1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/arch/arm/mm/fault-armv.c
5 * Copyright (C) 1995 Linus Torvalds
6 * Modifications for ARM processor (c) 1995-2002 Russell King
8 #include <linux/sched.h>
9 #include <linux/kernel.h>
11 #include <linux/bitops.h>
12 #include <linux/vmalloc.h>
13 #include <linux/init.h>
14 #include <linux/pagemap.h>
15 #include <linux/gfp.h>
18 #include <asm/cacheflush.h>
19 #include <asm/cachetype.h>
20 #include <asm/tlbflush.h>
24 static pteval_t shared_pte_mask
= L_PTE_MT_BUFFERABLE
;
26 #if __LINUX_ARM_ARCH__ < 6
28 * We take the easy way out of this problem - we make the
29 * PTE uncacheable. However, we leave the write buffer on.
31 * Note that the pte lock held when calling update_mmu_cache must also
32 * guard the pte (somewhere else in the same mm) that we modify here.
33 * Therefore those configurations which might call adjust_pte (those
34 * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
36 static int do_adjust_pte(struct vm_area_struct
*vma
, unsigned long address
,
37 unsigned long pfn
, pte_t
*ptep
)
43 * If this page is present, it's actually being shared.
45 ret
= pte_present(entry
);
48 * If this page isn't present, or is already setup to
49 * fault (ie, is old), we can safely ignore any issues.
51 if (ret
&& (pte_val(entry
) & L_PTE_MT_MASK
) != shared_pte_mask
) {
52 flush_cache_page(vma
, address
, pfn
);
53 outer_flush_range((pfn
<< PAGE_SHIFT
),
54 (pfn
<< PAGE_SHIFT
) + PAGE_SIZE
);
55 pte_val(entry
) &= ~L_PTE_MT_MASK
;
56 pte_val(entry
) |= shared_pte_mask
;
57 set_pte_at(vma
->vm_mm
, address
, ptep
, entry
);
58 flush_tlb_page(vma
, address
);
64 #if USE_SPLIT_PTE_PTLOCKS
66 * If we are using split PTE locks, then we need to take the page
67 * lock here. Otherwise we are using shared mm->page_table_lock
68 * which is already locked, thus cannot take it.
70 static inline void do_pte_lock(spinlock_t
*ptl
)
73 * Use nested version here to indicate that we are already
74 * holding one similar spinlock.
76 spin_lock_nested(ptl
, SINGLE_DEPTH_NESTING
);
79 static inline void do_pte_unlock(spinlock_t
*ptl
)
83 #else /* !USE_SPLIT_PTE_PTLOCKS */
84 static inline void do_pte_lock(spinlock_t
*ptl
) {}
85 static inline void do_pte_unlock(spinlock_t
*ptl
) {}
86 #endif /* USE_SPLIT_PTE_PTLOCKS */
88 static int adjust_pte(struct vm_area_struct
*vma
, unsigned long address
,
99 pgd
= pgd_offset(vma
->vm_mm
, address
);
100 if (pgd_none_or_clear_bad(pgd
))
103 p4d
= p4d_offset(pgd
, address
);
104 if (p4d_none_or_clear_bad(p4d
))
107 pud
= pud_offset(p4d
, address
);
108 if (pud_none_or_clear_bad(pud
))
111 pmd
= pmd_offset(pud
, address
);
112 if (pmd_none_or_clear_bad(pmd
))
116 * This is called while another page table is mapped, so we
117 * must use the nested version. This also means we need to
118 * open-code the spin-locking.
120 ptl
= pte_lockptr(vma
->vm_mm
, pmd
);
121 pte
= pte_offset_map(pmd
, address
);
124 ret
= do_adjust_pte(vma
, address
, pfn
, pte
);
133 make_coherent(struct address_space
*mapping
, struct vm_area_struct
*vma
,
134 unsigned long addr
, pte_t
*ptep
, unsigned long pfn
)
136 struct mm_struct
*mm
= vma
->vm_mm
;
137 struct vm_area_struct
*mpnt
;
138 unsigned long offset
;
142 pgoff
= vma
->vm_pgoff
+ ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
145 * If we have any shared mappings that are in the same mm
146 * space, then we need to handle them specially to maintain
149 flush_dcache_mmap_lock(mapping
);
150 vma_interval_tree_foreach(mpnt
, &mapping
->i_mmap
, pgoff
, pgoff
) {
152 * If this VMA is not in our MM, we can ignore it.
153 * Note that we intentionally mask out the VMA
154 * that we are fixing up.
156 if (mpnt
->vm_mm
!= mm
|| mpnt
== vma
)
158 if (!(mpnt
->vm_flags
& VM_MAYSHARE
))
160 offset
= (pgoff
- mpnt
->vm_pgoff
) << PAGE_SHIFT
;
161 aliases
+= adjust_pte(mpnt
, mpnt
->vm_start
+ offset
, pfn
);
163 flush_dcache_mmap_unlock(mapping
);
165 do_adjust_pte(vma
, addr
, pfn
, ptep
);
169 * Take care of architecture specific things when placing a new PTE into
170 * a page table, or changing an existing PTE. Basically, there are two
171 * things that we need to take care of:
173 * 1. If PG_dcache_clean is not set for the page, we need to ensure
174 * that any cache entries for the kernels virtual memory
175 * range are written back to the page.
176 * 2. If we have multiple shared mappings of the same space in
177 * an object, we need to deal with the cache aliasing issues.
179 * Note that the pte lock will be held.
181 void update_mmu_cache(struct vm_area_struct
*vma
, unsigned long addr
,
184 unsigned long pfn
= pte_pfn(*ptep
);
185 struct address_space
*mapping
;
192 * The zero page is never written to, so never has any dirty
193 * cache lines, and therefore never needs to be flushed.
195 page
= pfn_to_page(pfn
);
196 if (page
== ZERO_PAGE(0))
199 mapping
= page_mapping_file(page
);
200 if (!test_and_set_bit(PG_dcache_clean
, &page
->flags
))
201 __flush_dcache_page(mapping
, page
);
204 make_coherent(mapping
, vma
, addr
, ptep
, pfn
);
205 else if (vma
->vm_flags
& VM_EXEC
)
206 __flush_icache_all();
209 #endif /* __LINUX_ARM_ARCH__ < 6 */
212 * Check whether the write buffer has physical address aliasing
213 * issues. If it has, we need to avoid them for the case where
214 * we have several shared mappings of the same object in user
217 static int __init
check_writebuffer(unsigned long *p1
, unsigned long *p2
)
219 register unsigned long zero
= 0, one
= 1, val
;
233 void __init
check_writebuffer_bugs(void)
239 pr_info("CPU: Testing write buffer coherency: ");
241 page
= alloc_page(GFP_KERNEL
);
243 unsigned long *p1
, *p2
;
244 pgprot_t prot
= __pgprot_modify(PAGE_KERNEL
,
245 L_PTE_MT_MASK
, L_PTE_MT_BUFFERABLE
);
247 p1
= vmap(&page
, 1, VM_IOREMAP
, prot
);
248 p2
= vmap(&page
, 1, VM_IOREMAP
, prot
);
251 v
= check_writebuffer(p1
, p2
);
252 reason
= "enabling work-around";
254 reason
= "unable to map memory\n";
261 reason
= "unable to grab page\n";
265 pr_cont("failed, %s\n", reason
);
266 shared_pte_mask
= L_PTE_MT_UNCACHED
;