1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Generic socket support routines. Memory allocators, socket lock/release
8 * handler for protocols to use and generic option handler.
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
88 #include <asm/unaligned.h>
89 #include <linux/capability.h>
90 #include <linux/errno.h>
91 #include <linux/errqueue.h>
92 #include <linux/types.h>
93 #include <linux/socket.h>
95 #include <linux/kernel.h>
96 #include <linux/module.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/sched.h>
100 #include <linux/sched/mm.h>
101 #include <linux/timer.h>
102 #include <linux/string.h>
103 #include <linux/sockios.h>
104 #include <linux/net.h>
105 #include <linux/mm.h>
106 #include <linux/slab.h>
107 #include <linux/interrupt.h>
108 #include <linux/poll.h>
109 #include <linux/tcp.h>
110 #include <linux/init.h>
111 #include <linux/highmem.h>
112 #include <linux/user_namespace.h>
113 #include <linux/static_key.h>
114 #include <linux/memcontrol.h>
115 #include <linux/prefetch.h>
117 #include <linux/uaccess.h>
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/net_namespace.h>
123 #include <net/request_sock.h>
124 #include <net/sock.h>
125 #include <linux/net_tstamp.h>
126 #include <net/xfrm.h>
127 #include <linux/ipsec.h>
128 #include <net/cls_cgroup.h>
129 #include <net/netprio_cgroup.h>
130 #include <linux/sock_diag.h>
132 #include <linux/filter.h>
133 #include <net/sock_reuseport.h>
134 #include <net/bpf_sk_storage.h>
136 #include <trace/events/sock.h>
139 #include <net/busy_poll.h>
141 static DEFINE_MUTEX(proto_list_mutex
);
142 static LIST_HEAD(proto_list
);
144 static void sock_inuse_add(struct net
*net
, int val
);
147 * sk_ns_capable - General socket capability test
148 * @sk: Socket to use a capability on or through
149 * @user_ns: The user namespace of the capability to use
150 * @cap: The capability to use
152 * Test to see if the opener of the socket had when the socket was
153 * created and the current process has the capability @cap in the user
154 * namespace @user_ns.
156 bool sk_ns_capable(const struct sock
*sk
,
157 struct user_namespace
*user_ns
, int cap
)
159 return file_ns_capable(sk
->sk_socket
->file
, user_ns
, cap
) &&
160 ns_capable(user_ns
, cap
);
162 EXPORT_SYMBOL(sk_ns_capable
);
165 * sk_capable - Socket global capability test
166 * @sk: Socket to use a capability on or through
167 * @cap: The global capability to use
169 * Test to see if the opener of the socket had when the socket was
170 * created and the current process has the capability @cap in all user
173 bool sk_capable(const struct sock
*sk
, int cap
)
175 return sk_ns_capable(sk
, &init_user_ns
, cap
);
177 EXPORT_SYMBOL(sk_capable
);
180 * sk_net_capable - Network namespace socket capability test
181 * @sk: Socket to use a capability on or through
182 * @cap: The capability to use
184 * Test to see if the opener of the socket had when the socket was created
185 * and the current process has the capability @cap over the network namespace
186 * the socket is a member of.
188 bool sk_net_capable(const struct sock
*sk
, int cap
)
190 return sk_ns_capable(sk
, sock_net(sk
)->user_ns
, cap
);
192 EXPORT_SYMBOL(sk_net_capable
);
195 * Each address family might have different locking rules, so we have
196 * one slock key per address family and separate keys for internal and
199 static struct lock_class_key af_family_keys
[AF_MAX
];
200 static struct lock_class_key af_family_kern_keys
[AF_MAX
];
201 static struct lock_class_key af_family_slock_keys
[AF_MAX
];
202 static struct lock_class_key af_family_kern_slock_keys
[AF_MAX
];
205 * Make lock validator output more readable. (we pre-construct these
206 * strings build-time, so that runtime initialization of socket
210 #define _sock_locks(x) \
211 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
212 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
213 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
214 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
215 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
216 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
217 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
218 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
219 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
220 x "27" , x "28" , x "AF_CAN" , \
221 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
222 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
223 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
224 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
225 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
228 static const char *const af_family_key_strings
[AF_MAX
+1] = {
229 _sock_locks("sk_lock-")
231 static const char *const af_family_slock_key_strings
[AF_MAX
+1] = {
232 _sock_locks("slock-")
234 static const char *const af_family_clock_key_strings
[AF_MAX
+1] = {
235 _sock_locks("clock-")
238 static const char *const af_family_kern_key_strings
[AF_MAX
+1] = {
239 _sock_locks("k-sk_lock-")
241 static const char *const af_family_kern_slock_key_strings
[AF_MAX
+1] = {
242 _sock_locks("k-slock-")
244 static const char *const af_family_kern_clock_key_strings
[AF_MAX
+1] = {
245 _sock_locks("k-clock-")
247 static const char *const af_family_rlock_key_strings
[AF_MAX
+1] = {
248 _sock_locks("rlock-")
250 static const char *const af_family_wlock_key_strings
[AF_MAX
+1] = {
251 _sock_locks("wlock-")
253 static const char *const af_family_elock_key_strings
[AF_MAX
+1] = {
254 _sock_locks("elock-")
258 * sk_callback_lock and sk queues locking rules are per-address-family,
259 * so split the lock classes by using a per-AF key:
261 static struct lock_class_key af_callback_keys
[AF_MAX
];
262 static struct lock_class_key af_rlock_keys
[AF_MAX
];
263 static struct lock_class_key af_wlock_keys
[AF_MAX
];
264 static struct lock_class_key af_elock_keys
[AF_MAX
];
265 static struct lock_class_key af_kern_callback_keys
[AF_MAX
];
267 /* Run time adjustable parameters. */
268 __u32 sysctl_wmem_max __read_mostly
= SK_WMEM_MAX
;
269 EXPORT_SYMBOL(sysctl_wmem_max
);
270 __u32 sysctl_rmem_max __read_mostly
= SK_RMEM_MAX
;
271 EXPORT_SYMBOL(sysctl_rmem_max
);
272 __u32 sysctl_wmem_default __read_mostly
= SK_WMEM_MAX
;
273 __u32 sysctl_rmem_default __read_mostly
= SK_RMEM_MAX
;
275 /* Maximal space eaten by iovec or ancillary data plus some space */
276 int sysctl_optmem_max __read_mostly
= sizeof(unsigned long)*(2*UIO_MAXIOV
+512);
277 EXPORT_SYMBOL(sysctl_optmem_max
);
279 int sysctl_tstamp_allow_data __read_mostly
= 1;
281 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key
);
282 EXPORT_SYMBOL_GPL(memalloc_socks_key
);
285 * sk_set_memalloc - sets %SOCK_MEMALLOC
286 * @sk: socket to set it on
288 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
289 * It's the responsibility of the admin to adjust min_free_kbytes
290 * to meet the requirements
292 void sk_set_memalloc(struct sock
*sk
)
294 sock_set_flag(sk
, SOCK_MEMALLOC
);
295 sk
->sk_allocation
|= __GFP_MEMALLOC
;
296 static_branch_inc(&memalloc_socks_key
);
298 EXPORT_SYMBOL_GPL(sk_set_memalloc
);
300 void sk_clear_memalloc(struct sock
*sk
)
302 sock_reset_flag(sk
, SOCK_MEMALLOC
);
303 sk
->sk_allocation
&= ~__GFP_MEMALLOC
;
304 static_branch_dec(&memalloc_socks_key
);
307 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
308 * progress of swapping. SOCK_MEMALLOC may be cleared while
309 * it has rmem allocations due to the last swapfile being deactivated
310 * but there is a risk that the socket is unusable due to exceeding
311 * the rmem limits. Reclaim the reserves and obey rmem limits again.
315 EXPORT_SYMBOL_GPL(sk_clear_memalloc
);
317 int __sk_backlog_rcv(struct sock
*sk
, struct sk_buff
*skb
)
320 unsigned int noreclaim_flag
;
322 /* these should have been dropped before queueing */
323 BUG_ON(!sock_flag(sk
, SOCK_MEMALLOC
));
325 noreclaim_flag
= memalloc_noreclaim_save();
326 ret
= sk
->sk_backlog_rcv(sk
, skb
);
327 memalloc_noreclaim_restore(noreclaim_flag
);
331 EXPORT_SYMBOL(__sk_backlog_rcv
);
333 static int sock_get_timeout(long timeo
, void *optval
, bool old_timeval
)
335 struct __kernel_sock_timeval tv
;
338 if (timeo
== MAX_SCHEDULE_TIMEOUT
) {
342 tv
.tv_sec
= timeo
/ HZ
;
343 tv
.tv_usec
= ((timeo
% HZ
) * USEC_PER_SEC
) / HZ
;
346 if (old_timeval
&& in_compat_syscall() && !COMPAT_USE_64BIT_TIME
) {
347 struct old_timeval32 tv32
= { tv
.tv_sec
, tv
.tv_usec
};
348 *(struct old_timeval32
*)optval
= tv32
;
353 struct __kernel_old_timeval old_tv
;
354 old_tv
.tv_sec
= tv
.tv_sec
;
355 old_tv
.tv_usec
= tv
.tv_usec
;
356 *(struct __kernel_old_timeval
*)optval
= old_tv
;
357 size
= sizeof(old_tv
);
359 *(struct __kernel_sock_timeval
*)optval
= tv
;
366 static int sock_set_timeout(long *timeo_p
, char __user
*optval
, int optlen
, bool old_timeval
)
368 struct __kernel_sock_timeval tv
;
370 if (old_timeval
&& in_compat_syscall() && !COMPAT_USE_64BIT_TIME
) {
371 struct old_timeval32 tv32
;
373 if (optlen
< sizeof(tv32
))
376 if (copy_from_user(&tv32
, optval
, sizeof(tv32
)))
378 tv
.tv_sec
= tv32
.tv_sec
;
379 tv
.tv_usec
= tv32
.tv_usec
;
380 } else if (old_timeval
) {
381 struct __kernel_old_timeval old_tv
;
383 if (optlen
< sizeof(old_tv
))
385 if (copy_from_user(&old_tv
, optval
, sizeof(old_tv
)))
387 tv
.tv_sec
= old_tv
.tv_sec
;
388 tv
.tv_usec
= old_tv
.tv_usec
;
390 if (optlen
< sizeof(tv
))
392 if (copy_from_user(&tv
, optval
, sizeof(tv
)))
395 if (tv
.tv_usec
< 0 || tv
.tv_usec
>= USEC_PER_SEC
)
399 static int warned __read_mostly
;
402 if (warned
< 10 && net_ratelimit()) {
404 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
405 __func__
, current
->comm
, task_pid_nr(current
));
409 *timeo_p
= MAX_SCHEDULE_TIMEOUT
;
410 if (tv
.tv_sec
== 0 && tv
.tv_usec
== 0)
412 if (tv
.tv_sec
< (MAX_SCHEDULE_TIMEOUT
/ HZ
- 1))
413 *timeo_p
= tv
.tv_sec
* HZ
+ DIV_ROUND_UP((unsigned long)tv
.tv_usec
, USEC_PER_SEC
/ HZ
);
417 static void sock_warn_obsolete_bsdism(const char *name
)
420 static char warncomm
[TASK_COMM_LEN
];
421 if (strcmp(warncomm
, current
->comm
) && warned
< 5) {
422 strcpy(warncomm
, current
->comm
);
423 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
429 static bool sock_needs_netstamp(const struct sock
*sk
)
431 switch (sk
->sk_family
) {
440 static void sock_disable_timestamp(struct sock
*sk
, unsigned long flags
)
442 if (sk
->sk_flags
& flags
) {
443 sk
->sk_flags
&= ~flags
;
444 if (sock_needs_netstamp(sk
) &&
445 !(sk
->sk_flags
& SK_FLAGS_TIMESTAMP
))
446 net_disable_timestamp();
451 int __sock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
454 struct sk_buff_head
*list
= &sk
->sk_receive_queue
;
456 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
) {
457 atomic_inc(&sk
->sk_drops
);
458 trace_sock_rcvqueue_full(sk
, skb
);
462 if (!sk_rmem_schedule(sk
, skb
, skb
->truesize
)) {
463 atomic_inc(&sk
->sk_drops
);
468 skb_set_owner_r(skb
, sk
);
470 /* we escape from rcu protected region, make sure we dont leak
475 spin_lock_irqsave(&list
->lock
, flags
);
476 sock_skb_set_dropcount(sk
, skb
);
477 __skb_queue_tail(list
, skb
);
478 spin_unlock_irqrestore(&list
->lock
, flags
);
480 if (!sock_flag(sk
, SOCK_DEAD
))
481 sk
->sk_data_ready(sk
);
484 EXPORT_SYMBOL(__sock_queue_rcv_skb
);
486 int sock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
490 err
= sk_filter(sk
, skb
);
494 return __sock_queue_rcv_skb(sk
, skb
);
496 EXPORT_SYMBOL(sock_queue_rcv_skb
);
498 int __sk_receive_skb(struct sock
*sk
, struct sk_buff
*skb
,
499 const int nested
, unsigned int trim_cap
, bool refcounted
)
501 int rc
= NET_RX_SUCCESS
;
503 if (sk_filter_trim_cap(sk
, skb
, trim_cap
))
504 goto discard_and_relse
;
508 if (sk_rcvqueues_full(sk
, sk
->sk_rcvbuf
)) {
509 atomic_inc(&sk
->sk_drops
);
510 goto discard_and_relse
;
513 bh_lock_sock_nested(sk
);
516 if (!sock_owned_by_user(sk
)) {
518 * trylock + unlock semantics:
520 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 1, _RET_IP_
);
522 rc
= sk_backlog_rcv(sk
, skb
);
524 mutex_release(&sk
->sk_lock
.dep_map
, 1, _RET_IP_
);
525 } else if (sk_add_backlog(sk
, skb
, READ_ONCE(sk
->sk_rcvbuf
))) {
527 atomic_inc(&sk
->sk_drops
);
528 goto discard_and_relse
;
540 EXPORT_SYMBOL(__sk_receive_skb
);
542 struct dst_entry
*__sk_dst_check(struct sock
*sk
, u32 cookie
)
544 struct dst_entry
*dst
= __sk_dst_get(sk
);
546 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
547 sk_tx_queue_clear(sk
);
548 sk
->sk_dst_pending_confirm
= 0;
549 RCU_INIT_POINTER(sk
->sk_dst_cache
, NULL
);
556 EXPORT_SYMBOL(__sk_dst_check
);
558 struct dst_entry
*sk_dst_check(struct sock
*sk
, u32 cookie
)
560 struct dst_entry
*dst
= sk_dst_get(sk
);
562 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
570 EXPORT_SYMBOL(sk_dst_check
);
572 static int sock_setbindtodevice_locked(struct sock
*sk
, int ifindex
)
574 int ret
= -ENOPROTOOPT
;
575 #ifdef CONFIG_NETDEVICES
576 struct net
*net
= sock_net(sk
);
580 if (!ns_capable(net
->user_ns
, CAP_NET_RAW
))
587 sk
->sk_bound_dev_if
= ifindex
;
588 if (sk
->sk_prot
->rehash
)
589 sk
->sk_prot
->rehash(sk
);
600 static int sock_setbindtodevice(struct sock
*sk
, char __user
*optval
,
603 int ret
= -ENOPROTOOPT
;
604 #ifdef CONFIG_NETDEVICES
605 struct net
*net
= sock_net(sk
);
606 char devname
[IFNAMSIZ
];
613 /* Bind this socket to a particular device like "eth0",
614 * as specified in the passed interface name. If the
615 * name is "" or the option length is zero the socket
618 if (optlen
> IFNAMSIZ
- 1)
619 optlen
= IFNAMSIZ
- 1;
620 memset(devname
, 0, sizeof(devname
));
623 if (copy_from_user(devname
, optval
, optlen
))
627 if (devname
[0] != '\0') {
628 struct net_device
*dev
;
631 dev
= dev_get_by_name_rcu(net
, devname
);
633 index
= dev
->ifindex
;
641 ret
= sock_setbindtodevice_locked(sk
, index
);
650 static int sock_getbindtodevice(struct sock
*sk
, char __user
*optval
,
651 int __user
*optlen
, int len
)
653 int ret
= -ENOPROTOOPT
;
654 #ifdef CONFIG_NETDEVICES
655 struct net
*net
= sock_net(sk
);
656 char devname
[IFNAMSIZ
];
658 if (sk
->sk_bound_dev_if
== 0) {
667 ret
= netdev_get_name(net
, devname
, sk
->sk_bound_dev_if
);
671 len
= strlen(devname
) + 1;
674 if (copy_to_user(optval
, devname
, len
))
679 if (put_user(len
, optlen
))
690 static inline void sock_valbool_flag(struct sock
*sk
, int bit
, int valbool
)
693 sock_set_flag(sk
, bit
);
695 sock_reset_flag(sk
, bit
);
698 bool sk_mc_loop(struct sock
*sk
)
700 if (dev_recursion_level())
704 switch (sk
->sk_family
) {
706 return inet_sk(sk
)->mc_loop
;
707 #if IS_ENABLED(CONFIG_IPV6)
709 return inet6_sk(sk
)->mc_loop
;
715 EXPORT_SYMBOL(sk_mc_loop
);
718 * This is meant for all protocols to use and covers goings on
719 * at the socket level. Everything here is generic.
722 int sock_setsockopt(struct socket
*sock
, int level
, int optname
,
723 char __user
*optval
, unsigned int optlen
)
725 struct sock_txtime sk_txtime
;
726 struct sock
*sk
= sock
->sk
;
733 * Options without arguments
736 if (optname
== SO_BINDTODEVICE
)
737 return sock_setbindtodevice(sk
, optval
, optlen
);
739 if (optlen
< sizeof(int))
742 if (get_user(val
, (int __user
*)optval
))
745 valbool
= val
? 1 : 0;
751 if (val
&& !capable(CAP_NET_ADMIN
))
754 sock_valbool_flag(sk
, SOCK_DBG
, valbool
);
757 sk
->sk_reuse
= (valbool
? SK_CAN_REUSE
: SK_NO_REUSE
);
760 sk
->sk_reuseport
= valbool
;
769 sock_valbool_flag(sk
, SOCK_LOCALROUTE
, valbool
);
773 sock_valbool_flag(sk
, SOCK_BROADCAST
, valbool
);
776 /* Don't error on this BSD doesn't and if you think
777 * about it this is right. Otherwise apps have to
778 * play 'guess the biggest size' games. RCVBUF/SNDBUF
779 * are treated in BSD as hints
781 val
= min_t(u32
, val
, sysctl_wmem_max
);
783 /* Ensure val * 2 fits into an int, to prevent max_t()
784 * from treating it as a negative value.
786 val
= min_t(int, val
, INT_MAX
/ 2);
787 sk
->sk_userlocks
|= SOCK_SNDBUF_LOCK
;
788 WRITE_ONCE(sk
->sk_sndbuf
,
789 max_t(int, val
* 2, SOCK_MIN_SNDBUF
));
790 /* Wake up sending tasks if we upped the value. */
791 sk
->sk_write_space(sk
);
795 if (!capable(CAP_NET_ADMIN
)) {
800 /* No negative values (to prevent underflow, as val will be
808 /* Don't error on this BSD doesn't and if you think
809 * about it this is right. Otherwise apps have to
810 * play 'guess the biggest size' games. RCVBUF/SNDBUF
811 * are treated in BSD as hints
813 val
= min_t(u32
, val
, sysctl_rmem_max
);
815 /* Ensure val * 2 fits into an int, to prevent max_t()
816 * from treating it as a negative value.
818 val
= min_t(int, val
, INT_MAX
/ 2);
819 sk
->sk_userlocks
|= SOCK_RCVBUF_LOCK
;
821 * We double it on the way in to account for
822 * "struct sk_buff" etc. overhead. Applications
823 * assume that the SO_RCVBUF setting they make will
824 * allow that much actual data to be received on that
827 * Applications are unaware that "struct sk_buff" and
828 * other overheads allocate from the receive buffer
829 * during socket buffer allocation.
831 * And after considering the possible alternatives,
832 * returning the value we actually used in getsockopt
833 * is the most desirable behavior.
835 WRITE_ONCE(sk
->sk_rcvbuf
,
836 max_t(int, val
* 2, SOCK_MIN_RCVBUF
));
840 if (!capable(CAP_NET_ADMIN
)) {
845 /* No negative values (to prevent underflow, as val will be
853 if (sk
->sk_prot
->keepalive
)
854 sk
->sk_prot
->keepalive(sk
, valbool
);
855 sock_valbool_flag(sk
, SOCK_KEEPOPEN
, valbool
);
859 sock_valbool_flag(sk
, SOCK_URGINLINE
, valbool
);
863 sk
->sk_no_check_tx
= valbool
;
867 if ((val
>= 0 && val
<= 6) ||
868 ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
869 sk
->sk_priority
= val
;
875 if (optlen
< sizeof(ling
)) {
876 ret
= -EINVAL
; /* 1003.1g */
879 if (copy_from_user(&ling
, optval
, sizeof(ling
))) {
884 sock_reset_flag(sk
, SOCK_LINGER
);
886 #if (BITS_PER_LONG == 32)
887 if ((unsigned int)ling
.l_linger
>= MAX_SCHEDULE_TIMEOUT
/HZ
)
888 sk
->sk_lingertime
= MAX_SCHEDULE_TIMEOUT
;
891 sk
->sk_lingertime
= (unsigned int)ling
.l_linger
* HZ
;
892 sock_set_flag(sk
, SOCK_LINGER
);
897 sock_warn_obsolete_bsdism("setsockopt");
902 set_bit(SOCK_PASSCRED
, &sock
->flags
);
904 clear_bit(SOCK_PASSCRED
, &sock
->flags
);
907 case SO_TIMESTAMP_OLD
:
908 case SO_TIMESTAMP_NEW
:
909 case SO_TIMESTAMPNS_OLD
:
910 case SO_TIMESTAMPNS_NEW
:
912 if (optname
== SO_TIMESTAMP_NEW
|| optname
== SO_TIMESTAMPNS_NEW
)
913 sock_set_flag(sk
, SOCK_TSTAMP_NEW
);
915 sock_reset_flag(sk
, SOCK_TSTAMP_NEW
);
917 if (optname
== SO_TIMESTAMP_OLD
|| optname
== SO_TIMESTAMP_NEW
)
918 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
920 sock_set_flag(sk
, SOCK_RCVTSTAMPNS
);
921 sock_set_flag(sk
, SOCK_RCVTSTAMP
);
922 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
924 sock_reset_flag(sk
, SOCK_RCVTSTAMP
);
925 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
926 sock_reset_flag(sk
, SOCK_TSTAMP_NEW
);
930 case SO_TIMESTAMPING_NEW
:
931 sock_set_flag(sk
, SOCK_TSTAMP_NEW
);
933 case SO_TIMESTAMPING_OLD
:
934 if (val
& ~SOF_TIMESTAMPING_MASK
) {
939 if (val
& SOF_TIMESTAMPING_OPT_ID
&&
940 !(sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_ID
)) {
941 if (sk
->sk_protocol
== IPPROTO_TCP
&&
942 sk
->sk_type
== SOCK_STREAM
) {
943 if ((1 << sk
->sk_state
) &
944 (TCPF_CLOSE
| TCPF_LISTEN
)) {
948 sk
->sk_tskey
= tcp_sk(sk
)->snd_una
;
954 if (val
& SOF_TIMESTAMPING_OPT_STATS
&&
955 !(val
& SOF_TIMESTAMPING_OPT_TSONLY
)) {
960 sk
->sk_tsflags
= val
;
961 if (val
& SOF_TIMESTAMPING_RX_SOFTWARE
)
962 sock_enable_timestamp(sk
,
963 SOCK_TIMESTAMPING_RX_SOFTWARE
);
965 if (optname
== SO_TIMESTAMPING_NEW
)
966 sock_reset_flag(sk
, SOCK_TSTAMP_NEW
);
968 sock_disable_timestamp(sk
,
969 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE
));
976 if (sock
->ops
->set_rcvlowat
)
977 ret
= sock
->ops
->set_rcvlowat(sk
, val
);
979 WRITE_ONCE(sk
->sk_rcvlowat
, val
? : 1);
982 case SO_RCVTIMEO_OLD
:
983 case SO_RCVTIMEO_NEW
:
984 ret
= sock_set_timeout(&sk
->sk_rcvtimeo
, optval
, optlen
, optname
== SO_RCVTIMEO_OLD
);
987 case SO_SNDTIMEO_OLD
:
988 case SO_SNDTIMEO_NEW
:
989 ret
= sock_set_timeout(&sk
->sk_sndtimeo
, optval
, optlen
, optname
== SO_SNDTIMEO_OLD
);
992 case SO_ATTACH_FILTER
:
994 if (optlen
== sizeof(struct sock_fprog
)) {
995 struct sock_fprog fprog
;
998 if (copy_from_user(&fprog
, optval
, sizeof(fprog
)))
1001 ret
= sk_attach_filter(&fprog
, sk
);
1007 if (optlen
== sizeof(u32
)) {
1011 if (copy_from_user(&ufd
, optval
, sizeof(ufd
)))
1014 ret
= sk_attach_bpf(ufd
, sk
);
1018 case SO_ATTACH_REUSEPORT_CBPF
:
1020 if (optlen
== sizeof(struct sock_fprog
)) {
1021 struct sock_fprog fprog
;
1024 if (copy_from_user(&fprog
, optval
, sizeof(fprog
)))
1027 ret
= sk_reuseport_attach_filter(&fprog
, sk
);
1031 case SO_ATTACH_REUSEPORT_EBPF
:
1033 if (optlen
== sizeof(u32
)) {
1037 if (copy_from_user(&ufd
, optval
, sizeof(ufd
)))
1040 ret
= sk_reuseport_attach_bpf(ufd
, sk
);
1044 case SO_DETACH_REUSEPORT_BPF
:
1045 ret
= reuseport_detach_prog(sk
);
1048 case SO_DETACH_FILTER
:
1049 ret
= sk_detach_filter(sk
);
1052 case SO_LOCK_FILTER
:
1053 if (sock_flag(sk
, SOCK_FILTER_LOCKED
) && !valbool
)
1056 sock_valbool_flag(sk
, SOCK_FILTER_LOCKED
, valbool
);
1061 set_bit(SOCK_PASSSEC
, &sock
->flags
);
1063 clear_bit(SOCK_PASSSEC
, &sock
->flags
);
1066 if (!ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
)) {
1068 } else if (val
!= sk
->sk_mark
) {
1075 sock_valbool_flag(sk
, SOCK_RXQ_OVFL
, valbool
);
1078 case SO_WIFI_STATUS
:
1079 sock_valbool_flag(sk
, SOCK_WIFI_STATUS
, valbool
);
1083 if (sock
->ops
->set_peek_off
)
1084 ret
= sock
->ops
->set_peek_off(sk
, val
);
1090 sock_valbool_flag(sk
, SOCK_NOFCS
, valbool
);
1093 case SO_SELECT_ERR_QUEUE
:
1094 sock_valbool_flag(sk
, SOCK_SELECT_ERR_QUEUE
, valbool
);
1097 #ifdef CONFIG_NET_RX_BUSY_POLL
1099 /* allow unprivileged users to decrease the value */
1100 if ((val
> sk
->sk_ll_usec
) && !capable(CAP_NET_ADMIN
))
1106 sk
->sk_ll_usec
= val
;
1111 case SO_MAX_PACING_RATE
:
1113 unsigned long ulval
= (val
== ~0U) ? ~0UL : val
;
1115 if (sizeof(ulval
) != sizeof(val
) &&
1116 optlen
>= sizeof(ulval
) &&
1117 get_user(ulval
, (unsigned long __user
*)optval
)) {
1122 cmpxchg(&sk
->sk_pacing_status
,
1125 sk
->sk_max_pacing_rate
= ulval
;
1126 sk
->sk_pacing_rate
= min(sk
->sk_pacing_rate
, ulval
);
1129 case SO_INCOMING_CPU
:
1130 WRITE_ONCE(sk
->sk_incoming_cpu
, val
);
1135 dst_negative_advice(sk
);
1139 if (sk
->sk_family
== PF_INET
|| sk
->sk_family
== PF_INET6
) {
1140 if (!((sk
->sk_type
== SOCK_STREAM
&&
1141 sk
->sk_protocol
== IPPROTO_TCP
) ||
1142 (sk
->sk_type
== SOCK_DGRAM
&&
1143 sk
->sk_protocol
== IPPROTO_UDP
)))
1145 } else if (sk
->sk_family
!= PF_RDS
) {
1149 if (val
< 0 || val
> 1)
1152 sock_valbool_flag(sk
, SOCK_ZEROCOPY
, valbool
);
1157 if (!ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
)) {
1159 } else if (optlen
!= sizeof(struct sock_txtime
)) {
1161 } else if (copy_from_user(&sk_txtime
, optval
,
1162 sizeof(struct sock_txtime
))) {
1164 } else if (sk_txtime
.flags
& ~SOF_TXTIME_FLAGS_MASK
) {
1167 sock_valbool_flag(sk
, SOCK_TXTIME
, true);
1168 sk
->sk_clockid
= sk_txtime
.clockid
;
1169 sk
->sk_txtime_deadline_mode
=
1170 !!(sk_txtime
.flags
& SOF_TXTIME_DEADLINE_MODE
);
1171 sk
->sk_txtime_report_errors
=
1172 !!(sk_txtime
.flags
& SOF_TXTIME_REPORT_ERRORS
);
1176 case SO_BINDTOIFINDEX
:
1177 ret
= sock_setbindtodevice_locked(sk
, val
);
1187 EXPORT_SYMBOL(sock_setsockopt
);
1190 static void cred_to_ucred(struct pid
*pid
, const struct cred
*cred
,
1191 struct ucred
*ucred
)
1193 ucred
->pid
= pid_vnr(pid
);
1194 ucred
->uid
= ucred
->gid
= -1;
1196 struct user_namespace
*current_ns
= current_user_ns();
1198 ucred
->uid
= from_kuid_munged(current_ns
, cred
->euid
);
1199 ucred
->gid
= from_kgid_munged(current_ns
, cred
->egid
);
1203 static int groups_to_user(gid_t __user
*dst
, const struct group_info
*src
)
1205 struct user_namespace
*user_ns
= current_user_ns();
1208 for (i
= 0; i
< src
->ngroups
; i
++)
1209 if (put_user(from_kgid_munged(user_ns
, src
->gid
[i
]), dst
+ i
))
1215 int sock_getsockopt(struct socket
*sock
, int level
, int optname
,
1216 char __user
*optval
, int __user
*optlen
)
1218 struct sock
*sk
= sock
->sk
;
1223 unsigned long ulval
;
1225 struct old_timeval32 tm32
;
1226 struct __kernel_old_timeval tm
;
1227 struct __kernel_sock_timeval stm
;
1228 struct sock_txtime txtime
;
1231 int lv
= sizeof(int);
1234 if (get_user(len
, optlen
))
1239 memset(&v
, 0, sizeof(v
));
1243 v
.val
= sock_flag(sk
, SOCK_DBG
);
1247 v
.val
= sock_flag(sk
, SOCK_LOCALROUTE
);
1251 v
.val
= sock_flag(sk
, SOCK_BROADCAST
);
1255 v
.val
= sk
->sk_sndbuf
;
1259 v
.val
= sk
->sk_rcvbuf
;
1263 v
.val
= sk
->sk_reuse
;
1267 v
.val
= sk
->sk_reuseport
;
1271 v
.val
= sock_flag(sk
, SOCK_KEEPOPEN
);
1275 v
.val
= sk
->sk_type
;
1279 v
.val
= sk
->sk_protocol
;
1283 v
.val
= sk
->sk_family
;
1287 v
.val
= -sock_error(sk
);
1289 v
.val
= xchg(&sk
->sk_err_soft
, 0);
1293 v
.val
= sock_flag(sk
, SOCK_URGINLINE
);
1297 v
.val
= sk
->sk_no_check_tx
;
1301 v
.val
= sk
->sk_priority
;
1305 lv
= sizeof(v
.ling
);
1306 v
.ling
.l_onoff
= sock_flag(sk
, SOCK_LINGER
);
1307 v
.ling
.l_linger
= sk
->sk_lingertime
/ HZ
;
1311 sock_warn_obsolete_bsdism("getsockopt");
1314 case SO_TIMESTAMP_OLD
:
1315 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMP
) &&
1316 !sock_flag(sk
, SOCK_TSTAMP_NEW
) &&
1317 !sock_flag(sk
, SOCK_RCVTSTAMPNS
);
1320 case SO_TIMESTAMPNS_OLD
:
1321 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMPNS
) && !sock_flag(sk
, SOCK_TSTAMP_NEW
);
1324 case SO_TIMESTAMP_NEW
:
1325 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMP
) && sock_flag(sk
, SOCK_TSTAMP_NEW
);
1328 case SO_TIMESTAMPNS_NEW
:
1329 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMPNS
) && sock_flag(sk
, SOCK_TSTAMP_NEW
);
1332 case SO_TIMESTAMPING_OLD
:
1333 v
.val
= sk
->sk_tsflags
;
1336 case SO_RCVTIMEO_OLD
:
1337 case SO_RCVTIMEO_NEW
:
1338 lv
= sock_get_timeout(sk
->sk_rcvtimeo
, &v
, SO_RCVTIMEO_OLD
== optname
);
1341 case SO_SNDTIMEO_OLD
:
1342 case SO_SNDTIMEO_NEW
:
1343 lv
= sock_get_timeout(sk
->sk_sndtimeo
, &v
, SO_SNDTIMEO_OLD
== optname
);
1347 v
.val
= sk
->sk_rcvlowat
;
1355 v
.val
= !!test_bit(SOCK_PASSCRED
, &sock
->flags
);
1360 struct ucred peercred
;
1361 if (len
> sizeof(peercred
))
1362 len
= sizeof(peercred
);
1363 cred_to_ucred(sk
->sk_peer_pid
, sk
->sk_peer_cred
, &peercred
);
1364 if (copy_to_user(optval
, &peercred
, len
))
1373 if (!sk
->sk_peer_cred
)
1376 n
= sk
->sk_peer_cred
->group_info
->ngroups
;
1377 if (len
< n
* sizeof(gid_t
)) {
1378 len
= n
* sizeof(gid_t
);
1379 return put_user(len
, optlen
) ? -EFAULT
: -ERANGE
;
1381 len
= n
* sizeof(gid_t
);
1383 ret
= groups_to_user((gid_t __user
*)optval
,
1384 sk
->sk_peer_cred
->group_info
);
1394 lv
= sock
->ops
->getname(sock
, (struct sockaddr
*)address
, 2);
1399 if (copy_to_user(optval
, address
, len
))
1404 /* Dubious BSD thing... Probably nobody even uses it, but
1405 * the UNIX standard wants it for whatever reason... -DaveM
1408 v
.val
= sk
->sk_state
== TCP_LISTEN
;
1412 v
.val
= !!test_bit(SOCK_PASSSEC
, &sock
->flags
);
1416 return security_socket_getpeersec_stream(sock
, optval
, optlen
, len
);
1419 v
.val
= sk
->sk_mark
;
1423 v
.val
= sock_flag(sk
, SOCK_RXQ_OVFL
);
1426 case SO_WIFI_STATUS
:
1427 v
.val
= sock_flag(sk
, SOCK_WIFI_STATUS
);
1431 if (!sock
->ops
->set_peek_off
)
1434 v
.val
= sk
->sk_peek_off
;
1437 v
.val
= sock_flag(sk
, SOCK_NOFCS
);
1440 case SO_BINDTODEVICE
:
1441 return sock_getbindtodevice(sk
, optval
, optlen
, len
);
1444 len
= sk_get_filter(sk
, (struct sock_filter __user
*)optval
, len
);
1450 case SO_LOCK_FILTER
:
1451 v
.val
= sock_flag(sk
, SOCK_FILTER_LOCKED
);
1454 case SO_BPF_EXTENSIONS
:
1455 v
.val
= bpf_tell_extensions();
1458 case SO_SELECT_ERR_QUEUE
:
1459 v
.val
= sock_flag(sk
, SOCK_SELECT_ERR_QUEUE
);
1462 #ifdef CONFIG_NET_RX_BUSY_POLL
1464 v
.val
= sk
->sk_ll_usec
;
1468 case SO_MAX_PACING_RATE
:
1469 if (sizeof(v
.ulval
) != sizeof(v
.val
) && len
>= sizeof(v
.ulval
)) {
1470 lv
= sizeof(v
.ulval
);
1471 v
.ulval
= sk
->sk_max_pacing_rate
;
1474 v
.val
= min_t(unsigned long, sk
->sk_max_pacing_rate
, ~0U);
1478 case SO_INCOMING_CPU
:
1479 v
.val
= READ_ONCE(sk
->sk_incoming_cpu
);
1484 u32 meminfo
[SK_MEMINFO_VARS
];
1486 sk_get_meminfo(sk
, meminfo
);
1488 len
= min_t(unsigned int, len
, sizeof(meminfo
));
1489 if (copy_to_user(optval
, &meminfo
, len
))
1495 #ifdef CONFIG_NET_RX_BUSY_POLL
1496 case SO_INCOMING_NAPI_ID
:
1497 v
.val
= READ_ONCE(sk
->sk_napi_id
);
1499 /* aggregate non-NAPI IDs down to 0 */
1500 if (v
.val
< MIN_NAPI_ID
)
1510 v
.val64
= sock_gen_cookie(sk
);
1514 v
.val
= sock_flag(sk
, SOCK_ZEROCOPY
);
1518 lv
= sizeof(v
.txtime
);
1519 v
.txtime
.clockid
= sk
->sk_clockid
;
1520 v
.txtime
.flags
|= sk
->sk_txtime_deadline_mode
?
1521 SOF_TXTIME_DEADLINE_MODE
: 0;
1522 v
.txtime
.flags
|= sk
->sk_txtime_report_errors
?
1523 SOF_TXTIME_REPORT_ERRORS
: 0;
1526 case SO_BINDTOIFINDEX
:
1527 v
.val
= sk
->sk_bound_dev_if
;
1531 /* We implement the SO_SNDLOWAT etc to not be settable
1534 return -ENOPROTOOPT
;
1539 if (copy_to_user(optval
, &v
, len
))
1542 if (put_user(len
, optlen
))
1548 * Initialize an sk_lock.
1550 * (We also register the sk_lock with the lock validator.)
1552 static inline void sock_lock_init(struct sock
*sk
)
1554 if (sk
->sk_kern_sock
)
1555 sock_lock_init_class_and_name(
1557 af_family_kern_slock_key_strings
[sk
->sk_family
],
1558 af_family_kern_slock_keys
+ sk
->sk_family
,
1559 af_family_kern_key_strings
[sk
->sk_family
],
1560 af_family_kern_keys
+ sk
->sk_family
);
1562 sock_lock_init_class_and_name(
1564 af_family_slock_key_strings
[sk
->sk_family
],
1565 af_family_slock_keys
+ sk
->sk_family
,
1566 af_family_key_strings
[sk
->sk_family
],
1567 af_family_keys
+ sk
->sk_family
);
1571 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1572 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1573 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1575 static void sock_copy(struct sock
*nsk
, const struct sock
*osk
)
1577 #ifdef CONFIG_SECURITY_NETWORK
1578 void *sptr
= nsk
->sk_security
;
1580 memcpy(nsk
, osk
, offsetof(struct sock
, sk_dontcopy_begin
));
1582 memcpy(&nsk
->sk_dontcopy_end
, &osk
->sk_dontcopy_end
,
1583 osk
->sk_prot
->obj_size
- offsetof(struct sock
, sk_dontcopy_end
));
1585 #ifdef CONFIG_SECURITY_NETWORK
1586 nsk
->sk_security
= sptr
;
1587 security_sk_clone(osk
, nsk
);
1591 static struct sock
*sk_prot_alloc(struct proto
*prot
, gfp_t priority
,
1595 struct kmem_cache
*slab
;
1599 sk
= kmem_cache_alloc(slab
, priority
& ~__GFP_ZERO
);
1602 if (want_init_on_alloc(priority
))
1603 sk_prot_clear_nulls(sk
, prot
->obj_size
);
1605 sk
= kmalloc(prot
->obj_size
, priority
);
1608 if (security_sk_alloc(sk
, family
, priority
))
1611 if (!try_module_get(prot
->owner
))
1613 sk_tx_queue_clear(sk
);
1619 security_sk_free(sk
);
1622 kmem_cache_free(slab
, sk
);
1628 static void sk_prot_free(struct proto
*prot
, struct sock
*sk
)
1630 struct kmem_cache
*slab
;
1631 struct module
*owner
;
1633 owner
= prot
->owner
;
1636 cgroup_sk_free(&sk
->sk_cgrp_data
);
1637 mem_cgroup_sk_free(sk
);
1638 security_sk_free(sk
);
1640 kmem_cache_free(slab
, sk
);
1647 * sk_alloc - All socket objects are allocated here
1648 * @net: the applicable net namespace
1649 * @family: protocol family
1650 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1651 * @prot: struct proto associated with this new sock instance
1652 * @kern: is this to be a kernel socket?
1654 struct sock
*sk_alloc(struct net
*net
, int family
, gfp_t priority
,
1655 struct proto
*prot
, int kern
)
1659 sk
= sk_prot_alloc(prot
, priority
| __GFP_ZERO
, family
);
1661 sk
->sk_family
= family
;
1663 * See comment in struct sock definition to understand
1664 * why we need sk_prot_creator -acme
1666 sk
->sk_prot
= sk
->sk_prot_creator
= prot
;
1667 sk
->sk_kern_sock
= kern
;
1669 sk
->sk_net_refcnt
= kern
? 0 : 1;
1670 if (likely(sk
->sk_net_refcnt
)) {
1672 sock_inuse_add(net
, 1);
1675 sock_net_set(sk
, net
);
1676 refcount_set(&sk
->sk_wmem_alloc
, 1);
1678 mem_cgroup_sk_alloc(sk
);
1679 cgroup_sk_alloc(&sk
->sk_cgrp_data
);
1680 sock_update_classid(&sk
->sk_cgrp_data
);
1681 sock_update_netprioidx(&sk
->sk_cgrp_data
);
1682 sk_tx_queue_clear(sk
);
1687 EXPORT_SYMBOL(sk_alloc
);
1689 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1690 * grace period. This is the case for UDP sockets and TCP listeners.
1692 static void __sk_destruct(struct rcu_head
*head
)
1694 struct sock
*sk
= container_of(head
, struct sock
, sk_rcu
);
1695 struct sk_filter
*filter
;
1697 if (sk
->sk_destruct
)
1698 sk
->sk_destruct(sk
);
1700 filter
= rcu_dereference_check(sk
->sk_filter
,
1701 refcount_read(&sk
->sk_wmem_alloc
) == 0);
1703 sk_filter_uncharge(sk
, filter
);
1704 RCU_INIT_POINTER(sk
->sk_filter
, NULL
);
1707 sock_disable_timestamp(sk
, SK_FLAGS_TIMESTAMP
);
1709 #ifdef CONFIG_BPF_SYSCALL
1710 bpf_sk_storage_free(sk
);
1713 if (atomic_read(&sk
->sk_omem_alloc
))
1714 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1715 __func__
, atomic_read(&sk
->sk_omem_alloc
));
1717 if (sk
->sk_frag
.page
) {
1718 put_page(sk
->sk_frag
.page
);
1719 sk
->sk_frag
.page
= NULL
;
1722 if (sk
->sk_peer_cred
)
1723 put_cred(sk
->sk_peer_cred
);
1724 put_pid(sk
->sk_peer_pid
);
1725 if (likely(sk
->sk_net_refcnt
))
1726 put_net(sock_net(sk
));
1727 sk_prot_free(sk
->sk_prot_creator
, sk
);
1730 void sk_destruct(struct sock
*sk
)
1732 bool use_call_rcu
= sock_flag(sk
, SOCK_RCU_FREE
);
1734 if (rcu_access_pointer(sk
->sk_reuseport_cb
)) {
1735 reuseport_detach_sock(sk
);
1736 use_call_rcu
= true;
1740 call_rcu(&sk
->sk_rcu
, __sk_destruct
);
1742 __sk_destruct(&sk
->sk_rcu
);
1745 static void __sk_free(struct sock
*sk
)
1747 if (likely(sk
->sk_net_refcnt
))
1748 sock_inuse_add(sock_net(sk
), -1);
1750 if (unlikely(sk
->sk_net_refcnt
&& sock_diag_has_destroy_listeners(sk
)))
1751 sock_diag_broadcast_destroy(sk
);
1756 void sk_free(struct sock
*sk
)
1759 * We subtract one from sk_wmem_alloc and can know if
1760 * some packets are still in some tx queue.
1761 * If not null, sock_wfree() will call __sk_free(sk) later
1763 if (refcount_dec_and_test(&sk
->sk_wmem_alloc
))
1766 EXPORT_SYMBOL(sk_free
);
1768 static void sk_init_common(struct sock
*sk
)
1770 skb_queue_head_init(&sk
->sk_receive_queue
);
1771 skb_queue_head_init(&sk
->sk_write_queue
);
1772 skb_queue_head_init(&sk
->sk_error_queue
);
1774 rwlock_init(&sk
->sk_callback_lock
);
1775 lockdep_set_class_and_name(&sk
->sk_receive_queue
.lock
,
1776 af_rlock_keys
+ sk
->sk_family
,
1777 af_family_rlock_key_strings
[sk
->sk_family
]);
1778 lockdep_set_class_and_name(&sk
->sk_write_queue
.lock
,
1779 af_wlock_keys
+ sk
->sk_family
,
1780 af_family_wlock_key_strings
[sk
->sk_family
]);
1781 lockdep_set_class_and_name(&sk
->sk_error_queue
.lock
,
1782 af_elock_keys
+ sk
->sk_family
,
1783 af_family_elock_key_strings
[sk
->sk_family
]);
1784 lockdep_set_class_and_name(&sk
->sk_callback_lock
,
1785 af_callback_keys
+ sk
->sk_family
,
1786 af_family_clock_key_strings
[sk
->sk_family
]);
1790 * sk_clone_lock - clone a socket, and lock its clone
1791 * @sk: the socket to clone
1792 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1794 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1796 struct sock
*sk_clone_lock(const struct sock
*sk
, const gfp_t priority
)
1799 bool is_charged
= true;
1801 newsk
= sk_prot_alloc(sk
->sk_prot
, priority
, sk
->sk_family
);
1802 if (newsk
!= NULL
) {
1803 struct sk_filter
*filter
;
1805 sock_copy(newsk
, sk
);
1807 newsk
->sk_prot_creator
= sk
->sk_prot
;
1810 if (likely(newsk
->sk_net_refcnt
))
1811 get_net(sock_net(newsk
));
1812 sk_node_init(&newsk
->sk_node
);
1813 sock_lock_init(newsk
);
1814 bh_lock_sock(newsk
);
1815 newsk
->sk_backlog
.head
= newsk
->sk_backlog
.tail
= NULL
;
1816 newsk
->sk_backlog
.len
= 0;
1818 atomic_set(&newsk
->sk_rmem_alloc
, 0);
1820 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1822 refcount_set(&newsk
->sk_wmem_alloc
, 1);
1823 atomic_set(&newsk
->sk_omem_alloc
, 0);
1824 sk_init_common(newsk
);
1826 newsk
->sk_dst_cache
= NULL
;
1827 newsk
->sk_dst_pending_confirm
= 0;
1828 newsk
->sk_wmem_queued
= 0;
1829 newsk
->sk_forward_alloc
= 0;
1830 atomic_set(&newsk
->sk_drops
, 0);
1831 newsk
->sk_send_head
= NULL
;
1832 newsk
->sk_userlocks
= sk
->sk_userlocks
& ~SOCK_BINDPORT_LOCK
;
1833 atomic_set(&newsk
->sk_zckey
, 0);
1835 sock_reset_flag(newsk
, SOCK_DONE
);
1837 /* sk->sk_memcg will be populated at accept() time */
1838 newsk
->sk_memcg
= NULL
;
1840 cgroup_sk_clone(&newsk
->sk_cgrp_data
);
1843 filter
= rcu_dereference(sk
->sk_filter
);
1845 /* though it's an empty new sock, the charging may fail
1846 * if sysctl_optmem_max was changed between creation of
1847 * original socket and cloning
1849 is_charged
= sk_filter_charge(newsk
, filter
);
1850 RCU_INIT_POINTER(newsk
->sk_filter
, filter
);
1853 if (unlikely(!is_charged
|| xfrm_sk_clone_policy(newsk
, sk
))) {
1854 /* We need to make sure that we don't uncharge the new
1855 * socket if we couldn't charge it in the first place
1856 * as otherwise we uncharge the parent's filter.
1859 RCU_INIT_POINTER(newsk
->sk_filter
, NULL
);
1860 sk_free_unlock_clone(newsk
);
1864 RCU_INIT_POINTER(newsk
->sk_reuseport_cb
, NULL
);
1866 if (bpf_sk_storage_clone(sk
, newsk
)) {
1867 sk_free_unlock_clone(newsk
);
1873 newsk
->sk_err_soft
= 0;
1874 newsk
->sk_priority
= 0;
1875 newsk
->sk_incoming_cpu
= raw_smp_processor_id();
1876 if (likely(newsk
->sk_net_refcnt
))
1877 sock_inuse_add(sock_net(newsk
), 1);
1880 * Before updating sk_refcnt, we must commit prior changes to memory
1881 * (Documentation/RCU/rculist_nulls.txt for details)
1884 refcount_set(&newsk
->sk_refcnt
, 2);
1887 * Increment the counter in the same struct proto as the master
1888 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1889 * is the same as sk->sk_prot->socks, as this field was copied
1892 * This _changes_ the previous behaviour, where
1893 * tcp_create_openreq_child always was incrementing the
1894 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1895 * to be taken into account in all callers. -acme
1897 sk_refcnt_debug_inc(newsk
);
1898 sk_set_socket(newsk
, NULL
);
1899 sk_tx_queue_clear(newsk
);
1900 RCU_INIT_POINTER(newsk
->sk_wq
, NULL
);
1902 if (newsk
->sk_prot
->sockets_allocated
)
1903 sk_sockets_allocated_inc(newsk
);
1905 if (sock_needs_netstamp(sk
) &&
1906 newsk
->sk_flags
& SK_FLAGS_TIMESTAMP
)
1907 net_enable_timestamp();
1912 EXPORT_SYMBOL_GPL(sk_clone_lock
);
1914 void sk_free_unlock_clone(struct sock
*sk
)
1916 /* It is still raw copy of parent, so invalidate
1917 * destructor and make plain sk_free() */
1918 sk
->sk_destruct
= NULL
;
1922 EXPORT_SYMBOL_GPL(sk_free_unlock_clone
);
1924 void sk_setup_caps(struct sock
*sk
, struct dst_entry
*dst
)
1928 sk_dst_set(sk
, dst
);
1929 sk
->sk_route_caps
= dst
->dev
->features
| sk
->sk_route_forced_caps
;
1930 if (sk
->sk_route_caps
& NETIF_F_GSO
)
1931 sk
->sk_route_caps
|= NETIF_F_GSO_SOFTWARE
;
1932 sk
->sk_route_caps
&= ~sk
->sk_route_nocaps
;
1933 if (sk_can_gso(sk
)) {
1934 if (dst
->header_len
&& !xfrm_dst_offload_ok(dst
)) {
1935 sk
->sk_route_caps
&= ~NETIF_F_GSO_MASK
;
1937 sk
->sk_route_caps
|= NETIF_F_SG
| NETIF_F_HW_CSUM
;
1938 sk
->sk_gso_max_size
= dst
->dev
->gso_max_size
;
1939 max_segs
= max_t(u32
, dst
->dev
->gso_max_segs
, 1);
1942 sk
->sk_gso_max_segs
= max_segs
;
1944 EXPORT_SYMBOL_GPL(sk_setup_caps
);
1947 * Simple resource managers for sockets.
1952 * Write buffer destructor automatically called from kfree_skb.
1954 void sock_wfree(struct sk_buff
*skb
)
1956 struct sock
*sk
= skb
->sk
;
1957 unsigned int len
= skb
->truesize
;
1959 if (!sock_flag(sk
, SOCK_USE_WRITE_QUEUE
)) {
1961 * Keep a reference on sk_wmem_alloc, this will be released
1962 * after sk_write_space() call
1964 WARN_ON(refcount_sub_and_test(len
- 1, &sk
->sk_wmem_alloc
));
1965 sk
->sk_write_space(sk
);
1969 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1970 * could not do because of in-flight packets
1972 if (refcount_sub_and_test(len
, &sk
->sk_wmem_alloc
))
1975 EXPORT_SYMBOL(sock_wfree
);
1977 /* This variant of sock_wfree() is used by TCP,
1978 * since it sets SOCK_USE_WRITE_QUEUE.
1980 void __sock_wfree(struct sk_buff
*skb
)
1982 struct sock
*sk
= skb
->sk
;
1984 if (refcount_sub_and_test(skb
->truesize
, &sk
->sk_wmem_alloc
))
1988 void skb_set_owner_w(struct sk_buff
*skb
, struct sock
*sk
)
1993 if (unlikely(!sk_fullsock(sk
))) {
1994 skb
->destructor
= sock_edemux
;
1999 skb
->destructor
= sock_wfree
;
2000 skb_set_hash_from_sk(skb
, sk
);
2002 * We used to take a refcount on sk, but following operation
2003 * is enough to guarantee sk_free() wont free this sock until
2004 * all in-flight packets are completed
2006 refcount_add(skb
->truesize
, &sk
->sk_wmem_alloc
);
2008 EXPORT_SYMBOL(skb_set_owner_w
);
2010 static bool can_skb_orphan_partial(const struct sk_buff
*skb
)
2012 #ifdef CONFIG_TLS_DEVICE
2013 /* Drivers depend on in-order delivery for crypto offload,
2014 * partial orphan breaks out-of-order-OK logic.
2019 return (skb
->destructor
== sock_wfree
||
2020 (IS_ENABLED(CONFIG_INET
) && skb
->destructor
== tcp_wfree
));
2023 /* This helper is used by netem, as it can hold packets in its
2024 * delay queue. We want to allow the owner socket to send more
2025 * packets, as if they were already TX completed by a typical driver.
2026 * But we also want to keep skb->sk set because some packet schedulers
2027 * rely on it (sch_fq for example).
2029 void skb_orphan_partial(struct sk_buff
*skb
)
2031 if (skb_is_tcp_pure_ack(skb
))
2034 if (can_skb_orphan_partial(skb
)) {
2035 struct sock
*sk
= skb
->sk
;
2037 if (refcount_inc_not_zero(&sk
->sk_refcnt
)) {
2038 WARN_ON(refcount_sub_and_test(skb
->truesize
, &sk
->sk_wmem_alloc
));
2039 skb
->destructor
= sock_efree
;
2045 EXPORT_SYMBOL(skb_orphan_partial
);
2048 * Read buffer destructor automatically called from kfree_skb.
2050 void sock_rfree(struct sk_buff
*skb
)
2052 struct sock
*sk
= skb
->sk
;
2053 unsigned int len
= skb
->truesize
;
2055 atomic_sub(len
, &sk
->sk_rmem_alloc
);
2056 sk_mem_uncharge(sk
, len
);
2058 EXPORT_SYMBOL(sock_rfree
);
2061 * Buffer destructor for skbs that are not used directly in read or write
2062 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2064 void sock_efree(struct sk_buff
*skb
)
2068 EXPORT_SYMBOL(sock_efree
);
2070 kuid_t
sock_i_uid(struct sock
*sk
)
2074 read_lock_bh(&sk
->sk_callback_lock
);
2075 uid
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_uid
: GLOBAL_ROOT_UID
;
2076 read_unlock_bh(&sk
->sk_callback_lock
);
2079 EXPORT_SYMBOL(sock_i_uid
);
2081 unsigned long sock_i_ino(struct sock
*sk
)
2085 read_lock_bh(&sk
->sk_callback_lock
);
2086 ino
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_ino
: 0;
2087 read_unlock_bh(&sk
->sk_callback_lock
);
2090 EXPORT_SYMBOL(sock_i_ino
);
2093 * Allocate a skb from the socket's send buffer.
2095 struct sk_buff
*sock_wmalloc(struct sock
*sk
, unsigned long size
, int force
,
2099 refcount_read(&sk
->sk_wmem_alloc
) < READ_ONCE(sk
->sk_sndbuf
)) {
2100 struct sk_buff
*skb
= alloc_skb(size
, priority
);
2103 skb_set_owner_w(skb
, sk
);
2109 EXPORT_SYMBOL(sock_wmalloc
);
2111 static void sock_ofree(struct sk_buff
*skb
)
2113 struct sock
*sk
= skb
->sk
;
2115 atomic_sub(skb
->truesize
, &sk
->sk_omem_alloc
);
2118 struct sk_buff
*sock_omalloc(struct sock
*sk
, unsigned long size
,
2121 struct sk_buff
*skb
;
2123 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2124 if (atomic_read(&sk
->sk_omem_alloc
) + SKB_TRUESIZE(size
) >
2128 skb
= alloc_skb(size
, priority
);
2132 atomic_add(skb
->truesize
, &sk
->sk_omem_alloc
);
2134 skb
->destructor
= sock_ofree
;
2139 * Allocate a memory block from the socket's option memory buffer.
2141 void *sock_kmalloc(struct sock
*sk
, int size
, gfp_t priority
)
2143 if ((unsigned int)size
<= sysctl_optmem_max
&&
2144 atomic_read(&sk
->sk_omem_alloc
) + size
< sysctl_optmem_max
) {
2146 /* First do the add, to avoid the race if kmalloc
2149 atomic_add(size
, &sk
->sk_omem_alloc
);
2150 mem
= kmalloc(size
, priority
);
2153 atomic_sub(size
, &sk
->sk_omem_alloc
);
2157 EXPORT_SYMBOL(sock_kmalloc
);
2159 /* Free an option memory block. Note, we actually want the inline
2160 * here as this allows gcc to detect the nullify and fold away the
2161 * condition entirely.
2163 static inline void __sock_kfree_s(struct sock
*sk
, void *mem
, int size
,
2166 if (WARN_ON_ONCE(!mem
))
2172 atomic_sub(size
, &sk
->sk_omem_alloc
);
2175 void sock_kfree_s(struct sock
*sk
, void *mem
, int size
)
2177 __sock_kfree_s(sk
, mem
, size
, false);
2179 EXPORT_SYMBOL(sock_kfree_s
);
2181 void sock_kzfree_s(struct sock
*sk
, void *mem
, int size
)
2183 __sock_kfree_s(sk
, mem
, size
, true);
2185 EXPORT_SYMBOL(sock_kzfree_s
);
2187 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2188 I think, these locks should be removed for datagram sockets.
2190 static long sock_wait_for_wmem(struct sock
*sk
, long timeo
)
2194 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
2198 if (signal_pending(current
))
2200 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
2201 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
2202 if (refcount_read(&sk
->sk_wmem_alloc
) < READ_ONCE(sk
->sk_sndbuf
))
2204 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
2208 timeo
= schedule_timeout(timeo
);
2210 finish_wait(sk_sleep(sk
), &wait
);
2216 * Generic send/receive buffer handlers
2219 struct sk_buff
*sock_alloc_send_pskb(struct sock
*sk
, unsigned long header_len
,
2220 unsigned long data_len
, int noblock
,
2221 int *errcode
, int max_page_order
)
2223 struct sk_buff
*skb
;
2227 timeo
= sock_sndtimeo(sk
, noblock
);
2229 err
= sock_error(sk
);
2234 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
2237 if (sk_wmem_alloc_get(sk
) < READ_ONCE(sk
->sk_sndbuf
))
2240 sk_set_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
2241 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
2245 if (signal_pending(current
))
2247 timeo
= sock_wait_for_wmem(sk
, timeo
);
2249 skb
= alloc_skb_with_frags(header_len
, data_len
, max_page_order
,
2250 errcode
, sk
->sk_allocation
);
2252 skb_set_owner_w(skb
, sk
);
2256 err
= sock_intr_errno(timeo
);
2261 EXPORT_SYMBOL(sock_alloc_send_pskb
);
2263 struct sk_buff
*sock_alloc_send_skb(struct sock
*sk
, unsigned long size
,
2264 int noblock
, int *errcode
)
2266 return sock_alloc_send_pskb(sk
, size
, 0, noblock
, errcode
, 0);
2268 EXPORT_SYMBOL(sock_alloc_send_skb
);
2270 int __sock_cmsg_send(struct sock
*sk
, struct msghdr
*msg
, struct cmsghdr
*cmsg
,
2271 struct sockcm_cookie
*sockc
)
2275 switch (cmsg
->cmsg_type
) {
2277 if (!ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
2279 if (cmsg
->cmsg_len
!= CMSG_LEN(sizeof(u32
)))
2281 sockc
->mark
= *(u32
*)CMSG_DATA(cmsg
);
2283 case SO_TIMESTAMPING_OLD
:
2284 if (cmsg
->cmsg_len
!= CMSG_LEN(sizeof(u32
)))
2287 tsflags
= *(u32
*)CMSG_DATA(cmsg
);
2288 if (tsflags
& ~SOF_TIMESTAMPING_TX_RECORD_MASK
)
2291 sockc
->tsflags
&= ~SOF_TIMESTAMPING_TX_RECORD_MASK
;
2292 sockc
->tsflags
|= tsflags
;
2295 if (!sock_flag(sk
, SOCK_TXTIME
))
2297 if (cmsg
->cmsg_len
!= CMSG_LEN(sizeof(u64
)))
2299 sockc
->transmit_time
= get_unaligned((u64
*)CMSG_DATA(cmsg
));
2301 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2303 case SCM_CREDENTIALS
:
2310 EXPORT_SYMBOL(__sock_cmsg_send
);
2312 int sock_cmsg_send(struct sock
*sk
, struct msghdr
*msg
,
2313 struct sockcm_cookie
*sockc
)
2315 struct cmsghdr
*cmsg
;
2318 for_each_cmsghdr(cmsg
, msg
) {
2319 if (!CMSG_OK(msg
, cmsg
))
2321 if (cmsg
->cmsg_level
!= SOL_SOCKET
)
2323 ret
= __sock_cmsg_send(sk
, msg
, cmsg
, sockc
);
2329 EXPORT_SYMBOL(sock_cmsg_send
);
2331 static void sk_enter_memory_pressure(struct sock
*sk
)
2333 if (!sk
->sk_prot
->enter_memory_pressure
)
2336 sk
->sk_prot
->enter_memory_pressure(sk
);
2339 static void sk_leave_memory_pressure(struct sock
*sk
)
2341 if (sk
->sk_prot
->leave_memory_pressure
) {
2342 sk
->sk_prot
->leave_memory_pressure(sk
);
2344 unsigned long *memory_pressure
= sk
->sk_prot
->memory_pressure
;
2346 if (memory_pressure
&& READ_ONCE(*memory_pressure
))
2347 WRITE_ONCE(*memory_pressure
, 0);
2351 /* On 32bit arches, an skb frag is limited to 2^15 */
2352 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2353 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key
);
2356 * skb_page_frag_refill - check that a page_frag contains enough room
2357 * @sz: minimum size of the fragment we want to get
2358 * @pfrag: pointer to page_frag
2359 * @gfp: priority for memory allocation
2361 * Note: While this allocator tries to use high order pages, there is
2362 * no guarantee that allocations succeed. Therefore, @sz MUST be
2363 * less or equal than PAGE_SIZE.
2365 bool skb_page_frag_refill(unsigned int sz
, struct page_frag
*pfrag
, gfp_t gfp
)
2368 if (page_ref_count(pfrag
->page
) == 1) {
2372 if (pfrag
->offset
+ sz
<= pfrag
->size
)
2374 put_page(pfrag
->page
);
2378 if (SKB_FRAG_PAGE_ORDER
&&
2379 !static_branch_unlikely(&net_high_order_alloc_disable_key
)) {
2380 /* Avoid direct reclaim but allow kswapd to wake */
2381 pfrag
->page
= alloc_pages((gfp
& ~__GFP_DIRECT_RECLAIM
) |
2382 __GFP_COMP
| __GFP_NOWARN
|
2384 SKB_FRAG_PAGE_ORDER
);
2385 if (likely(pfrag
->page
)) {
2386 pfrag
->size
= PAGE_SIZE
<< SKB_FRAG_PAGE_ORDER
;
2390 pfrag
->page
= alloc_page(gfp
);
2391 if (likely(pfrag
->page
)) {
2392 pfrag
->size
= PAGE_SIZE
;
2397 EXPORT_SYMBOL(skb_page_frag_refill
);
2399 bool sk_page_frag_refill(struct sock
*sk
, struct page_frag
*pfrag
)
2401 if (likely(skb_page_frag_refill(32U, pfrag
, sk
->sk_allocation
)))
2404 sk_enter_memory_pressure(sk
);
2405 sk_stream_moderate_sndbuf(sk
);
2408 EXPORT_SYMBOL(sk_page_frag_refill
);
2410 static void __lock_sock(struct sock
*sk
)
2411 __releases(&sk
->sk_lock
.slock
)
2412 __acquires(&sk
->sk_lock
.slock
)
2417 prepare_to_wait_exclusive(&sk
->sk_lock
.wq
, &wait
,
2418 TASK_UNINTERRUPTIBLE
);
2419 spin_unlock_bh(&sk
->sk_lock
.slock
);
2421 spin_lock_bh(&sk
->sk_lock
.slock
);
2422 if (!sock_owned_by_user(sk
))
2425 finish_wait(&sk
->sk_lock
.wq
, &wait
);
2428 void __release_sock(struct sock
*sk
)
2429 __releases(&sk
->sk_lock
.slock
)
2430 __acquires(&sk
->sk_lock
.slock
)
2432 struct sk_buff
*skb
, *next
;
2434 while ((skb
= sk
->sk_backlog
.head
) != NULL
) {
2435 sk
->sk_backlog
.head
= sk
->sk_backlog
.tail
= NULL
;
2437 spin_unlock_bh(&sk
->sk_lock
.slock
);
2442 WARN_ON_ONCE(skb_dst_is_noref(skb
));
2443 skb_mark_not_on_list(skb
);
2444 sk_backlog_rcv(sk
, skb
);
2449 } while (skb
!= NULL
);
2451 spin_lock_bh(&sk
->sk_lock
.slock
);
2455 * Doing the zeroing here guarantee we can not loop forever
2456 * while a wild producer attempts to flood us.
2458 sk
->sk_backlog
.len
= 0;
2461 void __sk_flush_backlog(struct sock
*sk
)
2463 spin_lock_bh(&sk
->sk_lock
.slock
);
2465 spin_unlock_bh(&sk
->sk_lock
.slock
);
2469 * sk_wait_data - wait for data to arrive at sk_receive_queue
2470 * @sk: sock to wait on
2471 * @timeo: for how long
2472 * @skb: last skb seen on sk_receive_queue
2474 * Now socket state including sk->sk_err is changed only under lock,
2475 * hence we may omit checks after joining wait queue.
2476 * We check receive queue before schedule() only as optimization;
2477 * it is very likely that release_sock() added new data.
2479 int sk_wait_data(struct sock
*sk
, long *timeo
, const struct sk_buff
*skb
)
2481 DEFINE_WAIT_FUNC(wait
, woken_wake_function
);
2484 add_wait_queue(sk_sleep(sk
), &wait
);
2485 sk_set_bit(SOCKWQ_ASYNC_WAITDATA
, sk
);
2486 rc
= sk_wait_event(sk
, timeo
, skb_peek_tail(&sk
->sk_receive_queue
) != skb
, &wait
);
2487 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA
, sk
);
2488 remove_wait_queue(sk_sleep(sk
), &wait
);
2491 EXPORT_SYMBOL(sk_wait_data
);
2494 * __sk_mem_raise_allocated - increase memory_allocated
2496 * @size: memory size to allocate
2497 * @amt: pages to allocate
2498 * @kind: allocation type
2500 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2502 int __sk_mem_raise_allocated(struct sock
*sk
, int size
, int amt
, int kind
)
2504 struct proto
*prot
= sk
->sk_prot
;
2505 long allocated
= sk_memory_allocated_add(sk
, amt
);
2506 bool charged
= true;
2508 if (mem_cgroup_sockets_enabled
&& sk
->sk_memcg
&&
2509 !(charged
= mem_cgroup_charge_skmem(sk
->sk_memcg
, amt
)))
2510 goto suppress_allocation
;
2513 if (allocated
<= sk_prot_mem_limits(sk
, 0)) {
2514 sk_leave_memory_pressure(sk
);
2518 /* Under pressure. */
2519 if (allocated
> sk_prot_mem_limits(sk
, 1))
2520 sk_enter_memory_pressure(sk
);
2522 /* Over hard limit. */
2523 if (allocated
> sk_prot_mem_limits(sk
, 2))
2524 goto suppress_allocation
;
2526 /* guarantee minimum buffer size under pressure */
2527 if (kind
== SK_MEM_RECV
) {
2528 if (atomic_read(&sk
->sk_rmem_alloc
) < sk_get_rmem0(sk
, prot
))
2531 } else { /* SK_MEM_SEND */
2532 int wmem0
= sk_get_wmem0(sk
, prot
);
2534 if (sk
->sk_type
== SOCK_STREAM
) {
2535 if (sk
->sk_wmem_queued
< wmem0
)
2537 } else if (refcount_read(&sk
->sk_wmem_alloc
) < wmem0
) {
2542 if (sk_has_memory_pressure(sk
)) {
2545 if (!sk_under_memory_pressure(sk
))
2547 alloc
= sk_sockets_allocated_read_positive(sk
);
2548 if (sk_prot_mem_limits(sk
, 2) > alloc
*
2549 sk_mem_pages(sk
->sk_wmem_queued
+
2550 atomic_read(&sk
->sk_rmem_alloc
) +
2551 sk
->sk_forward_alloc
))
2555 suppress_allocation
:
2557 if (kind
== SK_MEM_SEND
&& sk
->sk_type
== SOCK_STREAM
) {
2558 sk_stream_moderate_sndbuf(sk
);
2560 /* Fail only if socket is _under_ its sndbuf.
2561 * In this case we cannot block, so that we have to fail.
2563 if (sk
->sk_wmem_queued
+ size
>= sk
->sk_sndbuf
)
2567 if (kind
== SK_MEM_SEND
|| (kind
== SK_MEM_RECV
&& charged
))
2568 trace_sock_exceed_buf_limit(sk
, prot
, allocated
, kind
);
2570 sk_memory_allocated_sub(sk
, amt
);
2572 if (mem_cgroup_sockets_enabled
&& sk
->sk_memcg
)
2573 mem_cgroup_uncharge_skmem(sk
->sk_memcg
, amt
);
2577 EXPORT_SYMBOL(__sk_mem_raise_allocated
);
2580 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2582 * @size: memory size to allocate
2583 * @kind: allocation type
2585 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2586 * rmem allocation. This function assumes that protocols which have
2587 * memory_pressure use sk_wmem_queued as write buffer accounting.
2589 int __sk_mem_schedule(struct sock
*sk
, int size
, int kind
)
2591 int ret
, amt
= sk_mem_pages(size
);
2593 sk
->sk_forward_alloc
+= amt
<< SK_MEM_QUANTUM_SHIFT
;
2594 ret
= __sk_mem_raise_allocated(sk
, size
, amt
, kind
);
2596 sk
->sk_forward_alloc
-= amt
<< SK_MEM_QUANTUM_SHIFT
;
2599 EXPORT_SYMBOL(__sk_mem_schedule
);
2602 * __sk_mem_reduce_allocated - reclaim memory_allocated
2604 * @amount: number of quanta
2606 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2608 void __sk_mem_reduce_allocated(struct sock
*sk
, int amount
)
2610 sk_memory_allocated_sub(sk
, amount
);
2612 if (mem_cgroup_sockets_enabled
&& sk
->sk_memcg
)
2613 mem_cgroup_uncharge_skmem(sk
->sk_memcg
, amount
);
2615 if (sk_under_memory_pressure(sk
) &&
2616 (sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)))
2617 sk_leave_memory_pressure(sk
);
2619 EXPORT_SYMBOL(__sk_mem_reduce_allocated
);
2622 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2624 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2626 void __sk_mem_reclaim(struct sock
*sk
, int amount
)
2628 amount
>>= SK_MEM_QUANTUM_SHIFT
;
2629 sk
->sk_forward_alloc
-= amount
<< SK_MEM_QUANTUM_SHIFT
;
2630 __sk_mem_reduce_allocated(sk
, amount
);
2632 EXPORT_SYMBOL(__sk_mem_reclaim
);
2634 int sk_set_peek_off(struct sock
*sk
, int val
)
2636 sk
->sk_peek_off
= val
;
2639 EXPORT_SYMBOL_GPL(sk_set_peek_off
);
2642 * Set of default routines for initialising struct proto_ops when
2643 * the protocol does not support a particular function. In certain
2644 * cases where it makes no sense for a protocol to have a "do nothing"
2645 * function, some default processing is provided.
2648 int sock_no_bind(struct socket
*sock
, struct sockaddr
*saddr
, int len
)
2652 EXPORT_SYMBOL(sock_no_bind
);
2654 int sock_no_connect(struct socket
*sock
, struct sockaddr
*saddr
,
2659 EXPORT_SYMBOL(sock_no_connect
);
2661 int sock_no_socketpair(struct socket
*sock1
, struct socket
*sock2
)
2665 EXPORT_SYMBOL(sock_no_socketpair
);
2667 int sock_no_accept(struct socket
*sock
, struct socket
*newsock
, int flags
,
2672 EXPORT_SYMBOL(sock_no_accept
);
2674 int sock_no_getname(struct socket
*sock
, struct sockaddr
*saddr
,
2679 EXPORT_SYMBOL(sock_no_getname
);
2681 int sock_no_ioctl(struct socket
*sock
, unsigned int cmd
, unsigned long arg
)
2685 EXPORT_SYMBOL(sock_no_ioctl
);
2687 int sock_no_listen(struct socket
*sock
, int backlog
)
2691 EXPORT_SYMBOL(sock_no_listen
);
2693 int sock_no_shutdown(struct socket
*sock
, int how
)
2697 EXPORT_SYMBOL(sock_no_shutdown
);
2699 int sock_no_setsockopt(struct socket
*sock
, int level
, int optname
,
2700 char __user
*optval
, unsigned int optlen
)
2704 EXPORT_SYMBOL(sock_no_setsockopt
);
2706 int sock_no_getsockopt(struct socket
*sock
, int level
, int optname
,
2707 char __user
*optval
, int __user
*optlen
)
2711 EXPORT_SYMBOL(sock_no_getsockopt
);
2713 int sock_no_sendmsg(struct socket
*sock
, struct msghdr
*m
, size_t len
)
2717 EXPORT_SYMBOL(sock_no_sendmsg
);
2719 int sock_no_sendmsg_locked(struct sock
*sk
, struct msghdr
*m
, size_t len
)
2723 EXPORT_SYMBOL(sock_no_sendmsg_locked
);
2725 int sock_no_recvmsg(struct socket
*sock
, struct msghdr
*m
, size_t len
,
2730 EXPORT_SYMBOL(sock_no_recvmsg
);
2732 int sock_no_mmap(struct file
*file
, struct socket
*sock
, struct vm_area_struct
*vma
)
2734 /* Mirror missing mmap method error code */
2737 EXPORT_SYMBOL(sock_no_mmap
);
2740 * When a file is received (via SCM_RIGHTS, etc), we must bump the
2741 * various sock-based usage counts.
2743 void __receive_sock(struct file
*file
)
2745 struct socket
*sock
;
2749 * The resulting value of "error" is ignored here since we only
2750 * need to take action when the file is a socket and testing
2751 * "sock" for NULL is sufficient.
2753 sock
= sock_from_file(file
, &error
);
2755 sock_update_netprioidx(&sock
->sk
->sk_cgrp_data
);
2756 sock_update_classid(&sock
->sk
->sk_cgrp_data
);
2760 ssize_t
sock_no_sendpage(struct socket
*sock
, struct page
*page
, int offset
, size_t size
, int flags
)
2763 struct msghdr msg
= {.msg_flags
= flags
};
2765 char *kaddr
= kmap(page
);
2766 iov
.iov_base
= kaddr
+ offset
;
2768 res
= kernel_sendmsg(sock
, &msg
, &iov
, 1, size
);
2772 EXPORT_SYMBOL(sock_no_sendpage
);
2774 ssize_t
sock_no_sendpage_locked(struct sock
*sk
, struct page
*page
,
2775 int offset
, size_t size
, int flags
)
2778 struct msghdr msg
= {.msg_flags
= flags
};
2780 char *kaddr
= kmap(page
);
2782 iov
.iov_base
= kaddr
+ offset
;
2784 res
= kernel_sendmsg_locked(sk
, &msg
, &iov
, 1, size
);
2788 EXPORT_SYMBOL(sock_no_sendpage_locked
);
2791 * Default Socket Callbacks
2794 static void sock_def_wakeup(struct sock
*sk
)
2796 struct socket_wq
*wq
;
2799 wq
= rcu_dereference(sk
->sk_wq
);
2800 if (skwq_has_sleeper(wq
))
2801 wake_up_interruptible_all(&wq
->wait
);
2805 static void sock_def_error_report(struct sock
*sk
)
2807 struct socket_wq
*wq
;
2810 wq
= rcu_dereference(sk
->sk_wq
);
2811 if (skwq_has_sleeper(wq
))
2812 wake_up_interruptible_poll(&wq
->wait
, EPOLLERR
);
2813 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_ERR
);
2817 static void sock_def_readable(struct sock
*sk
)
2819 struct socket_wq
*wq
;
2822 wq
= rcu_dereference(sk
->sk_wq
);
2823 if (skwq_has_sleeper(wq
))
2824 wake_up_interruptible_sync_poll(&wq
->wait
, EPOLLIN
| EPOLLPRI
|
2825 EPOLLRDNORM
| EPOLLRDBAND
);
2826 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
2830 static void sock_def_write_space(struct sock
*sk
)
2832 struct socket_wq
*wq
;
2836 /* Do not wake up a writer until he can make "significant"
2839 if ((refcount_read(&sk
->sk_wmem_alloc
) << 1) <= READ_ONCE(sk
->sk_sndbuf
)) {
2840 wq
= rcu_dereference(sk
->sk_wq
);
2841 if (skwq_has_sleeper(wq
))
2842 wake_up_interruptible_sync_poll(&wq
->wait
, EPOLLOUT
|
2843 EPOLLWRNORM
| EPOLLWRBAND
);
2845 /* Should agree with poll, otherwise some programs break */
2846 if (sock_writeable(sk
))
2847 sk_wake_async(sk
, SOCK_WAKE_SPACE
, POLL_OUT
);
2853 static void sock_def_destruct(struct sock
*sk
)
2857 void sk_send_sigurg(struct sock
*sk
)
2859 if (sk
->sk_socket
&& sk
->sk_socket
->file
)
2860 if (send_sigurg(&sk
->sk_socket
->file
->f_owner
))
2861 sk_wake_async(sk
, SOCK_WAKE_URG
, POLL_PRI
);
2863 EXPORT_SYMBOL(sk_send_sigurg
);
2865 void sk_reset_timer(struct sock
*sk
, struct timer_list
* timer
,
2866 unsigned long expires
)
2868 if (!mod_timer(timer
, expires
))
2871 EXPORT_SYMBOL(sk_reset_timer
);
2873 void sk_stop_timer(struct sock
*sk
, struct timer_list
* timer
)
2875 if (del_timer(timer
))
2878 EXPORT_SYMBOL(sk_stop_timer
);
2880 void sock_init_data(struct socket
*sock
, struct sock
*sk
)
2883 sk
->sk_send_head
= NULL
;
2885 timer_setup(&sk
->sk_timer
, NULL
, 0);
2887 sk
->sk_allocation
= GFP_KERNEL
;
2888 sk
->sk_rcvbuf
= sysctl_rmem_default
;
2889 sk
->sk_sndbuf
= sysctl_wmem_default
;
2890 sk
->sk_state
= TCP_CLOSE
;
2891 sk_set_socket(sk
, sock
);
2893 sock_set_flag(sk
, SOCK_ZAPPED
);
2896 sk
->sk_type
= sock
->type
;
2897 RCU_INIT_POINTER(sk
->sk_wq
, &sock
->wq
);
2899 sk
->sk_uid
= SOCK_INODE(sock
)->i_uid
;
2901 RCU_INIT_POINTER(sk
->sk_wq
, NULL
);
2902 sk
->sk_uid
= make_kuid(sock_net(sk
)->user_ns
, 0);
2905 rwlock_init(&sk
->sk_callback_lock
);
2906 if (sk
->sk_kern_sock
)
2907 lockdep_set_class_and_name(
2908 &sk
->sk_callback_lock
,
2909 af_kern_callback_keys
+ sk
->sk_family
,
2910 af_family_kern_clock_key_strings
[sk
->sk_family
]);
2912 lockdep_set_class_and_name(
2913 &sk
->sk_callback_lock
,
2914 af_callback_keys
+ sk
->sk_family
,
2915 af_family_clock_key_strings
[sk
->sk_family
]);
2917 sk
->sk_state_change
= sock_def_wakeup
;
2918 sk
->sk_data_ready
= sock_def_readable
;
2919 sk
->sk_write_space
= sock_def_write_space
;
2920 sk
->sk_error_report
= sock_def_error_report
;
2921 sk
->sk_destruct
= sock_def_destruct
;
2923 sk
->sk_frag
.page
= NULL
;
2924 sk
->sk_frag
.offset
= 0;
2925 sk
->sk_peek_off
= -1;
2927 sk
->sk_peer_pid
= NULL
;
2928 sk
->sk_peer_cred
= NULL
;
2929 sk
->sk_write_pending
= 0;
2930 sk
->sk_rcvlowat
= 1;
2931 sk
->sk_rcvtimeo
= MAX_SCHEDULE_TIMEOUT
;
2932 sk
->sk_sndtimeo
= MAX_SCHEDULE_TIMEOUT
;
2934 sk
->sk_stamp
= SK_DEFAULT_STAMP
;
2935 #if BITS_PER_LONG==32
2936 seqlock_init(&sk
->sk_stamp_seq
);
2938 atomic_set(&sk
->sk_zckey
, 0);
2940 #ifdef CONFIG_NET_RX_BUSY_POLL
2942 sk
->sk_ll_usec
= sysctl_net_busy_read
;
2945 sk
->sk_max_pacing_rate
= ~0UL;
2946 sk
->sk_pacing_rate
= ~0UL;
2947 WRITE_ONCE(sk
->sk_pacing_shift
, 10);
2948 sk
->sk_incoming_cpu
= -1;
2950 sk_rx_queue_clear(sk
);
2952 * Before updating sk_refcnt, we must commit prior changes to memory
2953 * (Documentation/RCU/rculist_nulls.txt for details)
2956 refcount_set(&sk
->sk_refcnt
, 1);
2957 atomic_set(&sk
->sk_drops
, 0);
2959 EXPORT_SYMBOL(sock_init_data
);
2961 void lock_sock_nested(struct sock
*sk
, int subclass
)
2964 spin_lock_bh(&sk
->sk_lock
.slock
);
2965 if (sk
->sk_lock
.owned
)
2967 sk
->sk_lock
.owned
= 1;
2968 spin_unlock(&sk
->sk_lock
.slock
);
2970 * The sk_lock has mutex_lock() semantics here:
2972 mutex_acquire(&sk
->sk_lock
.dep_map
, subclass
, 0, _RET_IP_
);
2975 EXPORT_SYMBOL(lock_sock_nested
);
2977 void release_sock(struct sock
*sk
)
2979 spin_lock_bh(&sk
->sk_lock
.slock
);
2980 if (sk
->sk_backlog
.tail
)
2983 /* Warning : release_cb() might need to release sk ownership,
2984 * ie call sock_release_ownership(sk) before us.
2986 if (sk
->sk_prot
->release_cb
)
2987 sk
->sk_prot
->release_cb(sk
);
2989 sock_release_ownership(sk
);
2990 if (waitqueue_active(&sk
->sk_lock
.wq
))
2991 wake_up(&sk
->sk_lock
.wq
);
2992 spin_unlock_bh(&sk
->sk_lock
.slock
);
2994 EXPORT_SYMBOL(release_sock
);
2997 * lock_sock_fast - fast version of lock_sock
3000 * This version should be used for very small section, where process wont block
3001 * return false if fast path is taken:
3003 * sk_lock.slock locked, owned = 0, BH disabled
3005 * return true if slow path is taken:
3007 * sk_lock.slock unlocked, owned = 1, BH enabled
3009 bool lock_sock_fast(struct sock
*sk
)
3012 spin_lock_bh(&sk
->sk_lock
.slock
);
3014 if (!sk
->sk_lock
.owned
)
3016 * Note : We must disable BH
3021 sk
->sk_lock
.owned
= 1;
3022 spin_unlock(&sk
->sk_lock
.slock
);
3024 * The sk_lock has mutex_lock() semantics here:
3026 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 0, _RET_IP_
);
3030 EXPORT_SYMBOL(lock_sock_fast
);
3032 int sock_gettstamp(struct socket
*sock
, void __user
*userstamp
,
3033 bool timeval
, bool time32
)
3035 struct sock
*sk
= sock
->sk
;
3036 struct timespec64 ts
;
3038 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
3039 ts
= ktime_to_timespec64(sock_read_timestamp(sk
));
3040 if (ts
.tv_sec
== -1)
3042 if (ts
.tv_sec
== 0) {
3043 ktime_t kt
= ktime_get_real();
3044 sock_write_timestamp(sk
, kt
);;
3045 ts
= ktime_to_timespec64(kt
);
3051 #ifdef CONFIG_COMPAT_32BIT_TIME
3053 return put_old_timespec32(&ts
, userstamp
);
3055 #ifdef CONFIG_SPARC64
3056 /* beware of padding in sparc64 timeval */
3057 if (timeval
&& !in_compat_syscall()) {
3058 struct __kernel_old_timeval __user tv
= {
3059 .tv_sec
= ts
.tv_sec
,
3060 .tv_usec
= ts
.tv_nsec
,
3062 if (copy_to_user(userstamp
, &tv
, sizeof(tv
)))
3067 return put_timespec64(&ts
, userstamp
);
3069 EXPORT_SYMBOL(sock_gettstamp
);
3071 void sock_enable_timestamp(struct sock
*sk
, int flag
)
3073 if (!sock_flag(sk
, flag
)) {
3074 unsigned long previous_flags
= sk
->sk_flags
;
3076 sock_set_flag(sk
, flag
);
3078 * we just set one of the two flags which require net
3079 * time stamping, but time stamping might have been on
3080 * already because of the other one
3082 if (sock_needs_netstamp(sk
) &&
3083 !(previous_flags
& SK_FLAGS_TIMESTAMP
))
3084 net_enable_timestamp();
3088 int sock_recv_errqueue(struct sock
*sk
, struct msghdr
*msg
, int len
,
3089 int level
, int type
)
3091 struct sock_exterr_skb
*serr
;
3092 struct sk_buff
*skb
;
3096 skb
= sock_dequeue_err_skb(sk
);
3102 msg
->msg_flags
|= MSG_TRUNC
;
3105 err
= skb_copy_datagram_msg(skb
, 0, msg
, copied
);
3109 sock_recv_timestamp(msg
, sk
, skb
);
3111 serr
= SKB_EXT_ERR(skb
);
3112 put_cmsg(msg
, level
, type
, sizeof(serr
->ee
), &serr
->ee
);
3114 msg
->msg_flags
|= MSG_ERRQUEUE
;
3122 EXPORT_SYMBOL(sock_recv_errqueue
);
3125 * Get a socket option on an socket.
3127 * FIX: POSIX 1003.1g is very ambiguous here. It states that
3128 * asynchronous errors should be reported by getsockopt. We assume
3129 * this means if you specify SO_ERROR (otherwise whats the point of it).
3131 int sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
3132 char __user
*optval
, int __user
*optlen
)
3134 struct sock
*sk
= sock
->sk
;
3136 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
3138 EXPORT_SYMBOL(sock_common_getsockopt
);
3140 #ifdef CONFIG_COMPAT
3141 int compat_sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
3142 char __user
*optval
, int __user
*optlen
)
3144 struct sock
*sk
= sock
->sk
;
3146 if (sk
->sk_prot
->compat_getsockopt
!= NULL
)
3147 return sk
->sk_prot
->compat_getsockopt(sk
, level
, optname
,
3149 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
3151 EXPORT_SYMBOL(compat_sock_common_getsockopt
);
3154 int sock_common_recvmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
,
3157 struct sock
*sk
= sock
->sk
;
3161 err
= sk
->sk_prot
->recvmsg(sk
, msg
, size
, flags
& MSG_DONTWAIT
,
3162 flags
& ~MSG_DONTWAIT
, &addr_len
);
3164 msg
->msg_namelen
= addr_len
;
3167 EXPORT_SYMBOL(sock_common_recvmsg
);
3170 * Set socket options on an inet socket.
3172 int sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
3173 char __user
*optval
, unsigned int optlen
)
3175 struct sock
*sk
= sock
->sk
;
3177 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
3179 EXPORT_SYMBOL(sock_common_setsockopt
);
3181 #ifdef CONFIG_COMPAT
3182 int compat_sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
3183 char __user
*optval
, unsigned int optlen
)
3185 struct sock
*sk
= sock
->sk
;
3187 if (sk
->sk_prot
->compat_setsockopt
!= NULL
)
3188 return sk
->sk_prot
->compat_setsockopt(sk
, level
, optname
,
3190 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
3192 EXPORT_SYMBOL(compat_sock_common_setsockopt
);
3195 void sk_common_release(struct sock
*sk
)
3197 if (sk
->sk_prot
->destroy
)
3198 sk
->sk_prot
->destroy(sk
);
3201 * Observation: when sock_common_release is called, processes have
3202 * no access to socket. But net still has.
3203 * Step one, detach it from networking:
3205 * A. Remove from hash tables.
3208 sk
->sk_prot
->unhash(sk
);
3211 * In this point socket cannot receive new packets, but it is possible
3212 * that some packets are in flight because some CPU runs receiver and
3213 * did hash table lookup before we unhashed socket. They will achieve
3214 * receive queue and will be purged by socket destructor.
3216 * Also we still have packets pending on receive queue and probably,
3217 * our own packets waiting in device queues. sock_destroy will drain
3218 * receive queue, but transmitted packets will delay socket destruction
3219 * until the last reference will be released.
3224 xfrm_sk_free_policy(sk
);
3226 sk_refcnt_debug_release(sk
);
3230 EXPORT_SYMBOL(sk_common_release
);
3232 void sk_get_meminfo(const struct sock
*sk
, u32
*mem
)
3234 memset(mem
, 0, sizeof(*mem
) * SK_MEMINFO_VARS
);
3236 mem
[SK_MEMINFO_RMEM_ALLOC
] = sk_rmem_alloc_get(sk
);
3237 mem
[SK_MEMINFO_RCVBUF
] = READ_ONCE(sk
->sk_rcvbuf
);
3238 mem
[SK_MEMINFO_WMEM_ALLOC
] = sk_wmem_alloc_get(sk
);
3239 mem
[SK_MEMINFO_SNDBUF
] = READ_ONCE(sk
->sk_sndbuf
);
3240 mem
[SK_MEMINFO_FWD_ALLOC
] = sk
->sk_forward_alloc
;
3241 mem
[SK_MEMINFO_WMEM_QUEUED
] = READ_ONCE(sk
->sk_wmem_queued
);
3242 mem
[SK_MEMINFO_OPTMEM
] = atomic_read(&sk
->sk_omem_alloc
);
3243 mem
[SK_MEMINFO_BACKLOG
] = READ_ONCE(sk
->sk_backlog
.len
);
3244 mem
[SK_MEMINFO_DROPS
] = atomic_read(&sk
->sk_drops
);
3247 #ifdef CONFIG_PROC_FS
3248 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
3250 int val
[PROTO_INUSE_NR
];
3253 static DECLARE_BITMAP(proto_inuse_idx
, PROTO_INUSE_NR
);
3255 void sock_prot_inuse_add(struct net
*net
, struct proto
*prot
, int val
)
3257 __this_cpu_add(net
->core
.prot_inuse
->val
[prot
->inuse_idx
], val
);
3259 EXPORT_SYMBOL_GPL(sock_prot_inuse_add
);
3261 int sock_prot_inuse_get(struct net
*net
, struct proto
*prot
)
3263 int cpu
, idx
= prot
->inuse_idx
;
3266 for_each_possible_cpu(cpu
)
3267 res
+= per_cpu_ptr(net
->core
.prot_inuse
, cpu
)->val
[idx
];
3269 return res
>= 0 ? res
: 0;
3271 EXPORT_SYMBOL_GPL(sock_prot_inuse_get
);
3273 static void sock_inuse_add(struct net
*net
, int val
)
3275 this_cpu_add(*net
->core
.sock_inuse
, val
);
3278 int sock_inuse_get(struct net
*net
)
3282 for_each_possible_cpu(cpu
)
3283 res
+= *per_cpu_ptr(net
->core
.sock_inuse
, cpu
);
3288 EXPORT_SYMBOL_GPL(sock_inuse_get
);
3290 static int __net_init
sock_inuse_init_net(struct net
*net
)
3292 net
->core
.prot_inuse
= alloc_percpu(struct prot_inuse
);
3293 if (net
->core
.prot_inuse
== NULL
)
3296 net
->core
.sock_inuse
= alloc_percpu(int);
3297 if (net
->core
.sock_inuse
== NULL
)
3303 free_percpu(net
->core
.prot_inuse
);
3307 static void __net_exit
sock_inuse_exit_net(struct net
*net
)
3309 free_percpu(net
->core
.prot_inuse
);
3310 free_percpu(net
->core
.sock_inuse
);
3313 static struct pernet_operations net_inuse_ops
= {
3314 .init
= sock_inuse_init_net
,
3315 .exit
= sock_inuse_exit_net
,
3318 static __init
int net_inuse_init(void)
3320 if (register_pernet_subsys(&net_inuse_ops
))
3321 panic("Cannot initialize net inuse counters");
3326 core_initcall(net_inuse_init
);
3328 static int assign_proto_idx(struct proto
*prot
)
3330 prot
->inuse_idx
= find_first_zero_bit(proto_inuse_idx
, PROTO_INUSE_NR
);
3332 if (unlikely(prot
->inuse_idx
== PROTO_INUSE_NR
- 1)) {
3333 pr_err("PROTO_INUSE_NR exhausted\n");
3337 set_bit(prot
->inuse_idx
, proto_inuse_idx
);
3341 static void release_proto_idx(struct proto
*prot
)
3343 if (prot
->inuse_idx
!= PROTO_INUSE_NR
- 1)
3344 clear_bit(prot
->inuse_idx
, proto_inuse_idx
);
3347 static inline int assign_proto_idx(struct proto
*prot
)
3352 static inline void release_proto_idx(struct proto
*prot
)
3356 static void sock_inuse_add(struct net
*net
, int val
)
3361 static void tw_prot_cleanup(struct timewait_sock_ops
*twsk_prot
)
3365 kfree(twsk_prot
->twsk_slab_name
);
3366 twsk_prot
->twsk_slab_name
= NULL
;
3367 kmem_cache_destroy(twsk_prot
->twsk_slab
);
3368 twsk_prot
->twsk_slab
= NULL
;
3371 static void req_prot_cleanup(struct request_sock_ops
*rsk_prot
)
3375 kfree(rsk_prot
->slab_name
);
3376 rsk_prot
->slab_name
= NULL
;
3377 kmem_cache_destroy(rsk_prot
->slab
);
3378 rsk_prot
->slab
= NULL
;
3381 static int req_prot_init(const struct proto
*prot
)
3383 struct request_sock_ops
*rsk_prot
= prot
->rsk_prot
;
3388 rsk_prot
->slab_name
= kasprintf(GFP_KERNEL
, "request_sock_%s",
3390 if (!rsk_prot
->slab_name
)
3393 rsk_prot
->slab
= kmem_cache_create(rsk_prot
->slab_name
,
3394 rsk_prot
->obj_size
, 0,
3395 SLAB_ACCOUNT
| prot
->slab_flags
,
3398 if (!rsk_prot
->slab
) {
3399 pr_crit("%s: Can't create request sock SLAB cache!\n",
3406 int proto_register(struct proto
*prot
, int alloc_slab
)
3411 prot
->slab
= kmem_cache_create_usercopy(prot
->name
,
3413 SLAB_HWCACHE_ALIGN
| SLAB_ACCOUNT
|
3415 prot
->useroffset
, prot
->usersize
,
3418 if (prot
->slab
== NULL
) {
3419 pr_crit("%s: Can't create sock SLAB cache!\n",
3424 if (req_prot_init(prot
))
3425 goto out_free_request_sock_slab
;
3427 if (prot
->twsk_prot
!= NULL
) {
3428 prot
->twsk_prot
->twsk_slab_name
= kasprintf(GFP_KERNEL
, "tw_sock_%s", prot
->name
);
3430 if (prot
->twsk_prot
->twsk_slab_name
== NULL
)
3431 goto out_free_request_sock_slab
;
3433 prot
->twsk_prot
->twsk_slab
=
3434 kmem_cache_create(prot
->twsk_prot
->twsk_slab_name
,
3435 prot
->twsk_prot
->twsk_obj_size
,
3440 if (prot
->twsk_prot
->twsk_slab
== NULL
)
3441 goto out_free_timewait_sock_slab
;
3445 mutex_lock(&proto_list_mutex
);
3446 ret
= assign_proto_idx(prot
);
3448 mutex_unlock(&proto_list_mutex
);
3449 goto out_free_timewait_sock_slab
;
3451 list_add(&prot
->node
, &proto_list
);
3452 mutex_unlock(&proto_list_mutex
);
3455 out_free_timewait_sock_slab
:
3456 if (alloc_slab
&& prot
->twsk_prot
)
3457 tw_prot_cleanup(prot
->twsk_prot
);
3458 out_free_request_sock_slab
:
3460 req_prot_cleanup(prot
->rsk_prot
);
3462 kmem_cache_destroy(prot
->slab
);
3468 EXPORT_SYMBOL(proto_register
);
3470 void proto_unregister(struct proto
*prot
)
3472 mutex_lock(&proto_list_mutex
);
3473 release_proto_idx(prot
);
3474 list_del(&prot
->node
);
3475 mutex_unlock(&proto_list_mutex
);
3477 kmem_cache_destroy(prot
->slab
);
3480 req_prot_cleanup(prot
->rsk_prot
);
3481 tw_prot_cleanup(prot
->twsk_prot
);
3483 EXPORT_SYMBOL(proto_unregister
);
3485 int sock_load_diag_module(int family
, int protocol
)
3488 if (!sock_is_registered(family
))
3491 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK
,
3492 NETLINK_SOCK_DIAG
, family
);
3496 if (family
== AF_INET
&&
3497 protocol
!= IPPROTO_RAW
&&
3498 !rcu_access_pointer(inet_protos
[protocol
]))
3502 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK
,
3503 NETLINK_SOCK_DIAG
, family
, protocol
);
3505 EXPORT_SYMBOL(sock_load_diag_module
);
3507 #ifdef CONFIG_PROC_FS
3508 static void *proto_seq_start(struct seq_file
*seq
, loff_t
*pos
)
3509 __acquires(proto_list_mutex
)
3511 mutex_lock(&proto_list_mutex
);
3512 return seq_list_start_head(&proto_list
, *pos
);
3515 static void *proto_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
3517 return seq_list_next(v
, &proto_list
, pos
);
3520 static void proto_seq_stop(struct seq_file
*seq
, void *v
)
3521 __releases(proto_list_mutex
)
3523 mutex_unlock(&proto_list_mutex
);
3526 static char proto_method_implemented(const void *method
)
3528 return method
== NULL
? 'n' : 'y';
3530 static long sock_prot_memory_allocated(struct proto
*proto
)
3532 return proto
->memory_allocated
!= NULL
? proto_memory_allocated(proto
) : -1L;
3535 static const char *sock_prot_memory_pressure(struct proto
*proto
)
3537 return proto
->memory_pressure
!= NULL
?
3538 proto_memory_pressure(proto
) ? "yes" : "no" : "NI";
3541 static void proto_seq_printf(struct seq_file
*seq
, struct proto
*proto
)
3544 seq_printf(seq
, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3545 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3548 sock_prot_inuse_get(seq_file_net(seq
), proto
),
3549 sock_prot_memory_allocated(proto
),
3550 sock_prot_memory_pressure(proto
),
3552 proto
->slab
== NULL
? "no" : "yes",
3553 module_name(proto
->owner
),
3554 proto_method_implemented(proto
->close
),
3555 proto_method_implemented(proto
->connect
),
3556 proto_method_implemented(proto
->disconnect
),
3557 proto_method_implemented(proto
->accept
),
3558 proto_method_implemented(proto
->ioctl
),
3559 proto_method_implemented(proto
->init
),
3560 proto_method_implemented(proto
->destroy
),
3561 proto_method_implemented(proto
->shutdown
),
3562 proto_method_implemented(proto
->setsockopt
),
3563 proto_method_implemented(proto
->getsockopt
),
3564 proto_method_implemented(proto
->sendmsg
),
3565 proto_method_implemented(proto
->recvmsg
),
3566 proto_method_implemented(proto
->sendpage
),
3567 proto_method_implemented(proto
->bind
),
3568 proto_method_implemented(proto
->backlog_rcv
),
3569 proto_method_implemented(proto
->hash
),
3570 proto_method_implemented(proto
->unhash
),
3571 proto_method_implemented(proto
->get_port
),
3572 proto_method_implemented(proto
->enter_memory_pressure
));
3575 static int proto_seq_show(struct seq_file
*seq
, void *v
)
3577 if (v
== &proto_list
)
3578 seq_printf(seq
, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3587 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3589 proto_seq_printf(seq
, list_entry(v
, struct proto
, node
));
3593 static const struct seq_operations proto_seq_ops
= {
3594 .start
= proto_seq_start
,
3595 .next
= proto_seq_next
,
3596 .stop
= proto_seq_stop
,
3597 .show
= proto_seq_show
,
3600 static __net_init
int proto_init_net(struct net
*net
)
3602 if (!proc_create_net("protocols", 0444, net
->proc_net
, &proto_seq_ops
,
3603 sizeof(struct seq_net_private
)))
3609 static __net_exit
void proto_exit_net(struct net
*net
)
3611 remove_proc_entry("protocols", net
->proc_net
);
3615 static __net_initdata
struct pernet_operations proto_net_ops
= {
3616 .init
= proto_init_net
,
3617 .exit
= proto_exit_net
,
3620 static int __init
proto_init(void)
3622 return register_pernet_subsys(&proto_net_ops
);
3625 subsys_initcall(proto_init
);
3627 #endif /* PROC_FS */
3629 #ifdef CONFIG_NET_RX_BUSY_POLL
3630 bool sk_busy_loop_end(void *p
, unsigned long start_time
)
3632 struct sock
*sk
= p
;
3634 return !skb_queue_empty_lockless(&sk
->sk_receive_queue
) ||
3635 sk_busy_loop_timeout(sk
, start_time
);
3637 EXPORT_SYMBOL(sk_busy_loop_end
);
3638 #endif /* CONFIG_NET_RX_BUSY_POLL */