Merge tag 'usb-5.11-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[linux/fpc-iii.git] / arch / arm / mm / dma-mapping.c
blobc4b8df2ad32850123386dec4a1b59e6aa4d05f7f
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/arm/mm/dma-mapping.c
5 * Copyright (C) 2000-2004 Russell King
7 * DMA uncached mapping support.
8 */
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/genalloc.h>
12 #include <linux/gfp.h>
13 #include <linux/errno.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/device.h>
17 #include <linux/dma-direct.h>
18 #include <linux/dma-map-ops.h>
19 #include <linux/highmem.h>
20 #include <linux/memblock.h>
21 #include <linux/slab.h>
22 #include <linux/iommu.h>
23 #include <linux/io.h>
24 #include <linux/vmalloc.h>
25 #include <linux/sizes.h>
26 #include <linux/cma.h>
28 #include <asm/memory.h>
29 #include <asm/highmem.h>
30 #include <asm/cacheflush.h>
31 #include <asm/tlbflush.h>
32 #include <asm/mach/arch.h>
33 #include <asm/dma-iommu.h>
34 #include <asm/mach/map.h>
35 #include <asm/system_info.h>
36 #include <xen/swiotlb-xen.h>
38 #include "dma.h"
39 #include "mm.h"
41 struct arm_dma_alloc_args {
42 struct device *dev;
43 size_t size;
44 gfp_t gfp;
45 pgprot_t prot;
46 const void *caller;
47 bool want_vaddr;
48 int coherent_flag;
51 struct arm_dma_free_args {
52 struct device *dev;
53 size_t size;
54 void *cpu_addr;
55 struct page *page;
56 bool want_vaddr;
59 #define NORMAL 0
60 #define COHERENT 1
62 struct arm_dma_allocator {
63 void *(*alloc)(struct arm_dma_alloc_args *args,
64 struct page **ret_page);
65 void (*free)(struct arm_dma_free_args *args);
68 struct arm_dma_buffer {
69 struct list_head list;
70 void *virt;
71 struct arm_dma_allocator *allocator;
74 static LIST_HEAD(arm_dma_bufs);
75 static DEFINE_SPINLOCK(arm_dma_bufs_lock);
77 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
79 struct arm_dma_buffer *buf, *found = NULL;
80 unsigned long flags;
82 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
83 list_for_each_entry(buf, &arm_dma_bufs, list) {
84 if (buf->virt == virt) {
85 list_del(&buf->list);
86 found = buf;
87 break;
90 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
91 return found;
95 * The DMA API is built upon the notion of "buffer ownership". A buffer
96 * is either exclusively owned by the CPU (and therefore may be accessed
97 * by it) or exclusively owned by the DMA device. These helper functions
98 * represent the transitions between these two ownership states.
100 * Note, however, that on later ARMs, this notion does not work due to
101 * speculative prefetches. We model our approach on the assumption that
102 * the CPU does do speculative prefetches, which means we clean caches
103 * before transfers and delay cache invalidation until transfer completion.
106 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
107 size_t, enum dma_data_direction);
108 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
109 size_t, enum dma_data_direction);
112 * arm_dma_map_page - map a portion of a page for streaming DMA
113 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
114 * @page: page that buffer resides in
115 * @offset: offset into page for start of buffer
116 * @size: size of buffer to map
117 * @dir: DMA transfer direction
119 * Ensure that any data held in the cache is appropriately discarded
120 * or written back.
122 * The device owns this memory once this call has completed. The CPU
123 * can regain ownership by calling dma_unmap_page().
125 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
126 unsigned long offset, size_t size, enum dma_data_direction dir,
127 unsigned long attrs)
129 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
130 __dma_page_cpu_to_dev(page, offset, size, dir);
131 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
134 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
135 unsigned long offset, size_t size, enum dma_data_direction dir,
136 unsigned long attrs)
138 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
142 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
143 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
144 * @handle: DMA address of buffer
145 * @size: size of buffer (same as passed to dma_map_page)
146 * @dir: DMA transfer direction (same as passed to dma_map_page)
148 * Unmap a page streaming mode DMA translation. The handle and size
149 * must match what was provided in the previous dma_map_page() call.
150 * All other usages are undefined.
152 * After this call, reads by the CPU to the buffer are guaranteed to see
153 * whatever the device wrote there.
155 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
156 size_t size, enum dma_data_direction dir, unsigned long attrs)
158 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
159 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
160 handle & ~PAGE_MASK, size, dir);
163 static void arm_dma_sync_single_for_cpu(struct device *dev,
164 dma_addr_t handle, size_t size, enum dma_data_direction dir)
166 unsigned int offset = handle & (PAGE_SIZE - 1);
167 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
168 __dma_page_dev_to_cpu(page, offset, size, dir);
171 static void arm_dma_sync_single_for_device(struct device *dev,
172 dma_addr_t handle, size_t size, enum dma_data_direction dir)
174 unsigned int offset = handle & (PAGE_SIZE - 1);
175 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
176 __dma_page_cpu_to_dev(page, offset, size, dir);
180 * Return whether the given device DMA address mask can be supported
181 * properly. For example, if your device can only drive the low 24-bits
182 * during bus mastering, then you would pass 0x00ffffff as the mask
183 * to this function.
185 static int arm_dma_supported(struct device *dev, u64 mask)
187 unsigned long max_dma_pfn = min(max_pfn - 1, arm_dma_pfn_limit);
190 * Translate the device's DMA mask to a PFN limit. This
191 * PFN number includes the page which we can DMA to.
193 return dma_to_pfn(dev, mask) >= max_dma_pfn;
196 const struct dma_map_ops arm_dma_ops = {
197 .alloc = arm_dma_alloc,
198 .free = arm_dma_free,
199 .alloc_pages = dma_direct_alloc_pages,
200 .free_pages = dma_direct_free_pages,
201 .mmap = arm_dma_mmap,
202 .get_sgtable = arm_dma_get_sgtable,
203 .map_page = arm_dma_map_page,
204 .unmap_page = arm_dma_unmap_page,
205 .map_sg = arm_dma_map_sg,
206 .unmap_sg = arm_dma_unmap_sg,
207 .map_resource = dma_direct_map_resource,
208 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
209 .sync_single_for_device = arm_dma_sync_single_for_device,
210 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
211 .sync_sg_for_device = arm_dma_sync_sg_for_device,
212 .dma_supported = arm_dma_supported,
213 .get_required_mask = dma_direct_get_required_mask,
215 EXPORT_SYMBOL(arm_dma_ops);
217 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
218 dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
219 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
220 dma_addr_t handle, unsigned long attrs);
221 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
222 void *cpu_addr, dma_addr_t dma_addr, size_t size,
223 unsigned long attrs);
225 const struct dma_map_ops arm_coherent_dma_ops = {
226 .alloc = arm_coherent_dma_alloc,
227 .free = arm_coherent_dma_free,
228 .alloc_pages = dma_direct_alloc_pages,
229 .free_pages = dma_direct_free_pages,
230 .mmap = arm_coherent_dma_mmap,
231 .get_sgtable = arm_dma_get_sgtable,
232 .map_page = arm_coherent_dma_map_page,
233 .map_sg = arm_dma_map_sg,
234 .map_resource = dma_direct_map_resource,
235 .dma_supported = arm_dma_supported,
236 .get_required_mask = dma_direct_get_required_mask,
238 EXPORT_SYMBOL(arm_coherent_dma_ops);
240 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
243 * Ensure that the allocated pages are zeroed, and that any data
244 * lurking in the kernel direct-mapped region is invalidated.
246 if (PageHighMem(page)) {
247 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
248 phys_addr_t end = base + size;
249 while (size > 0) {
250 void *ptr = kmap_atomic(page);
251 memset(ptr, 0, PAGE_SIZE);
252 if (coherent_flag != COHERENT)
253 dmac_flush_range(ptr, ptr + PAGE_SIZE);
254 kunmap_atomic(ptr);
255 page++;
256 size -= PAGE_SIZE;
258 if (coherent_flag != COHERENT)
259 outer_flush_range(base, end);
260 } else {
261 void *ptr = page_address(page);
262 memset(ptr, 0, size);
263 if (coherent_flag != COHERENT) {
264 dmac_flush_range(ptr, ptr + size);
265 outer_flush_range(__pa(ptr), __pa(ptr) + size);
271 * Allocate a DMA buffer for 'dev' of size 'size' using the
272 * specified gfp mask. Note that 'size' must be page aligned.
274 static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
275 gfp_t gfp, int coherent_flag)
277 unsigned long order = get_order(size);
278 struct page *page, *p, *e;
280 page = alloc_pages(gfp, order);
281 if (!page)
282 return NULL;
285 * Now split the huge page and free the excess pages
287 split_page(page, order);
288 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
289 __free_page(p);
291 __dma_clear_buffer(page, size, coherent_flag);
293 return page;
297 * Free a DMA buffer. 'size' must be page aligned.
299 static void __dma_free_buffer(struct page *page, size_t size)
301 struct page *e = page + (size >> PAGE_SHIFT);
303 while (page < e) {
304 __free_page(page);
305 page++;
309 static void *__alloc_from_contiguous(struct device *dev, size_t size,
310 pgprot_t prot, struct page **ret_page,
311 const void *caller, bool want_vaddr,
312 int coherent_flag, gfp_t gfp);
314 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
315 pgprot_t prot, struct page **ret_page,
316 const void *caller, bool want_vaddr);
318 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
319 static struct gen_pool *atomic_pool __ro_after_init;
321 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
323 static int __init early_coherent_pool(char *p)
325 atomic_pool_size = memparse(p, &p);
326 return 0;
328 early_param("coherent_pool", early_coherent_pool);
331 * Initialise the coherent pool for atomic allocations.
333 static int __init atomic_pool_init(void)
335 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
336 gfp_t gfp = GFP_KERNEL | GFP_DMA;
337 struct page *page;
338 void *ptr;
340 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
341 if (!atomic_pool)
342 goto out;
344 * The atomic pool is only used for non-coherent allocations
345 * so we must pass NORMAL for coherent_flag.
347 if (dev_get_cma_area(NULL))
348 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
349 &page, atomic_pool_init, true, NORMAL,
350 GFP_KERNEL);
351 else
352 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
353 &page, atomic_pool_init, true);
354 if (ptr) {
355 int ret;
357 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
358 page_to_phys(page),
359 atomic_pool_size, -1);
360 if (ret)
361 goto destroy_genpool;
363 gen_pool_set_algo(atomic_pool,
364 gen_pool_first_fit_order_align,
365 NULL);
366 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
367 atomic_pool_size / 1024);
368 return 0;
371 destroy_genpool:
372 gen_pool_destroy(atomic_pool);
373 atomic_pool = NULL;
374 out:
375 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
376 atomic_pool_size / 1024);
377 return -ENOMEM;
380 * CMA is activated by core_initcall, so we must be called after it.
382 postcore_initcall(atomic_pool_init);
384 struct dma_contig_early_reserve {
385 phys_addr_t base;
386 unsigned long size;
389 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
391 static int dma_mmu_remap_num __initdata;
393 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
395 dma_mmu_remap[dma_mmu_remap_num].base = base;
396 dma_mmu_remap[dma_mmu_remap_num].size = size;
397 dma_mmu_remap_num++;
400 void __init dma_contiguous_remap(void)
402 int i;
403 for (i = 0; i < dma_mmu_remap_num; i++) {
404 phys_addr_t start = dma_mmu_remap[i].base;
405 phys_addr_t end = start + dma_mmu_remap[i].size;
406 struct map_desc map;
407 unsigned long addr;
409 if (end > arm_lowmem_limit)
410 end = arm_lowmem_limit;
411 if (start >= end)
412 continue;
414 map.pfn = __phys_to_pfn(start);
415 map.virtual = __phys_to_virt(start);
416 map.length = end - start;
417 map.type = MT_MEMORY_DMA_READY;
420 * Clear previous low-memory mapping to ensure that the
421 * TLB does not see any conflicting entries, then flush
422 * the TLB of the old entries before creating new mappings.
424 * This ensures that any speculatively loaded TLB entries
425 * (even though they may be rare) can not cause any problems,
426 * and ensures that this code is architecturally compliant.
428 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
429 addr += PMD_SIZE)
430 pmd_clear(pmd_off_k(addr));
432 flush_tlb_kernel_range(__phys_to_virt(start),
433 __phys_to_virt(end));
435 iotable_init(&map, 1);
439 static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
441 struct page *page = virt_to_page(addr);
442 pgprot_t prot = *(pgprot_t *)data;
444 set_pte_ext(pte, mk_pte(page, prot), 0);
445 return 0;
448 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
450 unsigned long start = (unsigned long) page_address(page);
451 unsigned end = start + size;
453 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
454 flush_tlb_kernel_range(start, end);
457 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
458 pgprot_t prot, struct page **ret_page,
459 const void *caller, bool want_vaddr)
461 struct page *page;
462 void *ptr = NULL;
464 * __alloc_remap_buffer is only called when the device is
465 * non-coherent
467 page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
468 if (!page)
469 return NULL;
470 if (!want_vaddr)
471 goto out;
473 ptr = dma_common_contiguous_remap(page, size, prot, caller);
474 if (!ptr) {
475 __dma_free_buffer(page, size);
476 return NULL;
479 out:
480 *ret_page = page;
481 return ptr;
484 static void *__alloc_from_pool(size_t size, struct page **ret_page)
486 unsigned long val;
487 void *ptr = NULL;
489 if (!atomic_pool) {
490 WARN(1, "coherent pool not initialised!\n");
491 return NULL;
494 val = gen_pool_alloc(atomic_pool, size);
495 if (val) {
496 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
498 *ret_page = phys_to_page(phys);
499 ptr = (void *)val;
502 return ptr;
505 static bool __in_atomic_pool(void *start, size_t size)
507 return gen_pool_has_addr(atomic_pool, (unsigned long)start, size);
510 static int __free_from_pool(void *start, size_t size)
512 if (!__in_atomic_pool(start, size))
513 return 0;
515 gen_pool_free(atomic_pool, (unsigned long)start, size);
517 return 1;
520 static void *__alloc_from_contiguous(struct device *dev, size_t size,
521 pgprot_t prot, struct page **ret_page,
522 const void *caller, bool want_vaddr,
523 int coherent_flag, gfp_t gfp)
525 unsigned long order = get_order(size);
526 size_t count = size >> PAGE_SHIFT;
527 struct page *page;
528 void *ptr = NULL;
530 page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
531 if (!page)
532 return NULL;
534 __dma_clear_buffer(page, size, coherent_flag);
536 if (!want_vaddr)
537 goto out;
539 if (PageHighMem(page)) {
540 ptr = dma_common_contiguous_remap(page, size, prot, caller);
541 if (!ptr) {
542 dma_release_from_contiguous(dev, page, count);
543 return NULL;
545 } else {
546 __dma_remap(page, size, prot);
547 ptr = page_address(page);
550 out:
551 *ret_page = page;
552 return ptr;
555 static void __free_from_contiguous(struct device *dev, struct page *page,
556 void *cpu_addr, size_t size, bool want_vaddr)
558 if (want_vaddr) {
559 if (PageHighMem(page))
560 dma_common_free_remap(cpu_addr, size);
561 else
562 __dma_remap(page, size, PAGE_KERNEL);
564 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
567 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
569 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
570 pgprot_writecombine(prot) :
571 pgprot_dmacoherent(prot);
572 return prot;
575 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
576 struct page **ret_page)
578 struct page *page;
579 /* __alloc_simple_buffer is only called when the device is coherent */
580 page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
581 if (!page)
582 return NULL;
584 *ret_page = page;
585 return page_address(page);
588 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
589 struct page **ret_page)
591 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
592 ret_page);
595 static void simple_allocator_free(struct arm_dma_free_args *args)
597 __dma_free_buffer(args->page, args->size);
600 static struct arm_dma_allocator simple_allocator = {
601 .alloc = simple_allocator_alloc,
602 .free = simple_allocator_free,
605 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
606 struct page **ret_page)
608 return __alloc_from_contiguous(args->dev, args->size, args->prot,
609 ret_page, args->caller,
610 args->want_vaddr, args->coherent_flag,
611 args->gfp);
614 static void cma_allocator_free(struct arm_dma_free_args *args)
616 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
617 args->size, args->want_vaddr);
620 static struct arm_dma_allocator cma_allocator = {
621 .alloc = cma_allocator_alloc,
622 .free = cma_allocator_free,
625 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
626 struct page **ret_page)
628 return __alloc_from_pool(args->size, ret_page);
631 static void pool_allocator_free(struct arm_dma_free_args *args)
633 __free_from_pool(args->cpu_addr, args->size);
636 static struct arm_dma_allocator pool_allocator = {
637 .alloc = pool_allocator_alloc,
638 .free = pool_allocator_free,
641 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
642 struct page **ret_page)
644 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
645 args->prot, ret_page, args->caller,
646 args->want_vaddr);
649 static void remap_allocator_free(struct arm_dma_free_args *args)
651 if (args->want_vaddr)
652 dma_common_free_remap(args->cpu_addr, args->size);
654 __dma_free_buffer(args->page, args->size);
657 static struct arm_dma_allocator remap_allocator = {
658 .alloc = remap_allocator_alloc,
659 .free = remap_allocator_free,
662 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
663 gfp_t gfp, pgprot_t prot, bool is_coherent,
664 unsigned long attrs, const void *caller)
666 u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
667 struct page *page = NULL;
668 void *addr;
669 bool allowblock, cma;
670 struct arm_dma_buffer *buf;
671 struct arm_dma_alloc_args args = {
672 .dev = dev,
673 .size = PAGE_ALIGN(size),
674 .gfp = gfp,
675 .prot = prot,
676 .caller = caller,
677 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
678 .coherent_flag = is_coherent ? COHERENT : NORMAL,
681 #ifdef CONFIG_DMA_API_DEBUG
682 u64 limit = (mask + 1) & ~mask;
683 if (limit && size >= limit) {
684 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
685 size, mask);
686 return NULL;
688 #endif
690 buf = kzalloc(sizeof(*buf),
691 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
692 if (!buf)
693 return NULL;
695 if (mask < 0xffffffffULL)
696 gfp |= GFP_DMA;
699 * Following is a work-around (a.k.a. hack) to prevent pages
700 * with __GFP_COMP being passed to split_page() which cannot
701 * handle them. The real problem is that this flag probably
702 * should be 0 on ARM as it is not supported on this
703 * platform; see CONFIG_HUGETLBFS.
705 gfp &= ~(__GFP_COMP);
706 args.gfp = gfp;
708 *handle = DMA_MAPPING_ERROR;
709 allowblock = gfpflags_allow_blocking(gfp);
710 cma = allowblock ? dev_get_cma_area(dev) : false;
712 if (cma)
713 buf->allocator = &cma_allocator;
714 else if (is_coherent)
715 buf->allocator = &simple_allocator;
716 else if (allowblock)
717 buf->allocator = &remap_allocator;
718 else
719 buf->allocator = &pool_allocator;
721 addr = buf->allocator->alloc(&args, &page);
723 if (page) {
724 unsigned long flags;
726 *handle = pfn_to_dma(dev, page_to_pfn(page));
727 buf->virt = args.want_vaddr ? addr : page;
729 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
730 list_add(&buf->list, &arm_dma_bufs);
731 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
732 } else {
733 kfree(buf);
736 return args.want_vaddr ? addr : page;
740 * Allocate DMA-coherent memory space and return both the kernel remapped
741 * virtual and bus address for that space.
743 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
744 gfp_t gfp, unsigned long attrs)
746 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
748 return __dma_alloc(dev, size, handle, gfp, prot, false,
749 attrs, __builtin_return_address(0));
752 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
753 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
755 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
756 attrs, __builtin_return_address(0));
759 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
760 void *cpu_addr, dma_addr_t dma_addr, size_t size,
761 unsigned long attrs)
763 int ret = -ENXIO;
764 unsigned long nr_vma_pages = vma_pages(vma);
765 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
766 unsigned long pfn = dma_to_pfn(dev, dma_addr);
767 unsigned long off = vma->vm_pgoff;
769 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
770 return ret;
772 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
773 ret = remap_pfn_range(vma, vma->vm_start,
774 pfn + off,
775 vma->vm_end - vma->vm_start,
776 vma->vm_page_prot);
779 return ret;
783 * Create userspace mapping for the DMA-coherent memory.
785 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
786 void *cpu_addr, dma_addr_t dma_addr, size_t size,
787 unsigned long attrs)
789 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
792 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
793 void *cpu_addr, dma_addr_t dma_addr, size_t size,
794 unsigned long attrs)
796 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
797 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
801 * Free a buffer as defined by the above mapping.
803 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
804 dma_addr_t handle, unsigned long attrs,
805 bool is_coherent)
807 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
808 struct arm_dma_buffer *buf;
809 struct arm_dma_free_args args = {
810 .dev = dev,
811 .size = PAGE_ALIGN(size),
812 .cpu_addr = cpu_addr,
813 .page = page,
814 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
817 buf = arm_dma_buffer_find(cpu_addr);
818 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
819 return;
821 buf->allocator->free(&args);
822 kfree(buf);
825 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
826 dma_addr_t handle, unsigned long attrs)
828 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
831 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
832 dma_addr_t handle, unsigned long attrs)
834 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
837 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
838 void *cpu_addr, dma_addr_t handle, size_t size,
839 unsigned long attrs)
841 unsigned long pfn = dma_to_pfn(dev, handle);
842 struct page *page;
843 int ret;
845 /* If the PFN is not valid, we do not have a struct page */
846 if (!pfn_valid(pfn))
847 return -ENXIO;
849 page = pfn_to_page(pfn);
851 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
852 if (unlikely(ret))
853 return ret;
855 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
856 return 0;
859 static void dma_cache_maint_page(struct page *page, unsigned long offset,
860 size_t size, enum dma_data_direction dir,
861 void (*op)(const void *, size_t, int))
863 unsigned long pfn;
864 size_t left = size;
866 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
867 offset %= PAGE_SIZE;
870 * A single sg entry may refer to multiple physically contiguous
871 * pages. But we still need to process highmem pages individually.
872 * If highmem is not configured then the bulk of this loop gets
873 * optimized out.
875 do {
876 size_t len = left;
877 void *vaddr;
879 page = pfn_to_page(pfn);
881 if (PageHighMem(page)) {
882 if (len + offset > PAGE_SIZE)
883 len = PAGE_SIZE - offset;
885 if (cache_is_vipt_nonaliasing()) {
886 vaddr = kmap_atomic(page);
887 op(vaddr + offset, len, dir);
888 kunmap_atomic(vaddr);
889 } else {
890 vaddr = kmap_high_get(page);
891 if (vaddr) {
892 op(vaddr + offset, len, dir);
893 kunmap_high(page);
896 } else {
897 vaddr = page_address(page) + offset;
898 op(vaddr, len, dir);
900 offset = 0;
901 pfn++;
902 left -= len;
903 } while (left);
907 * Make an area consistent for devices.
908 * Note: Drivers should NOT use this function directly, as it will break
909 * platforms with CONFIG_DMABOUNCE.
910 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
912 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
913 size_t size, enum dma_data_direction dir)
915 phys_addr_t paddr;
917 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
919 paddr = page_to_phys(page) + off;
920 if (dir == DMA_FROM_DEVICE) {
921 outer_inv_range(paddr, paddr + size);
922 } else {
923 outer_clean_range(paddr, paddr + size);
925 /* FIXME: non-speculating: flush on bidirectional mappings? */
928 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
929 size_t size, enum dma_data_direction dir)
931 phys_addr_t paddr = page_to_phys(page) + off;
933 /* FIXME: non-speculating: not required */
934 /* in any case, don't bother invalidating if DMA to device */
935 if (dir != DMA_TO_DEVICE) {
936 outer_inv_range(paddr, paddr + size);
938 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
942 * Mark the D-cache clean for these pages to avoid extra flushing.
944 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
945 unsigned long pfn;
946 size_t left = size;
948 pfn = page_to_pfn(page) + off / PAGE_SIZE;
949 off %= PAGE_SIZE;
950 if (off) {
951 pfn++;
952 left -= PAGE_SIZE - off;
954 while (left >= PAGE_SIZE) {
955 page = pfn_to_page(pfn++);
956 set_bit(PG_dcache_clean, &page->flags);
957 left -= PAGE_SIZE;
963 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
964 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
965 * @sg: list of buffers
966 * @nents: number of buffers to map
967 * @dir: DMA transfer direction
969 * Map a set of buffers described by scatterlist in streaming mode for DMA.
970 * This is the scatter-gather version of the dma_map_single interface.
971 * Here the scatter gather list elements are each tagged with the
972 * appropriate dma address and length. They are obtained via
973 * sg_dma_{address,length}.
975 * Device ownership issues as mentioned for dma_map_single are the same
976 * here.
978 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
979 enum dma_data_direction dir, unsigned long attrs)
981 const struct dma_map_ops *ops = get_dma_ops(dev);
982 struct scatterlist *s;
983 int i, j;
985 for_each_sg(sg, s, nents, i) {
986 #ifdef CONFIG_NEED_SG_DMA_LENGTH
987 s->dma_length = s->length;
988 #endif
989 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
990 s->length, dir, attrs);
991 if (dma_mapping_error(dev, s->dma_address))
992 goto bad_mapping;
994 return nents;
996 bad_mapping:
997 for_each_sg(sg, s, i, j)
998 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
999 return 0;
1003 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1004 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1005 * @sg: list of buffers
1006 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1007 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1009 * Unmap a set of streaming mode DMA translations. Again, CPU access
1010 * rules concerning calls here are the same as for dma_unmap_single().
1012 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1013 enum dma_data_direction dir, unsigned long attrs)
1015 const struct dma_map_ops *ops = get_dma_ops(dev);
1016 struct scatterlist *s;
1018 int i;
1020 for_each_sg(sg, s, nents, i)
1021 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1025 * arm_dma_sync_sg_for_cpu
1026 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1027 * @sg: list of buffers
1028 * @nents: number of buffers to map (returned from dma_map_sg)
1029 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1031 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1032 int nents, enum dma_data_direction dir)
1034 const struct dma_map_ops *ops = get_dma_ops(dev);
1035 struct scatterlist *s;
1036 int i;
1038 for_each_sg(sg, s, nents, i)
1039 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1040 dir);
1044 * arm_dma_sync_sg_for_device
1045 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1046 * @sg: list of buffers
1047 * @nents: number of buffers to map (returned from dma_map_sg)
1048 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1050 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1051 int nents, enum dma_data_direction dir)
1053 const struct dma_map_ops *ops = get_dma_ops(dev);
1054 struct scatterlist *s;
1055 int i;
1057 for_each_sg(sg, s, nents, i)
1058 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1059 dir);
1062 static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
1065 * When CONFIG_ARM_LPAE is set, physical address can extend above
1066 * 32-bits, which then can't be addressed by devices that only support
1067 * 32-bit DMA.
1068 * Use the generic dma-direct / swiotlb ops code in that case, as that
1069 * handles bounce buffering for us.
1071 if (IS_ENABLED(CONFIG_ARM_LPAE))
1072 return NULL;
1073 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
1076 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1078 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1080 int prot = 0;
1082 if (attrs & DMA_ATTR_PRIVILEGED)
1083 prot |= IOMMU_PRIV;
1085 switch (dir) {
1086 case DMA_BIDIRECTIONAL:
1087 return prot | IOMMU_READ | IOMMU_WRITE;
1088 case DMA_TO_DEVICE:
1089 return prot | IOMMU_READ;
1090 case DMA_FROM_DEVICE:
1091 return prot | IOMMU_WRITE;
1092 default:
1093 return prot;
1097 /* IOMMU */
1099 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1101 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1102 size_t size)
1104 unsigned int order = get_order(size);
1105 unsigned int align = 0;
1106 unsigned int count, start;
1107 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1108 unsigned long flags;
1109 dma_addr_t iova;
1110 int i;
1112 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1113 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1115 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1116 align = (1 << order) - 1;
1118 spin_lock_irqsave(&mapping->lock, flags);
1119 for (i = 0; i < mapping->nr_bitmaps; i++) {
1120 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1121 mapping->bits, 0, count, align);
1123 if (start > mapping->bits)
1124 continue;
1126 bitmap_set(mapping->bitmaps[i], start, count);
1127 break;
1131 * No unused range found. Try to extend the existing mapping
1132 * and perform a second attempt to reserve an IO virtual
1133 * address range of size bytes.
1135 if (i == mapping->nr_bitmaps) {
1136 if (extend_iommu_mapping(mapping)) {
1137 spin_unlock_irqrestore(&mapping->lock, flags);
1138 return DMA_MAPPING_ERROR;
1141 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1142 mapping->bits, 0, count, align);
1144 if (start > mapping->bits) {
1145 spin_unlock_irqrestore(&mapping->lock, flags);
1146 return DMA_MAPPING_ERROR;
1149 bitmap_set(mapping->bitmaps[i], start, count);
1151 spin_unlock_irqrestore(&mapping->lock, flags);
1153 iova = mapping->base + (mapping_size * i);
1154 iova += start << PAGE_SHIFT;
1156 return iova;
1159 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1160 dma_addr_t addr, size_t size)
1162 unsigned int start, count;
1163 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1164 unsigned long flags;
1165 dma_addr_t bitmap_base;
1166 u32 bitmap_index;
1168 if (!size)
1169 return;
1171 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1172 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1174 bitmap_base = mapping->base + mapping_size * bitmap_index;
1176 start = (addr - bitmap_base) >> PAGE_SHIFT;
1178 if (addr + size > bitmap_base + mapping_size) {
1180 * The address range to be freed reaches into the iova
1181 * range of the next bitmap. This should not happen as
1182 * we don't allow this in __alloc_iova (at the
1183 * moment).
1185 BUG();
1186 } else
1187 count = size >> PAGE_SHIFT;
1189 spin_lock_irqsave(&mapping->lock, flags);
1190 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1191 spin_unlock_irqrestore(&mapping->lock, flags);
1194 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1195 static const int iommu_order_array[] = { 9, 8, 4, 0 };
1197 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1198 gfp_t gfp, unsigned long attrs,
1199 int coherent_flag)
1201 struct page **pages;
1202 int count = size >> PAGE_SHIFT;
1203 int array_size = count * sizeof(struct page *);
1204 int i = 0;
1205 int order_idx = 0;
1207 if (array_size <= PAGE_SIZE)
1208 pages = kzalloc(array_size, GFP_KERNEL);
1209 else
1210 pages = vzalloc(array_size);
1211 if (!pages)
1212 return NULL;
1214 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1216 unsigned long order = get_order(size);
1217 struct page *page;
1219 page = dma_alloc_from_contiguous(dev, count, order,
1220 gfp & __GFP_NOWARN);
1221 if (!page)
1222 goto error;
1224 __dma_clear_buffer(page, size, coherent_flag);
1226 for (i = 0; i < count; i++)
1227 pages[i] = page + i;
1229 return pages;
1232 /* Go straight to 4K chunks if caller says it's OK. */
1233 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1234 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1237 * IOMMU can map any pages, so himem can also be used here
1239 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1241 while (count) {
1242 int j, order;
1244 order = iommu_order_array[order_idx];
1246 /* Drop down when we get small */
1247 if (__fls(count) < order) {
1248 order_idx++;
1249 continue;
1252 if (order) {
1253 /* See if it's easy to allocate a high-order chunk */
1254 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1256 /* Go down a notch at first sign of pressure */
1257 if (!pages[i]) {
1258 order_idx++;
1259 continue;
1261 } else {
1262 pages[i] = alloc_pages(gfp, 0);
1263 if (!pages[i])
1264 goto error;
1267 if (order) {
1268 split_page(pages[i], order);
1269 j = 1 << order;
1270 while (--j)
1271 pages[i + j] = pages[i] + j;
1274 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1275 i += 1 << order;
1276 count -= 1 << order;
1279 return pages;
1280 error:
1281 while (i--)
1282 if (pages[i])
1283 __free_pages(pages[i], 0);
1284 kvfree(pages);
1285 return NULL;
1288 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1289 size_t size, unsigned long attrs)
1291 int count = size >> PAGE_SHIFT;
1292 int i;
1294 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1295 dma_release_from_contiguous(dev, pages[0], count);
1296 } else {
1297 for (i = 0; i < count; i++)
1298 if (pages[i])
1299 __free_pages(pages[i], 0);
1302 kvfree(pages);
1303 return 0;
1307 * Create a mapping in device IO address space for specified pages
1309 static dma_addr_t
1310 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1311 unsigned long attrs)
1313 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1314 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1315 dma_addr_t dma_addr, iova;
1316 int i;
1318 dma_addr = __alloc_iova(mapping, size);
1319 if (dma_addr == DMA_MAPPING_ERROR)
1320 return dma_addr;
1322 iova = dma_addr;
1323 for (i = 0; i < count; ) {
1324 int ret;
1326 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1327 phys_addr_t phys = page_to_phys(pages[i]);
1328 unsigned int len, j;
1330 for (j = i + 1; j < count; j++, next_pfn++)
1331 if (page_to_pfn(pages[j]) != next_pfn)
1332 break;
1334 len = (j - i) << PAGE_SHIFT;
1335 ret = iommu_map(mapping->domain, iova, phys, len,
1336 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1337 if (ret < 0)
1338 goto fail;
1339 iova += len;
1340 i = j;
1342 return dma_addr;
1343 fail:
1344 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1345 __free_iova(mapping, dma_addr, size);
1346 return DMA_MAPPING_ERROR;
1349 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1351 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1354 * add optional in-page offset from iova to size and align
1355 * result to page size
1357 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1358 iova &= PAGE_MASK;
1360 iommu_unmap(mapping->domain, iova, size);
1361 __free_iova(mapping, iova, size);
1362 return 0;
1365 static struct page **__atomic_get_pages(void *addr)
1367 struct page *page;
1368 phys_addr_t phys;
1370 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1371 page = phys_to_page(phys);
1373 return (struct page **)page;
1376 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1378 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1379 return __atomic_get_pages(cpu_addr);
1381 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1382 return cpu_addr;
1384 return dma_common_find_pages(cpu_addr);
1387 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1388 dma_addr_t *handle, int coherent_flag,
1389 unsigned long attrs)
1391 struct page *page;
1392 void *addr;
1394 if (coherent_flag == COHERENT)
1395 addr = __alloc_simple_buffer(dev, size, gfp, &page);
1396 else
1397 addr = __alloc_from_pool(size, &page);
1398 if (!addr)
1399 return NULL;
1401 *handle = __iommu_create_mapping(dev, &page, size, attrs);
1402 if (*handle == DMA_MAPPING_ERROR)
1403 goto err_mapping;
1405 return addr;
1407 err_mapping:
1408 __free_from_pool(addr, size);
1409 return NULL;
1412 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1413 dma_addr_t handle, size_t size, int coherent_flag)
1415 __iommu_remove_mapping(dev, handle, size);
1416 if (coherent_flag == COHERENT)
1417 __dma_free_buffer(virt_to_page(cpu_addr), size);
1418 else
1419 __free_from_pool(cpu_addr, size);
1422 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1423 dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1424 int coherent_flag)
1426 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1427 struct page **pages;
1428 void *addr = NULL;
1430 *handle = DMA_MAPPING_ERROR;
1431 size = PAGE_ALIGN(size);
1433 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp))
1434 return __iommu_alloc_simple(dev, size, gfp, handle,
1435 coherent_flag, attrs);
1438 * Following is a work-around (a.k.a. hack) to prevent pages
1439 * with __GFP_COMP being passed to split_page() which cannot
1440 * handle them. The real problem is that this flag probably
1441 * should be 0 on ARM as it is not supported on this
1442 * platform; see CONFIG_HUGETLBFS.
1444 gfp &= ~(__GFP_COMP);
1446 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1447 if (!pages)
1448 return NULL;
1450 *handle = __iommu_create_mapping(dev, pages, size, attrs);
1451 if (*handle == DMA_MAPPING_ERROR)
1452 goto err_buffer;
1454 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1455 return pages;
1457 addr = dma_common_pages_remap(pages, size, prot,
1458 __builtin_return_address(0));
1459 if (!addr)
1460 goto err_mapping;
1462 return addr;
1464 err_mapping:
1465 __iommu_remove_mapping(dev, *handle, size);
1466 err_buffer:
1467 __iommu_free_buffer(dev, pages, size, attrs);
1468 return NULL;
1471 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1472 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1474 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1477 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1478 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1480 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1483 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1484 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1485 unsigned long attrs)
1487 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1488 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1489 int err;
1491 if (!pages)
1492 return -ENXIO;
1494 if (vma->vm_pgoff >= nr_pages)
1495 return -ENXIO;
1497 err = vm_map_pages(vma, pages, nr_pages);
1498 if (err)
1499 pr_err("Remapping memory failed: %d\n", err);
1501 return err;
1503 static int arm_iommu_mmap_attrs(struct device *dev,
1504 struct vm_area_struct *vma, void *cpu_addr,
1505 dma_addr_t dma_addr, size_t size, unsigned long attrs)
1507 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1509 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1512 static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1513 struct vm_area_struct *vma, void *cpu_addr,
1514 dma_addr_t dma_addr, size_t size, unsigned long attrs)
1516 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1520 * free a page as defined by the above mapping.
1521 * Must not be called with IRQs disabled.
1523 static void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1524 dma_addr_t handle, unsigned long attrs, int coherent_flag)
1526 struct page **pages;
1527 size = PAGE_ALIGN(size);
1529 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1530 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1531 return;
1534 pages = __iommu_get_pages(cpu_addr, attrs);
1535 if (!pages) {
1536 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1537 return;
1540 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1541 dma_common_free_remap(cpu_addr, size);
1543 __iommu_remove_mapping(dev, handle, size);
1544 __iommu_free_buffer(dev, pages, size, attrs);
1547 static void arm_iommu_free_attrs(struct device *dev, size_t size,
1548 void *cpu_addr, dma_addr_t handle,
1549 unsigned long attrs)
1551 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1554 static void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1555 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1557 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1560 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1561 void *cpu_addr, dma_addr_t dma_addr,
1562 size_t size, unsigned long attrs)
1564 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1565 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1567 if (!pages)
1568 return -ENXIO;
1570 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1571 GFP_KERNEL);
1575 * Map a part of the scatter-gather list into contiguous io address space
1577 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1578 size_t size, dma_addr_t *handle,
1579 enum dma_data_direction dir, unsigned long attrs,
1580 bool is_coherent)
1582 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1583 dma_addr_t iova, iova_base;
1584 int ret = 0;
1585 unsigned int count;
1586 struct scatterlist *s;
1587 int prot;
1589 size = PAGE_ALIGN(size);
1590 *handle = DMA_MAPPING_ERROR;
1592 iova_base = iova = __alloc_iova(mapping, size);
1593 if (iova == DMA_MAPPING_ERROR)
1594 return -ENOMEM;
1596 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1597 phys_addr_t phys = page_to_phys(sg_page(s));
1598 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1600 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1601 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1603 prot = __dma_info_to_prot(dir, attrs);
1605 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1606 if (ret < 0)
1607 goto fail;
1608 count += len >> PAGE_SHIFT;
1609 iova += len;
1611 *handle = iova_base;
1613 return 0;
1614 fail:
1615 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1616 __free_iova(mapping, iova_base, size);
1617 return ret;
1620 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1621 enum dma_data_direction dir, unsigned long attrs,
1622 bool is_coherent)
1624 struct scatterlist *s = sg, *dma = sg, *start = sg;
1625 int i, count = 0;
1626 unsigned int offset = s->offset;
1627 unsigned int size = s->offset + s->length;
1628 unsigned int max = dma_get_max_seg_size(dev);
1630 for (i = 1; i < nents; i++) {
1631 s = sg_next(s);
1633 s->dma_address = DMA_MAPPING_ERROR;
1634 s->dma_length = 0;
1636 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1637 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1638 dir, attrs, is_coherent) < 0)
1639 goto bad_mapping;
1641 dma->dma_address += offset;
1642 dma->dma_length = size - offset;
1644 size = offset = s->offset;
1645 start = s;
1646 dma = sg_next(dma);
1647 count += 1;
1649 size += s->length;
1651 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1652 is_coherent) < 0)
1653 goto bad_mapping;
1655 dma->dma_address += offset;
1656 dma->dma_length = size - offset;
1658 return count+1;
1660 bad_mapping:
1661 for_each_sg(sg, s, count, i)
1662 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1663 return 0;
1667 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1668 * @dev: valid struct device pointer
1669 * @sg: list of buffers
1670 * @nents: number of buffers to map
1671 * @dir: DMA transfer direction
1673 * Map a set of i/o coherent buffers described by scatterlist in streaming
1674 * mode for DMA. The scatter gather list elements are merged together (if
1675 * possible) and tagged with the appropriate dma address and length. They are
1676 * obtained via sg_dma_{address,length}.
1678 static int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1679 int nents, enum dma_data_direction dir, unsigned long attrs)
1681 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1685 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1686 * @dev: valid struct device pointer
1687 * @sg: list of buffers
1688 * @nents: number of buffers to map
1689 * @dir: DMA transfer direction
1691 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1692 * The scatter gather list elements are merged together (if possible) and
1693 * tagged with the appropriate dma address and length. They are obtained via
1694 * sg_dma_{address,length}.
1696 static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1697 int nents, enum dma_data_direction dir, unsigned long attrs)
1699 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1702 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1703 int nents, enum dma_data_direction dir,
1704 unsigned long attrs, bool is_coherent)
1706 struct scatterlist *s;
1707 int i;
1709 for_each_sg(sg, s, nents, i) {
1710 if (sg_dma_len(s))
1711 __iommu_remove_mapping(dev, sg_dma_address(s),
1712 sg_dma_len(s));
1713 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1714 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1715 s->length, dir);
1720 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1721 * @dev: valid struct device pointer
1722 * @sg: list of buffers
1723 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1724 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1726 * Unmap a set of streaming mode DMA translations. Again, CPU access
1727 * rules concerning calls here are the same as for dma_unmap_single().
1729 static void arm_coherent_iommu_unmap_sg(struct device *dev,
1730 struct scatterlist *sg, int nents, enum dma_data_direction dir,
1731 unsigned long attrs)
1733 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1737 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1738 * @dev: valid struct device pointer
1739 * @sg: list of buffers
1740 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1741 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1743 * Unmap a set of streaming mode DMA translations. Again, CPU access
1744 * rules concerning calls here are the same as for dma_unmap_single().
1746 static void arm_iommu_unmap_sg(struct device *dev,
1747 struct scatterlist *sg, int nents,
1748 enum dma_data_direction dir,
1749 unsigned long attrs)
1751 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1755 * arm_iommu_sync_sg_for_cpu
1756 * @dev: valid struct device pointer
1757 * @sg: list of buffers
1758 * @nents: number of buffers to map (returned from dma_map_sg)
1759 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1761 static void arm_iommu_sync_sg_for_cpu(struct device *dev,
1762 struct scatterlist *sg,
1763 int nents, enum dma_data_direction dir)
1765 struct scatterlist *s;
1766 int i;
1768 for_each_sg(sg, s, nents, i)
1769 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1774 * arm_iommu_sync_sg_for_device
1775 * @dev: valid struct device pointer
1776 * @sg: list of buffers
1777 * @nents: number of buffers to map (returned from dma_map_sg)
1778 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1780 static void arm_iommu_sync_sg_for_device(struct device *dev,
1781 struct scatterlist *sg,
1782 int nents, enum dma_data_direction dir)
1784 struct scatterlist *s;
1785 int i;
1787 for_each_sg(sg, s, nents, i)
1788 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1793 * arm_coherent_iommu_map_page
1794 * @dev: valid struct device pointer
1795 * @page: page that buffer resides in
1796 * @offset: offset into page for start of buffer
1797 * @size: size of buffer to map
1798 * @dir: DMA transfer direction
1800 * Coherent IOMMU aware version of arm_dma_map_page()
1802 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1803 unsigned long offset, size_t size, enum dma_data_direction dir,
1804 unsigned long attrs)
1806 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1807 dma_addr_t dma_addr;
1808 int ret, prot, len = PAGE_ALIGN(size + offset);
1810 dma_addr = __alloc_iova(mapping, len);
1811 if (dma_addr == DMA_MAPPING_ERROR)
1812 return dma_addr;
1814 prot = __dma_info_to_prot(dir, attrs);
1816 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1817 if (ret < 0)
1818 goto fail;
1820 return dma_addr + offset;
1821 fail:
1822 __free_iova(mapping, dma_addr, len);
1823 return DMA_MAPPING_ERROR;
1827 * arm_iommu_map_page
1828 * @dev: valid struct device pointer
1829 * @page: page that buffer resides in
1830 * @offset: offset into page for start of buffer
1831 * @size: size of buffer to map
1832 * @dir: DMA transfer direction
1834 * IOMMU aware version of arm_dma_map_page()
1836 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1837 unsigned long offset, size_t size, enum dma_data_direction dir,
1838 unsigned long attrs)
1840 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1841 __dma_page_cpu_to_dev(page, offset, size, dir);
1843 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1847 * arm_coherent_iommu_unmap_page
1848 * @dev: valid struct device pointer
1849 * @handle: DMA address of buffer
1850 * @size: size of buffer (same as passed to dma_map_page)
1851 * @dir: DMA transfer direction (same as passed to dma_map_page)
1853 * Coherent IOMMU aware version of arm_dma_unmap_page()
1855 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1856 size_t size, enum dma_data_direction dir, unsigned long attrs)
1858 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1859 dma_addr_t iova = handle & PAGE_MASK;
1860 int offset = handle & ~PAGE_MASK;
1861 int len = PAGE_ALIGN(size + offset);
1863 if (!iova)
1864 return;
1866 iommu_unmap(mapping->domain, iova, len);
1867 __free_iova(mapping, iova, len);
1871 * arm_iommu_unmap_page
1872 * @dev: valid struct device pointer
1873 * @handle: DMA address of buffer
1874 * @size: size of buffer (same as passed to dma_map_page)
1875 * @dir: DMA transfer direction (same as passed to dma_map_page)
1877 * IOMMU aware version of arm_dma_unmap_page()
1879 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1880 size_t size, enum dma_data_direction dir, unsigned long attrs)
1882 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1883 dma_addr_t iova = handle & PAGE_MASK;
1884 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1885 int offset = handle & ~PAGE_MASK;
1886 int len = PAGE_ALIGN(size + offset);
1888 if (!iova)
1889 return;
1891 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1892 __dma_page_dev_to_cpu(page, offset, size, dir);
1894 iommu_unmap(mapping->domain, iova, len);
1895 __free_iova(mapping, iova, len);
1899 * arm_iommu_map_resource - map a device resource for DMA
1900 * @dev: valid struct device pointer
1901 * @phys_addr: physical address of resource
1902 * @size: size of resource to map
1903 * @dir: DMA transfer direction
1905 static dma_addr_t arm_iommu_map_resource(struct device *dev,
1906 phys_addr_t phys_addr, size_t size,
1907 enum dma_data_direction dir, unsigned long attrs)
1909 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1910 dma_addr_t dma_addr;
1911 int ret, prot;
1912 phys_addr_t addr = phys_addr & PAGE_MASK;
1913 unsigned int offset = phys_addr & ~PAGE_MASK;
1914 size_t len = PAGE_ALIGN(size + offset);
1916 dma_addr = __alloc_iova(mapping, len);
1917 if (dma_addr == DMA_MAPPING_ERROR)
1918 return dma_addr;
1920 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1922 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
1923 if (ret < 0)
1924 goto fail;
1926 return dma_addr + offset;
1927 fail:
1928 __free_iova(mapping, dma_addr, len);
1929 return DMA_MAPPING_ERROR;
1933 * arm_iommu_unmap_resource - unmap a device DMA resource
1934 * @dev: valid struct device pointer
1935 * @dma_handle: DMA address to resource
1936 * @size: size of resource to map
1937 * @dir: DMA transfer direction
1939 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1940 size_t size, enum dma_data_direction dir,
1941 unsigned long attrs)
1943 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1944 dma_addr_t iova = dma_handle & PAGE_MASK;
1945 unsigned int offset = dma_handle & ~PAGE_MASK;
1946 size_t len = PAGE_ALIGN(size + offset);
1948 if (!iova)
1949 return;
1951 iommu_unmap(mapping->domain, iova, len);
1952 __free_iova(mapping, iova, len);
1955 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1956 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1958 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1959 dma_addr_t iova = handle & PAGE_MASK;
1960 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1961 unsigned int offset = handle & ~PAGE_MASK;
1963 if (!iova)
1964 return;
1966 __dma_page_dev_to_cpu(page, offset, size, dir);
1969 static void arm_iommu_sync_single_for_device(struct device *dev,
1970 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1972 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1973 dma_addr_t iova = handle & PAGE_MASK;
1974 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1975 unsigned int offset = handle & ~PAGE_MASK;
1977 if (!iova)
1978 return;
1980 __dma_page_cpu_to_dev(page, offset, size, dir);
1983 static const struct dma_map_ops iommu_ops = {
1984 .alloc = arm_iommu_alloc_attrs,
1985 .free = arm_iommu_free_attrs,
1986 .mmap = arm_iommu_mmap_attrs,
1987 .get_sgtable = arm_iommu_get_sgtable,
1989 .map_page = arm_iommu_map_page,
1990 .unmap_page = arm_iommu_unmap_page,
1991 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1992 .sync_single_for_device = arm_iommu_sync_single_for_device,
1994 .map_sg = arm_iommu_map_sg,
1995 .unmap_sg = arm_iommu_unmap_sg,
1996 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1997 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1999 .map_resource = arm_iommu_map_resource,
2000 .unmap_resource = arm_iommu_unmap_resource,
2002 .dma_supported = arm_dma_supported,
2005 static const struct dma_map_ops iommu_coherent_ops = {
2006 .alloc = arm_coherent_iommu_alloc_attrs,
2007 .free = arm_coherent_iommu_free_attrs,
2008 .mmap = arm_coherent_iommu_mmap_attrs,
2009 .get_sgtable = arm_iommu_get_sgtable,
2011 .map_page = arm_coherent_iommu_map_page,
2012 .unmap_page = arm_coherent_iommu_unmap_page,
2014 .map_sg = arm_coherent_iommu_map_sg,
2015 .unmap_sg = arm_coherent_iommu_unmap_sg,
2017 .map_resource = arm_iommu_map_resource,
2018 .unmap_resource = arm_iommu_unmap_resource,
2020 .dma_supported = arm_dma_supported,
2024 * arm_iommu_create_mapping
2025 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2026 * @base: start address of the valid IO address space
2027 * @size: maximum size of the valid IO address space
2029 * Creates a mapping structure which holds information about used/unused
2030 * IO address ranges, which is required to perform memory allocation and
2031 * mapping with IOMMU aware functions.
2033 * The client device need to be attached to the mapping with
2034 * arm_iommu_attach_device function.
2036 struct dma_iommu_mapping *
2037 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2039 unsigned int bits = size >> PAGE_SHIFT;
2040 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2041 struct dma_iommu_mapping *mapping;
2042 int extensions = 1;
2043 int err = -ENOMEM;
2045 /* currently only 32-bit DMA address space is supported */
2046 if (size > DMA_BIT_MASK(32) + 1)
2047 return ERR_PTR(-ERANGE);
2049 if (!bitmap_size)
2050 return ERR_PTR(-EINVAL);
2052 if (bitmap_size > PAGE_SIZE) {
2053 extensions = bitmap_size / PAGE_SIZE;
2054 bitmap_size = PAGE_SIZE;
2057 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2058 if (!mapping)
2059 goto err;
2061 mapping->bitmap_size = bitmap_size;
2062 mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
2063 GFP_KERNEL);
2064 if (!mapping->bitmaps)
2065 goto err2;
2067 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2068 if (!mapping->bitmaps[0])
2069 goto err3;
2071 mapping->nr_bitmaps = 1;
2072 mapping->extensions = extensions;
2073 mapping->base = base;
2074 mapping->bits = BITS_PER_BYTE * bitmap_size;
2076 spin_lock_init(&mapping->lock);
2078 mapping->domain = iommu_domain_alloc(bus);
2079 if (!mapping->domain)
2080 goto err4;
2082 kref_init(&mapping->kref);
2083 return mapping;
2084 err4:
2085 kfree(mapping->bitmaps[0]);
2086 err3:
2087 kfree(mapping->bitmaps);
2088 err2:
2089 kfree(mapping);
2090 err:
2091 return ERR_PTR(err);
2093 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2095 static void release_iommu_mapping(struct kref *kref)
2097 int i;
2098 struct dma_iommu_mapping *mapping =
2099 container_of(kref, struct dma_iommu_mapping, kref);
2101 iommu_domain_free(mapping->domain);
2102 for (i = 0; i < mapping->nr_bitmaps; i++)
2103 kfree(mapping->bitmaps[i]);
2104 kfree(mapping->bitmaps);
2105 kfree(mapping);
2108 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2110 int next_bitmap;
2112 if (mapping->nr_bitmaps >= mapping->extensions)
2113 return -EINVAL;
2115 next_bitmap = mapping->nr_bitmaps;
2116 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2117 GFP_ATOMIC);
2118 if (!mapping->bitmaps[next_bitmap])
2119 return -ENOMEM;
2121 mapping->nr_bitmaps++;
2123 return 0;
2126 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2128 if (mapping)
2129 kref_put(&mapping->kref, release_iommu_mapping);
2131 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2133 static int __arm_iommu_attach_device(struct device *dev,
2134 struct dma_iommu_mapping *mapping)
2136 int err;
2138 err = iommu_attach_device(mapping->domain, dev);
2139 if (err)
2140 return err;
2142 kref_get(&mapping->kref);
2143 to_dma_iommu_mapping(dev) = mapping;
2145 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2146 return 0;
2150 * arm_iommu_attach_device
2151 * @dev: valid struct device pointer
2152 * @mapping: io address space mapping structure (returned from
2153 * arm_iommu_create_mapping)
2155 * Attaches specified io address space mapping to the provided device.
2156 * This replaces the dma operations (dma_map_ops pointer) with the
2157 * IOMMU aware version.
2159 * More than one client might be attached to the same io address space
2160 * mapping.
2162 int arm_iommu_attach_device(struct device *dev,
2163 struct dma_iommu_mapping *mapping)
2165 int err;
2167 err = __arm_iommu_attach_device(dev, mapping);
2168 if (err)
2169 return err;
2171 set_dma_ops(dev, &iommu_ops);
2172 return 0;
2174 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2177 * arm_iommu_detach_device
2178 * @dev: valid struct device pointer
2180 * Detaches the provided device from a previously attached map.
2181 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
2183 void arm_iommu_detach_device(struct device *dev)
2185 struct dma_iommu_mapping *mapping;
2187 mapping = to_dma_iommu_mapping(dev);
2188 if (!mapping) {
2189 dev_warn(dev, "Not attached\n");
2190 return;
2193 iommu_detach_device(mapping->domain, dev);
2194 kref_put(&mapping->kref, release_iommu_mapping);
2195 to_dma_iommu_mapping(dev) = NULL;
2196 set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent));
2198 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2200 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2202 static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2204 return coherent ? &iommu_coherent_ops : &iommu_ops;
2207 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2208 const struct iommu_ops *iommu)
2210 struct dma_iommu_mapping *mapping;
2212 if (!iommu)
2213 return false;
2215 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2216 if (IS_ERR(mapping)) {
2217 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2218 size, dev_name(dev));
2219 return false;
2222 if (__arm_iommu_attach_device(dev, mapping)) {
2223 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2224 dev_name(dev));
2225 arm_iommu_release_mapping(mapping);
2226 return false;
2229 return true;
2232 static void arm_teardown_iommu_dma_ops(struct device *dev)
2234 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2236 if (!mapping)
2237 return;
2239 arm_iommu_detach_device(dev);
2240 arm_iommu_release_mapping(mapping);
2243 #else
2245 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2246 const struct iommu_ops *iommu)
2248 return false;
2251 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2253 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2255 #endif /* CONFIG_ARM_DMA_USE_IOMMU */
2257 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2258 const struct iommu_ops *iommu, bool coherent)
2260 const struct dma_map_ops *dma_ops;
2262 dev->archdata.dma_coherent = coherent;
2263 #ifdef CONFIG_SWIOTLB
2264 dev->dma_coherent = coherent;
2265 #endif
2268 * Don't override the dma_ops if they have already been set. Ideally
2269 * this should be the only location where dma_ops are set, remove this
2270 * check when all other callers of set_dma_ops will have disappeared.
2272 if (dev->dma_ops)
2273 return;
2275 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2276 dma_ops = arm_get_iommu_dma_map_ops(coherent);
2277 else
2278 dma_ops = arm_get_dma_map_ops(coherent);
2280 set_dma_ops(dev, dma_ops);
2282 #ifdef CONFIG_XEN
2283 if (xen_initial_domain())
2284 dev->dma_ops = &xen_swiotlb_dma_ops;
2285 #endif
2286 dev->archdata.dma_ops_setup = true;
2289 void arch_teardown_dma_ops(struct device *dev)
2291 if (!dev->archdata.dma_ops_setup)
2292 return;
2294 arm_teardown_iommu_dma_ops(dev);
2295 /* Let arch_setup_dma_ops() start again from scratch upon re-probe */
2296 set_dma_ops(dev, NULL);
2299 #ifdef CONFIG_SWIOTLB
2300 void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
2301 enum dma_data_direction dir)
2303 __dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2304 size, dir);
2307 void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
2308 enum dma_data_direction dir)
2310 __dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2311 size, dir);
2314 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
2315 gfp_t gfp, unsigned long attrs)
2317 return __dma_alloc(dev, size, dma_handle, gfp,
2318 __get_dma_pgprot(attrs, PAGE_KERNEL), false,
2319 attrs, __builtin_return_address(0));
2322 void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
2323 dma_addr_t dma_handle, unsigned long attrs)
2325 __arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
2327 #endif /* CONFIG_SWIOTLB */