
2669 * regmap_fields_read() - Read a value to a single register field with port ID
2671 * @field: Register field to read from
2673 * @val: Pointer to store read value
2675 * A value of zero will be returned on success, a negative errno will
2676 * be returned in error cases.
2678 int regmap_fields_read(struct regmap_field
*field
, unsigned int id
,
2682 unsigned int reg_val
;
2684 if (id
>= field
->id_size
)
2687 ret
= regmap_read(field
->regmap
,
2688 field
->reg
+ (field
->id_offset
* id
),
2693 reg_val
&= field
->mask
;
2694 reg_val
>>= field
->shift
;
2699 EXPORT_SYMBOL_GPL(regmap_fields_read
);
2702 * regmap_bulk_read() - Read multiple registers from the device
2704 * @map: Register map to read from
2705 * @reg: First register to be read from
2706 * @val: Pointer to store read value, in native register size for device
2707 * @val_count: Number of registers to read
2709 * A value of zero will be returned on success, a negative errno will
2710 * be returned in error cases.
2712 int regmap_bulk_read(struct regmap
*map
, unsigned int reg
, void *val
,
2716 size_t val_bytes
= map
->format
.val_bytes
;
2717 bool vol
= regmap_volatile_range(map
, reg
, val_count
);
2719 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2724 if (map
->bus
&& map
->format
.parse_inplace
&& (vol
|| map
->cache_type
== REGCACHE_NONE
)) {
2725 ret
= regmap_raw_read(map
, reg
, val
, val_bytes
* val_count
);
2729 for (i
= 0; i
< val_count
* val_bytes
; i
+= val_bytes
)
2730 map
->format
.parse_inplace(val
+ i
);
2739 map
->lock(map
->lock_arg
);
2741 for (i
= 0; i
< val_count
; i
++) {
2744 ret
= _regmap_read(map
, reg
+ regmap_get_offset(map
, i
),
2749 switch (map
->format
.val_bytes
) {
2771 map
->unlock(map
->lock_arg
);
2776 EXPORT_SYMBOL_GPL(regmap_bulk_read
);
2778 static int _regmap_update_bits(struct regmap
*map
, unsigned int reg
,
2779 unsigned int mask
, unsigned int val
,
2780 bool *change
, bool force_write
)
2783 unsigned int tmp
, orig
;
2788 if (regmap_volatile(map
, reg
) && map
->reg_update_bits
) {
2789 ret
= map
->reg_update_bits(map
->bus_context
, reg
, mask
, val
);
2790 if (ret
== 0 && change
)
2793 ret
= _regmap_read(map
, reg
, &orig
);
2800 if (force_write
|| (tmp
!= orig
)) {
2801 ret
= _regmap_write(map
, reg
, tmp
);
2802 if (ret
== 0 && change
)
2811 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2813 * @map: Register map to update
2814 * @reg: Register to update
2815 * @mask: Bitmask to change
2816 * @val: New value for bitmask
2817 * @change: Boolean indicating if a write was done
2818 * @async: Boolean indicating asynchronously
2819 * @force: Boolean indicating use force update
2821 * Perform a read/modify/write cycle on a register map with change, async, force
2826 * With most buses the read must be done synchronously so this is most useful
2827 * for devices with a cache which do not need to interact with the hardware to
2828 * determine the current register value.
2830 * Returns zero for success, a negative number on error.
2832 int regmap_update_bits_base(struct regmap
*map
, unsigned int reg
,
2833 unsigned int mask
, unsigned int val
,
2834 bool *change
, bool async
, bool force
)
2838 map
->lock(map
->lock_arg
);
2842 ret
= _regmap_update_bits(map
, reg
, mask
, val
, change
, force
);
2846 map
->unlock(map
->lock_arg
);
2850 EXPORT_SYMBOL_GPL(regmap_update_bits_base
);
2852 void regmap_async_complete_cb(struct regmap_async
*async
, int ret
)
2854 struct regmap
*map
= async
->map
;
2857 trace_regmap_async_io_complete(map
);
2859 spin_lock(&map
->async_lock
);
2860 list_move(&async
->list
, &map
->async_free
);
2861 wake
= list_empty(&map
->async_list
);
2864 map
->async_ret
= ret
;
2866 spin_unlock(&map
->async_lock
);
2869 wake_up(&map
->async_waitq
);
2871 EXPORT_SYMBOL_GPL(regmap_async_complete_cb
);
2873 static int regmap_async_is_done(struct regmap
*map
)
2875 unsigned long flags
;
2878 spin_lock_irqsave(&map
->async_lock
, flags
);
2879 ret
= list_empty(&map
->async_list
);
2880 spin_unlock_irqrestore(&map
->async_lock
, flags
);
2886 * regmap_async_complete - Ensure all asynchronous I/O has completed.
2888 * @map: Map to operate on.
2890 * Blocks until any pending asynchronous I/O has completed. Returns
2891 * an error code for any failed I/O operations.
2893 int regmap_async_complete(struct regmap
*map
)
2895 unsigned long flags
;
2898 /* Nothing to do with no async support */
2899 if (!map
->bus
|| !map
->bus
->async_write
)
2902 trace_regmap_async_complete_start(map
);
2904 wait_event(map
->async_waitq
, regmap_async_is_done(map
));
2906 spin_lock_irqsave(&map
->async_lock
, flags
);
2907 ret
= map
->async_ret
;
2909 spin_unlock_irqrestore(&map
->async_lock
, flags
);
2911 trace_regmap_async_complete_done(map
);
2915 EXPORT_SYMBOL_GPL(regmap_async_complete
);
2918 * regmap_register_patch - Register and apply register updates to be applied
2919 * on device initialistion
2921 * @map: Register map to apply updates to.
2922 * @regs: Values to update.
2923 * @num_regs: Number of entries in regs.
2925 * Register a set of register updates to be applied to the device
2926 * whenever the device registers are synchronised with the cache and
2927 * apply them immediately. Typically this is used to apply
2928 * corrections to be applied to the device defaults on startup, such
2929 * as the updates some vendors provide to undocumented registers.
2931 * The caller must ensure that this function cannot be called
2932 * concurrently with either itself or regcache_sync().
2934 int regmap_register_patch(struct regmap
*map
, const struct reg_sequence
*regs
,
2937 struct reg_sequence
*p
;
2941 if (WARN_ONCE(num_regs
<= 0, "invalid registers number (%d)\n",
2945 p
= krealloc(map
->patch
,
2946 sizeof(struct reg_sequence
) * (map
->patch_regs
+ num_regs
),
2949 memcpy(p
+ map
->patch_regs
, regs
, num_regs
* sizeof(*regs
));
2951 map
->patch_regs
+= num_regs
;
2956 map
->lock(map
->lock_arg
);
2958 bypass
= map
->cache_bypass
;
2960 map
->cache_bypass
= true;
2963 ret
= _regmap_multi_reg_write(map
, regs
, num_regs
);
2966 map
->cache_bypass
= bypass
;
2968 map
->unlock(map
->lock_arg
);
2970 regmap_async_complete(map
);
2974 EXPORT_SYMBOL_GPL(regmap_register_patch
);
2977 * regmap_get_val_bytes() - Report the size of a register value
2979 * @map: Register map to operate on.
2981 * Report the size of a register value, mainly intended to for use by
2982 * generic infrastructure built on top of regmap.
2984 int regmap_get_val_bytes(struct regmap
*map
)
2986 if (map
->format
.format_write
)
2989 return map
->format
.val_bytes
;
2991 EXPORT_SYMBOL_GPL(regmap_get_val_bytes
);
2994 * regmap_get_max_register() - Report the max register value
2996 * @map: Register map to operate on.
2998 * Report the max register value, mainly intended to for use by
2999 * generic infrastructure built on top of regmap.
3001 int regmap_get_max_register(struct regmap
*map
)
3003 return map
->max_register
? map
->max_register
: -EINVAL
;
3005 EXPORT_SYMBOL_GPL(regmap_get_max_register
);
3008 * regmap_get_reg_stride() - Report the register address stride
3010 * @map: Register map to operate on.
3012 * Report the register address stride, mainly intended to for use by
3013 * generic infrastructure built on top of regmap.
3015 int regmap_get_reg_stride(struct regmap
*map
)
3017 return map
->reg_stride
;
3019 EXPORT_SYMBOL_GPL(regmap_get_reg_stride
);
3021 int regmap_parse_val(struct regmap
*map
, const void *buf
,
3024 if (!map
->format
.parse_val
)
3027 *val
= map
->format
.parse_val(buf
);
3031 EXPORT_SYMBOL_GPL(regmap_parse_val
);
3033 static int __init
regmap_initcall(void)
3035 regmap_debugfs_initcall();
3039 postcore_initcall(regmap_initcall
);