1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Generic address resultion entity
7 * net_ratelimit Andi Kleen
8 * in{4,6}_pton YOSHIFUJI Hideaki, Copyright (C)2006 USAGI/WIDE Project
10 * Created by Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
13 #include <linux/module.h>
14 #include <linux/jiffies.h>
15 #include <linux/kernel.h>
16 #include <linux/ctype.h>
17 #include <linux/inet.h>
19 #include <linux/net.h>
20 #include <linux/string.h>
21 #include <linux/types.h>
22 #include <linux/percpu.h>
23 #include <linux/init.h>
24 #include <linux/ratelimit.h>
25 #include <linux/socket.h>
28 #include <net/net_ratelimit.h>
31 #include <asm/byteorder.h>
32 #include <linux/uaccess.h>
34 DEFINE_RATELIMIT_STATE(net_ratelimit_state
, 5 * HZ
, 10);
36 * All net warning printk()s should be guarded by this function.
38 int net_ratelimit(void)
40 return __ratelimit(&net_ratelimit_state
);
42 EXPORT_SYMBOL(net_ratelimit
);
45 * Convert an ASCII string to binary IP.
46 * This is outside of net/ipv4/ because various code that uses IP addresses
47 * is otherwise not dependent on the TCP/IP stack.
50 __be32
in_aton(const char *str
)
57 for (i
= 0; i
< 4; i
++) {
61 while (*str
!= '\0' && *str
!= '.' && *str
!= '\n') {
73 EXPORT_SYMBOL(in_aton
);
75 #define IN6PTON_XDIGIT 0x00010000
76 #define IN6PTON_DIGIT 0x00020000
77 #define IN6PTON_COLON_MASK 0x00700000
78 #define IN6PTON_COLON_1 0x00100000 /* single : requested */
79 #define IN6PTON_COLON_2 0x00200000 /* second : requested */
80 #define IN6PTON_COLON_1_2 0x00400000 /* :: requested */
81 #define IN6PTON_DOT 0x00800000 /* . */
82 #define IN6PTON_DELIM 0x10000000
83 #define IN6PTON_NULL 0x20000000 /* first/tail */
84 #define IN6PTON_UNKNOWN 0x40000000
86 static inline int xdigit2bin(char c
, int delim
)
90 if (c
== delim
|| c
== '\0')
93 return IN6PTON_COLON_MASK
;
99 return val
| IN6PTON_XDIGIT
| (val
< 10 ? IN6PTON_DIGIT
: 0);
102 return IN6PTON_DELIM
;
103 return IN6PTON_UNKNOWN
;
107 * in4_pton - convert an IPv4 address from literal to binary representation
108 * @src: the start of the IPv4 address string
109 * @srclen: the length of the string, -1 means strlen(src)
110 * @dst: the binary (u8[4] array) representation of the IPv4 address
111 * @delim: the delimiter of the IPv4 address in @src, -1 means no delimiter
112 * @end: A pointer to the end of the parsed string will be placed here
114 * Return one on success, return zero when any error occurs
115 * and @end will point to the end of the parsed string.
118 int in4_pton(const char *src
, int srclen
,
120 int delim
, const char **end
)
130 srclen
= strlen(src
);
136 c
= xdigit2bin(srclen
> 0 ? *s
: '\0', delim
);
137 if (!(c
& (IN6PTON_DIGIT
| IN6PTON_DOT
| IN6PTON_DELIM
| IN6PTON_COLON_MASK
))) {
140 if (c
& (IN6PTON_DOT
| IN6PTON_DELIM
| IN6PTON_COLON_MASK
)) {
146 if (c
& (IN6PTON_DELIM
| IN6PTON_COLON_MASK
)) {
154 if ((w
& 0xffff) > 255) {
164 memcpy(dst
, dbuf
, sizeof(dbuf
));
170 EXPORT_SYMBOL(in4_pton
);
173 * in6_pton - convert an IPv6 address from literal to binary representation
174 * @src: the start of the IPv6 address string
175 * @srclen: the length of the string, -1 means strlen(src)
176 * @dst: the binary (u8[16] array) representation of the IPv6 address
177 * @delim: the delimiter of the IPv6 address in @src, -1 means no delimiter
178 * @end: A pointer to the end of the parsed string will be placed here
180 * Return one on success, return zero when any error occurs
181 * and @end will point to the end of the parsed string.
184 int in6_pton(const char *src
, int srclen
,
186 int delim
, const char **end
)
188 const char *s
, *tok
= NULL
;
193 int state
= IN6PTON_COLON_1_2
| IN6PTON_XDIGIT
| IN6PTON_NULL
;
196 memset(dbuf
, 0, sizeof(dbuf
));
201 srclen
= strlen(src
);
206 c
= xdigit2bin(srclen
> 0 ? *s
: '\0', delim
);
209 if (c
& (IN6PTON_DELIM
| IN6PTON_COLON_MASK
)) {
210 /* process one 16-bit word */
211 if (!(state
& IN6PTON_NULL
)) {
212 *d
++ = (w
>> 8) & 0xff;
216 if (c
& IN6PTON_DELIM
) {
217 /* We've processed last word */
222 * COLON_2 => XDIGIT|DELIM
223 * COLON_1_2 => COLON_2
225 switch (state
& IN6PTON_COLON_MASK
) {
226 case IN6PTON_COLON_2
:
228 state
= IN6PTON_XDIGIT
| IN6PTON_DELIM
;
229 if (dc
- dbuf
>= sizeof(dbuf
))
230 state
|= IN6PTON_NULL
;
232 case IN6PTON_COLON_1
|IN6PTON_COLON_1_2
:
233 state
= IN6PTON_XDIGIT
| IN6PTON_COLON_2
;
235 case IN6PTON_COLON_1
:
236 state
= IN6PTON_XDIGIT
;
238 case IN6PTON_COLON_1_2
:
239 state
= IN6PTON_COLON_2
;
248 if (c
& IN6PTON_DOT
) {
249 ret
= in4_pton(tok
? tok
: s
, srclen
+ (int)(s
- tok
), d
, delim
, &s
);
257 w
= (w
<< 4) | (0xff & c
);
258 state
= IN6PTON_COLON_1
| IN6PTON_DELIM
;
260 state
|= IN6PTON_XDIGIT
;
262 if (!dc
&& d
+ 2 < dbuf
+ sizeof(dbuf
)) {
263 state
|= IN6PTON_COLON_1_2
;
264 state
&= ~IN6PTON_DELIM
;
266 if (d
+ 2 >= dbuf
+ sizeof(dbuf
)) {
267 state
&= ~(IN6PTON_COLON_1
|IN6PTON_COLON_1_2
);
270 if ((dc
&& d
+ 4 < dbuf
+ sizeof(dbuf
)) ||
271 d
+ 4 == dbuf
+ sizeof(dbuf
)) {
272 state
|= IN6PTON_DOT
;
274 if (d
>= dbuf
+ sizeof(dbuf
)) {
275 state
&= ~(IN6PTON_XDIGIT
|IN6PTON_COLON_MASK
);
286 while (i
>= dc
- dbuf
)
291 memcpy(dst
, dbuf
, sizeof(dbuf
));
299 EXPORT_SYMBOL(in6_pton
);
301 static int inet4_pton(const char *src
, u16 port_num
,
302 struct sockaddr_storage
*addr
)
304 struct sockaddr_in
*addr4
= (struct sockaddr_in
*)addr
;
305 int srclen
= strlen(src
);
307 if (srclen
> INET_ADDRSTRLEN
)
310 if (in4_pton(src
, srclen
, (u8
*)&addr4
->sin_addr
.s_addr
,
314 addr4
->sin_family
= AF_INET
;
315 addr4
->sin_port
= htons(port_num
);
320 static int inet6_pton(struct net
*net
, const char *src
, u16 port_num
,
321 struct sockaddr_storage
*addr
)
323 struct sockaddr_in6
*addr6
= (struct sockaddr_in6
*)addr
;
324 const char *scope_delim
;
325 int srclen
= strlen(src
);
327 if (srclen
> INET6_ADDRSTRLEN
)
330 if (in6_pton(src
, srclen
, (u8
*)&addr6
->sin6_addr
.s6_addr
,
331 '%', &scope_delim
) == 0)
334 if (ipv6_addr_type(&addr6
->sin6_addr
) & IPV6_ADDR_LINKLOCAL
&&
335 src
+ srclen
!= scope_delim
&& *scope_delim
== '%') {
336 struct net_device
*dev
;
338 size_t scope_len
= min_t(size_t, sizeof(scope_id
) - 1,
339 src
+ srclen
- scope_delim
- 1);
341 memcpy(scope_id
, scope_delim
+ 1, scope_len
);
342 scope_id
[scope_len
] = '\0';
344 dev
= dev_get_by_name(net
, scope_id
);
346 addr6
->sin6_scope_id
= dev
->ifindex
;
348 } else if (kstrtouint(scope_id
, 0, &addr6
->sin6_scope_id
)) {
353 addr6
->sin6_family
= AF_INET6
;
354 addr6
->sin6_port
= htons(port_num
);
360 * inet_pton_with_scope - convert an IPv4/IPv6 and port to socket address
361 * @net: net namespace (used for scope handling)
362 * @af: address family, AF_INET, AF_INET6 or AF_UNSPEC for either
363 * @src: the start of the address string
364 * @port: the start of the port string (or NULL for none)
365 * @addr: output socket address
367 * Return zero on success, return errno when any error occurs.
369 int inet_pton_with_scope(struct net
*net
, __kernel_sa_family_t af
,
370 const char *src
, const char *port
, struct sockaddr_storage
*addr
)
376 if (kstrtou16(port
, 0, &port_num
))
384 ret
= inet4_pton(src
, port_num
, addr
);
387 ret
= inet6_pton(net
, src
, port_num
, addr
);
390 ret
= inet4_pton(src
, port_num
, addr
);
392 ret
= inet6_pton(net
, src
, port_num
, addr
);
395 pr_err("unexpected address family %d\n", af
);
400 EXPORT_SYMBOL(inet_pton_with_scope
);
402 bool inet_addr_is_any(struct sockaddr
*addr
)
404 if (addr
->sa_family
== AF_INET6
) {
405 struct sockaddr_in6
*in6
= (struct sockaddr_in6
*)addr
;
406 const struct sockaddr_in6 in6_any
=
407 { .sin6_addr
= IN6ADDR_ANY_INIT
};
409 if (!memcmp(in6
->sin6_addr
.s6_addr
,
410 in6_any
.sin6_addr
.s6_addr
, 16))
412 } else if (addr
->sa_family
== AF_INET
) {
413 struct sockaddr_in
*in
= (struct sockaddr_in
*)addr
;
415 if (in
->sin_addr
.s_addr
== htonl(INADDR_ANY
))
418 pr_warn("unexpected address family %u\n", addr
->sa_family
);
423 EXPORT_SYMBOL(inet_addr_is_any
);
425 void inet_proto_csum_replace4(__sum16
*sum
, struct sk_buff
*skb
,
426 __be32 from
, __be32 to
, bool pseudohdr
)
428 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
) {
429 csum_replace4(sum
, from
, to
);
430 if (skb
->ip_summed
== CHECKSUM_COMPLETE
&& pseudohdr
)
431 skb
->csum
= ~csum_add(csum_sub(~(skb
->csum
),
432 (__force __wsum
)from
),
434 } else if (pseudohdr
)
435 *sum
= ~csum_fold(csum_add(csum_sub(csum_unfold(*sum
),
436 (__force __wsum
)from
),
437 (__force __wsum
)to
));
439 EXPORT_SYMBOL(inet_proto_csum_replace4
);
442 * inet_proto_csum_replace16 - update layer 4 header checksum field
443 * @sum: Layer 4 header checksum field
444 * @skb: sk_buff for the packet
445 * @from: old IPv6 address
446 * @to: new IPv6 address
447 * @pseudohdr: True if layer 4 header checksum includes pseudoheader
449 * Update layer 4 header as per the update in IPv6 src/dst address.
451 * There is no need to update skb->csum in this function, because update in two
452 * fields a.) IPv6 src/dst address and b.) L4 header checksum cancels each other
453 * for skb->csum calculation. Whereas inet_proto_csum_replace4 function needs to
454 * update skb->csum, because update in 3 fields a.) IPv4 src/dst address,
455 * b.) IPv4 Header checksum and c.) L4 header checksum results in same diff as
456 * L4 Header checksum for skb->csum calculation.
458 void inet_proto_csum_replace16(__sum16
*sum
, struct sk_buff
*skb
,
459 const __be32
*from
, const __be32
*to
,
463 ~from
[0], ~from
[1], ~from
[2], ~from
[3],
464 to
[0], to
[1], to
[2], to
[3],
466 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
) {
467 *sum
= csum_fold(csum_partial(diff
, sizeof(diff
),
468 ~csum_unfold(*sum
)));
469 } else if (pseudohdr
)
470 *sum
= ~csum_fold(csum_partial(diff
, sizeof(diff
),
473 EXPORT_SYMBOL(inet_proto_csum_replace16
);
475 void inet_proto_csum_replace_by_diff(__sum16
*sum
, struct sk_buff
*skb
,
476 __wsum diff
, bool pseudohdr
)
478 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
) {
479 *sum
= csum_fold(csum_add(diff
, ~csum_unfold(*sum
)));
480 if (skb
->ip_summed
== CHECKSUM_COMPLETE
&& pseudohdr
)
481 skb
->csum
= ~csum_add(diff
, ~skb
->csum
);
482 } else if (pseudohdr
) {
483 *sum
= ~csum_fold(csum_add(diff
, csum_unfold(*sum
)));
486 EXPORT_SYMBOL(inet_proto_csum_replace_by_diff
);