1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (C) 2014 Imagination Technologies
4 * Author: Paul Burton <paul.burton@mips.com>
7 #include <linux/cpuhotplug.h>
8 #include <linux/init.h>
9 #include <linux/percpu.h>
10 #include <linux/slab.h>
11 #include <linux/suspend.h>
13 #include <asm/asm-offsets.h>
14 #include <asm/cacheflush.h>
15 #include <asm/cacheops.h>
17 #include <asm/mips-cps.h>
18 #include <asm/mipsmtregs.h>
20 #include <asm/pm-cps.h>
21 #include <asm/smp-cps.h>
25 * cps_nc_entry_fn - type of a generated non-coherent state entry function
26 * @online: the count of online coupled VPEs
27 * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count
29 * The code entering & exiting non-coherent states is generated at runtime
30 * using uasm, in order to ensure that the compiler cannot insert a stray
31 * memory access at an unfortunate time and to allow the generation of optimal
32 * core-specific code particularly for cache routines. If coupled_coherence
33 * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state,
34 * returns the number of VPEs that were in the wait state at the point this
35 * VPE left it. Returns garbage if coupled_coherence is zero or this is not
36 * the entry function for CPS_PM_NC_WAIT.
38 typedef unsigned (*cps_nc_entry_fn
)(unsigned online
, u32
*nc_ready_count
);
41 * The entry point of the generated non-coherent idle state entry/exit
42 * functions. Actually per-core rather than per-CPU.
44 static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn
[CPS_PM_STATE_COUNT
],
47 /* Bitmap indicating which states are supported by the system */
48 static DECLARE_BITMAP(state_support
, CPS_PM_STATE_COUNT
);
51 * Indicates the number of coupled VPEs ready to operate in a non-coherent
52 * state. Actually per-core rather than per-CPU.
54 static DEFINE_PER_CPU_ALIGNED(u32
*, ready_count
);
56 /* Indicates online CPUs coupled with the current CPU */
57 static DEFINE_PER_CPU_ALIGNED(cpumask_t
, online_coupled
);
60 * Used to synchronize entry to deep idle states. Actually per-core rather
63 static DEFINE_PER_CPU_ALIGNED(atomic_t
, pm_barrier
);
65 /* Saved CPU state across the CPS_PM_POWER_GATED state */
66 DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state
, cps_cpu_state
);
68 /* A somewhat arbitrary number of labels & relocs for uasm */
69 static struct uasm_label labels
[32];
70 static struct uasm_reloc relocs
[32];
73 zero
, at
, v0
, v1
, a0
, a1
, a2
, a3
,
74 t0
, t1
, t2
, t3
, t4
, t5
, t6
, t7
,
75 s0
, s1
, s2
, s3
, s4
, s5
, s6
, s7
,
76 t8
, t9
, k0
, k1
, gp
, sp
, fp
, ra
,
79 bool cps_pm_support_state(enum cps_pm_state state
)
81 return test_bit(state
, state_support
);
84 static void coupled_barrier(atomic_t
*a
, unsigned online
)
87 * This function is effectively the same as
88 * cpuidle_coupled_parallel_barrier, which can't be used here since
89 * there's no cpuidle device.
92 if (!coupled_coherence
)
95 smp_mb__before_atomic();
98 while (atomic_read(a
) < online
)
101 if (atomic_inc_return(a
) == online
* 2) {
106 while (atomic_read(a
) > online
)
110 int cps_pm_enter_state(enum cps_pm_state state
)
112 unsigned cpu
= smp_processor_id();
113 unsigned core
= cpu_core(¤t_cpu_data
);
114 unsigned online
, left
;
115 cpumask_t
*coupled_mask
= this_cpu_ptr(&online_coupled
);
116 u32
*core_ready_count
, *nc_core_ready_count
;
118 cps_nc_entry_fn entry
;
119 struct core_boot_config
*core_cfg
;
120 struct vpe_boot_config
*vpe_cfg
;
122 /* Check that there is an entry function for this state */
123 entry
= per_cpu(nc_asm_enter
, core
)[state
];
127 /* Calculate which coupled CPUs (VPEs) are online */
128 #if defined(CONFIG_MIPS_MT) || defined(CONFIG_CPU_MIPSR6)
129 if (cpu_online(cpu
)) {
130 cpumask_and(coupled_mask
, cpu_online_mask
,
131 &cpu_sibling_map
[cpu
]);
132 online
= cpumask_weight(coupled_mask
);
133 cpumask_clear_cpu(cpu
, coupled_mask
);
137 cpumask_clear(coupled_mask
);
141 /* Setup the VPE to run mips_cps_pm_restore when started again */
142 if (IS_ENABLED(CONFIG_CPU_PM
) && state
== CPS_PM_POWER_GATED
) {
143 /* Power gating relies upon CPS SMP */
144 if (!mips_cps_smp_in_use())
147 core_cfg
= &mips_cps_core_bootcfg
[core
];
148 vpe_cfg
= &core_cfg
->vpe_config
[cpu_vpe_id(¤t_cpu_data
)];
149 vpe_cfg
->pc
= (unsigned long)mips_cps_pm_restore
;
150 vpe_cfg
->gp
= (unsigned long)current_thread_info();
154 /* Indicate that this CPU might not be coherent */
155 cpumask_clear_cpu(cpu
, &cpu_coherent_mask
);
156 smp_mb__after_atomic();
158 /* Create a non-coherent mapping of the core ready_count */
159 core_ready_count
= per_cpu(ready_count
, core
);
160 nc_addr
= kmap_noncoherent(virt_to_page(core_ready_count
),
161 (unsigned long)core_ready_count
);
162 nc_addr
+= ((unsigned long)core_ready_count
& ~PAGE_MASK
);
163 nc_core_ready_count
= nc_addr
;
165 /* Ensure ready_count is zero-initialised before the assembly runs */
166 WRITE_ONCE(*nc_core_ready_count
, 0);
167 coupled_barrier(&per_cpu(pm_barrier
, core
), online
);
169 /* Run the generated entry code */
170 left
= entry(online
, nc_core_ready_count
);
172 /* Remove the non-coherent mapping of ready_count */
173 kunmap_noncoherent();
175 /* Indicate that this CPU is definitely coherent */
176 cpumask_set_cpu(cpu
, &cpu_coherent_mask
);
179 * If this VPE is the first to leave the non-coherent wait state then
180 * it needs to wake up any coupled VPEs still running their wait
181 * instruction so that they return to cpuidle, which can then complete
182 * coordination between the coupled VPEs & provide the governor with
183 * a chance to reflect on the length of time the VPEs were in the
186 if (coupled_coherence
&& (state
== CPS_PM_NC_WAIT
) && (left
== online
))
187 arch_send_call_function_ipi_mask(coupled_mask
);
192 static void cps_gen_cache_routine(u32
**pp
, struct uasm_label
**pl
,
193 struct uasm_reloc
**pr
,
194 const struct cache_desc
*cache
,
195 unsigned op
, int lbl
)
197 unsigned cache_size
= cache
->ways
<< cache
->waybit
;
199 const unsigned unroll_lines
= 32;
201 /* If the cache isn't present this function has it easy */
202 if (cache
->flags
& MIPS_CACHE_NOT_PRESENT
)
205 /* Load base address */
206 UASM_i_LA(pp
, t0
, (long)CKSEG0
);
208 /* Calculate end address */
209 if (cache_size
< 0x8000)
210 uasm_i_addiu(pp
, t1
, t0
, cache_size
);
212 UASM_i_LA(pp
, t1
, (long)(CKSEG0
+ cache_size
));
214 /* Start of cache op loop */
215 uasm_build_label(pl
, *pp
, lbl
);
217 /* Generate the cache ops */
218 for (i
= 0; i
< unroll_lines
; i
++) {
219 if (cpu_has_mips_r6
) {
220 uasm_i_cache(pp
, op
, 0, t0
);
221 uasm_i_addiu(pp
, t0
, t0
, cache
->linesz
);
223 uasm_i_cache(pp
, op
, i
* cache
->linesz
, t0
);
227 if (!cpu_has_mips_r6
)
228 /* Update the base address */
229 uasm_i_addiu(pp
, t0
, t0
, unroll_lines
* cache
->linesz
);
231 /* Loop if we haven't reached the end address yet */
232 uasm_il_bne(pp
, pr
, t0
, t1
, lbl
);
236 static int cps_gen_flush_fsb(u32
**pp
, struct uasm_label
**pl
,
237 struct uasm_reloc
**pr
,
238 const struct cpuinfo_mips
*cpu_info
,
241 unsigned i
, fsb_size
= 8;
242 unsigned num_loads
= (fsb_size
* 3) / 2;
243 unsigned line_stride
= 2;
244 unsigned line_size
= cpu_info
->dcache
.linesz
;
245 unsigned perf_counter
, perf_event
;
246 unsigned revision
= cpu_info
->processor_id
& PRID_REV_MASK
;
249 * Determine whether this CPU requires an FSB flush, and if so which
250 * performance counter/event reflect stalls due to a full FSB.
252 switch (__get_cpu_type(cpu_info
->cputype
)) {
259 /* Newer proAptiv cores don't require this workaround */
260 if (revision
>= PRID_REV_ENCODE_332(1, 1, 0))
263 /* On older ones it's unavailable */
267 /* Assume that the CPU does not need this workaround */
272 * Ensure that the fill/store buffer (FSB) is not holding the results
273 * of a prefetch, since if it is then the CPC sequencer may become
274 * stuck in the D3 (ClrBus) state whilst entering a low power state.
277 /* Preserve perf counter setup */
278 uasm_i_mfc0(pp
, t2
, 25, (perf_counter
* 2) + 0); /* PerfCtlN */
279 uasm_i_mfc0(pp
, t3
, 25, (perf_counter
* 2) + 1); /* PerfCntN */
281 /* Setup perf counter to count FSB full pipeline stalls */
282 uasm_i_addiu(pp
, t0
, zero
, (perf_event
<< 5) | 0xf);
283 uasm_i_mtc0(pp
, t0
, 25, (perf_counter
* 2) + 0); /* PerfCtlN */
285 uasm_i_mtc0(pp
, zero
, 25, (perf_counter
* 2) + 1); /* PerfCntN */
288 /* Base address for loads */
289 UASM_i_LA(pp
, t0
, (long)CKSEG0
);
291 /* Start of clear loop */
292 uasm_build_label(pl
, *pp
, lbl
);
294 /* Perform some loads to fill the FSB */
295 for (i
= 0; i
< num_loads
; i
++)
296 uasm_i_lw(pp
, zero
, i
* line_size
* line_stride
, t0
);
299 * Invalidate the new D-cache entries so that the cache will need
300 * refilling (via the FSB) if the loop is executed again.
302 for (i
= 0; i
< num_loads
; i
++) {
303 uasm_i_cache(pp
, Hit_Invalidate_D
,
304 i
* line_size
* line_stride
, t0
);
305 uasm_i_cache(pp
, Hit_Writeback_Inv_SD
,
306 i
* line_size
* line_stride
, t0
);
309 /* Barrier ensuring previous cache invalidates are complete */
310 uasm_i_sync(pp
, __SYNC_full
);
313 /* Check whether the pipeline stalled due to the FSB being full */
314 uasm_i_mfc0(pp
, t1
, 25, (perf_counter
* 2) + 1); /* PerfCntN */
316 /* Loop if it didn't */
317 uasm_il_beqz(pp
, pr
, t1
, lbl
);
320 /* Restore perf counter 1. The count may well now be wrong... */
321 uasm_i_mtc0(pp
, t2
, 25, (perf_counter
* 2) + 0); /* PerfCtlN */
323 uasm_i_mtc0(pp
, t3
, 25, (perf_counter
* 2) + 1); /* PerfCntN */
329 static void cps_gen_set_top_bit(u32
**pp
, struct uasm_label
**pl
,
330 struct uasm_reloc
**pr
,
331 unsigned r_addr
, int lbl
)
333 uasm_i_lui(pp
, t0
, uasm_rel_hi(0x80000000));
334 uasm_build_label(pl
, *pp
, lbl
);
335 uasm_i_ll(pp
, t1
, 0, r_addr
);
336 uasm_i_or(pp
, t1
, t1
, t0
);
337 uasm_i_sc(pp
, t1
, 0, r_addr
);
338 uasm_il_beqz(pp
, pr
, t1
, lbl
);
342 static void *cps_gen_entry_code(unsigned cpu
, enum cps_pm_state state
)
344 struct uasm_label
*l
= labels
;
345 struct uasm_reloc
*r
= relocs
;
347 const unsigned r_online
= a0
;
348 const unsigned r_nc_count
= a1
;
349 const unsigned r_pcohctl
= t7
;
350 const unsigned max_instrs
= 256;
357 lbl_disable_coherence
,
367 /* Allocate a buffer to hold the generated code */
368 p
= buf
= kcalloc(max_instrs
, sizeof(u32
), GFP_KERNEL
);
372 /* Clear labels & relocs ready for (re)use */
373 memset(labels
, 0, sizeof(labels
));
374 memset(relocs
, 0, sizeof(relocs
));
376 if (IS_ENABLED(CONFIG_CPU_PM
) && state
== CPS_PM_POWER_GATED
) {
377 /* Power gating relies upon CPS SMP */
378 if (!mips_cps_smp_in_use())
382 * Save CPU state. Note the non-standard calling convention
383 * with the return address placed in v0 to avoid clobbering
384 * the ra register before it is saved.
386 UASM_i_LA(&p
, t0
, (long)mips_cps_pm_save
);
387 uasm_i_jalr(&p
, v0
, t0
);
392 * Load addresses of required CM & CPC registers. This is done early
393 * because they're needed in both the enable & disable coherence steps
394 * but in the coupled case the enable step will only run on one VPE.
396 UASM_i_LA(&p
, r_pcohctl
, (long)addr_gcr_cl_coherence());
398 if (coupled_coherence
) {
399 /* Increment ready_count */
400 uasm_i_sync(&p
, __SYNC_mb
);
401 uasm_build_label(&l
, p
, lbl_incready
);
402 uasm_i_ll(&p
, t1
, 0, r_nc_count
);
403 uasm_i_addiu(&p
, t2
, t1
, 1);
404 uasm_i_sc(&p
, t2
, 0, r_nc_count
);
405 uasm_il_beqz(&p
, &r
, t2
, lbl_incready
);
406 uasm_i_addiu(&p
, t1
, t1
, 1);
408 /* Barrier ensuring all CPUs see the updated r_nc_count value */
409 uasm_i_sync(&p
, __SYNC_mb
);
412 * If this is the last VPE to become ready for non-coherence
413 * then it should branch below.
415 uasm_il_beq(&p
, &r
, t1
, r_online
, lbl_disable_coherence
);
418 if (state
< CPS_PM_POWER_GATED
) {
420 * Otherwise this is not the last VPE to become ready
421 * for non-coherence. It needs to wait until coherence
422 * has been disabled before proceeding, which it will do
423 * by polling for the top bit of ready_count being set.
425 uasm_i_addiu(&p
, t1
, zero
, -1);
426 uasm_build_label(&l
, p
, lbl_poll_cont
);
427 uasm_i_lw(&p
, t0
, 0, r_nc_count
);
428 uasm_il_bltz(&p
, &r
, t0
, lbl_secondary_cont
);
431 uasm_i_yield(&p
, zero
, t1
);
432 uasm_il_b(&p
, &r
, lbl_poll_cont
);
436 * The core will lose power & this VPE will not continue
437 * so it can simply halt here.
439 if (cpu_has_mipsmt
) {
440 /* Halt the VPE via C0 tchalt register */
441 uasm_i_addiu(&p
, t0
, zero
, TCHALT_H
);
442 uasm_i_mtc0(&p
, t0
, 2, 4);
443 } else if (cpu_has_vp
) {
444 /* Halt the VP via the CPC VP_STOP register */
447 vpe_id
= cpu_vpe_id(&cpu_data
[cpu
]);
448 uasm_i_addiu(&p
, t0
, zero
, 1 << vpe_id
);
449 UASM_i_LA(&p
, t1
, (long)addr_cpc_cl_vp_stop());
450 uasm_i_sw(&p
, t0
, 0, t1
);
454 uasm_build_label(&l
, p
, lbl_secondary_hang
);
455 uasm_il_b(&p
, &r
, lbl_secondary_hang
);
461 * This is the point of no return - this VPE will now proceed to
462 * disable coherence. At this point we *must* be sure that no other
463 * VPE within the core will interfere with the L1 dcache.
465 uasm_build_label(&l
, p
, lbl_disable_coherence
);
467 /* Invalidate the L1 icache */
468 cps_gen_cache_routine(&p
, &l
, &r
, &cpu_data
[cpu
].icache
,
469 Index_Invalidate_I
, lbl_invicache
);
471 /* Writeback & invalidate the L1 dcache */
472 cps_gen_cache_routine(&p
, &l
, &r
, &cpu_data
[cpu
].dcache
,
473 Index_Writeback_Inv_D
, lbl_flushdcache
);
475 /* Barrier ensuring previous cache invalidates are complete */
476 uasm_i_sync(&p
, __SYNC_full
);
479 if (mips_cm_revision() < CM_REV_CM3
) {
481 * Disable all but self interventions. The load from COHCTL is
482 * defined by the interAptiv & proAptiv SUMs as ensuring that the
483 * operation resulting from the preceding store is complete.
485 uasm_i_addiu(&p
, t0
, zero
, 1 << cpu_core(&cpu_data
[cpu
]));
486 uasm_i_sw(&p
, t0
, 0, r_pcohctl
);
487 uasm_i_lw(&p
, t0
, 0, r_pcohctl
);
489 /* Barrier to ensure write to coherence control is complete */
490 uasm_i_sync(&p
, __SYNC_full
);
494 /* Disable coherence */
495 uasm_i_sw(&p
, zero
, 0, r_pcohctl
);
496 uasm_i_lw(&p
, t0
, 0, r_pcohctl
);
498 if (state
>= CPS_PM_CLOCK_GATED
) {
499 err
= cps_gen_flush_fsb(&p
, &l
, &r
, &cpu_data
[cpu
],
504 /* Determine the CPC command to issue */
506 case CPS_PM_CLOCK_GATED
:
507 cpc_cmd
= CPC_Cx_CMD_CLOCKOFF
;
509 case CPS_PM_POWER_GATED
:
510 cpc_cmd
= CPC_Cx_CMD_PWRDOWN
;
517 /* Issue the CPC command */
518 UASM_i_LA(&p
, t0
, (long)addr_cpc_cl_cmd());
519 uasm_i_addiu(&p
, t1
, zero
, cpc_cmd
);
520 uasm_i_sw(&p
, t1
, 0, t0
);
522 if (state
== CPS_PM_POWER_GATED
) {
523 /* If anything goes wrong just hang */
524 uasm_build_label(&l
, p
, lbl_hang
);
525 uasm_il_b(&p
, &r
, lbl_hang
);
529 * There's no point generating more code, the core is
530 * powered down & if powered back up will run from the
531 * reset vector not from here.
536 /* Barrier to ensure write to CPC command is complete */
537 uasm_i_sync(&p
, __SYNC_full
);
541 if (state
== CPS_PM_NC_WAIT
) {
543 * At this point it is safe for all VPEs to proceed with
544 * execution. This VPE will set the top bit of ready_count
545 * to indicate to the other VPEs that they may continue.
547 if (coupled_coherence
)
548 cps_gen_set_top_bit(&p
, &l
, &r
, r_nc_count
,
552 * VPEs which did not disable coherence will continue
553 * executing, after coherence has been disabled, from this
556 uasm_build_label(&l
, p
, lbl_secondary_cont
);
558 /* Now perform our wait */
563 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs
564 * will run this. The first will actually re-enable coherence & the
565 * rest will just be performing a rather unusual nop.
567 uasm_i_addiu(&p
, t0
, zero
, mips_cm_revision() < CM_REV_CM3
568 ? CM_GCR_Cx_COHERENCE_COHDOMAINEN
569 : CM3_GCR_Cx_COHERENCE_COHEN
);
571 uasm_i_sw(&p
, t0
, 0, r_pcohctl
);
572 uasm_i_lw(&p
, t0
, 0, r_pcohctl
);
574 /* Barrier to ensure write to coherence control is complete */
575 uasm_i_sync(&p
, __SYNC_full
);
578 if (coupled_coherence
&& (state
== CPS_PM_NC_WAIT
)) {
579 /* Decrement ready_count */
580 uasm_build_label(&l
, p
, lbl_decready
);
581 uasm_i_sync(&p
, __SYNC_mb
);
582 uasm_i_ll(&p
, t1
, 0, r_nc_count
);
583 uasm_i_addiu(&p
, t2
, t1
, -1);
584 uasm_i_sc(&p
, t2
, 0, r_nc_count
);
585 uasm_il_beqz(&p
, &r
, t2
, lbl_decready
);
586 uasm_i_andi(&p
, v0
, t1
, (1 << fls(smp_num_siblings
)) - 1);
588 /* Barrier ensuring all CPUs see the updated r_nc_count value */
589 uasm_i_sync(&p
, __SYNC_mb
);
592 if (coupled_coherence
&& (state
== CPS_PM_CLOCK_GATED
)) {
594 * At this point it is safe for all VPEs to proceed with
595 * execution. This VPE will set the top bit of ready_count
596 * to indicate to the other VPEs that they may continue.
598 cps_gen_set_top_bit(&p
, &l
, &r
, r_nc_count
, lbl_set_cont
);
601 * This core will be reliant upon another core sending a
602 * power-up command to the CPC in order to resume operation.
603 * Thus an arbitrary VPE can't trigger the core leaving the
604 * idle state and the one that disables coherence might as well
605 * be the one to re-enable it. The rest will continue from here
606 * after that has been done.
608 uasm_build_label(&l
, p
, lbl_secondary_cont
);
610 /* Barrier ensuring all CPUs see the updated r_nc_count value */
611 uasm_i_sync(&p
, __SYNC_mb
);
614 /* The core is coherent, time to return to C code */
619 /* Ensure the code didn't exceed the resources allocated for it */
620 BUG_ON((p
- buf
) > max_instrs
);
621 BUG_ON((l
- labels
) > ARRAY_SIZE(labels
));
622 BUG_ON((r
- relocs
) > ARRAY_SIZE(relocs
));
624 /* Patch branch offsets */
625 uasm_resolve_relocs(relocs
, labels
);
627 /* Flush the icache */
628 local_flush_icache_range((unsigned long)buf
, (unsigned long)p
);
636 static int cps_pm_online_cpu(unsigned int cpu
)
638 enum cps_pm_state state
;
639 unsigned core
= cpu_core(&cpu_data
[cpu
]);
640 void *entry_fn
, *core_rc
;
642 for (state
= CPS_PM_NC_WAIT
; state
< CPS_PM_STATE_COUNT
; state
++) {
643 if (per_cpu(nc_asm_enter
, core
)[state
])
645 if (!test_bit(state
, state_support
))
648 entry_fn
= cps_gen_entry_code(cpu
, state
);
650 pr_err("Failed to generate core %u state %u entry\n",
652 clear_bit(state
, state_support
);
655 per_cpu(nc_asm_enter
, core
)[state
] = entry_fn
;
658 if (!per_cpu(ready_count
, core
)) {
659 core_rc
= kmalloc(sizeof(u32
), GFP_KERNEL
);
661 pr_err("Failed allocate core %u ready_count\n", core
);
664 per_cpu(ready_count
, core
) = core_rc
;
670 static int cps_pm_power_notifier(struct notifier_block
*this,
671 unsigned long event
, void *ptr
)
676 case PM_SUSPEND_PREPARE
:
677 stat
= read_cpc_cl_stat_conf();
679 * If we're attempting to suspend the system and power down all
680 * of the cores, the JTAG detect bit indicates that the CPC will
681 * instead put the cores into clock-off state. In this state
682 * a connected debugger can cause the CPU to attempt
683 * interactions with the powered down system. At best this will
684 * fail. At worst, it can hang the NoC, requiring a hard reset.
685 * To avoid this, just block system suspend if a JTAG probe
688 if (stat
& CPC_Cx_STAT_CONF_EJTAG_PROBE
) {
689 pr_warn("JTAG probe is connected - abort suspend\n");
698 static int __init
cps_pm_init(void)
700 /* A CM is required for all non-coherent states */
701 if (!mips_cm_present()) {
702 pr_warn("pm-cps: no CM, non-coherent states unavailable\n");
707 * If interrupts were enabled whilst running a wait instruction on a
708 * non-coherent core then the VPE may end up processing interrupts
709 * whilst non-coherent. That would be bad.
711 if (cpu_wait
== r4k_wait_irqoff
)
712 set_bit(CPS_PM_NC_WAIT
, state_support
);
714 pr_warn("pm-cps: non-coherent wait unavailable\n");
716 /* Detect whether a CPC is present */
717 if (mips_cpc_present()) {
718 /* Detect whether clock gating is implemented */
719 if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL
)
720 set_bit(CPS_PM_CLOCK_GATED
, state_support
);
722 pr_warn("pm-cps: CPC does not support clock gating\n");
724 /* Power gating is available with CPS SMP & any CPC */
725 if (mips_cps_smp_in_use())
726 set_bit(CPS_PM_POWER_GATED
, state_support
);
728 pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n");
730 pr_warn("pm-cps: no CPC, clock & power gating unavailable\n");
733 pm_notifier(cps_pm_power_notifier
, 0);
735 return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN
, "mips/cps_pm:online",
736 cps_pm_online_cpu
, NULL
);
738 arch_initcall(cps_pm_init
);