1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/arch/arm/mm/dma-mapping.c
5 * Copyright (C) 2000-2004 Russell King
7 * DMA uncached mapping support.
9 #include <linux/module.h>
11 #include <linux/genalloc.h>
12 #include <linux/gfp.h>
13 #include <linux/errno.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/device.h>
17 #include <linux/dma-direct.h>
18 #include <linux/dma-map-ops.h>
19 #include <linux/highmem.h>
20 #include <linux/memblock.h>
21 #include <linux/slab.h>
22 #include <linux/iommu.h>
24 #include <linux/vmalloc.h>
25 #include <linux/sizes.h>
26 #include <linux/cma.h>
28 #include <asm/memory.h>
29 #include <asm/highmem.h>
30 #include <asm/cacheflush.h>
31 #include <asm/tlbflush.h>
32 #include <asm/mach/arch.h>
33 #include <asm/dma-iommu.h>
34 #include <asm/mach/map.h>
35 #include <asm/system_info.h>
36 #include <xen/swiotlb-xen.h>
41 struct arm_dma_alloc_args
{
51 struct arm_dma_free_args
{
62 struct arm_dma_allocator
{
63 void *(*alloc
)(struct arm_dma_alloc_args
*args
,
64 struct page
**ret_page
);
65 void (*free
)(struct arm_dma_free_args
*args
);
68 struct arm_dma_buffer
{
69 struct list_head list
;
71 struct arm_dma_allocator
*allocator
;
74 static LIST_HEAD(arm_dma_bufs
);
75 static DEFINE_SPINLOCK(arm_dma_bufs_lock
);
77 static struct arm_dma_buffer
*arm_dma_buffer_find(void *virt
)
79 struct arm_dma_buffer
*buf
, *found
= NULL
;
82 spin_lock_irqsave(&arm_dma_bufs_lock
, flags
);
83 list_for_each_entry(buf
, &arm_dma_bufs
, list
) {
84 if (buf
->virt
== virt
) {
90 spin_unlock_irqrestore(&arm_dma_bufs_lock
, flags
);
95 * The DMA API is built upon the notion of "buffer ownership". A buffer
96 * is either exclusively owned by the CPU (and therefore may be accessed
97 * by it) or exclusively owned by the DMA device. These helper functions
98 * represent the transitions between these two ownership states.
100 * Note, however, that on later ARMs, this notion does not work due to
101 * speculative prefetches. We model our approach on the assumption that
102 * the CPU does do speculative prefetches, which means we clean caches
103 * before transfers and delay cache invalidation until transfer completion.
106 static void __dma_page_cpu_to_dev(struct page
*, unsigned long,
107 size_t, enum dma_data_direction
);
108 static void __dma_page_dev_to_cpu(struct page
*, unsigned long,
109 size_t, enum dma_data_direction
);
112 * arm_dma_map_page - map a portion of a page for streaming DMA
113 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
114 * @page: page that buffer resides in
115 * @offset: offset into page for start of buffer
116 * @size: size of buffer to map
117 * @dir: DMA transfer direction
119 * Ensure that any data held in the cache is appropriately discarded
122 * The device owns this memory once this call has completed. The CPU
123 * can regain ownership by calling dma_unmap_page().
125 static dma_addr_t
arm_dma_map_page(struct device
*dev
, struct page
*page
,
126 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
129 if ((attrs
& DMA_ATTR_SKIP_CPU_SYNC
) == 0)
130 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
131 return pfn_to_dma(dev
, page_to_pfn(page
)) + offset
;
134 static dma_addr_t
arm_coherent_dma_map_page(struct device
*dev
, struct page
*page
,
135 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
138 return pfn_to_dma(dev
, page_to_pfn(page
)) + offset
;
142 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
143 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
144 * @handle: DMA address of buffer
145 * @size: size of buffer (same as passed to dma_map_page)
146 * @dir: DMA transfer direction (same as passed to dma_map_page)
148 * Unmap a page streaming mode DMA translation. The handle and size
149 * must match what was provided in the previous dma_map_page() call.
150 * All other usages are undefined.
152 * After this call, reads by the CPU to the buffer are guaranteed to see
153 * whatever the device wrote there.
155 static void arm_dma_unmap_page(struct device
*dev
, dma_addr_t handle
,
156 size_t size
, enum dma_data_direction dir
, unsigned long attrs
)
158 if ((attrs
& DMA_ATTR_SKIP_CPU_SYNC
) == 0)
159 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev
, handle
)),
160 handle
& ~PAGE_MASK
, size
, dir
);
163 static void arm_dma_sync_single_for_cpu(struct device
*dev
,
164 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
166 unsigned int offset
= handle
& (PAGE_SIZE
- 1);
167 struct page
*page
= pfn_to_page(dma_to_pfn(dev
, handle
-offset
));
168 __dma_page_dev_to_cpu(page
, offset
, size
, dir
);
171 static void arm_dma_sync_single_for_device(struct device
*dev
,
172 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
174 unsigned int offset
= handle
& (PAGE_SIZE
- 1);
175 struct page
*page
= pfn_to_page(dma_to_pfn(dev
, handle
-offset
));
176 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
180 * Return whether the given device DMA address mask can be supported
181 * properly. For example, if your device can only drive the low 24-bits
182 * during bus mastering, then you would pass 0x00ffffff as the mask
185 static int arm_dma_supported(struct device
*dev
, u64 mask
)
187 unsigned long max_dma_pfn
= min(max_pfn
- 1, arm_dma_pfn_limit
);
190 * Translate the device's DMA mask to a PFN limit. This
191 * PFN number includes the page which we can DMA to.
193 return dma_to_pfn(dev
, mask
) >= max_dma_pfn
;
196 const struct dma_map_ops arm_dma_ops
= {
197 .alloc
= arm_dma_alloc
,
198 .free
= arm_dma_free
,
199 .alloc_pages
= dma_direct_alloc_pages
,
200 .free_pages
= dma_direct_free_pages
,
201 .mmap
= arm_dma_mmap
,
202 .get_sgtable
= arm_dma_get_sgtable
,
203 .map_page
= arm_dma_map_page
,
204 .unmap_page
= arm_dma_unmap_page
,
205 .map_sg
= arm_dma_map_sg
,
206 .unmap_sg
= arm_dma_unmap_sg
,
207 .map_resource
= dma_direct_map_resource
,
208 .sync_single_for_cpu
= arm_dma_sync_single_for_cpu
,
209 .sync_single_for_device
= arm_dma_sync_single_for_device
,
210 .sync_sg_for_cpu
= arm_dma_sync_sg_for_cpu
,
211 .sync_sg_for_device
= arm_dma_sync_sg_for_device
,
212 .dma_supported
= arm_dma_supported
,
213 .get_required_mask
= dma_direct_get_required_mask
,
215 EXPORT_SYMBOL(arm_dma_ops
);
217 static void *arm_coherent_dma_alloc(struct device
*dev
, size_t size
,
218 dma_addr_t
*handle
, gfp_t gfp
, unsigned long attrs
);
219 static void arm_coherent_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
220 dma_addr_t handle
, unsigned long attrs
);
221 static int arm_coherent_dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
222 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
223 unsigned long attrs
);
225 const struct dma_map_ops arm_coherent_dma_ops
= {
226 .alloc
= arm_coherent_dma_alloc
,
227 .free
= arm_coherent_dma_free
,
228 .alloc_pages
= dma_direct_alloc_pages
,
229 .free_pages
= dma_direct_free_pages
,
230 .mmap
= arm_coherent_dma_mmap
,
231 .get_sgtable
= arm_dma_get_sgtable
,
232 .map_page
= arm_coherent_dma_map_page
,
233 .map_sg
= arm_dma_map_sg
,
234 .map_resource
= dma_direct_map_resource
,
235 .dma_supported
= arm_dma_supported
,
236 .get_required_mask
= dma_direct_get_required_mask
,
238 EXPORT_SYMBOL(arm_coherent_dma_ops
);
240 static void __dma_clear_buffer(struct page
*page
, size_t size
, int coherent_flag
)
243 * Ensure that the allocated pages are zeroed, and that any data
244 * lurking in the kernel direct-mapped region is invalidated.
246 if (PageHighMem(page
)) {
247 phys_addr_t base
= __pfn_to_phys(page_to_pfn(page
));
248 phys_addr_t end
= base
+ size
;
250 void *ptr
= kmap_atomic(page
);
251 memset(ptr
, 0, PAGE_SIZE
);
252 if (coherent_flag
!= COHERENT
)
253 dmac_flush_range(ptr
, ptr
+ PAGE_SIZE
);
258 if (coherent_flag
!= COHERENT
)
259 outer_flush_range(base
, end
);
261 void *ptr
= page_address(page
);
262 memset(ptr
, 0, size
);
263 if (coherent_flag
!= COHERENT
) {
264 dmac_flush_range(ptr
, ptr
+ size
);
265 outer_flush_range(__pa(ptr
), __pa(ptr
) + size
);
271 * Allocate a DMA buffer for 'dev' of size 'size' using the
272 * specified gfp mask. Note that 'size' must be page aligned.
274 static struct page
*__dma_alloc_buffer(struct device
*dev
, size_t size
,
275 gfp_t gfp
, int coherent_flag
)
277 unsigned long order
= get_order(size
);
278 struct page
*page
, *p
, *e
;
280 page
= alloc_pages(gfp
, order
);
285 * Now split the huge page and free the excess pages
287 split_page(page
, order
);
288 for (p
= page
+ (size
>> PAGE_SHIFT
), e
= page
+ (1 << order
); p
< e
; p
++)
291 __dma_clear_buffer(page
, size
, coherent_flag
);
297 * Free a DMA buffer. 'size' must be page aligned.
299 static void __dma_free_buffer(struct page
*page
, size_t size
)
301 struct page
*e
= page
+ (size
>> PAGE_SHIFT
);
309 static void *__alloc_from_contiguous(struct device
*dev
, size_t size
,
310 pgprot_t prot
, struct page
**ret_page
,
311 const void *caller
, bool want_vaddr
,
312 int coherent_flag
, gfp_t gfp
);
314 static void *__alloc_remap_buffer(struct device
*dev
, size_t size
, gfp_t gfp
,
315 pgprot_t prot
, struct page
**ret_page
,
316 const void *caller
, bool want_vaddr
);
318 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
319 static struct gen_pool
*atomic_pool __ro_after_init
;
321 static size_t atomic_pool_size __initdata
= DEFAULT_DMA_COHERENT_POOL_SIZE
;
323 static int __init
early_coherent_pool(char *p
)
325 atomic_pool_size
= memparse(p
, &p
);
328 early_param("coherent_pool", early_coherent_pool
);
331 * Initialise the coherent pool for atomic allocations.
333 static int __init
atomic_pool_init(void)
335 pgprot_t prot
= pgprot_dmacoherent(PAGE_KERNEL
);
336 gfp_t gfp
= GFP_KERNEL
| GFP_DMA
;
340 atomic_pool
= gen_pool_create(PAGE_SHIFT
, -1);
344 * The atomic pool is only used for non-coherent allocations
345 * so we must pass NORMAL for coherent_flag.
347 if (dev_get_cma_area(NULL
))
348 ptr
= __alloc_from_contiguous(NULL
, atomic_pool_size
, prot
,
349 &page
, atomic_pool_init
, true, NORMAL
,
352 ptr
= __alloc_remap_buffer(NULL
, atomic_pool_size
, gfp
, prot
,
353 &page
, atomic_pool_init
, true);
357 ret
= gen_pool_add_virt(atomic_pool
, (unsigned long)ptr
,
359 atomic_pool_size
, -1);
361 goto destroy_genpool
;
363 gen_pool_set_algo(atomic_pool
,
364 gen_pool_first_fit_order_align
,
366 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
367 atomic_pool_size
/ 1024);
372 gen_pool_destroy(atomic_pool
);
375 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
376 atomic_pool_size
/ 1024);
380 * CMA is activated by core_initcall, so we must be called after it.
382 postcore_initcall(atomic_pool_init
);
384 struct dma_contig_early_reserve
{
389 static struct dma_contig_early_reserve dma_mmu_remap
[MAX_CMA_AREAS
] __initdata
;
391 static int dma_mmu_remap_num __initdata
;
393 void __init
dma_contiguous_early_fixup(phys_addr_t base
, unsigned long size
)
395 dma_mmu_remap
[dma_mmu_remap_num
].base
= base
;
396 dma_mmu_remap
[dma_mmu_remap_num
].size
= size
;
400 void __init
dma_contiguous_remap(void)
403 for (i
= 0; i
< dma_mmu_remap_num
; i
++) {
404 phys_addr_t start
= dma_mmu_remap
[i
].base
;
405 phys_addr_t end
= start
+ dma_mmu_remap
[i
].size
;
409 if (end
> arm_lowmem_limit
)
410 end
= arm_lowmem_limit
;
414 map
.pfn
= __phys_to_pfn(start
);
415 map
.virtual = __phys_to_virt(start
);
416 map
.length
= end
- start
;
417 map
.type
= MT_MEMORY_DMA_READY
;
420 * Clear previous low-memory mapping to ensure that the
421 * TLB does not see any conflicting entries, then flush
422 * the TLB of the old entries before creating new mappings.
424 * This ensures that any speculatively loaded TLB entries
425 * (even though they may be rare) can not cause any problems,
426 * and ensures that this code is architecturally compliant.
428 for (addr
= __phys_to_virt(start
); addr
< __phys_to_virt(end
);
430 pmd_clear(pmd_off_k(addr
));
432 flush_tlb_kernel_range(__phys_to_virt(start
),
433 __phys_to_virt(end
));
435 iotable_init(&map
, 1);
439 static int __dma_update_pte(pte_t
*pte
, unsigned long addr
, void *data
)
441 struct page
*page
= virt_to_page(addr
);
442 pgprot_t prot
= *(pgprot_t
*)data
;
444 set_pte_ext(pte
, mk_pte(page
, prot
), 0);
448 static void __dma_remap(struct page
*page
, size_t size
, pgprot_t prot
)
450 unsigned long start
= (unsigned long) page_address(page
);
451 unsigned end
= start
+ size
;
453 apply_to_page_range(&init_mm
, start
, size
, __dma_update_pte
, &prot
);
454 flush_tlb_kernel_range(start
, end
);
457 static void *__alloc_remap_buffer(struct device
*dev
, size_t size
, gfp_t gfp
,
458 pgprot_t prot
, struct page
**ret_page
,
459 const void *caller
, bool want_vaddr
)
464 * __alloc_remap_buffer is only called when the device is
467 page
= __dma_alloc_buffer(dev
, size
, gfp
, NORMAL
);
473 ptr
= dma_common_contiguous_remap(page
, size
, prot
, caller
);
475 __dma_free_buffer(page
, size
);
484 static void *__alloc_from_pool(size_t size
, struct page
**ret_page
)
490 WARN(1, "coherent pool not initialised!\n");
494 val
= gen_pool_alloc(atomic_pool
, size
);
496 phys_addr_t phys
= gen_pool_virt_to_phys(atomic_pool
, val
);
498 *ret_page
= phys_to_page(phys
);
505 static bool __in_atomic_pool(void *start
, size_t size
)
507 return gen_pool_has_addr(atomic_pool
, (unsigned long)start
, size
);
510 static int __free_from_pool(void *start
, size_t size
)
512 if (!__in_atomic_pool(start
, size
))
515 gen_pool_free(atomic_pool
, (unsigned long)start
, size
);
520 static void *__alloc_from_contiguous(struct device
*dev
, size_t size
,
521 pgprot_t prot
, struct page
**ret_page
,
522 const void *caller
, bool want_vaddr
,
523 int coherent_flag
, gfp_t gfp
)
525 unsigned long order
= get_order(size
);
526 size_t count
= size
>> PAGE_SHIFT
;
530 page
= dma_alloc_from_contiguous(dev
, count
, order
, gfp
& __GFP_NOWARN
);
534 __dma_clear_buffer(page
, size
, coherent_flag
);
539 if (PageHighMem(page
)) {
540 ptr
= dma_common_contiguous_remap(page
, size
, prot
, caller
);
542 dma_release_from_contiguous(dev
, page
, count
);
546 __dma_remap(page
, size
, prot
);
547 ptr
= page_address(page
);
555 static void __free_from_contiguous(struct device
*dev
, struct page
*page
,
556 void *cpu_addr
, size_t size
, bool want_vaddr
)
559 if (PageHighMem(page
))
560 dma_common_free_remap(cpu_addr
, size
);
562 __dma_remap(page
, size
, PAGE_KERNEL
);
564 dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
);
567 static inline pgprot_t
__get_dma_pgprot(unsigned long attrs
, pgprot_t prot
)
569 prot
= (attrs
& DMA_ATTR_WRITE_COMBINE
) ?
570 pgprot_writecombine(prot
) :
571 pgprot_dmacoherent(prot
);
575 static void *__alloc_simple_buffer(struct device
*dev
, size_t size
, gfp_t gfp
,
576 struct page
**ret_page
)
579 /* __alloc_simple_buffer is only called when the device is coherent */
580 page
= __dma_alloc_buffer(dev
, size
, gfp
, COHERENT
);
585 return page_address(page
);
588 static void *simple_allocator_alloc(struct arm_dma_alloc_args
*args
,
589 struct page
**ret_page
)
591 return __alloc_simple_buffer(args
->dev
, args
->size
, args
->gfp
,
595 static void simple_allocator_free(struct arm_dma_free_args
*args
)
597 __dma_free_buffer(args
->page
, args
->size
);
600 static struct arm_dma_allocator simple_allocator
= {
601 .alloc
= simple_allocator_alloc
,
602 .free
= simple_allocator_free
,
605 static void *cma_allocator_alloc(struct arm_dma_alloc_args
*args
,
606 struct page
**ret_page
)
608 return __alloc_from_contiguous(args
->dev
, args
->size
, args
->prot
,
609 ret_page
, args
->caller
,
610 args
->want_vaddr
, args
->coherent_flag
,
614 static void cma_allocator_free(struct arm_dma_free_args
*args
)
616 __free_from_contiguous(args
->dev
, args
->page
, args
->cpu_addr
,
617 args
->size
, args
->want_vaddr
);
620 static struct arm_dma_allocator cma_allocator
= {
621 .alloc
= cma_allocator_alloc
,
622 .free
= cma_allocator_free
,
625 static void *pool_allocator_alloc(struct arm_dma_alloc_args
*args
,
626 struct page
**ret_page
)
628 return __alloc_from_pool(args
->size
, ret_page
);
631 static void pool_allocator_free(struct arm_dma_free_args
*args
)
633 __free_from_pool(args
->cpu_addr
, args
->size
);
636 static struct arm_dma_allocator pool_allocator
= {
637 .alloc
= pool_allocator_alloc
,
638 .free
= pool_allocator_free
,
641 static void *remap_allocator_alloc(struct arm_dma_alloc_args
*args
,
642 struct page
**ret_page
)
644 return __alloc_remap_buffer(args
->dev
, args
->size
, args
->gfp
,
645 args
->prot
, ret_page
, args
->caller
,
649 static void remap_allocator_free(struct arm_dma_free_args
*args
)
651 if (args
->want_vaddr
)
652 dma_common_free_remap(args
->cpu_addr
, args
->size
);
654 __dma_free_buffer(args
->page
, args
->size
);
657 static struct arm_dma_allocator remap_allocator
= {
658 .alloc
= remap_allocator_alloc
,
659 .free
= remap_allocator_free
,
662 static void *__dma_alloc(struct device
*dev
, size_t size
, dma_addr_t
*handle
,
663 gfp_t gfp
, pgprot_t prot
, bool is_coherent
,
664 unsigned long attrs
, const void *caller
)
666 u64 mask
= min_not_zero(dev
->coherent_dma_mask
, dev
->bus_dma_limit
);
667 struct page
*page
= NULL
;
669 bool allowblock
, cma
;
670 struct arm_dma_buffer
*buf
;
671 struct arm_dma_alloc_args args
= {
673 .size
= PAGE_ALIGN(size
),
677 .want_vaddr
= ((attrs
& DMA_ATTR_NO_KERNEL_MAPPING
) == 0),
678 .coherent_flag
= is_coherent
? COHERENT
: NORMAL
,
681 #ifdef CONFIG_DMA_API_DEBUG
682 u64 limit
= (mask
+ 1) & ~mask
;
683 if (limit
&& size
>= limit
) {
684 dev_warn(dev
, "coherent allocation too big (requested %#x mask %#llx)\n",
690 buf
= kzalloc(sizeof(*buf
),
691 gfp
& ~(__GFP_DMA
| __GFP_DMA32
| __GFP_HIGHMEM
));
695 if (mask
< 0xffffffffULL
)
699 * Following is a work-around (a.k.a. hack) to prevent pages
700 * with __GFP_COMP being passed to split_page() which cannot
701 * handle them. The real problem is that this flag probably
702 * should be 0 on ARM as it is not supported on this
703 * platform; see CONFIG_HUGETLBFS.
705 gfp
&= ~(__GFP_COMP
);
708 *handle
= DMA_MAPPING_ERROR
;
709 allowblock
= gfpflags_allow_blocking(gfp
);
710 cma
= allowblock
? dev_get_cma_area(dev
) : false;
713 buf
->allocator
= &cma_allocator
;
714 else if (is_coherent
)
715 buf
->allocator
= &simple_allocator
;
717 buf
->allocator
= &remap_allocator
;
719 buf
->allocator
= &pool_allocator
;
721 addr
= buf
->allocator
->alloc(&args
, &page
);
726 *handle
= pfn_to_dma(dev
, page_to_pfn(page
));
727 buf
->virt
= args
.want_vaddr
? addr
: page
;
729 spin_lock_irqsave(&arm_dma_bufs_lock
, flags
);
730 list_add(&buf
->list
, &arm_dma_bufs
);
731 spin_unlock_irqrestore(&arm_dma_bufs_lock
, flags
);
736 return args
.want_vaddr
? addr
: page
;
740 * Allocate DMA-coherent memory space and return both the kernel remapped
741 * virtual and bus address for that space.
743 void *arm_dma_alloc(struct device
*dev
, size_t size
, dma_addr_t
*handle
,
744 gfp_t gfp
, unsigned long attrs
)
746 pgprot_t prot
= __get_dma_pgprot(attrs
, PAGE_KERNEL
);
748 return __dma_alloc(dev
, size
, handle
, gfp
, prot
, false,
749 attrs
, __builtin_return_address(0));
752 static void *arm_coherent_dma_alloc(struct device
*dev
, size_t size
,
753 dma_addr_t
*handle
, gfp_t gfp
, unsigned long attrs
)
755 return __dma_alloc(dev
, size
, handle
, gfp
, PAGE_KERNEL
, true,
756 attrs
, __builtin_return_address(0));
759 static int __arm_dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
760 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
764 unsigned long nr_vma_pages
= vma_pages(vma
);
765 unsigned long nr_pages
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
766 unsigned long pfn
= dma_to_pfn(dev
, dma_addr
);
767 unsigned long off
= vma
->vm_pgoff
;
769 if (dma_mmap_from_dev_coherent(dev
, vma
, cpu_addr
, size
, &ret
))
772 if (off
< nr_pages
&& nr_vma_pages
<= (nr_pages
- off
)) {
773 ret
= remap_pfn_range(vma
, vma
->vm_start
,
775 vma
->vm_end
- vma
->vm_start
,
783 * Create userspace mapping for the DMA-coherent memory.
785 static int arm_coherent_dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
786 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
789 return __arm_dma_mmap(dev
, vma
, cpu_addr
, dma_addr
, size
, attrs
);
792 int arm_dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
793 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
796 vma
->vm_page_prot
= __get_dma_pgprot(attrs
, vma
->vm_page_prot
);
797 return __arm_dma_mmap(dev
, vma
, cpu_addr
, dma_addr
, size
, attrs
);
801 * Free a buffer as defined by the above mapping.
803 static void __arm_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
804 dma_addr_t handle
, unsigned long attrs
,
807 struct page
*page
= pfn_to_page(dma_to_pfn(dev
, handle
));
808 struct arm_dma_buffer
*buf
;
809 struct arm_dma_free_args args
= {
811 .size
= PAGE_ALIGN(size
),
812 .cpu_addr
= cpu_addr
,
814 .want_vaddr
= ((attrs
& DMA_ATTR_NO_KERNEL_MAPPING
) == 0),
817 buf
= arm_dma_buffer_find(cpu_addr
);
818 if (WARN(!buf
, "Freeing invalid buffer %p\n", cpu_addr
))
821 buf
->allocator
->free(&args
);
825 void arm_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
826 dma_addr_t handle
, unsigned long attrs
)
828 __arm_dma_free(dev
, size
, cpu_addr
, handle
, attrs
, false);
831 static void arm_coherent_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
832 dma_addr_t handle
, unsigned long attrs
)
834 __arm_dma_free(dev
, size
, cpu_addr
, handle
, attrs
, true);
837 int arm_dma_get_sgtable(struct device
*dev
, struct sg_table
*sgt
,
838 void *cpu_addr
, dma_addr_t handle
, size_t size
,
841 unsigned long pfn
= dma_to_pfn(dev
, handle
);
845 /* If the PFN is not valid, we do not have a struct page */
849 page
= pfn_to_page(pfn
);
851 ret
= sg_alloc_table(sgt
, 1, GFP_KERNEL
);
855 sg_set_page(sgt
->sgl
, page
, PAGE_ALIGN(size
), 0);
859 static void dma_cache_maint_page(struct page
*page
, unsigned long offset
,
860 size_t size
, enum dma_data_direction dir
,
861 void (*op
)(const void *, size_t, int))
866 pfn
= page_to_pfn(page
) + offset
/ PAGE_SIZE
;
870 * A single sg entry may refer to multiple physically contiguous
871 * pages. But we still need to process highmem pages individually.
872 * If highmem is not configured then the bulk of this loop gets
879 page
= pfn_to_page(pfn
);
881 if (PageHighMem(page
)) {
882 if (len
+ offset
> PAGE_SIZE
)
883 len
= PAGE_SIZE
- offset
;
885 if (cache_is_vipt_nonaliasing()) {
886 vaddr
= kmap_atomic(page
);
887 op(vaddr
+ offset
, len
, dir
);
888 kunmap_atomic(vaddr
);
890 vaddr
= kmap_high_get(page
);
892 op(vaddr
+ offset
, len
, dir
);
897 vaddr
= page_address(page
) + offset
;
907 * Make an area consistent for devices.
908 * Note: Drivers should NOT use this function directly, as it will break
909 * platforms with CONFIG_DMABOUNCE.
910 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
912 static void __dma_page_cpu_to_dev(struct page
*page
, unsigned long off
,
913 size_t size
, enum dma_data_direction dir
)
917 dma_cache_maint_page(page
, off
, size
, dir
, dmac_map_area
);
919 paddr
= page_to_phys(page
) + off
;
920 if (dir
== DMA_FROM_DEVICE
) {
921 outer_inv_range(paddr
, paddr
+ size
);
923 outer_clean_range(paddr
, paddr
+ size
);
925 /* FIXME: non-speculating: flush on bidirectional mappings? */
928 static void __dma_page_dev_to_cpu(struct page
*page
, unsigned long off
,
929 size_t size
, enum dma_data_direction dir
)
931 phys_addr_t paddr
= page_to_phys(page
) + off
;
933 /* FIXME: non-speculating: not required */
934 /* in any case, don't bother invalidating if DMA to device */
935 if (dir
!= DMA_TO_DEVICE
) {
936 outer_inv_range(paddr
, paddr
+ size
);
938 dma_cache_maint_page(page
, off
, size
, dir
, dmac_unmap_area
);
942 * Mark the D-cache clean for these pages to avoid extra flushing.
944 if (dir
!= DMA_TO_DEVICE
&& size
>= PAGE_SIZE
) {
948 pfn
= page_to_pfn(page
) + off
/ PAGE_SIZE
;
952 left
-= PAGE_SIZE
- off
;
954 while (left
>= PAGE_SIZE
) {
955 page
= pfn_to_page(pfn
++);
956 set_bit(PG_dcache_clean
, &page
->flags
);
963 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
964 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
965 * @sg: list of buffers
966 * @nents: number of buffers to map
967 * @dir: DMA transfer direction
969 * Map a set of buffers described by scatterlist in streaming mode for DMA.
970 * This is the scatter-gather version of the dma_map_single interface.
971 * Here the scatter gather list elements are each tagged with the
972 * appropriate dma address and length. They are obtained via
973 * sg_dma_{address,length}.
975 * Device ownership issues as mentioned for dma_map_single are the same
978 int arm_dma_map_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
979 enum dma_data_direction dir
, unsigned long attrs
)
981 const struct dma_map_ops
*ops
= get_dma_ops(dev
);
982 struct scatterlist
*s
;
985 for_each_sg(sg
, s
, nents
, i
) {
986 #ifdef CONFIG_NEED_SG_DMA_LENGTH
987 s
->dma_length
= s
->length
;
989 s
->dma_address
= ops
->map_page(dev
, sg_page(s
), s
->offset
,
990 s
->length
, dir
, attrs
);
991 if (dma_mapping_error(dev
, s
->dma_address
))
997 for_each_sg(sg
, s
, i
, j
)
998 ops
->unmap_page(dev
, sg_dma_address(s
), sg_dma_len(s
), dir
, attrs
);
1003 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1004 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1005 * @sg: list of buffers
1006 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1007 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1009 * Unmap a set of streaming mode DMA translations. Again, CPU access
1010 * rules concerning calls here are the same as for dma_unmap_single().
1012 void arm_dma_unmap_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
1013 enum dma_data_direction dir
, unsigned long attrs
)
1015 const struct dma_map_ops
*ops
= get_dma_ops(dev
);
1016 struct scatterlist
*s
;
1020 for_each_sg(sg
, s
, nents
, i
)
1021 ops
->unmap_page(dev
, sg_dma_address(s
), sg_dma_len(s
), dir
, attrs
);
1025 * arm_dma_sync_sg_for_cpu
1026 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1027 * @sg: list of buffers
1028 * @nents: number of buffers to map (returned from dma_map_sg)
1029 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1031 void arm_dma_sync_sg_for_cpu(struct device
*dev
, struct scatterlist
*sg
,
1032 int nents
, enum dma_data_direction dir
)
1034 const struct dma_map_ops
*ops
= get_dma_ops(dev
);
1035 struct scatterlist
*s
;
1038 for_each_sg(sg
, s
, nents
, i
)
1039 ops
->sync_single_for_cpu(dev
, sg_dma_address(s
), s
->length
,
1044 * arm_dma_sync_sg_for_device
1045 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1046 * @sg: list of buffers
1047 * @nents: number of buffers to map (returned from dma_map_sg)
1048 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1050 void arm_dma_sync_sg_for_device(struct device
*dev
, struct scatterlist
*sg
,
1051 int nents
, enum dma_data_direction dir
)
1053 const struct dma_map_ops
*ops
= get_dma_ops(dev
);
1054 struct scatterlist
*s
;
1057 for_each_sg(sg
, s
, nents
, i
)
1058 ops
->sync_single_for_device(dev
, sg_dma_address(s
), s
->length
,
1062 static const struct dma_map_ops
*arm_get_dma_map_ops(bool coherent
)
1065 * When CONFIG_ARM_LPAE is set, physical address can extend above
1066 * 32-bits, which then can't be addressed by devices that only support
1068 * Use the generic dma-direct / swiotlb ops code in that case, as that
1069 * handles bounce buffering for us.
1071 if (IS_ENABLED(CONFIG_ARM_LPAE
))
1073 return coherent
? &arm_coherent_dma_ops
: &arm_dma_ops
;
1076 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1078 static int __dma_info_to_prot(enum dma_data_direction dir
, unsigned long attrs
)
1082 if (attrs
& DMA_ATTR_PRIVILEGED
)
1086 case DMA_BIDIRECTIONAL
:
1087 return prot
| IOMMU_READ
| IOMMU_WRITE
;
1089 return prot
| IOMMU_READ
;
1090 case DMA_FROM_DEVICE
:
1091 return prot
| IOMMU_WRITE
;
1099 static int extend_iommu_mapping(struct dma_iommu_mapping
*mapping
);
1101 static inline dma_addr_t
__alloc_iova(struct dma_iommu_mapping
*mapping
,
1104 unsigned int order
= get_order(size
);
1105 unsigned int align
= 0;
1106 unsigned int count
, start
;
1107 size_t mapping_size
= mapping
->bits
<< PAGE_SHIFT
;
1108 unsigned long flags
;
1112 if (order
> CONFIG_ARM_DMA_IOMMU_ALIGNMENT
)
1113 order
= CONFIG_ARM_DMA_IOMMU_ALIGNMENT
;
1115 count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1116 align
= (1 << order
) - 1;
1118 spin_lock_irqsave(&mapping
->lock
, flags
);
1119 for (i
= 0; i
< mapping
->nr_bitmaps
; i
++) {
1120 start
= bitmap_find_next_zero_area(mapping
->bitmaps
[i
],
1121 mapping
->bits
, 0, count
, align
);
1123 if (start
> mapping
->bits
)
1126 bitmap_set(mapping
->bitmaps
[i
], start
, count
);
1131 * No unused range found. Try to extend the existing mapping
1132 * and perform a second attempt to reserve an IO virtual
1133 * address range of size bytes.
1135 if (i
== mapping
->nr_bitmaps
) {
1136 if (extend_iommu_mapping(mapping
)) {
1137 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1138 return DMA_MAPPING_ERROR
;
1141 start
= bitmap_find_next_zero_area(mapping
->bitmaps
[i
],
1142 mapping
->bits
, 0, count
, align
);
1144 if (start
> mapping
->bits
) {
1145 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1146 return DMA_MAPPING_ERROR
;
1149 bitmap_set(mapping
->bitmaps
[i
], start
, count
);
1151 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1153 iova
= mapping
->base
+ (mapping_size
* i
);
1154 iova
+= start
<< PAGE_SHIFT
;
1159 static inline void __free_iova(struct dma_iommu_mapping
*mapping
,
1160 dma_addr_t addr
, size_t size
)
1162 unsigned int start
, count
;
1163 size_t mapping_size
= mapping
->bits
<< PAGE_SHIFT
;
1164 unsigned long flags
;
1165 dma_addr_t bitmap_base
;
1171 bitmap_index
= (u32
) (addr
- mapping
->base
) / (u32
) mapping_size
;
1172 BUG_ON(addr
< mapping
->base
|| bitmap_index
> mapping
->extensions
);
1174 bitmap_base
= mapping
->base
+ mapping_size
* bitmap_index
;
1176 start
= (addr
- bitmap_base
) >> PAGE_SHIFT
;
1178 if (addr
+ size
> bitmap_base
+ mapping_size
) {
1180 * The address range to be freed reaches into the iova
1181 * range of the next bitmap. This should not happen as
1182 * we don't allow this in __alloc_iova (at the
1187 count
= size
>> PAGE_SHIFT
;
1189 spin_lock_irqsave(&mapping
->lock
, flags
);
1190 bitmap_clear(mapping
->bitmaps
[bitmap_index
], start
, count
);
1191 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1194 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1195 static const int iommu_order_array
[] = { 9, 8, 4, 0 };
1197 static struct page
**__iommu_alloc_buffer(struct device
*dev
, size_t size
,
1198 gfp_t gfp
, unsigned long attrs
,
1201 struct page
**pages
;
1202 int count
= size
>> PAGE_SHIFT
;
1203 int array_size
= count
* sizeof(struct page
*);
1207 if (array_size
<= PAGE_SIZE
)
1208 pages
= kzalloc(array_size
, GFP_KERNEL
);
1210 pages
= vzalloc(array_size
);
1214 if (attrs
& DMA_ATTR_FORCE_CONTIGUOUS
)
1216 unsigned long order
= get_order(size
);
1219 page
= dma_alloc_from_contiguous(dev
, count
, order
,
1220 gfp
& __GFP_NOWARN
);
1224 __dma_clear_buffer(page
, size
, coherent_flag
);
1226 for (i
= 0; i
< count
; i
++)
1227 pages
[i
] = page
+ i
;
1232 /* Go straight to 4K chunks if caller says it's OK. */
1233 if (attrs
& DMA_ATTR_ALLOC_SINGLE_PAGES
)
1234 order_idx
= ARRAY_SIZE(iommu_order_array
) - 1;
1237 * IOMMU can map any pages, so himem can also be used here
1239 gfp
|= __GFP_NOWARN
| __GFP_HIGHMEM
;
1244 order
= iommu_order_array
[order_idx
];
1246 /* Drop down when we get small */
1247 if (__fls(count
) < order
) {
1253 /* See if it's easy to allocate a high-order chunk */
1254 pages
[i
] = alloc_pages(gfp
| __GFP_NORETRY
, order
);
1256 /* Go down a notch at first sign of pressure */
1262 pages
[i
] = alloc_pages(gfp
, 0);
1268 split_page(pages
[i
], order
);
1271 pages
[i
+ j
] = pages
[i
] + j
;
1274 __dma_clear_buffer(pages
[i
], PAGE_SIZE
<< order
, coherent_flag
);
1276 count
-= 1 << order
;
1283 __free_pages(pages
[i
], 0);
1288 static int __iommu_free_buffer(struct device
*dev
, struct page
**pages
,
1289 size_t size
, unsigned long attrs
)
1291 int count
= size
>> PAGE_SHIFT
;
1294 if (attrs
& DMA_ATTR_FORCE_CONTIGUOUS
) {
1295 dma_release_from_contiguous(dev
, pages
[0], count
);
1297 for (i
= 0; i
< count
; i
++)
1299 __free_pages(pages
[i
], 0);
1307 * Create a mapping in device IO address space for specified pages
1310 __iommu_create_mapping(struct device
*dev
, struct page
**pages
, size_t size
,
1311 unsigned long attrs
)
1313 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1314 unsigned int count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1315 dma_addr_t dma_addr
, iova
;
1318 dma_addr
= __alloc_iova(mapping
, size
);
1319 if (dma_addr
== DMA_MAPPING_ERROR
)
1323 for (i
= 0; i
< count
; ) {
1326 unsigned int next_pfn
= page_to_pfn(pages
[i
]) + 1;
1327 phys_addr_t phys
= page_to_phys(pages
[i
]);
1328 unsigned int len
, j
;
1330 for (j
= i
+ 1; j
< count
; j
++, next_pfn
++)
1331 if (page_to_pfn(pages
[j
]) != next_pfn
)
1334 len
= (j
- i
) << PAGE_SHIFT
;
1335 ret
= iommu_map(mapping
->domain
, iova
, phys
, len
,
1336 __dma_info_to_prot(DMA_BIDIRECTIONAL
, attrs
));
1344 iommu_unmap(mapping
->domain
, dma_addr
, iova
-dma_addr
);
1345 __free_iova(mapping
, dma_addr
, size
);
1346 return DMA_MAPPING_ERROR
;
1349 static int __iommu_remove_mapping(struct device
*dev
, dma_addr_t iova
, size_t size
)
1351 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1354 * add optional in-page offset from iova to size and align
1355 * result to page size
1357 size
= PAGE_ALIGN((iova
& ~PAGE_MASK
) + size
);
1360 iommu_unmap(mapping
->domain
, iova
, size
);
1361 __free_iova(mapping
, iova
, size
);
1365 static struct page
**__atomic_get_pages(void *addr
)
1370 phys
= gen_pool_virt_to_phys(atomic_pool
, (unsigned long)addr
);
1371 page
= phys_to_page(phys
);
1373 return (struct page
**)page
;
1376 static struct page
**__iommu_get_pages(void *cpu_addr
, unsigned long attrs
)
1378 if (__in_atomic_pool(cpu_addr
, PAGE_SIZE
))
1379 return __atomic_get_pages(cpu_addr
);
1381 if (attrs
& DMA_ATTR_NO_KERNEL_MAPPING
)
1384 return dma_common_find_pages(cpu_addr
);
1387 static void *__iommu_alloc_simple(struct device
*dev
, size_t size
, gfp_t gfp
,
1388 dma_addr_t
*handle
, int coherent_flag
,
1389 unsigned long attrs
)
1394 if (coherent_flag
== COHERENT
)
1395 addr
= __alloc_simple_buffer(dev
, size
, gfp
, &page
);
1397 addr
= __alloc_from_pool(size
, &page
);
1401 *handle
= __iommu_create_mapping(dev
, &page
, size
, attrs
);
1402 if (*handle
== DMA_MAPPING_ERROR
)
1408 __free_from_pool(addr
, size
);
1412 static void __iommu_free_atomic(struct device
*dev
, void *cpu_addr
,
1413 dma_addr_t handle
, size_t size
, int coherent_flag
)
1415 __iommu_remove_mapping(dev
, handle
, size
);
1416 if (coherent_flag
== COHERENT
)
1417 __dma_free_buffer(virt_to_page(cpu_addr
), size
);
1419 __free_from_pool(cpu_addr
, size
);
1422 static void *__arm_iommu_alloc_attrs(struct device
*dev
, size_t size
,
1423 dma_addr_t
*handle
, gfp_t gfp
, unsigned long attrs
,
1426 pgprot_t prot
= __get_dma_pgprot(attrs
, PAGE_KERNEL
);
1427 struct page
**pages
;
1430 *handle
= DMA_MAPPING_ERROR
;
1431 size
= PAGE_ALIGN(size
);
1433 if (coherent_flag
== COHERENT
|| !gfpflags_allow_blocking(gfp
))
1434 return __iommu_alloc_simple(dev
, size
, gfp
, handle
,
1435 coherent_flag
, attrs
);
1438 * Following is a work-around (a.k.a. hack) to prevent pages
1439 * with __GFP_COMP being passed to split_page() which cannot
1440 * handle them. The real problem is that this flag probably
1441 * should be 0 on ARM as it is not supported on this
1442 * platform; see CONFIG_HUGETLBFS.
1444 gfp
&= ~(__GFP_COMP
);
1446 pages
= __iommu_alloc_buffer(dev
, size
, gfp
, attrs
, coherent_flag
);
1450 *handle
= __iommu_create_mapping(dev
, pages
, size
, attrs
);
1451 if (*handle
== DMA_MAPPING_ERROR
)
1454 if (attrs
& DMA_ATTR_NO_KERNEL_MAPPING
)
1457 addr
= dma_common_pages_remap(pages
, size
, prot
,
1458 __builtin_return_address(0));
1465 __iommu_remove_mapping(dev
, *handle
, size
);
1467 __iommu_free_buffer(dev
, pages
, size
, attrs
);
1471 static void *arm_iommu_alloc_attrs(struct device
*dev
, size_t size
,
1472 dma_addr_t
*handle
, gfp_t gfp
, unsigned long attrs
)
1474 return __arm_iommu_alloc_attrs(dev
, size
, handle
, gfp
, attrs
, NORMAL
);
1477 static void *arm_coherent_iommu_alloc_attrs(struct device
*dev
, size_t size
,
1478 dma_addr_t
*handle
, gfp_t gfp
, unsigned long attrs
)
1480 return __arm_iommu_alloc_attrs(dev
, size
, handle
, gfp
, attrs
, COHERENT
);
1483 static int __arm_iommu_mmap_attrs(struct device
*dev
, struct vm_area_struct
*vma
,
1484 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
1485 unsigned long attrs
)
1487 struct page
**pages
= __iommu_get_pages(cpu_addr
, attrs
);
1488 unsigned long nr_pages
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1494 if (vma
->vm_pgoff
>= nr_pages
)
1497 err
= vm_map_pages(vma
, pages
, nr_pages
);
1499 pr_err("Remapping memory failed: %d\n", err
);
1503 static int arm_iommu_mmap_attrs(struct device
*dev
,
1504 struct vm_area_struct
*vma
, void *cpu_addr
,
1505 dma_addr_t dma_addr
, size_t size
, unsigned long attrs
)
1507 vma
->vm_page_prot
= __get_dma_pgprot(attrs
, vma
->vm_page_prot
);
1509 return __arm_iommu_mmap_attrs(dev
, vma
, cpu_addr
, dma_addr
, size
, attrs
);
1512 static int arm_coherent_iommu_mmap_attrs(struct device
*dev
,
1513 struct vm_area_struct
*vma
, void *cpu_addr
,
1514 dma_addr_t dma_addr
, size_t size
, unsigned long attrs
)
1516 return __arm_iommu_mmap_attrs(dev
, vma
, cpu_addr
, dma_addr
, size
, attrs
);
1520 * free a page as defined by the above mapping.
1521 * Must not be called with IRQs disabled.
1523 static void __arm_iommu_free_attrs(struct device
*dev
, size_t size
, void *cpu_addr
,
1524 dma_addr_t handle
, unsigned long attrs
, int coherent_flag
)
1526 struct page
**pages
;
1527 size
= PAGE_ALIGN(size
);
1529 if (coherent_flag
== COHERENT
|| __in_atomic_pool(cpu_addr
, size
)) {
1530 __iommu_free_atomic(dev
, cpu_addr
, handle
, size
, coherent_flag
);
1534 pages
= __iommu_get_pages(cpu_addr
, attrs
);
1536 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr
);
1540 if ((attrs
& DMA_ATTR_NO_KERNEL_MAPPING
) == 0)
1541 dma_common_free_remap(cpu_addr
, size
);
1543 __iommu_remove_mapping(dev
, handle
, size
);
1544 __iommu_free_buffer(dev
, pages
, size
, attrs
);
1547 static void arm_iommu_free_attrs(struct device
*dev
, size_t size
,
1548 void *cpu_addr
, dma_addr_t handle
,
1549 unsigned long attrs
)
1551 __arm_iommu_free_attrs(dev
, size
, cpu_addr
, handle
, attrs
, NORMAL
);
1554 static void arm_coherent_iommu_free_attrs(struct device
*dev
, size_t size
,
1555 void *cpu_addr
, dma_addr_t handle
, unsigned long attrs
)
1557 __arm_iommu_free_attrs(dev
, size
, cpu_addr
, handle
, attrs
, COHERENT
);
1560 static int arm_iommu_get_sgtable(struct device
*dev
, struct sg_table
*sgt
,
1561 void *cpu_addr
, dma_addr_t dma_addr
,
1562 size_t size
, unsigned long attrs
)
1564 unsigned int count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1565 struct page
**pages
= __iommu_get_pages(cpu_addr
, attrs
);
1570 return sg_alloc_table_from_pages(sgt
, pages
, count
, 0, size
,
1575 * Map a part of the scatter-gather list into contiguous io address space
1577 static int __map_sg_chunk(struct device
*dev
, struct scatterlist
*sg
,
1578 size_t size
, dma_addr_t
*handle
,
1579 enum dma_data_direction dir
, unsigned long attrs
,
1582 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1583 dma_addr_t iova
, iova_base
;
1586 struct scatterlist
*s
;
1589 size
= PAGE_ALIGN(size
);
1590 *handle
= DMA_MAPPING_ERROR
;
1592 iova_base
= iova
= __alloc_iova(mapping
, size
);
1593 if (iova
== DMA_MAPPING_ERROR
)
1596 for (count
= 0, s
= sg
; count
< (size
>> PAGE_SHIFT
); s
= sg_next(s
)) {
1597 phys_addr_t phys
= page_to_phys(sg_page(s
));
1598 unsigned int len
= PAGE_ALIGN(s
->offset
+ s
->length
);
1600 if (!is_coherent
&& (attrs
& DMA_ATTR_SKIP_CPU_SYNC
) == 0)
1601 __dma_page_cpu_to_dev(sg_page(s
), s
->offset
, s
->length
, dir
);
1603 prot
= __dma_info_to_prot(dir
, attrs
);
1605 ret
= iommu_map(mapping
->domain
, iova
, phys
, len
, prot
);
1608 count
+= len
>> PAGE_SHIFT
;
1611 *handle
= iova_base
;
1615 iommu_unmap(mapping
->domain
, iova_base
, count
* PAGE_SIZE
);
1616 __free_iova(mapping
, iova_base
, size
);
1620 static int __iommu_map_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
1621 enum dma_data_direction dir
, unsigned long attrs
,
1624 struct scatterlist
*s
= sg
, *dma
= sg
, *start
= sg
;
1626 unsigned int offset
= s
->offset
;
1627 unsigned int size
= s
->offset
+ s
->length
;
1628 unsigned int max
= dma_get_max_seg_size(dev
);
1630 for (i
= 1; i
< nents
; i
++) {
1633 s
->dma_address
= DMA_MAPPING_ERROR
;
1636 if (s
->offset
|| (size
& ~PAGE_MASK
) || size
+ s
->length
> max
) {
1637 if (__map_sg_chunk(dev
, start
, size
, &dma
->dma_address
,
1638 dir
, attrs
, is_coherent
) < 0)
1641 dma
->dma_address
+= offset
;
1642 dma
->dma_length
= size
- offset
;
1644 size
= offset
= s
->offset
;
1651 if (__map_sg_chunk(dev
, start
, size
, &dma
->dma_address
, dir
, attrs
,
1655 dma
->dma_address
+= offset
;
1656 dma
->dma_length
= size
- offset
;
1661 for_each_sg(sg
, s
, count
, i
)
1662 __iommu_remove_mapping(dev
, sg_dma_address(s
), sg_dma_len(s
));
1667 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1668 * @dev: valid struct device pointer
1669 * @sg: list of buffers
1670 * @nents: number of buffers to map
1671 * @dir: DMA transfer direction
1673 * Map a set of i/o coherent buffers described by scatterlist in streaming
1674 * mode for DMA. The scatter gather list elements are merged together (if
1675 * possible) and tagged with the appropriate dma address and length. They are
1676 * obtained via sg_dma_{address,length}.
1678 static int arm_coherent_iommu_map_sg(struct device
*dev
, struct scatterlist
*sg
,
1679 int nents
, enum dma_data_direction dir
, unsigned long attrs
)
1681 return __iommu_map_sg(dev
, sg
, nents
, dir
, attrs
, true);
1685 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1686 * @dev: valid struct device pointer
1687 * @sg: list of buffers
1688 * @nents: number of buffers to map
1689 * @dir: DMA transfer direction
1691 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1692 * The scatter gather list elements are merged together (if possible) and
1693 * tagged with the appropriate dma address and length. They are obtained via
1694 * sg_dma_{address,length}.
1696 static int arm_iommu_map_sg(struct device
*dev
, struct scatterlist
*sg
,
1697 int nents
, enum dma_data_direction dir
, unsigned long attrs
)
1699 return __iommu_map_sg(dev
, sg
, nents
, dir
, attrs
, false);
1702 static void __iommu_unmap_sg(struct device
*dev
, struct scatterlist
*sg
,
1703 int nents
, enum dma_data_direction dir
,
1704 unsigned long attrs
, bool is_coherent
)
1706 struct scatterlist
*s
;
1709 for_each_sg(sg
, s
, nents
, i
) {
1711 __iommu_remove_mapping(dev
, sg_dma_address(s
),
1713 if (!is_coherent
&& (attrs
& DMA_ATTR_SKIP_CPU_SYNC
) == 0)
1714 __dma_page_dev_to_cpu(sg_page(s
), s
->offset
,
1720 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1721 * @dev: valid struct device pointer
1722 * @sg: list of buffers
1723 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1724 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1726 * Unmap a set of streaming mode DMA translations. Again, CPU access
1727 * rules concerning calls here are the same as for dma_unmap_single().
1729 static void arm_coherent_iommu_unmap_sg(struct device
*dev
,
1730 struct scatterlist
*sg
, int nents
, enum dma_data_direction dir
,
1731 unsigned long attrs
)
1733 __iommu_unmap_sg(dev
, sg
, nents
, dir
, attrs
, true);
1737 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1738 * @dev: valid struct device pointer
1739 * @sg: list of buffers
1740 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1741 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1743 * Unmap a set of streaming mode DMA translations. Again, CPU access
1744 * rules concerning calls here are the same as for dma_unmap_single().
1746 static void arm_iommu_unmap_sg(struct device
*dev
,
1747 struct scatterlist
*sg
, int nents
,
1748 enum dma_data_direction dir
,
1749 unsigned long attrs
)
1751 __iommu_unmap_sg(dev
, sg
, nents
, dir
, attrs
, false);
1755 * arm_iommu_sync_sg_for_cpu
1756 * @dev: valid struct device pointer
1757 * @sg: list of buffers
1758 * @nents: number of buffers to map (returned from dma_map_sg)
1759 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1761 static void arm_iommu_sync_sg_for_cpu(struct device
*dev
,
1762 struct scatterlist
*sg
,
1763 int nents
, enum dma_data_direction dir
)
1765 struct scatterlist
*s
;
1768 for_each_sg(sg
, s
, nents
, i
)
1769 __dma_page_dev_to_cpu(sg_page(s
), s
->offset
, s
->length
, dir
);
1774 * arm_iommu_sync_sg_for_device
1775 * @dev: valid struct device pointer
1776 * @sg: list of buffers
1777 * @nents: number of buffers to map (returned from dma_map_sg)
1778 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1780 static void arm_iommu_sync_sg_for_device(struct device
*dev
,
1781 struct scatterlist
*sg
,
1782 int nents
, enum dma_data_direction dir
)
1784 struct scatterlist
*s
;
1787 for_each_sg(sg
, s
, nents
, i
)
1788 __dma_page_cpu_to_dev(sg_page(s
), s
->offset
, s
->length
, dir
);
1793 * arm_coherent_iommu_map_page
1794 * @dev: valid struct device pointer
1795 * @page: page that buffer resides in
1796 * @offset: offset into page for start of buffer
1797 * @size: size of buffer to map
1798 * @dir: DMA transfer direction
1800 * Coherent IOMMU aware version of arm_dma_map_page()
1802 static dma_addr_t
arm_coherent_iommu_map_page(struct device
*dev
, struct page
*page
,
1803 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
1804 unsigned long attrs
)
1806 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1807 dma_addr_t dma_addr
;
1808 int ret
, prot
, len
= PAGE_ALIGN(size
+ offset
);
1810 dma_addr
= __alloc_iova(mapping
, len
);
1811 if (dma_addr
== DMA_MAPPING_ERROR
)
1814 prot
= __dma_info_to_prot(dir
, attrs
);
1816 ret
= iommu_map(mapping
->domain
, dma_addr
, page_to_phys(page
), len
, prot
);
1820 return dma_addr
+ offset
;
1822 __free_iova(mapping
, dma_addr
, len
);
1823 return DMA_MAPPING_ERROR
;
1827 * arm_iommu_map_page
1828 * @dev: valid struct device pointer
1829 * @page: page that buffer resides in
1830 * @offset: offset into page for start of buffer
1831 * @size: size of buffer to map
1832 * @dir: DMA transfer direction
1834 * IOMMU aware version of arm_dma_map_page()
1836 static dma_addr_t
arm_iommu_map_page(struct device
*dev
, struct page
*page
,
1837 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
1838 unsigned long attrs
)
1840 if ((attrs
& DMA_ATTR_SKIP_CPU_SYNC
) == 0)
1841 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
1843 return arm_coherent_iommu_map_page(dev
, page
, offset
, size
, dir
, attrs
);
1847 * arm_coherent_iommu_unmap_page
1848 * @dev: valid struct device pointer
1849 * @handle: DMA address of buffer
1850 * @size: size of buffer (same as passed to dma_map_page)
1851 * @dir: DMA transfer direction (same as passed to dma_map_page)
1853 * Coherent IOMMU aware version of arm_dma_unmap_page()
1855 static void arm_coherent_iommu_unmap_page(struct device
*dev
, dma_addr_t handle
,
1856 size_t size
, enum dma_data_direction dir
, unsigned long attrs
)
1858 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1859 dma_addr_t iova
= handle
& PAGE_MASK
;
1860 int offset
= handle
& ~PAGE_MASK
;
1861 int len
= PAGE_ALIGN(size
+ offset
);
1866 iommu_unmap(mapping
->domain
, iova
, len
);
1867 __free_iova(mapping
, iova
, len
);
1871 * arm_iommu_unmap_page
1872 * @dev: valid struct device pointer
1873 * @handle: DMA address of buffer
1874 * @size: size of buffer (same as passed to dma_map_page)
1875 * @dir: DMA transfer direction (same as passed to dma_map_page)
1877 * IOMMU aware version of arm_dma_unmap_page()
1879 static void arm_iommu_unmap_page(struct device
*dev
, dma_addr_t handle
,
1880 size_t size
, enum dma_data_direction dir
, unsigned long attrs
)
1882 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1883 dma_addr_t iova
= handle
& PAGE_MASK
;
1884 struct page
*page
= phys_to_page(iommu_iova_to_phys(mapping
->domain
, iova
));
1885 int offset
= handle
& ~PAGE_MASK
;
1886 int len
= PAGE_ALIGN(size
+ offset
);
1891 if ((attrs
& DMA_ATTR_SKIP_CPU_SYNC
) == 0)
1892 __dma_page_dev_to_cpu(page
, offset
, size
, dir
);
1894 iommu_unmap(mapping
->domain
, iova
, len
);
1895 __free_iova(mapping
, iova
, len
);
1899 * arm_iommu_map_resource - map a device resource for DMA
1900 * @dev: valid struct device pointer
1901 * @phys_addr: physical address of resource
1902 * @size: size of resource to map
1903 * @dir: DMA transfer direction
1905 static dma_addr_t
arm_iommu_map_resource(struct device
*dev
,
1906 phys_addr_t phys_addr
, size_t size
,
1907 enum dma_data_direction dir
, unsigned long attrs
)
1909 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1910 dma_addr_t dma_addr
;
1912 phys_addr_t addr
= phys_addr
& PAGE_MASK
;
1913 unsigned int offset
= phys_addr
& ~PAGE_MASK
;
1914 size_t len
= PAGE_ALIGN(size
+ offset
);
1916 dma_addr
= __alloc_iova(mapping
, len
);
1917 if (dma_addr
== DMA_MAPPING_ERROR
)
1920 prot
= __dma_info_to_prot(dir
, attrs
) | IOMMU_MMIO
;
1922 ret
= iommu_map(mapping
->domain
, dma_addr
, addr
, len
, prot
);
1926 return dma_addr
+ offset
;
1928 __free_iova(mapping
, dma_addr
, len
);
1929 return DMA_MAPPING_ERROR
;
1933 * arm_iommu_unmap_resource - unmap a device DMA resource
1934 * @dev: valid struct device pointer
1935 * @dma_handle: DMA address to resource
1936 * @size: size of resource to map
1937 * @dir: DMA transfer direction
1939 static void arm_iommu_unmap_resource(struct device
*dev
, dma_addr_t dma_handle
,
1940 size_t size
, enum dma_data_direction dir
,
1941 unsigned long attrs
)
1943 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1944 dma_addr_t iova
= dma_handle
& PAGE_MASK
;
1945 unsigned int offset
= dma_handle
& ~PAGE_MASK
;
1946 size_t len
= PAGE_ALIGN(size
+ offset
);
1951 iommu_unmap(mapping
->domain
, iova
, len
);
1952 __free_iova(mapping
, iova
, len
);
1955 static void arm_iommu_sync_single_for_cpu(struct device
*dev
,
1956 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
1958 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1959 dma_addr_t iova
= handle
& PAGE_MASK
;
1960 struct page
*page
= phys_to_page(iommu_iova_to_phys(mapping
->domain
, iova
));
1961 unsigned int offset
= handle
& ~PAGE_MASK
;
1966 __dma_page_dev_to_cpu(page
, offset
, size
, dir
);
1969 static void arm_iommu_sync_single_for_device(struct device
*dev
,
1970 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
1972 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1973 dma_addr_t iova
= handle
& PAGE_MASK
;
1974 struct page
*page
= phys_to_page(iommu_iova_to_phys(mapping
->domain
, iova
));
1975 unsigned int offset
= handle
& ~PAGE_MASK
;
1980 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
1983 static const struct dma_map_ops iommu_ops
= {
1984 .alloc
= arm_iommu_alloc_attrs
,
1985 .free
= arm_iommu_free_attrs
,
1986 .mmap
= arm_iommu_mmap_attrs
,
1987 .get_sgtable
= arm_iommu_get_sgtable
,
1989 .map_page
= arm_iommu_map_page
,
1990 .unmap_page
= arm_iommu_unmap_page
,
1991 .sync_single_for_cpu
= arm_iommu_sync_single_for_cpu
,
1992 .sync_single_for_device
= arm_iommu_sync_single_for_device
,
1994 .map_sg
= arm_iommu_map_sg
,
1995 .unmap_sg
= arm_iommu_unmap_sg
,
1996 .sync_sg_for_cpu
= arm_iommu_sync_sg_for_cpu
,
1997 .sync_sg_for_device
= arm_iommu_sync_sg_for_device
,
1999 .map_resource
= arm_iommu_map_resource
,
2000 .unmap_resource
= arm_iommu_unmap_resource
,
2002 .dma_supported
= arm_dma_supported
,
2005 static const struct dma_map_ops iommu_coherent_ops
= {
2006 .alloc
= arm_coherent_iommu_alloc_attrs
,
2007 .free
= arm_coherent_iommu_free_attrs
,
2008 .mmap
= arm_coherent_iommu_mmap_attrs
,
2009 .get_sgtable
= arm_iommu_get_sgtable
,
2011 .map_page
= arm_coherent_iommu_map_page
,
2012 .unmap_page
= arm_coherent_iommu_unmap_page
,
2014 .map_sg
= arm_coherent_iommu_map_sg
,
2015 .unmap_sg
= arm_coherent_iommu_unmap_sg
,
2017 .map_resource
= arm_iommu_map_resource
,
2018 .unmap_resource
= arm_iommu_unmap_resource
,
2020 .dma_supported
= arm_dma_supported
,
2024 * arm_iommu_create_mapping
2025 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2026 * @base: start address of the valid IO address space
2027 * @size: maximum size of the valid IO address space
2029 * Creates a mapping structure which holds information about used/unused
2030 * IO address ranges, which is required to perform memory allocation and
2031 * mapping with IOMMU aware functions.
2033 * The client device need to be attached to the mapping with
2034 * arm_iommu_attach_device function.
2036 struct dma_iommu_mapping
*
2037 arm_iommu_create_mapping(struct bus_type
*bus
, dma_addr_t base
, u64 size
)
2039 unsigned int bits
= size
>> PAGE_SHIFT
;
2040 unsigned int bitmap_size
= BITS_TO_LONGS(bits
) * sizeof(long);
2041 struct dma_iommu_mapping
*mapping
;
2045 /* currently only 32-bit DMA address space is supported */
2046 if (size
> DMA_BIT_MASK(32) + 1)
2047 return ERR_PTR(-ERANGE
);
2050 return ERR_PTR(-EINVAL
);
2052 if (bitmap_size
> PAGE_SIZE
) {
2053 extensions
= bitmap_size
/ PAGE_SIZE
;
2054 bitmap_size
= PAGE_SIZE
;
2057 mapping
= kzalloc(sizeof(struct dma_iommu_mapping
), GFP_KERNEL
);
2061 mapping
->bitmap_size
= bitmap_size
;
2062 mapping
->bitmaps
= kcalloc(extensions
, sizeof(unsigned long *),
2064 if (!mapping
->bitmaps
)
2067 mapping
->bitmaps
[0] = kzalloc(bitmap_size
, GFP_KERNEL
);
2068 if (!mapping
->bitmaps
[0])
2071 mapping
->nr_bitmaps
= 1;
2072 mapping
->extensions
= extensions
;
2073 mapping
->base
= base
;
2074 mapping
->bits
= BITS_PER_BYTE
* bitmap_size
;
2076 spin_lock_init(&mapping
->lock
);
2078 mapping
->domain
= iommu_domain_alloc(bus
);
2079 if (!mapping
->domain
)
2082 kref_init(&mapping
->kref
);
2085 kfree(mapping
->bitmaps
[0]);
2087 kfree(mapping
->bitmaps
);
2091 return ERR_PTR(err
);
2093 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping
);
2095 static void release_iommu_mapping(struct kref
*kref
)
2098 struct dma_iommu_mapping
*mapping
=
2099 container_of(kref
, struct dma_iommu_mapping
, kref
);
2101 iommu_domain_free(mapping
->domain
);
2102 for (i
= 0; i
< mapping
->nr_bitmaps
; i
++)
2103 kfree(mapping
->bitmaps
[i
]);
2104 kfree(mapping
->bitmaps
);
2108 static int extend_iommu_mapping(struct dma_iommu_mapping
*mapping
)
2112 if (mapping
->nr_bitmaps
>= mapping
->extensions
)
2115 next_bitmap
= mapping
->nr_bitmaps
;
2116 mapping
->bitmaps
[next_bitmap
] = kzalloc(mapping
->bitmap_size
,
2118 if (!mapping
->bitmaps
[next_bitmap
])
2121 mapping
->nr_bitmaps
++;
2126 void arm_iommu_release_mapping(struct dma_iommu_mapping
*mapping
)
2129 kref_put(&mapping
->kref
, release_iommu_mapping
);
2131 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping
);
2133 static int __arm_iommu_attach_device(struct device
*dev
,
2134 struct dma_iommu_mapping
*mapping
)
2138 err
= iommu_attach_device(mapping
->domain
, dev
);
2142 kref_get(&mapping
->kref
);
2143 to_dma_iommu_mapping(dev
) = mapping
;
2145 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev
));
2150 * arm_iommu_attach_device
2151 * @dev: valid struct device pointer
2152 * @mapping: io address space mapping structure (returned from
2153 * arm_iommu_create_mapping)
2155 * Attaches specified io address space mapping to the provided device.
2156 * This replaces the dma operations (dma_map_ops pointer) with the
2157 * IOMMU aware version.
2159 * More than one client might be attached to the same io address space
2162 int arm_iommu_attach_device(struct device
*dev
,
2163 struct dma_iommu_mapping
*mapping
)
2167 err
= __arm_iommu_attach_device(dev
, mapping
);
2171 set_dma_ops(dev
, &iommu_ops
);
2174 EXPORT_SYMBOL_GPL(arm_iommu_attach_device
);
2177 * arm_iommu_detach_device
2178 * @dev: valid struct device pointer
2180 * Detaches the provided device from a previously attached map.
2181 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
2183 void arm_iommu_detach_device(struct device
*dev
)
2185 struct dma_iommu_mapping
*mapping
;
2187 mapping
= to_dma_iommu_mapping(dev
);
2189 dev_warn(dev
, "Not attached\n");
2193 iommu_detach_device(mapping
->domain
, dev
);
2194 kref_put(&mapping
->kref
, release_iommu_mapping
);
2195 to_dma_iommu_mapping(dev
) = NULL
;
2196 set_dma_ops(dev
, arm_get_dma_map_ops(dev
->archdata
.dma_coherent
));
2198 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev
));
2200 EXPORT_SYMBOL_GPL(arm_iommu_detach_device
);
2202 static const struct dma_map_ops
*arm_get_iommu_dma_map_ops(bool coherent
)
2204 return coherent
? &iommu_coherent_ops
: &iommu_ops
;
2207 static bool arm_setup_iommu_dma_ops(struct device
*dev
, u64 dma_base
, u64 size
,
2208 const struct iommu_ops
*iommu
)
2210 struct dma_iommu_mapping
*mapping
;
2215 mapping
= arm_iommu_create_mapping(dev
->bus
, dma_base
, size
);
2216 if (IS_ERR(mapping
)) {
2217 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2218 size
, dev_name(dev
));
2222 if (__arm_iommu_attach_device(dev
, mapping
)) {
2223 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2225 arm_iommu_release_mapping(mapping
);
2232 static void arm_teardown_iommu_dma_ops(struct device
*dev
)
2234 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
2239 arm_iommu_detach_device(dev
);
2240 arm_iommu_release_mapping(mapping
);
2245 static bool arm_setup_iommu_dma_ops(struct device
*dev
, u64 dma_base
, u64 size
,
2246 const struct iommu_ops
*iommu
)
2251 static void arm_teardown_iommu_dma_ops(struct device
*dev
) { }
2253 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2255 #endif /* CONFIG_ARM_DMA_USE_IOMMU */
2257 void arch_setup_dma_ops(struct device
*dev
, u64 dma_base
, u64 size
,
2258 const struct iommu_ops
*iommu
, bool coherent
)
2260 const struct dma_map_ops
*dma_ops
;
2262 dev
->archdata
.dma_coherent
= coherent
;
2263 #ifdef CONFIG_SWIOTLB
2264 dev
->dma_coherent
= coherent
;
2268 * Don't override the dma_ops if they have already been set. Ideally
2269 * this should be the only location where dma_ops are set, remove this
2270 * check when all other callers of set_dma_ops will have disappeared.
2275 if (arm_setup_iommu_dma_ops(dev
, dma_base
, size
, iommu
))
2276 dma_ops
= arm_get_iommu_dma_map_ops(coherent
);
2278 dma_ops
= arm_get_dma_map_ops(coherent
);
2280 set_dma_ops(dev
, dma_ops
);
2283 if (xen_initial_domain())
2284 dev
->dma_ops
= &xen_swiotlb_dma_ops
;
2286 dev
->archdata
.dma_ops_setup
= true;
2289 void arch_teardown_dma_ops(struct device
*dev
)
2291 if (!dev
->archdata
.dma_ops_setup
)
2294 arm_teardown_iommu_dma_ops(dev
);
2295 /* Let arch_setup_dma_ops() start again from scratch upon re-probe */
2296 set_dma_ops(dev
, NULL
);
2299 #ifdef CONFIG_SWIOTLB
2300 void arch_sync_dma_for_device(phys_addr_t paddr
, size_t size
,
2301 enum dma_data_direction dir
)
2303 __dma_page_cpu_to_dev(phys_to_page(paddr
), paddr
& (PAGE_SIZE
- 1),
2307 void arch_sync_dma_for_cpu(phys_addr_t paddr
, size_t size
,
2308 enum dma_data_direction dir
)
2310 __dma_page_dev_to_cpu(phys_to_page(paddr
), paddr
& (PAGE_SIZE
- 1),
2314 void *arch_dma_alloc(struct device
*dev
, size_t size
, dma_addr_t
*dma_handle
,
2315 gfp_t gfp
, unsigned long attrs
)
2317 return __dma_alloc(dev
, size
, dma_handle
, gfp
,
2318 __get_dma_pgprot(attrs
, PAGE_KERNEL
), false,
2319 attrs
, __builtin_return_address(0));
2322 void arch_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
2323 dma_addr_t dma_handle
, unsigned long attrs
)
2325 __arm_dma_free(dev
, size
, cpu_addr
, dma_handle
, attrs
, false);
2327 #endif /* CONFIG_SWIOTLB */