1 // SPDX-License-Identifier: GPL-2.0-only
3 * several functions that help interpret ARC instructions
4 * used for unaligned accesses, kprobes and kgdb
6 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
9 #include <linux/types.h>
10 #include <linux/kprobes.h>
11 #include <linux/slab.h>
12 #include <linux/uaccess.h>
13 #include <asm/disasm.h>
15 #if defined(CONFIG_KGDB) || defined(CONFIG_ARC_EMUL_UNALIGNED) || \
16 defined(CONFIG_KPROBES)
18 /* disasm_instr: Analyses instruction at addr, stores
21 void __kprobes
disasm_instr(unsigned long addr
, struct disasm_state
*state
,
22 int userspace
, struct pt_regs
*regs
, struct callee_regs
*cregs
)
25 int fieldC
= 0, fieldCisReg
= 0;
26 uint16_t word1
= 0, word0
= 0;
27 int subopcode
, is_linked
, op_format
;
30 int bytes_not_copied
= 0;
32 memset(state
, 0, sizeof(struct disasm_state
));
34 /* This fetches the upper part of the 32 bit instruction
35 * in both the cases of Little Endian or Big Endian configurations. */
37 bytes_not_copied
= copy_from_user(ins_buf
,
38 (const void __user
*) addr
, 8);
39 if (bytes_not_copied
> 6)
43 ins_ptr
= (uint16_t *) addr
;
46 word1
= *((uint16_t *)addr
);
48 state
->major_opcode
= (word1
>> 11) & 0x1F;
50 /* Check if the instruction is 32 bit or 16 bit instruction */
51 if (state
->major_opcode
< 0x0B) {
52 if (bytes_not_copied
> 4)
55 word0
= *((uint16_t *)(addr
+2));
56 state
->words
[0] = (word1
<< 16) | word0
;
59 state
->words
[0] = word1
;
62 /* Read the second word in case of limm */
63 word1
= *((uint16_t *)(addr
+ state
->instr_len
));
64 word0
= *((uint16_t *)(addr
+ state
->instr_len
+ 2));
65 state
->words
[1] = (word1
<< 16) | word0
;
67 switch (state
->major_opcode
) {
71 /* unconditional branch s25, conditional branch s21 */
72 fieldA
= (IS_BIT(state
->words
[0], 16)) ?
73 FIELD_s25(state
->words
[0]) :
74 FIELD_s21(state
->words
[0]);
76 state
->delay_slot
= IS_BIT(state
->words
[0], 5);
77 state
->target
= fieldA
+ (addr
& ~0x3);
78 state
->flow
= direct_jump
;
82 if (IS_BIT(state
->words
[0], 16)) {
84 /* unconditional branch s25, conditional branch s21 */
85 fieldA
= (IS_BIT(state
->words
[0], 17)) ?
86 (FIELD_s25(state
->words
[0]) & ~0x3) :
87 FIELD_s21(state
->words
[0]);
89 state
->flow
= direct_call
;
91 /*Branch On Compare */
92 fieldA
= FIELD_s9(state
->words
[0]) & ~0x3;
93 state
->flow
= direct_jump
;
96 state
->delay_slot
= IS_BIT(state
->words
[0], 5);
97 state
->target
= fieldA
+ (addr
& ~0x3);
101 case op_LD
: /* LD<zz> a,[b,s9] */
103 state
->di
= BITS(state
->words
[0], 11, 11);
106 state
->x
= BITS(state
->words
[0], 6, 6);
107 state
->zz
= BITS(state
->words
[0], 7, 8);
108 state
->aa
= BITS(state
->words
[0], 9, 10);
109 state
->wb_reg
= FIELD_B(state
->words
[0]);
110 if (state
->wb_reg
== REG_LIMM
) {
111 state
->instr_len
+= 4;
113 state
->src1
= state
->words
[1];
115 state
->src1
= get_reg(state
->wb_reg
, regs
, cregs
);
117 state
->src2
= FIELD_s9(state
->words
[0]);
118 state
->dest
= FIELD_A(state
->words
[0]);
119 state
->pref
= (state
->dest
== REG_LIMM
);
124 state
->di
= BITS(state
->words
[0], 5, 5);
127 state
->aa
= BITS(state
->words
[0], 3, 4);
128 state
->zz
= BITS(state
->words
[0], 1, 2);
129 state
->src1
= FIELD_C(state
->words
[0]);
130 if (state
->src1
== REG_LIMM
) {
131 state
->instr_len
+= 4;
132 state
->src1
= state
->words
[1];
134 state
->src1
= get_reg(state
->src1
, regs
, cregs
);
136 state
->wb_reg
= FIELD_B(state
->words
[0]);
137 if (state
->wb_reg
== REG_LIMM
) {
139 state
->instr_len
+= 4;
140 state
->src2
= state
->words
[1];
142 state
->src2
= get_reg(state
->wb_reg
, regs
, cregs
);
144 state
->src3
= FIELD_s9(state
->words
[0]);
148 subopcode
= MINOR_OPCODE(state
->words
[0]);
153 case 35: /* JLcc.D */
156 if (subopcode
== 33 || subopcode
== 35)
157 state
->delay_slot
= 1;
159 if (subopcode
== 34 || subopcode
== 35)
163 op_format
= BITS(state
->words
[0], 22, 23);
164 if (op_format
== 0 || ((op_format
== 3) &&
165 (!IS_BIT(state
->words
[0], 5)))) {
166 fieldC
= FIELD_C(state
->words
[0]);
168 if (fieldC
== REG_LIMM
) {
169 fieldC
= state
->words
[1];
170 state
->instr_len
+= 4;
174 } else if (op_format
== 1 || ((op_format
== 3)
175 && (IS_BIT(state
->words
[0], 5)))) {
176 fieldC
= FIELD_C(state
->words
[0]);
179 fieldC
= FIELD_s12(state
->words
[0]);
183 state
->target
= fieldC
;
184 state
->flow
= is_linked
?
185 direct_call
: direct_jump
;
187 state
->target
= get_reg(fieldC
, regs
, cregs
);
188 state
->flow
= is_linked
?
189 indirect_call
: indirect_jump
;
191 state
->is_branch
= 1;
195 if (BITS(state
->words
[0], 22, 23) == 3) {
196 /* Conditional LPcc u7 */
197 fieldC
= FIELD_C(state
->words
[0]);
199 fieldC
= fieldC
<< 1;
200 fieldC
+= (addr
& ~0x03);
201 state
->is_branch
= 1;
202 state
->flow
= direct_jump
;
203 state
->target
= fieldC
;
205 /* For Unconditional lp, next pc is the fall through
206 * which is updated */
209 case 48 ... 55: /* LD a,[b,c] */
210 state
->di
= BITS(state
->words
[0], 15, 15);
213 state
->x
= BITS(state
->words
[0], 16, 16);
214 state
->zz
= BITS(state
->words
[0], 17, 18);
215 state
->aa
= BITS(state
->words
[0], 22, 23);
216 state
->wb_reg
= FIELD_B(state
->words
[0]);
217 if (state
->wb_reg
== REG_LIMM
) {
218 state
->instr_len
+= 4;
219 state
->src1
= state
->words
[1];
221 state
->src1
= get_reg(state
->wb_reg
, regs
,
224 state
->src2
= FIELD_C(state
->words
[0]);
225 if (state
->src2
== REG_LIMM
) {
226 state
->instr_len
+= 4;
227 state
->src2
= state
->words
[1];
229 state
->src2
= get_reg(state
->src2
, regs
,
232 state
->dest
= FIELD_A(state
->words
[0]);
233 if (state
->dest
== REG_LIMM
)
238 /* still need to check for limm to extract instr len */
239 /* MOV is special case because it only takes 2 args */
240 switch (BITS(state
->words
[0], 22, 23)) {
241 case 0: /* OP a,b,c */
242 if (FIELD_C(state
->words
[0]) == REG_LIMM
)
243 state
->instr_len
+= 4;
245 case 1: /* OP a,b,u6 */
247 case 2: /* OP b,b,s12 */
249 case 3: /* OP.cc b,b,c/u6 */
250 if ((!IS_BIT(state
->words
[0], 5)) &&
251 (FIELD_C(state
->words
[0]) == REG_LIMM
))
252 state
->instr_len
+= 4;
259 /* Not a Load, Jump or Loop instruction */
260 /* still need to check for limm to extract instr len */
261 switch (BITS(state
->words
[0], 22, 23)) {
262 case 0: /* OP a,b,c */
263 if ((FIELD_B(state
->words
[0]) == REG_LIMM
) ||
264 (FIELD_C(state
->words
[0]) == REG_LIMM
))
265 state
->instr_len
+= 4;
267 case 1: /* OP a,b,u6 */
269 case 2: /* OP b,b,s12 */
271 case 3: /* OP.cc b,b,c/u6 */
272 if ((!IS_BIT(state
->words
[0], 5)) &&
273 ((FIELD_B(state
->words
[0]) == REG_LIMM
) ||
274 (FIELD_C(state
->words
[0]) == REG_LIMM
)))
275 state
->instr_len
+= 4;
282 /* 16 Bit Instructions */
283 case op_LD_ADD
: /* LD_S|LDB_S|LDW_S a,[b,c] */
284 state
->zz
= BITS(state
->words
[0], 3, 4);
285 state
->src1
= get_reg(FIELD_S_B(state
->words
[0]), regs
, cregs
);
286 state
->src2
= get_reg(FIELD_S_C(state
->words
[0]), regs
, cregs
);
287 state
->dest
= FIELD_S_A(state
->words
[0]);
291 /* check for limm, ignore mov_s h,b (== mov_s 0,b) */
292 if ((BITS(state
->words
[0], 3, 4) < 3) &&
293 (FIELD_S_H(state
->words
[0]) == REG_LIMM
))
294 state
->instr_len
+= 4;
298 subopcode
= BITS(state
->words
[0], 5, 7);
304 state
->target
= get_reg(FIELD_S_B(state
->words
[0]),
306 state
->delay_slot
= subopcode
& 1;
307 state
->flow
= (subopcode
>= 2) ?
308 direct_call
: indirect_jump
;
311 switch (BITS(state
->words
[0], 8, 10)) {
312 case 4: /* jeq_s [blink] */
313 case 5: /* jne_s [blink] */
314 case 6: /* j_s [blink] */
315 case 7: /* j_s.d [blink] */
316 state
->delay_slot
= (subopcode
== 7);
317 state
->flow
= indirect_jump
;
318 state
->target
= get_reg(31, regs
, cregs
);
327 case op_LD_S
: /* LD_S c, [b, u7] */
328 state
->src1
= get_reg(FIELD_S_B(state
->words
[0]), regs
, cregs
);
329 state
->src2
= FIELD_S_u7(state
->words
[0]);
330 state
->dest
= FIELD_S_C(state
->words
[0]);
335 /* no further handling required as byte accesses should not
336 * cause an unaligned access exception */
340 case op_LDWX_S
: /* LDWX_S c, [b, u6] */
344 case op_LDW_S
: /* LDW_S c, [b, u6] */
346 state
->src1
= get_reg(FIELD_S_B(state
->words
[0]), regs
, cregs
);
347 state
->src2
= FIELD_S_u6(state
->words
[0]);
348 state
->dest
= FIELD_S_C(state
->words
[0]);
351 case op_ST_S
: /* ST_S c, [b, u7] */
353 state
->src1
= get_reg(FIELD_S_C(state
->words
[0]), regs
, cregs
);
354 state
->src2
= get_reg(FIELD_S_B(state
->words
[0]), regs
, cregs
);
355 state
->src3
= FIELD_S_u7(state
->words
[0]);
358 case op_STW_S
: /* STW_S c,[b,u6] */
361 state
->src1
= get_reg(FIELD_S_C(state
->words
[0]), regs
, cregs
);
362 state
->src2
= get_reg(FIELD_S_B(state
->words
[0]), regs
, cregs
);
363 state
->src3
= FIELD_S_u6(state
->words
[0]);
366 case op_SP
: /* LD_S|LDB_S b,[sp,u7], ST_S|STB_S b,[sp,u7] */
367 /* note: we are ignoring possibility of:
368 * ADD_S, SUB_S, PUSH_S, POP_S as these should not
369 * cause unaliged exception anyway */
370 state
->write
= BITS(state
->words
[0], 6, 6);
371 state
->zz
= BITS(state
->words
[0], 5, 5);
373 break; /* byte accesses should not come here */
375 state
->src1
= get_reg(28, regs
, cregs
);
376 state
->src2
= FIELD_S_u7(state
->words
[0]);
377 state
->dest
= FIELD_S_B(state
->words
[0]);
379 state
->src1
= get_reg(FIELD_S_B(state
->words
[0]), regs
,
381 state
->src2
= get_reg(28, regs
, cregs
);
382 state
->src3
= FIELD_S_u7(state
->words
[0]);
386 case op_GP
: /* LD_S|LDB_S|LDW_S r0,[gp,s11/s9/s10] */
387 /* note: ADD_S r0, gp, s11 is ignored */
388 state
->zz
= BITS(state
->words
[0], 9, 10);
389 state
->src1
= get_reg(26, regs
, cregs
);
390 state
->src2
= state
->zz
? FIELD_S_s10(state
->words
[0]) :
391 FIELD_S_s11(state
->words
[0]);
395 case op_Pcl
: /* LD_S b,[pcl,u10] */
396 state
->src1
= regs
->ret
& ~3;
397 state
->src2
= FIELD_S_u10(state
->words
[0]);
398 state
->dest
= FIELD_S_B(state
->words
[0]);
402 state
->target
= FIELD_S_s8(state
->words
[0]) + (addr
& ~0x03);
403 state
->flow
= direct_jump
;
404 state
->is_branch
= 1;
408 fieldA
= (BITS(state
->words
[0], 9, 10) == 3) ?
409 FIELD_S_s7(state
->words
[0]) :
410 FIELD_S_s10(state
->words
[0]);
411 state
->target
= fieldA
+ (addr
& ~0x03);
412 state
->flow
= direct_jump
;
413 state
->is_branch
= 1;
417 state
->target
= FIELD_S_s13(state
->words
[0]) + (addr
& ~0x03);
418 state
->flow
= direct_call
;
419 state
->is_branch
= 1;
426 if (bytes_not_copied
<= (8 - state
->instr_len
))
429 fault
: state
->fault
= 1;
432 long __kprobes
get_reg(int reg
, struct pt_regs
*regs
,
433 struct callee_regs
*cregs
)
442 if (cregs
&& (reg
<= 25)) {
459 void __kprobes
set_reg(int reg
, long val
, struct pt_regs
*regs
,
460 struct callee_regs
*cregs
)
493 * Disassembles the insn at @pc and sets @next_pc to next PC (which could be
494 * @pc +2/4/6 (ARCompact ISA allows free intermixing of 16/32 bit insns).
497 * -@tgt_if_br is set to branch target.
498 * -If branch has delay slot, @next_pc updated with actual next PC.
500 int __kprobes
disasm_next_pc(unsigned long pc
, struct pt_regs
*regs
,
501 struct callee_regs
*cregs
,
502 unsigned long *next_pc
, unsigned long *tgt_if_br
)
504 struct disasm_state instr
;
506 memset(&instr
, 0, sizeof(struct disasm_state
));
507 disasm_instr(pc
, &instr
, 0, regs
, cregs
);
509 *next_pc
= pc
+ instr
.instr_len
;
511 /* Instruction with possible two targets branch, jump and loop */
513 *tgt_if_br
= instr
.target
;
515 /* For the instructions with delay slots, the fall through is the
516 * instruction following the instruction in delay slot.
518 if (instr
.delay_slot
) {
519 struct disasm_state instr_d
;
521 disasm_instr(*next_pc
, &instr_d
, 0, regs
, cregs
);
523 *next_pc
+= instr_d
.instr_len
;
526 /* Zero Overhead Loop - end of the loop */
527 if (!(regs
->status32
& STATUS32_L
) && (*next_pc
== regs
->lp_end
)
528 && (regs
->lp_count
> 1)) {
529 *next_pc
= regs
->lp_start
;
532 return instr
.is_branch
;
535 #endif /* CONFIG_KGDB || CONFIG_ARC_EMUL_UNALIGNED || CONFIG_KPROBES */