1 // SPDX-License-Identifier: GPL-2.0-only
3 * Broadcom Brahma-B15 CPU read-ahead cache management functions
5 * Copyright (C) 2015-2016 Broadcom
9 #include <linux/spinlock.h>
11 #include <linux/bitops.h>
12 #include <linux/of_address.h>
13 #include <linux/notifier.h>
14 #include <linux/cpu.h>
15 #include <linux/syscore_ops.h>
16 #include <linux/reboot.h>
18 #include <asm/cacheflush.h>
19 #include <asm/hardware/cache-b15-rac.h>
21 extern void v7_flush_kern_cache_all(void);
23 /* RAC register offsets, relative to the HIF_CPU_BIUCTRL register base */
24 #define RAC_CONFIG0_REG (0x78)
25 #define RACENPREF_MASK (0x3)
26 #define RACPREFINST_SHIFT (0)
27 #define RACENINST_SHIFT (2)
28 #define RACPREFDATA_SHIFT (4)
29 #define RACENDATA_SHIFT (6)
30 #define RAC_CPU_SHIFT (8)
31 #define RACCFG_MASK (0xff)
32 #define RAC_CONFIG1_REG (0x7c)
33 /* Brahma-B15 is a quad-core only design */
34 #define B15_RAC_FLUSH_REG (0x80)
35 /* Brahma-B53 is an octo-core design */
36 #define B53_RAC_FLUSH_REG (0x84)
37 #define FLUSH_RAC (1 << 0)
39 /* Bitmask to enable instruction and data prefetching with a 256-bytes stride */
40 #define RAC_DATA_INST_EN_MASK (1 << RACPREFINST_SHIFT | \
41 RACENPREF_MASK << RACENINST_SHIFT | \
42 1 << RACPREFDATA_SHIFT | \
43 RACENPREF_MASK << RACENDATA_SHIFT)
46 /* Special state where we want to bypass the spinlock and call directly
47 * into the v7 cache maintenance operations during suspend/resume
49 #define RAC_SUSPENDED 1
51 static void __iomem
*b15_rac_base
;
52 static DEFINE_SPINLOCK(rac_lock
);
54 static u32 rac_config0_reg
;
55 static u32 rac_flush_offset
;
57 /* Initialization flag to avoid checking for b15_rac_base, and to prevent
58 * multi-platform kernels from crashing here as well.
60 static unsigned long b15_rac_flags
;
62 static inline u32
__b15_rac_disable(void)
64 u32 val
= __raw_readl(b15_rac_base
+ RAC_CONFIG0_REG
);
65 __raw_writel(0, b15_rac_base
+ RAC_CONFIG0_REG
);
70 static inline void __b15_rac_flush(void)
74 __raw_writel(FLUSH_RAC
, b15_rac_base
+ rac_flush_offset
);
76 /* This dmb() is required to force the Bus Interface Unit
77 * to clean oustanding writes, and forces an idle cycle
81 reg
= __raw_readl(b15_rac_base
+ rac_flush_offset
);
82 } while (reg
& FLUSH_RAC
);
85 static inline u32
b15_rac_disable_and_flush(void)
89 reg
= __b15_rac_disable();
94 static inline void __b15_rac_enable(u32 val
)
96 __raw_writel(val
, b15_rac_base
+ RAC_CONFIG0_REG
);
97 /* dsb() is required here to be consistent with __flush_icache_all() */
101 #define BUILD_RAC_CACHE_OP(name, bar) \
102 void b15_flush_##name(void) \
104 unsigned int do_flush; \
107 if (test_bit(RAC_SUSPENDED, &b15_rac_flags)) { \
113 spin_lock(&rac_lock); \
114 do_flush = test_bit(RAC_ENABLED, &b15_rac_flags); \
116 val = b15_rac_disable_and_flush(); \
121 __b15_rac_enable(val); \
122 spin_unlock(&rac_lock); \
127 /* The readahead cache present in the Brahma-B15 CPU is a special piece of
128 * hardware after the integrated L2 cache of the B15 CPU complex whose purpose
129 * is to prefetch instruction and/or data with a line size of either 64 bytes
130 * or 256 bytes. The rationale is that the data-bus of the CPU interface is
131 * optimized for 256-bytes transactions, and enabling the readahead cache
132 * provides a significant performance boost we want it enabled (typically
133 * twice the performance for a memcpy benchmark application).
135 * The readahead cache is transparent for Modified Virtual Addresses
136 * cache maintenance operations: ICIMVAU, DCIMVAC, DCCMVAC, DCCMVAU and
139 * It is however not transparent for the following cache maintenance
140 * operations: DCISW, DCCSW, DCCISW, ICIALLUIS and ICIALLU which is precisely
141 * what we are patching here with our BUILD_RAC_CACHE_OP here.
143 BUILD_RAC_CACHE_OP(kern_cache_all
, nobarrier
);
145 static void b15_rac_enable(void)
150 for_each_possible_cpu(cpu
)
151 enable
|= (RAC_DATA_INST_EN_MASK
<< (cpu
* RAC_CPU_SHIFT
));
153 b15_rac_disable_and_flush();
154 __b15_rac_enable(enable
);
157 static int b15_rac_reboot_notifier(struct notifier_block
*nb
,
158 unsigned long action
,
161 /* During kexec, we are not yet migrated on the boot CPU, so we need to
162 * make sure we are SMP safe here. Once the RAC is disabled, flag it as
163 * suspended such that the hotplug notifier returns early.
165 if (action
== SYS_RESTART
) {
166 spin_lock(&rac_lock
);
167 b15_rac_disable_and_flush();
168 clear_bit(RAC_ENABLED
, &b15_rac_flags
);
169 set_bit(RAC_SUSPENDED
, &b15_rac_flags
);
170 spin_unlock(&rac_lock
);
176 static struct notifier_block b15_rac_reboot_nb
= {
177 .notifier_call
= b15_rac_reboot_notifier
,
180 /* The CPU hotplug case is the most interesting one, we basically need to make
181 * sure that the RAC is disabled for the entire system prior to having a CPU
182 * die, in particular prior to this dying CPU having exited the coherency
185 * Once this CPU is marked dead, we can safely re-enable the RAC for the
186 * remaining CPUs in the system which are still online.
188 * Offlining a CPU is the problematic case, onlining a CPU is not much of an
189 * issue since the CPU and its cache-level hierarchy will start filling with
190 * the RAC disabled, so L1 and L2 only.
192 * In this function, we should NOT have to verify any unsafe setting/condition
195 * It is protected by the RAC_ENABLED flag which is cleared by default, and
196 * being cleared when initial procedure is done. b15_rac_base had been set at
200 * There is a small timing windows, in b15_rac_init(), between
201 * cpuhp_setup_state_*()
204 * However, there is no hotplug activity based on the Linux booting procedure.
206 * Since we have to disable RAC for all cores, we keep RAC on as long as as
207 * possible (disable it as late as possible) to gain the cache benefit.
209 * Thus, dying/dead states are chosen here
211 * We are choosing not do disable the RAC on a per-CPU basis, here, if we did
212 * we would want to consider disabling it as early as possible to benefit the
216 /* Running on the dying CPU */
217 static int b15_rac_dying_cpu(unsigned int cpu
)
219 /* During kexec/reboot, the RAC is disabled via the reboot notifier
222 if (test_bit(RAC_SUSPENDED
, &b15_rac_flags
))
225 spin_lock(&rac_lock
);
227 /* Indicate that we are starting a hotplug procedure */
228 __clear_bit(RAC_ENABLED
, &b15_rac_flags
);
230 /* Disable the readahead cache and save its value to a global */
231 rac_config0_reg
= b15_rac_disable_and_flush();
233 spin_unlock(&rac_lock
);
238 /* Running on a non-dying CPU */
239 static int b15_rac_dead_cpu(unsigned int cpu
)
241 /* During kexec/reboot, the RAC is disabled via the reboot notifier
244 if (test_bit(RAC_SUSPENDED
, &b15_rac_flags
))
247 spin_lock(&rac_lock
);
250 __b15_rac_enable(rac_config0_reg
);
251 __set_bit(RAC_ENABLED
, &b15_rac_flags
);
253 spin_unlock(&rac_lock
);
258 static int b15_rac_suspend(void)
260 /* Suspend the read-ahead cache oeprations, forcing our cache
261 * implementation to fallback to the regular ARMv7 calls.
263 * We are guaranteed to be running on the boot CPU at this point and
264 * with every other CPU quiesced, so setting RAC_SUSPENDED is not racy
267 rac_config0_reg
= b15_rac_disable_and_flush();
268 set_bit(RAC_SUSPENDED
, &b15_rac_flags
);
273 static void b15_rac_resume(void)
275 /* Coming out of a S3 suspend/resume cycle, the read-ahead cache
276 * register RAC_CONFIG0_REG will be restored to its default value, make
277 * sure we re-enable it and set the enable flag, we are also guaranteed
278 * to run on the boot CPU, so not racy again.
280 __b15_rac_enable(rac_config0_reg
);
281 clear_bit(RAC_SUSPENDED
, &b15_rac_flags
);
284 static struct syscore_ops b15_rac_syscore_ops
= {
285 .suspend
= b15_rac_suspend
,
286 .resume
= b15_rac_resume
,
289 static int __init
b15_rac_init(void)
291 struct device_node
*dn
, *cpu_dn
;
293 u32 reg
, en_mask
= 0;
295 dn
= of_find_compatible_node(NULL
, NULL
, "brcm,brcmstb-cpu-biu-ctrl");
299 if (WARN(num_possible_cpus() > 4, "RAC only supports 4 CPUs\n"))
302 b15_rac_base
= of_iomap(dn
, 0);
304 pr_err("failed to remap BIU control base\n");
309 cpu_dn
= of_get_cpu_node(0, NULL
);
315 if (of_device_is_compatible(cpu_dn
, "brcm,brahma-b15"))
316 rac_flush_offset
= B15_RAC_FLUSH_REG
;
317 else if (of_device_is_compatible(cpu_dn
, "brcm,brahma-b53"))
318 rac_flush_offset
= B53_RAC_FLUSH_REG
;
320 pr_err("Unsupported CPU\n");
327 ret
= register_reboot_notifier(&b15_rac_reboot_nb
);
329 pr_err("failed to register reboot notifier\n");
330 iounmap(b15_rac_base
);
334 if (IS_ENABLED(CONFIG_HOTPLUG_CPU
)) {
335 ret
= cpuhp_setup_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DEAD
,
336 "arm/cache-b15-rac:dead",
337 NULL
, b15_rac_dead_cpu
);
341 ret
= cpuhp_setup_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DYING
,
342 "arm/cache-b15-rac:dying",
343 NULL
, b15_rac_dying_cpu
);
348 if (IS_ENABLED(CONFIG_PM_SLEEP
))
349 register_syscore_ops(&b15_rac_syscore_ops
);
351 spin_lock(&rac_lock
);
352 reg
= __raw_readl(b15_rac_base
+ RAC_CONFIG0_REG
);
353 for_each_possible_cpu(cpu
)
354 en_mask
|= ((1 << RACPREFDATA_SHIFT
) << (cpu
* RAC_CPU_SHIFT
));
355 WARN(reg
& en_mask
, "Read-ahead cache not previously disabled\n");
358 set_bit(RAC_ENABLED
, &b15_rac_flags
);
359 spin_unlock(&rac_lock
);
361 pr_info("%pOF: Broadcom Brahma-B15 readahead cache\n", dn
);
366 cpuhp_remove_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DYING
);
368 unregister_reboot_notifier(&b15_rac_reboot_nb
);
369 iounmap(b15_rac_base
);
374 arch_initcall(b15_rac_init
);