1 /* SPDX-License-Identifier: GPL-2.0-only */
3 * arch/arm/probes/decode.h
5 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
7 * Some contents moved here from arch/arm/include/asm/kprobes.h which is
8 * Copyright (C) 2006, 2007 Motorola Inc.
11 #ifndef _ARM_KERNEL_PROBES_H
12 #define _ARM_KERNEL_PROBES_H
14 #include <linux/types.h>
15 #include <linux/stddef.h>
16 #include <asm/probes.h>
17 #include <asm/kprobes.h>
19 void __init
arm_probes_decode_init(void);
21 extern probes_check_cc
* const probes_condition_checks
[16];
23 #if __LINUX_ARM_ARCH__ >= 7
25 /* str_pc_offset is architecturally defined from ARMv7 onwards */
26 #define str_pc_offset 8
27 #define find_str_pc_offset()
29 #else /* __LINUX_ARM_ARCH__ < 7 */
31 /* We need a run-time check to determine str_pc_offset */
32 extern int str_pc_offset
;
33 void __init
find_str_pc_offset(void);
39 * Update ITSTATE after normal execution of an IT block instruction.
41 * The 8 IT state bits are split into two parts in CPSR:
42 * ITSTATE<1:0> are in CPSR<26:25>
43 * ITSTATE<7:2> are in CPSR<15:10>
45 static inline unsigned long it_advance(unsigned long cpsr
)
47 if ((cpsr
& 0x06000400) == 0) {
48 /* ITSTATE<2:0> == 0 means end of IT block, so clear IT state */
51 /* We need to shift left ITSTATE<4:0> */
52 const unsigned long mask
= 0x06001c00; /* Mask ITSTATE<4:0> */
53 unsigned long it
= cpsr
& mask
;
55 it
|= it
>> (27 - 10); /* Carry ITSTATE<2> to correct place */
63 static inline void __kprobes
bx_write_pc(long pcv
, struct pt_regs
*regs
)
65 long cpsr
= regs
->ARM_cpsr
;
71 pcv
&= ~0x2; /* Avoid UNPREDICTABLE address allignment */
73 regs
->ARM_cpsr
= cpsr
;
78 #if __LINUX_ARM_ARCH__ >= 6
80 /* Kernels built for >= ARMv6 should never run on <= ARMv5 hardware, so... */
81 #define load_write_pc_interworks true
82 #define test_load_write_pc_interworking()
84 #else /* __LINUX_ARM_ARCH__ < 6 */
86 /* We need run-time testing to determine if load_write_pc() should interwork. */
87 extern bool load_write_pc_interworks
;
88 void __init
test_load_write_pc_interworking(void);
92 static inline void __kprobes
load_write_pc(long pcv
, struct pt_regs
*regs
)
94 if (load_write_pc_interworks
)
95 bx_write_pc(pcv
, regs
);
101 #if __LINUX_ARM_ARCH__ >= 7
103 #define alu_write_pc_interworks true
104 #define test_alu_write_pc_interworking()
106 #elif __LINUX_ARM_ARCH__ <= 5
108 /* Kernels built for <= ARMv5 should never run on >= ARMv6 hardware, so... */
109 #define alu_write_pc_interworks false
110 #define test_alu_write_pc_interworking()
112 #else /* __LINUX_ARM_ARCH__ == 6 */
114 /* We could be an ARMv6 binary on ARMv7 hardware so we need a run-time check. */
115 extern bool alu_write_pc_interworks
;
116 void __init
test_alu_write_pc_interworking(void);
118 #endif /* __LINUX_ARM_ARCH__ == 6 */
120 static inline void __kprobes
alu_write_pc(long pcv
, struct pt_regs
*regs
)
122 if (alu_write_pc_interworks
)
123 bx_write_pc(pcv
, regs
);
130 * Test if load/store instructions writeback the address register.
131 * if P (bit 24) == 0 or W (bit 21) == 1
133 #define is_writeback(insn) ((insn ^ 0x01000000) & 0x01200000)
136 * The following definitions and macros are used to build instruction
137 * decoding tables for use by probes_decode_insn.
139 * These tables are a concatenation of entries each of which consist of one of
140 * the decode_* structs. All of the fields in every type of decode structure
141 * are of the union type decode_item, therefore the entire decode table can be
142 * viewed as an array of these and declared like:
144 * static const union decode_item table_name[] = {};
146 * In order to construct each entry in the table, macros are used to
147 * initialise a number of sequential decode_item values in a layout which
148 * matches the relevant struct. E.g. DECODE_SIMULATE initialise a struct
149 * decode_simulate by initialising four decode_item objects like this...
154 * {.action = _handler},
156 * Initialising a specified member of the union means that the compiler
157 * will produce a warning if the argument is of an incorrect type.
159 * Below is a list of each of the macros used to initialise entries and a
160 * description of the action performed when that entry is matched to an
161 * instruction. A match is found when (instruction & mask) == value.
163 * DECODE_TABLE(mask, value, table)
164 * Instruction decoding jumps to parsing the new sub-table 'table'.
166 * DECODE_CUSTOM(mask, value, decoder)
167 * The value of 'decoder' is used as an index into the array of
168 * action functions, and the retrieved decoder function is invoked
169 * to complete decoding of the instruction.
171 * DECODE_SIMULATE(mask, value, handler)
172 * The probes instruction handler is set to the value found by
173 * indexing into the action array using the value of 'handler'. This
174 * will be used to simulate the instruction when the probe is hit.
175 * Decoding returns with INSN_GOOD_NO_SLOT.
177 * DECODE_EMULATE(mask, value, handler)
178 * The probes instruction handler is set to the value found by
179 * indexing into the action array using the value of 'handler'. This
180 * will be used to emulate the instruction when the probe is hit. The
181 * modified instruction (see below) is placed in the probes instruction
182 * slot so it may be called by the emulation code. Decoding returns
185 * DECODE_REJECT(mask, value)
186 * Instruction decoding fails with INSN_REJECTED
188 * DECODE_OR(mask, value)
189 * This allows the mask/value test of multiple table entries to be
190 * logically ORed. Once an 'or' entry is matched the decoding action to
191 * be performed is that of the next entry which isn't an 'or'. E.g.
193 * DECODE_OR (mask1, value1)
194 * DECODE_OR (mask2, value2)
195 * DECODE_SIMULATE (mask3, value3, simulation_handler)
197 * This means that if any of the three mask/value pairs match the
198 * instruction being decoded, then 'simulation_handler' will be used
201 * Both the SIMULATE and EMULATE macros have a second form which take an
202 * additional 'regs' argument.
204 * DECODE_SIMULATEX(mask, value, handler, regs)
205 * DECODE_EMULATEX (mask, value, handler, regs)
207 * These are used to specify what kind of CPU register is encoded in each of the
208 * least significant 5 nibbles of the instruction being decoded. The regs value
209 * is specified using the REGS macro, this takes any of the REG_TYPE_* values
210 * from enum decode_reg_type as arguments; only the '*' part of the name is
213 * REGS(0, ANY, NOPC, 0, ANY)
215 * This indicates an instruction is encoded like:
218 * bits 15..12 any register allowed here
219 * bits 11.. 8 any register except PC allowed here
221 * bits 3.. 0 any register allowed here
223 * This register specification is checked after a decode table entry is found to
224 * match an instruction (through the mask/value test). Any invalid register then
225 * found in the instruction will cause decoding to fail with INSN_REJECTED. In
226 * the above example this would happen if bits 11..8 of the instruction were
227 * 1111, indicating R15 or PC.
229 * As well as checking for legal combinations of registers, this data is also
230 * used to modify the registers encoded in the instructions so that an
231 * emulation routines can use it. (See decode_regs() and INSN_NEW_BITS.)
233 * Here is a real example which matches ARM instructions of the form
234 * "AND <Rd>,<Rn>,<Rm>,<shift> <Rs>"
236 * DECODE_EMULATEX (0x0e000090, 0x00000010, PROBES_DATA_PROCESSING_REG,
237 * REGS(ANY, ANY, NOPC, 0, ANY)),
241 * Decoding the instruction "AND R4, R5, R6, ASL R15" will be rejected because
244 * Decoding the instruction "AND R4, R5, R6, ASL R7" will be accepted and the
245 * instruction will be modified to "AND R0, R2, R3, ASL R1" and then placed into
246 * the kprobes instruction slot. This can then be called later by the handler
247 * function emulate_rd12rn16rm0rs8_rwflags (a pointer to which is retrieved from
248 * the indicated slot in the action array), in order to simulate the instruction.
255 DECODE_TYPE_SIMULATE
,
259 NUM_DECODE_TYPES
/* Must be last enum */
262 #define DECODE_TYPE_BITS 4
263 #define DECODE_TYPE_MASK ((1 << DECODE_TYPE_BITS) - 1)
265 enum decode_reg_type
{
266 REG_TYPE_NONE
= 0, /* Not a register, ignore */
267 REG_TYPE_ANY
, /* Any register allowed */
268 REG_TYPE_SAMEAS16
, /* Register should be same as that at bits 19..16 */
269 REG_TYPE_SP
, /* Register must be SP */
270 REG_TYPE_PC
, /* Register must be PC */
271 REG_TYPE_NOSP
, /* Register must not be SP */
272 REG_TYPE_NOSPPC
, /* Register must not be SP or PC */
273 REG_TYPE_NOPC
, /* Register must not be PC */
274 REG_TYPE_NOPCWB
, /* No PC if load/store write-back flag also set */
276 /* The following types are used when the encoding for PC indicates
277 * another instruction form. This distiction only matters for test
278 * case coverage checks.
280 REG_TYPE_NOPCX
, /* Register must not be PC */
281 REG_TYPE_NOSPPCX
, /* Register must not be SP or PC */
283 /* Alias to allow '0' arg to be used in REGS macro. */
284 REG_TYPE_0
= REG_TYPE_NONE
287 #define REGS(r16, r12, r8, r4, r0) \
288 (((REG_TYPE_##r16) << 16) + \
289 ((REG_TYPE_##r12) << 12) + \
290 ((REG_TYPE_##r8) << 8) + \
291 ((REG_TYPE_##r4) << 4) + \
296 const union decode_item
*table
;
300 struct decode_header
;
301 typedef enum probes_insn (probes_custom_decode_t
)(probes_opcode_t
,
302 struct arch_probes_insn
*,
303 const struct decode_header
*);
305 union decode_action
{
306 probes_insn_handler_t
*handler
;
307 probes_custom_decode_t
*decoder
;
310 typedef enum probes_insn (probes_check_t
)(probes_opcode_t
,
311 struct arch_probes_insn
*,
312 const struct decode_header
*);
314 struct decode_checker
{
315 probes_check_t
*checker
;
319 {.bits = DECODE_TYPE_END}
322 struct decode_header
{
323 union decode_item type_regs
;
324 union decode_item mask
;
325 union decode_item value
;
328 #define DECODE_HEADER(_type, _mask, _value, _regs) \
329 {.bits = (_type) | ((_regs) << DECODE_TYPE_BITS)}, \
334 struct decode_table
{
335 struct decode_header header
;
336 union decode_item table
;
339 #define DECODE_TABLE(_mask, _value, _table) \
340 DECODE_HEADER(DECODE_TYPE_TABLE, _mask, _value, 0), \
344 struct decode_custom
{
345 struct decode_header header
;
346 union decode_item decoder
;
349 #define DECODE_CUSTOM(_mask, _value, _decoder) \
350 DECODE_HEADER(DECODE_TYPE_CUSTOM, _mask, _value, 0), \
351 {.action = (_decoder)}
354 struct decode_simulate
{
355 struct decode_header header
;
356 union decode_item handler
;
359 #define DECODE_SIMULATEX(_mask, _value, _handler, _regs) \
360 DECODE_HEADER(DECODE_TYPE_SIMULATE, _mask, _value, _regs), \
361 {.action = (_handler)}
363 #define DECODE_SIMULATE(_mask, _value, _handler) \
364 DECODE_SIMULATEX(_mask, _value, _handler, 0)
367 struct decode_emulate
{
368 struct decode_header header
;
369 union decode_item handler
;
372 #define DECODE_EMULATEX(_mask, _value, _handler, _regs) \
373 DECODE_HEADER(DECODE_TYPE_EMULATE, _mask, _value, _regs), \
374 {.action = (_handler)}
376 #define DECODE_EMULATE(_mask, _value, _handler) \
377 DECODE_EMULATEX(_mask, _value, _handler, 0)
381 struct decode_header header
;
384 #define DECODE_OR(_mask, _value) \
385 DECODE_HEADER(DECODE_TYPE_OR, _mask, _value, 0)
393 struct decode_reject
{
394 struct decode_header header
;
397 #define DECODE_REJECT(_mask, _value) \
398 DECODE_HEADER(DECODE_TYPE_REJECT, _mask, _value, 0)
400 probes_insn_handler_t probes_simulate_nop
;
401 probes_insn_handler_t probes_emulate_none
;
404 probes_decode_insn(probes_opcode_t insn
, struct arch_probes_insn
*asi
,
405 const union decode_item
*table
, bool thumb
, bool emulate
,
406 const union decode_action
*actions
,
407 const struct decode_checker
**checkers
);