2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/debug.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memblock.h>
32 #include <linux/interrupt.h>
33 #include <linux/ptrace.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdebug.h>
36 #include <linux/kprobes.h>
37 #include <linux/notifier.h>
38 #include <linux/kdb.h>
39 #include <linux/irq.h>
40 #include <linux/perf_event.h>
42 #include <asm/addrspace.h>
43 #include <asm/bootinfo.h>
44 #include <asm/branch.h>
45 #include <asm/break.h>
48 #include <asm/cpu-type.h>
51 #include <asm/fpu_emulator.h>
53 #include <asm/isa-rev.h>
54 #include <asm/mips-cps.h>
55 #include <asm/mips-r2-to-r6-emul.h>
56 #include <asm/mipsregs.h>
57 #include <asm/mipsmtregs.h>
58 #include <asm/module.h>
60 #include <asm/ptrace.h>
61 #include <asm/sections.h>
62 #include <asm/siginfo.h>
63 #include <asm/tlbdebug.h>
64 #include <asm/traps.h>
65 #include <linux/uaccess.h>
66 #include <asm/watch.h>
67 #include <asm/mmu_context.h>
68 #include <asm/types.h>
69 #include <asm/stacktrace.h>
70 #include <asm/tlbex.h>
73 #include <asm/mach-loongson64/cpucfg-emul.h>
75 extern void check_wait(void);
76 extern asmlinkage
void rollback_handle_int(void);
77 extern asmlinkage
void handle_int(void);
78 extern asmlinkage
void handle_adel(void);
79 extern asmlinkage
void handle_ades(void);
80 extern asmlinkage
void handle_ibe(void);
81 extern asmlinkage
void handle_dbe(void);
82 extern asmlinkage
void handle_sys(void);
83 extern asmlinkage
void handle_bp(void);
84 extern asmlinkage
void handle_ri(void);
85 extern asmlinkage
void handle_ri_rdhwr_tlbp(void);
86 extern asmlinkage
void handle_ri_rdhwr(void);
87 extern asmlinkage
void handle_cpu(void);
88 extern asmlinkage
void handle_ov(void);
89 extern asmlinkage
void handle_tr(void);
90 extern asmlinkage
void handle_msa_fpe(void);
91 extern asmlinkage
void handle_fpe(void);
92 extern asmlinkage
void handle_ftlb(void);
93 extern asmlinkage
void handle_gsexc(void);
94 extern asmlinkage
void handle_msa(void);
95 extern asmlinkage
void handle_mdmx(void);
96 extern asmlinkage
void handle_watch(void);
97 extern asmlinkage
void handle_mt(void);
98 extern asmlinkage
void handle_dsp(void);
99 extern asmlinkage
void handle_mcheck(void);
100 extern asmlinkage
void handle_reserved(void);
101 extern void tlb_do_page_fault_0(void);
103 void (*board_be_init
)(void);
104 int (*board_be_handler
)(struct pt_regs
*regs
, int is_fixup
);
105 void (*board_nmi_handler_setup
)(void);
106 void (*board_ejtag_handler_setup
)(void);
107 void (*board_bind_eic_interrupt
)(int irq
, int regset
);
108 void (*board_ebase_setup
)(void);
109 void(*board_cache_error_setup
)(void);
111 static void show_raw_backtrace(unsigned long reg29
, const char *loglvl
)
113 unsigned long *sp
= (unsigned long *)(reg29
& ~3);
116 printk("%sCall Trace:", loglvl
);
117 #ifdef CONFIG_KALLSYMS
118 printk("%s\n", loglvl
);
120 while (!kstack_end(sp
)) {
121 unsigned long __user
*p
=
122 (unsigned long __user
*)(unsigned long)sp
++;
123 if (__get_user(addr
, p
)) {
124 printk("%s (Bad stack address)", loglvl
);
127 if (__kernel_text_address(addr
))
128 print_ip_sym(loglvl
, addr
);
130 printk("%s\n", loglvl
);
133 #ifdef CONFIG_KALLSYMS
135 static int __init
set_raw_show_trace(char *str
)
140 __setup("raw_show_trace", set_raw_show_trace
);
143 static void show_backtrace(struct task_struct
*task
, const struct pt_regs
*regs
,
146 unsigned long sp
= regs
->regs
[29];
147 unsigned long ra
= regs
->regs
[31];
148 unsigned long pc
= regs
->cp0_epc
;
153 if (raw_show_trace
|| user_mode(regs
) || !__kernel_text_address(pc
)) {
154 show_raw_backtrace(sp
, loglvl
);
157 printk("%sCall Trace:\n", loglvl
);
159 print_ip_sym(loglvl
, pc
);
160 pc
= unwind_stack(task
, &sp
, pc
, &ra
);
166 * This routine abuses get_user()/put_user() to reference pointers
167 * with at least a bit of error checking ...
169 static void show_stacktrace(struct task_struct
*task
,
170 const struct pt_regs
*regs
, const char *loglvl
)
172 const int field
= 2 * sizeof(unsigned long);
175 unsigned long __user
*sp
= (unsigned long __user
*)regs
->regs
[29];
177 printk("%sStack :", loglvl
);
179 while ((unsigned long) sp
& (PAGE_SIZE
- 1)) {
180 if (i
&& ((i
% (64 / field
)) == 0)) {
182 printk("%s ", loglvl
);
189 if (__get_user(stackdata
, sp
++)) {
190 pr_cont(" (Bad stack address)");
194 pr_cont(" %0*lx", field
, stackdata
);
198 show_backtrace(task
, regs
, loglvl
);
201 void show_stack(struct task_struct
*task
, unsigned long *sp
, const char *loglvl
)
204 mm_segment_t old_fs
= get_fs();
206 regs
.cp0_status
= KSU_KERNEL
;
208 regs
.regs
[29] = (unsigned long)sp
;
212 if (task
&& task
!= current
) {
213 regs
.regs
[29] = task
->thread
.reg29
;
215 regs
.cp0_epc
= task
->thread
.reg31
;
217 prepare_frametrace(®s
);
221 * show_stack() deals exclusively with kernel mode, so be sure to access
222 * the stack in the kernel (not user) address space.
225 show_stacktrace(task
, ®s
, loglvl
);
229 static void show_code(unsigned int __user
*pc
)
232 unsigned short __user
*pc16
= NULL
;
236 if ((unsigned long)pc
& 1)
237 pc16
= (unsigned short __user
*)((unsigned long)pc
& ~1);
238 for(i
= -3 ; i
< 6 ; i
++) {
240 if (pc16
? __get_user(insn
, pc16
+ i
) : __get_user(insn
, pc
+ i
)) {
241 pr_cont(" (Bad address in epc)\n");
244 pr_cont("%c%0*x%c", (i
?' ':'<'), pc16
? 4 : 8, insn
, (i
?' ':'>'));
249 static void __show_regs(const struct pt_regs
*regs
)
251 const int field
= 2 * sizeof(unsigned long);
252 unsigned int cause
= regs
->cp0_cause
;
253 unsigned int exccode
;
256 show_regs_print_info(KERN_DEFAULT
);
259 * Saved main processor registers
261 for (i
= 0; i
< 32; ) {
265 pr_cont(" %0*lx", field
, 0UL);
266 else if (i
== 26 || i
== 27)
267 pr_cont(" %*s", field
, "");
269 pr_cont(" %0*lx", field
, regs
->regs
[i
]);
276 #ifdef CONFIG_CPU_HAS_SMARTMIPS
277 printk("Acx : %0*lx\n", field
, regs
->acx
);
279 if (MIPS_ISA_REV
< 6) {
280 printk("Hi : %0*lx\n", field
, regs
->hi
);
281 printk("Lo : %0*lx\n", field
, regs
->lo
);
285 * Saved cp0 registers
287 printk("epc : %0*lx %pS\n", field
, regs
->cp0_epc
,
288 (void *) regs
->cp0_epc
);
289 printk("ra : %0*lx %pS\n", field
, regs
->regs
[31],
290 (void *) regs
->regs
[31]);
292 printk("Status: %08x ", (uint32_t) regs
->cp0_status
);
295 if (regs
->cp0_status
& ST0_KUO
)
297 if (regs
->cp0_status
& ST0_IEO
)
299 if (regs
->cp0_status
& ST0_KUP
)
301 if (regs
->cp0_status
& ST0_IEP
)
303 if (regs
->cp0_status
& ST0_KUC
)
305 if (regs
->cp0_status
& ST0_IEC
)
307 } else if (cpu_has_4kex
) {
308 if (regs
->cp0_status
& ST0_KX
)
310 if (regs
->cp0_status
& ST0_SX
)
312 if (regs
->cp0_status
& ST0_UX
)
314 switch (regs
->cp0_status
& ST0_KSU
) {
319 pr_cont("SUPERVISOR ");
325 pr_cont("BAD_MODE ");
328 if (regs
->cp0_status
& ST0_ERL
)
330 if (regs
->cp0_status
& ST0_EXL
)
332 if (regs
->cp0_status
& ST0_IE
)
337 exccode
= (cause
& CAUSEF_EXCCODE
) >> CAUSEB_EXCCODE
;
338 printk("Cause : %08x (ExcCode %02x)\n", cause
, exccode
);
340 if (1 <= exccode
&& exccode
<= 5)
341 printk("BadVA : %0*lx\n", field
, regs
->cp0_badvaddr
);
343 printk("PrId : %08x (%s)\n", read_c0_prid(),
348 * FIXME: really the generic show_regs should take a const pointer argument.
350 void show_regs(struct pt_regs
*regs
)
356 void show_registers(struct pt_regs
*regs
)
358 const int field
= 2 * sizeof(unsigned long);
359 mm_segment_t old_fs
= get_fs();
363 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
364 current
->comm
, current
->pid
, current_thread_info(), current
,
365 field
, current_thread_info()->tp_value
);
366 if (cpu_has_userlocal
) {
369 tls
= read_c0_userlocal();
370 if (tls
!= current_thread_info()->tp_value
)
371 printk("*HwTLS: %0*lx\n", field
, tls
);
374 if (!user_mode(regs
))
375 /* Necessary for getting the correct stack content */
377 show_stacktrace(current
, regs
, KERN_DEFAULT
);
378 show_code((unsigned int __user
*) regs
->cp0_epc
);
383 static DEFINE_RAW_SPINLOCK(die_lock
);
385 void __noreturn
die(const char *str
, struct pt_regs
*regs
)
387 static int die_counter
;
392 if (notify_die(DIE_OOPS
, str
, regs
, 0, current
->thread
.trap_nr
,
393 SIGSEGV
) == NOTIFY_STOP
)
397 raw_spin_lock_irq(&die_lock
);
400 printk("%s[#%d]:\n", str
, ++die_counter
);
401 show_registers(regs
);
402 add_taint(TAINT_DIE
, LOCKDEP_NOW_UNRELIABLE
);
403 raw_spin_unlock_irq(&die_lock
);
408 panic("Fatal exception in interrupt");
411 panic("Fatal exception");
413 if (regs
&& kexec_should_crash(current
))
419 extern struct exception_table_entry __start___dbe_table
[];
420 extern struct exception_table_entry __stop___dbe_table
[];
423 " .section __dbe_table, \"a\"\n"
426 /* Given an address, look for it in the exception tables. */
427 static const struct exception_table_entry
*search_dbe_tables(unsigned long addr
)
429 const struct exception_table_entry
*e
;
431 e
= search_extable(__start___dbe_table
,
432 __stop___dbe_table
- __start___dbe_table
, addr
);
434 e
= search_module_dbetables(addr
);
438 asmlinkage
void do_be(struct pt_regs
*regs
)
440 const int field
= 2 * sizeof(unsigned long);
441 const struct exception_table_entry
*fixup
= NULL
;
442 int data
= regs
->cp0_cause
& 4;
443 int action
= MIPS_BE_FATAL
;
444 enum ctx_state prev_state
;
446 prev_state
= exception_enter();
447 /* XXX For now. Fixme, this searches the wrong table ... */
448 if (data
&& !user_mode(regs
))
449 fixup
= search_dbe_tables(exception_epc(regs
));
452 action
= MIPS_BE_FIXUP
;
454 if (board_be_handler
)
455 action
= board_be_handler(regs
, fixup
!= NULL
);
457 mips_cm_error_report();
460 case MIPS_BE_DISCARD
:
464 regs
->cp0_epc
= fixup
->nextinsn
;
473 * Assume it would be too dangerous to continue ...
475 printk(KERN_ALERT
"%s bus error, epc == %0*lx, ra == %0*lx\n",
476 data
? "Data" : "Instruction",
477 field
, regs
->cp0_epc
, field
, regs
->regs
[31]);
478 if (notify_die(DIE_OOPS
, "bus error", regs
, 0, current
->thread
.trap_nr
,
479 SIGBUS
) == NOTIFY_STOP
)
482 die_if_kernel("Oops", regs
);
486 exception_exit(prev_state
);
490 * ll/sc, rdhwr, sync emulation
493 #define OPCODE 0xfc000000
494 #define BASE 0x03e00000
495 #define RT 0x001f0000
496 #define OFFSET 0x0000ffff
497 #define LL 0xc0000000
498 #define SC 0xe0000000
499 #define SPEC0 0x00000000
500 #define SPEC3 0x7c000000
501 #define RD 0x0000f800
502 #define FUNC 0x0000003f
503 #define SYNC 0x0000000f
504 #define RDHWR 0x0000003b
506 /* microMIPS definitions */
507 #define MM_POOL32A_FUNC 0xfc00ffff
508 #define MM_RDHWR 0x00006b3c
509 #define MM_RS 0x001f0000
510 #define MM_RT 0x03e00000
513 * The ll_bit is cleared by r*_switch.S
517 struct task_struct
*ll_task
;
519 static inline int simulate_ll(struct pt_regs
*regs
, unsigned int opcode
)
521 unsigned long value
, __user
*vaddr
;
525 * analyse the ll instruction that just caused a ri exception
526 * and put the referenced address to addr.
529 /* sign extend offset */
530 offset
= opcode
& OFFSET
;
534 vaddr
= (unsigned long __user
*)
535 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
537 if ((unsigned long)vaddr
& 3)
539 if (get_user(value
, vaddr
))
544 if (ll_task
== NULL
|| ll_task
== current
) {
553 regs
->regs
[(opcode
& RT
) >> 16] = value
;
558 static inline int simulate_sc(struct pt_regs
*regs
, unsigned int opcode
)
560 unsigned long __user
*vaddr
;
565 * analyse the sc instruction that just caused a ri exception
566 * and put the referenced address to addr.
569 /* sign extend offset */
570 offset
= opcode
& OFFSET
;
574 vaddr
= (unsigned long __user
*)
575 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
576 reg
= (opcode
& RT
) >> 16;
578 if ((unsigned long)vaddr
& 3)
583 if (ll_bit
== 0 || ll_task
!= current
) {
591 if (put_user(regs
->regs
[reg
], vaddr
))
600 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
601 * opcodes are supposed to result in coprocessor unusable exceptions if
602 * executed on ll/sc-less processors. That's the theory. In practice a
603 * few processors such as NEC's VR4100 throw reserved instruction exceptions
604 * instead, so we're doing the emulation thing in both exception handlers.
606 static int simulate_llsc(struct pt_regs
*regs
, unsigned int opcode
)
608 if ((opcode
& OPCODE
) == LL
) {
609 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
611 return simulate_ll(regs
, opcode
);
613 if ((opcode
& OPCODE
) == SC
) {
614 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
616 return simulate_sc(regs
, opcode
);
619 return -1; /* Must be something else ... */
623 * Simulate trapping 'rdhwr' instructions to provide user accessible
624 * registers not implemented in hardware.
626 static int simulate_rdhwr(struct pt_regs
*regs
, int rd
, int rt
)
628 struct thread_info
*ti
= task_thread_info(current
);
630 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
633 case MIPS_HWR_CPUNUM
: /* CPU number */
634 regs
->regs
[rt
] = smp_processor_id();
636 case MIPS_HWR_SYNCISTEP
: /* SYNCI length */
637 regs
->regs
[rt
] = min(current_cpu_data
.dcache
.linesz
,
638 current_cpu_data
.icache
.linesz
);
640 case MIPS_HWR_CC
: /* Read count register */
641 regs
->regs
[rt
] = read_c0_count();
643 case MIPS_HWR_CCRES
: /* Count register resolution */
644 switch (current_cpu_type()) {
653 case MIPS_HWR_ULR
: /* Read UserLocal register */
654 regs
->regs
[rt
] = ti
->tp_value
;
661 static int simulate_rdhwr_normal(struct pt_regs
*regs
, unsigned int opcode
)
663 if ((opcode
& OPCODE
) == SPEC3
&& (opcode
& FUNC
) == RDHWR
) {
664 int rd
= (opcode
& RD
) >> 11;
665 int rt
= (opcode
& RT
) >> 16;
667 simulate_rdhwr(regs
, rd
, rt
);
675 static int simulate_rdhwr_mm(struct pt_regs
*regs
, unsigned int opcode
)
677 if ((opcode
& MM_POOL32A_FUNC
) == MM_RDHWR
) {
678 int rd
= (opcode
& MM_RS
) >> 16;
679 int rt
= (opcode
& MM_RT
) >> 21;
680 simulate_rdhwr(regs
, rd
, rt
);
688 static int simulate_sync(struct pt_regs
*regs
, unsigned int opcode
)
690 if ((opcode
& OPCODE
) == SPEC0
&& (opcode
& FUNC
) == SYNC
) {
691 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
696 return -1; /* Must be something else ... */
700 * Loongson-3 CSR instructions emulation
703 #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
705 #define LWC2 0xc8000000
707 #define CSR_OPCODE2 0x00000118
708 #define CSR_OPCODE2_MASK 0x000007ff
709 #define CSR_FUNC_MASK RT
710 #define CSR_FUNC_CPUCFG 0x8
712 static int simulate_loongson3_cpucfg(struct pt_regs
*regs
,
715 int op
= opcode
& OPCODE
;
716 int op2
= opcode
& CSR_OPCODE2_MASK
;
717 int csr_func
= (opcode
& CSR_FUNC_MASK
) >> 16;
719 if (op
== LWC2
&& op2
== CSR_OPCODE2
&& csr_func
== CSR_FUNC_CPUCFG
) {
720 int rd
= (opcode
& RD
) >> 11;
721 int rs
= (opcode
& RS
) >> 21;
722 __u64 sel
= regs
->regs
[rs
];
724 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
, 1, regs
, 0);
726 /* Do not emulate on unsupported core models. */
728 if (!loongson3_cpucfg_emulation_enabled(¤t_cpu_data
)) {
732 regs
->regs
[rd
] = loongson3_cpucfg_read_synthesized(
733 ¤t_cpu_data
, sel
);
741 #endif /* CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION */
743 asmlinkage
void do_ov(struct pt_regs
*regs
)
745 enum ctx_state prev_state
;
747 prev_state
= exception_enter();
748 die_if_kernel("Integer overflow", regs
);
750 force_sig_fault(SIGFPE
, FPE_INTOVF
, (void __user
*)regs
->cp0_epc
);
751 exception_exit(prev_state
);
754 #ifdef CONFIG_MIPS_FP_SUPPORT
757 * Send SIGFPE according to FCSR Cause bits, which must have already
758 * been masked against Enable bits. This is impotant as Inexact can
759 * happen together with Overflow or Underflow, and `ptrace' can set
762 void force_fcr31_sig(unsigned long fcr31
, void __user
*fault_addr
,
763 struct task_struct
*tsk
)
765 int si_code
= FPE_FLTUNK
;
767 if (fcr31
& FPU_CSR_INV_X
)
768 si_code
= FPE_FLTINV
;
769 else if (fcr31
& FPU_CSR_DIV_X
)
770 si_code
= FPE_FLTDIV
;
771 else if (fcr31
& FPU_CSR_OVF_X
)
772 si_code
= FPE_FLTOVF
;
773 else if (fcr31
& FPU_CSR_UDF_X
)
774 si_code
= FPE_FLTUND
;
775 else if (fcr31
& FPU_CSR_INE_X
)
776 si_code
= FPE_FLTRES
;
778 force_sig_fault_to_task(SIGFPE
, si_code
, fault_addr
, tsk
);
781 int process_fpemu_return(int sig
, void __user
*fault_addr
, unsigned long fcr31
)
784 struct vm_area_struct
*vma
;
791 force_fcr31_sig(fcr31
, fault_addr
, current
);
795 force_sig_fault(SIGBUS
, BUS_ADRERR
, fault_addr
);
799 mmap_read_lock(current
->mm
);
800 vma
= find_vma(current
->mm
, (unsigned long)fault_addr
);
801 if (vma
&& (vma
->vm_start
<= (unsigned long)fault_addr
))
802 si_code
= SEGV_ACCERR
;
804 si_code
= SEGV_MAPERR
;
805 mmap_read_unlock(current
->mm
);
806 force_sig_fault(SIGSEGV
, si_code
, fault_addr
);
815 static int simulate_fp(struct pt_regs
*regs
, unsigned int opcode
,
816 unsigned long old_epc
, unsigned long old_ra
)
818 union mips_instruction inst
= { .word
= opcode
};
819 void __user
*fault_addr
;
823 /* If it's obviously not an FP instruction, skip it */
824 switch (inst
.i_format
.opcode
) {
838 * do_ri skipped over the instruction via compute_return_epc, undo
839 * that for the FPU emulator.
841 regs
->cp0_epc
= old_epc
;
842 regs
->regs
[31] = old_ra
;
844 /* Run the emulator */
845 sig
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 1,
849 * We can't allow the emulated instruction to leave any
850 * enabled Cause bits set in $fcr31.
852 fcr31
= mask_fcr31_x(current
->thread
.fpu
.fcr31
);
853 current
->thread
.fpu
.fcr31
&= ~fcr31
;
855 /* Restore the hardware register state */
858 /* Send a signal if required. */
859 process_fpemu_return(sig
, fault_addr
, fcr31
);
865 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
867 asmlinkage
void do_fpe(struct pt_regs
*regs
, unsigned long fcr31
)
869 enum ctx_state prev_state
;
870 void __user
*fault_addr
;
873 prev_state
= exception_enter();
874 if (notify_die(DIE_FP
, "FP exception", regs
, 0, current
->thread
.trap_nr
,
875 SIGFPE
) == NOTIFY_STOP
)
878 /* Clear FCSR.Cause before enabling interrupts */
879 write_32bit_cp1_register(CP1_STATUS
, fcr31
& ~mask_fcr31_x(fcr31
));
882 die_if_kernel("FP exception in kernel code", regs
);
884 if (fcr31
& FPU_CSR_UNI_X
) {
886 * Unimplemented operation exception. If we've got the full
887 * software emulator on-board, let's use it...
889 * Force FPU to dump state into task/thread context. We're
890 * moving a lot of data here for what is probably a single
891 * instruction, but the alternative is to pre-decode the FP
892 * register operands before invoking the emulator, which seems
893 * a bit extreme for what should be an infrequent event.
896 /* Run the emulator */
897 sig
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 1,
901 * We can't allow the emulated instruction to leave any
902 * enabled Cause bits set in $fcr31.
904 fcr31
= mask_fcr31_x(current
->thread
.fpu
.fcr31
);
905 current
->thread
.fpu
.fcr31
&= ~fcr31
;
907 /* Restore the hardware register state */
908 own_fpu(1); /* Using the FPU again. */
911 fault_addr
= (void __user
*) regs
->cp0_epc
;
914 /* Send a signal if required. */
915 process_fpemu_return(sig
, fault_addr
, fcr31
);
918 exception_exit(prev_state
);
922 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
923 * emulated more than some threshold number of instructions, force migration to
924 * a "CPU" that has FP support.
926 static void mt_ase_fp_affinity(void)
928 #ifdef CONFIG_MIPS_MT_FPAFF
929 if (mt_fpemul_threshold
> 0 &&
930 ((current
->thread
.emulated_fp
++ > mt_fpemul_threshold
))) {
932 * If there's no FPU present, or if the application has already
933 * restricted the allowed set to exclude any CPUs with FPUs,
934 * we'll skip the procedure.
936 if (cpumask_intersects(¤t
->cpus_mask
, &mt_fpu_cpumask
)) {
939 current
->thread
.user_cpus_allowed
940 = current
->cpus_mask
;
941 cpumask_and(&tmask
, ¤t
->cpus_mask
,
943 set_cpus_allowed_ptr(current
, &tmask
);
944 set_thread_flag(TIF_FPUBOUND
);
947 #endif /* CONFIG_MIPS_MT_FPAFF */
950 #else /* !CONFIG_MIPS_FP_SUPPORT */
952 static int simulate_fp(struct pt_regs
*regs
, unsigned int opcode
,
953 unsigned long old_epc
, unsigned long old_ra
)
958 #endif /* !CONFIG_MIPS_FP_SUPPORT */
960 void do_trap_or_bp(struct pt_regs
*regs
, unsigned int code
, int si_code
,
965 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
966 if (kgdb_ll_trap(DIE_TRAP
, str
, regs
, code
, current
->thread
.trap_nr
,
967 SIGTRAP
) == NOTIFY_STOP
)
969 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
971 if (notify_die(DIE_TRAP
, str
, regs
, code
, current
->thread
.trap_nr
,
972 SIGTRAP
) == NOTIFY_STOP
)
976 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
977 * insns, even for trap and break codes that indicate arithmetic
978 * failures. Weird ...
979 * But should we continue the brokenness??? --macro
984 scnprintf(b
, sizeof(b
), "%s instruction in kernel code", str
);
985 die_if_kernel(b
, regs
);
986 force_sig_fault(SIGFPE
,
987 code
== BRK_DIVZERO
? FPE_INTDIV
: FPE_INTOVF
,
988 (void __user
*) regs
->cp0_epc
);
991 die_if_kernel("Kernel bug detected", regs
);
996 * This breakpoint code is used by the FPU emulator to retake
997 * control of the CPU after executing the instruction from the
998 * delay slot of an emulated branch.
1000 * Terminate if exception was recognized as a delay slot return
1001 * otherwise handle as normal.
1003 if (do_dsemulret(regs
))
1006 die_if_kernel("Math emu break/trap", regs
);
1010 scnprintf(b
, sizeof(b
), "%s instruction in kernel code", str
);
1011 die_if_kernel(b
, regs
);
1013 force_sig_fault(SIGTRAP
, si_code
, NULL
);
1020 asmlinkage
void do_bp(struct pt_regs
*regs
)
1022 unsigned long epc
= msk_isa16_mode(exception_epc(regs
));
1023 unsigned int opcode
, bcode
;
1024 enum ctx_state prev_state
;
1028 if (!user_mode(regs
))
1031 prev_state
= exception_enter();
1032 current
->thread
.trap_nr
= (regs
->cp0_cause
>> 2) & 0x1f;
1033 if (get_isa16_mode(regs
->cp0_epc
)) {
1036 if (__get_user(instr
[0], (u16 __user
*)epc
))
1039 if (!cpu_has_mmips
) {
1041 bcode
= (instr
[0] >> 5) & 0x3f;
1042 } else if (mm_insn_16bit(instr
[0])) {
1043 /* 16-bit microMIPS BREAK */
1044 bcode
= instr
[0] & 0xf;
1046 /* 32-bit microMIPS BREAK */
1047 if (__get_user(instr
[1], (u16 __user
*)(epc
+ 2)))
1049 opcode
= (instr
[0] << 16) | instr
[1];
1050 bcode
= (opcode
>> 6) & ((1 << 20) - 1);
1053 if (__get_user(opcode
, (unsigned int __user
*)epc
))
1055 bcode
= (opcode
>> 6) & ((1 << 20) - 1);
1059 * There is the ancient bug in the MIPS assemblers that the break
1060 * code starts left to bit 16 instead to bit 6 in the opcode.
1061 * Gas is bug-compatible, but not always, grrr...
1062 * We handle both cases with a simple heuristics. --macro
1064 if (bcode
>= (1 << 10))
1065 bcode
= ((bcode
& ((1 << 10) - 1)) << 10) | (bcode
>> 10);
1068 * notify the kprobe handlers, if instruction is likely to
1073 if (notify_die(DIE_UPROBE
, "uprobe", regs
, bcode
,
1074 current
->thread
.trap_nr
, SIGTRAP
) == NOTIFY_STOP
)
1078 case BRK_UPROBE_XOL
:
1079 if (notify_die(DIE_UPROBE_XOL
, "uprobe_xol", regs
, bcode
,
1080 current
->thread
.trap_nr
, SIGTRAP
) == NOTIFY_STOP
)
1085 if (notify_die(DIE_BREAK
, "debug", regs
, bcode
,
1086 current
->thread
.trap_nr
, SIGTRAP
) == NOTIFY_STOP
)
1090 case BRK_KPROBE_SSTEPBP
:
1091 if (notify_die(DIE_SSTEPBP
, "single_step", regs
, bcode
,
1092 current
->thread
.trap_nr
, SIGTRAP
) == NOTIFY_STOP
)
1100 do_trap_or_bp(regs
, bcode
, TRAP_BRKPT
, "Break");
1104 exception_exit(prev_state
);
1112 asmlinkage
void do_tr(struct pt_regs
*regs
)
1114 u32 opcode
, tcode
= 0;
1115 enum ctx_state prev_state
;
1118 unsigned long epc
= msk_isa16_mode(exception_epc(regs
));
1121 if (!user_mode(regs
))
1124 prev_state
= exception_enter();
1125 current
->thread
.trap_nr
= (regs
->cp0_cause
>> 2) & 0x1f;
1126 if (get_isa16_mode(regs
->cp0_epc
)) {
1127 if (__get_user(instr
[0], (u16 __user
*)(epc
+ 0)) ||
1128 __get_user(instr
[1], (u16 __user
*)(epc
+ 2)))
1130 opcode
= (instr
[0] << 16) | instr
[1];
1131 /* Immediate versions don't provide a code. */
1132 if (!(opcode
& OPCODE
))
1133 tcode
= (opcode
>> 12) & ((1 << 4) - 1);
1135 if (__get_user(opcode
, (u32 __user
*)epc
))
1137 /* Immediate versions don't provide a code. */
1138 if (!(opcode
& OPCODE
))
1139 tcode
= (opcode
>> 6) & ((1 << 10) - 1);
1142 do_trap_or_bp(regs
, tcode
, 0, "Trap");
1146 exception_exit(prev_state
);
1154 asmlinkage
void do_ri(struct pt_regs
*regs
)
1156 unsigned int __user
*epc
= (unsigned int __user
*)exception_epc(regs
);
1157 unsigned long old_epc
= regs
->cp0_epc
;
1158 unsigned long old31
= regs
->regs
[31];
1159 enum ctx_state prev_state
;
1160 unsigned int opcode
= 0;
1164 * Avoid any kernel code. Just emulate the R2 instruction
1165 * as quickly as possible.
1167 if (mipsr2_emulation
&& cpu_has_mips_r6
&&
1168 likely(user_mode(regs
)) &&
1169 likely(get_user(opcode
, epc
) >= 0)) {
1170 unsigned long fcr31
= 0;
1172 status
= mipsr2_decoder(regs
, opcode
, &fcr31
);
1180 process_fpemu_return(status
,
1181 ¤t
->thread
.cp0_baduaddr
,
1189 prev_state
= exception_enter();
1190 current
->thread
.trap_nr
= (regs
->cp0_cause
>> 2) & 0x1f;
1192 if (notify_die(DIE_RI
, "RI Fault", regs
, 0, current
->thread
.trap_nr
,
1193 SIGILL
) == NOTIFY_STOP
)
1196 die_if_kernel("Reserved instruction in kernel code", regs
);
1198 if (unlikely(compute_return_epc(regs
) < 0))
1201 if (!get_isa16_mode(regs
->cp0_epc
)) {
1202 if (unlikely(get_user(opcode
, epc
) < 0))
1205 if (!cpu_has_llsc
&& status
< 0)
1206 status
= simulate_llsc(regs
, opcode
);
1209 status
= simulate_rdhwr_normal(regs
, opcode
);
1212 status
= simulate_sync(regs
, opcode
);
1215 status
= simulate_fp(regs
, opcode
, old_epc
, old31
);
1217 #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
1219 status
= simulate_loongson3_cpucfg(regs
, opcode
);
1221 } else if (cpu_has_mmips
) {
1222 unsigned short mmop
[2] = { 0 };
1224 if (unlikely(get_user(mmop
[0], (u16 __user
*)epc
+ 0) < 0))
1226 if (unlikely(get_user(mmop
[1], (u16 __user
*)epc
+ 1) < 0))
1229 opcode
= (opcode
<< 16) | mmop
[1];
1232 status
= simulate_rdhwr_mm(regs
, opcode
);
1238 if (unlikely(status
> 0)) {
1239 regs
->cp0_epc
= old_epc
; /* Undo skip-over. */
1240 regs
->regs
[31] = old31
;
1245 exception_exit(prev_state
);
1249 * No lock; only written during early bootup by CPU 0.
1251 static RAW_NOTIFIER_HEAD(cu2_chain
);
1253 int __ref
register_cu2_notifier(struct notifier_block
*nb
)
1255 return raw_notifier_chain_register(&cu2_chain
, nb
);
1258 int cu2_notifier_call_chain(unsigned long val
, void *v
)
1260 return raw_notifier_call_chain(&cu2_chain
, val
, v
);
1263 static int default_cu2_call(struct notifier_block
*nfb
, unsigned long action
,
1266 struct pt_regs
*regs
= data
;
1268 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1269 "instruction", regs
);
1275 #ifdef CONFIG_MIPS_FP_SUPPORT
1277 static int enable_restore_fp_context(int msa
)
1279 int err
, was_fpu_owner
, prior_msa
;
1282 /* Initialize context if it hasn't been used already */
1283 first_fp
= init_fp_ctx(current
);
1287 err
= own_fpu_inatomic(1);
1291 * with MSA enabled, userspace can see MSACSR
1292 * and MSA regs, but the values in them are from
1293 * other task before current task, restore them
1294 * from saved fp/msa context
1296 write_msa_csr(current
->thread
.fpu
.msacsr
);
1298 * own_fpu_inatomic(1) just restore low 64bit,
1299 * fix the high 64bit
1302 set_thread_flag(TIF_USEDMSA
);
1303 set_thread_flag(TIF_MSA_CTX_LIVE
);
1310 * This task has formerly used the FP context.
1312 * If this thread has no live MSA vector context then we can simply
1313 * restore the scalar FP context. If it has live MSA vector context
1314 * (that is, it has or may have used MSA since last performing a
1315 * function call) then we'll need to restore the vector context. This
1316 * applies even if we're currently only executing a scalar FP
1317 * instruction. This is because if we were to later execute an MSA
1318 * instruction then we'd either have to:
1320 * - Restore the vector context & clobber any registers modified by
1321 * scalar FP instructions between now & then.
1325 * - Not restore the vector context & lose the most significant bits
1326 * of all vector registers.
1328 * Neither of those options is acceptable. We cannot restore the least
1329 * significant bits of the registers now & only restore the most
1330 * significant bits later because the most significant bits of any
1331 * vector registers whose aliased FP register is modified now will have
1332 * been zeroed. We'd have no way to know that when restoring the vector
1333 * context & thus may load an outdated value for the most significant
1334 * bits of a vector register.
1336 if (!msa
&& !thread_msa_context_live())
1340 * This task is using or has previously used MSA. Thus we require
1341 * that Status.FR == 1.
1344 was_fpu_owner
= is_fpu_owner();
1345 err
= own_fpu_inatomic(0);
1350 write_msa_csr(current
->thread
.fpu
.msacsr
);
1351 set_thread_flag(TIF_USEDMSA
);
1354 * If this is the first time that the task is using MSA and it has
1355 * previously used scalar FP in this time slice then we already nave
1356 * FP context which we shouldn't clobber. We do however need to clear
1357 * the upper 64b of each vector register so that this task has no
1358 * opportunity to see data left behind by another.
1360 prior_msa
= test_and_set_thread_flag(TIF_MSA_CTX_LIVE
);
1361 if (!prior_msa
&& was_fpu_owner
) {
1369 * Restore the least significant 64b of each vector register
1370 * from the existing scalar FP context.
1372 _restore_fp(current
);
1375 * The task has not formerly used MSA, so clear the upper 64b
1376 * of each vector register such that it cannot see data left
1377 * behind by another task.
1381 /* We need to restore the vector context. */
1382 restore_msa(current
);
1384 /* Restore the scalar FP control & status register */
1386 write_32bit_cp1_register(CP1_STATUS
,
1387 current
->thread
.fpu
.fcr31
);
1396 #else /* !CONFIG_MIPS_FP_SUPPORT */
1398 static int enable_restore_fp_context(int msa
)
1403 #endif /* CONFIG_MIPS_FP_SUPPORT */
1405 asmlinkage
void do_cpu(struct pt_regs
*regs
)
1407 enum ctx_state prev_state
;
1408 unsigned int __user
*epc
;
1409 unsigned long old_epc
, old31
;
1410 unsigned int opcode
;
1414 prev_state
= exception_enter();
1415 cpid
= (regs
->cp0_cause
>> CAUSEB_CE
) & 3;
1418 die_if_kernel("do_cpu invoked from kernel context!", regs
);
1422 epc
= (unsigned int __user
*)exception_epc(regs
);
1423 old_epc
= regs
->cp0_epc
;
1424 old31
= regs
->regs
[31];
1428 if (unlikely(compute_return_epc(regs
) < 0))
1431 if (!get_isa16_mode(regs
->cp0_epc
)) {
1432 if (unlikely(get_user(opcode
, epc
) < 0))
1435 if (!cpu_has_llsc
&& status
< 0)
1436 status
= simulate_llsc(regs
, opcode
);
1442 if (unlikely(status
> 0)) {
1443 regs
->cp0_epc
= old_epc
; /* Undo skip-over. */
1444 regs
->regs
[31] = old31
;
1450 #ifdef CONFIG_MIPS_FP_SUPPORT
1453 * The COP3 opcode space and consequently the CP0.Status.CU3
1454 * bit and the CP0.Cause.CE=3 encoding have been removed as
1455 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1456 * up the space has been reused for COP1X instructions, that
1457 * are enabled by the CP0.Status.CU1 bit and consequently
1458 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1459 * exceptions. Some FPU-less processors that implement one
1460 * of these ISAs however use this code erroneously for COP1X
1461 * instructions. Therefore we redirect this trap to the FP
1464 if (raw_cpu_has_fpu
|| !cpu_has_mips_4_5_64_r2_r6
) {
1470 void __user
*fault_addr
;
1471 unsigned long fcr31
;
1474 err
= enable_restore_fp_context(0);
1476 if (raw_cpu_has_fpu
&& !err
)
1479 sig
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 0,
1483 * We can't allow the emulated instruction to leave
1484 * any enabled Cause bits set in $fcr31.
1486 fcr31
= mask_fcr31_x(current
->thread
.fpu
.fcr31
);
1487 current
->thread
.fpu
.fcr31
&= ~fcr31
;
1489 /* Send a signal if required. */
1490 if (!process_fpemu_return(sig
, fault_addr
, fcr31
) && !err
)
1491 mt_ase_fp_affinity();
1495 #else /* CONFIG_MIPS_FP_SUPPORT */
1500 #endif /* CONFIG_MIPS_FP_SUPPORT */
1503 raw_notifier_call_chain(&cu2_chain
, CU2_EXCEPTION
, regs
);
1507 exception_exit(prev_state
);
1510 asmlinkage
void do_msa_fpe(struct pt_regs
*regs
, unsigned int msacsr
)
1512 enum ctx_state prev_state
;
1514 prev_state
= exception_enter();
1515 current
->thread
.trap_nr
= (regs
->cp0_cause
>> 2) & 0x1f;
1516 if (notify_die(DIE_MSAFP
, "MSA FP exception", regs
, 0,
1517 current
->thread
.trap_nr
, SIGFPE
) == NOTIFY_STOP
)
1520 /* Clear MSACSR.Cause before enabling interrupts */
1521 write_msa_csr(msacsr
& ~MSA_CSR_CAUSEF
);
1524 die_if_kernel("do_msa_fpe invoked from kernel context!", regs
);
1527 exception_exit(prev_state
);
1530 asmlinkage
void do_msa(struct pt_regs
*regs
)
1532 enum ctx_state prev_state
;
1535 prev_state
= exception_enter();
1537 if (!cpu_has_msa
|| test_thread_flag(TIF_32BIT_FPREGS
)) {
1542 die_if_kernel("do_msa invoked from kernel context!", regs
);
1544 err
= enable_restore_fp_context(1);
1548 exception_exit(prev_state
);
1551 asmlinkage
void do_mdmx(struct pt_regs
*regs
)
1553 enum ctx_state prev_state
;
1555 prev_state
= exception_enter();
1557 exception_exit(prev_state
);
1561 * Called with interrupts disabled.
1563 asmlinkage
void do_watch(struct pt_regs
*regs
)
1565 enum ctx_state prev_state
;
1567 prev_state
= exception_enter();
1569 * Clear WP (bit 22) bit of cause register so we don't loop
1572 clear_c0_cause(CAUSEF_WP
);
1575 * If the current thread has the watch registers loaded, save
1576 * their values and send SIGTRAP. Otherwise another thread
1577 * left the registers set, clear them and continue.
1579 if (test_tsk_thread_flag(current
, TIF_LOAD_WATCH
)) {
1580 mips_read_watch_registers();
1582 force_sig_fault(SIGTRAP
, TRAP_HWBKPT
, NULL
);
1584 mips_clear_watch_registers();
1587 exception_exit(prev_state
);
1590 asmlinkage
void do_mcheck(struct pt_regs
*regs
)
1592 int multi_match
= regs
->cp0_status
& ST0_TS
;
1593 enum ctx_state prev_state
;
1594 mm_segment_t old_fs
= get_fs();
1596 prev_state
= exception_enter();
1605 if (!user_mode(regs
))
1608 show_code((unsigned int __user
*) regs
->cp0_epc
);
1613 * Some chips may have other causes of machine check (e.g. SB1
1616 panic("Caught Machine Check exception - %scaused by multiple "
1617 "matching entries in the TLB.",
1618 (multi_match
) ? "" : "not ");
1621 asmlinkage
void do_mt(struct pt_regs
*regs
)
1625 subcode
= (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT
)
1626 >> VPECONTROL_EXCPT_SHIFT
;
1629 printk(KERN_DEBUG
"Thread Underflow\n");
1632 printk(KERN_DEBUG
"Thread Overflow\n");
1635 printk(KERN_DEBUG
"Invalid YIELD Qualifier\n");
1638 printk(KERN_DEBUG
"Gating Storage Exception\n");
1641 printk(KERN_DEBUG
"YIELD Scheduler Exception\n");
1644 printk(KERN_DEBUG
"Gating Storage Scheduler Exception\n");
1647 printk(KERN_DEBUG
"*** UNKNOWN THREAD EXCEPTION %d ***\n",
1651 die_if_kernel("MIPS MT Thread exception in kernel", regs
);
1657 asmlinkage
void do_dsp(struct pt_regs
*regs
)
1660 panic("Unexpected DSP exception");
1665 asmlinkage
void do_reserved(struct pt_regs
*regs
)
1668 * Game over - no way to handle this if it ever occurs. Most probably
1669 * caused by a new unknown cpu type or after another deadly
1670 * hard/software error.
1673 panic("Caught reserved exception %ld - should not happen.",
1674 (regs
->cp0_cause
& 0x7f) >> 2);
1677 static int __initdata l1parity
= 1;
1678 static int __init
nol1parity(char *s
)
1683 __setup("nol1par", nol1parity
);
1684 static int __initdata l2parity
= 1;
1685 static int __init
nol2parity(char *s
)
1690 __setup("nol2par", nol2parity
);
1693 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1694 * it different ways.
1696 static inline __init
void parity_protection_init(void)
1698 #define ERRCTL_PE 0x80000000
1699 #define ERRCTL_L2P 0x00800000
1701 if (mips_cm_revision() >= CM_REV_CM3
) {
1702 ulong gcr_ectl
, cp0_ectl
;
1705 * With CM3 systems we need to ensure that the L1 & L2
1706 * parity enables are set to the same value, since this
1707 * is presumed by the hardware engineers.
1709 * If the user disabled either of L1 or L2 ECC checking,
1712 l1parity
&= l2parity
;
1713 l2parity
&= l1parity
;
1715 /* Probe L1 ECC support */
1716 cp0_ectl
= read_c0_ecc();
1717 write_c0_ecc(cp0_ectl
| ERRCTL_PE
);
1718 back_to_back_c0_hazard();
1719 cp0_ectl
= read_c0_ecc();
1721 /* Probe L2 ECC support */
1722 gcr_ectl
= read_gcr_err_control();
1724 if (!(gcr_ectl
& CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT
) ||
1725 !(cp0_ectl
& ERRCTL_PE
)) {
1727 * One of L1 or L2 ECC checking isn't supported,
1728 * so we cannot enable either.
1730 l1parity
= l2parity
= 0;
1733 /* Configure L1 ECC checking */
1735 cp0_ectl
|= ERRCTL_PE
;
1737 cp0_ectl
&= ~ERRCTL_PE
;
1738 write_c0_ecc(cp0_ectl
);
1739 back_to_back_c0_hazard();
1740 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE
) != l1parity
);
1742 /* Configure L2 ECC checking */
1744 gcr_ectl
|= CM_GCR_ERR_CONTROL_L2_ECC_EN
;
1746 gcr_ectl
&= ~CM_GCR_ERR_CONTROL_L2_ECC_EN
;
1747 write_gcr_err_control(gcr_ectl
);
1748 gcr_ectl
= read_gcr_err_control();
1749 gcr_ectl
&= CM_GCR_ERR_CONTROL_L2_ECC_EN
;
1750 WARN_ON(!!gcr_ectl
!= l2parity
);
1752 pr_info("Cache parity protection %sabled\n",
1753 l1parity
? "en" : "dis");
1757 switch (current_cpu_type()) {
1763 case CPU_INTERAPTIV
:
1766 case CPU_QEMU_GENERIC
:
1769 unsigned long errctl
;
1770 unsigned int l1parity_present
, l2parity_present
;
1772 errctl
= read_c0_ecc();
1773 errctl
&= ~(ERRCTL_PE
|ERRCTL_L2P
);
1775 /* probe L1 parity support */
1776 write_c0_ecc(errctl
| ERRCTL_PE
);
1777 back_to_back_c0_hazard();
1778 l1parity_present
= (read_c0_ecc() & ERRCTL_PE
);
1780 /* probe L2 parity support */
1781 write_c0_ecc(errctl
|ERRCTL_L2P
);
1782 back_to_back_c0_hazard();
1783 l2parity_present
= (read_c0_ecc() & ERRCTL_L2P
);
1785 if (l1parity_present
&& l2parity_present
) {
1787 errctl
|= ERRCTL_PE
;
1788 if (l1parity
^ l2parity
)
1789 errctl
|= ERRCTL_L2P
;
1790 } else if (l1parity_present
) {
1792 errctl
|= ERRCTL_PE
;
1793 } else if (l2parity_present
) {
1795 errctl
|= ERRCTL_L2P
;
1797 /* No parity available */
1800 printk(KERN_INFO
"Writing ErrCtl register=%08lx\n", errctl
);
1802 write_c0_ecc(errctl
);
1803 back_to_back_c0_hazard();
1804 errctl
= read_c0_ecc();
1805 printk(KERN_INFO
"Readback ErrCtl register=%08lx\n", errctl
);
1807 if (l1parity_present
)
1808 printk(KERN_INFO
"Cache parity protection %sabled\n",
1809 (errctl
& ERRCTL_PE
) ? "en" : "dis");
1811 if (l2parity_present
) {
1812 if (l1parity_present
&& l1parity
)
1813 errctl
^= ERRCTL_L2P
;
1814 printk(KERN_INFO
"L2 cache parity protection %sabled\n",
1815 (errctl
& ERRCTL_L2P
) ? "en" : "dis");
1822 case CPU_LOONGSON32
:
1823 write_c0_ecc(0x80000000);
1824 back_to_back_c0_hazard();
1825 /* Set the PE bit (bit 31) in the c0_errctl register. */
1826 printk(KERN_INFO
"Cache parity protection %sabled\n",
1827 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1831 /* Clear the DE bit (bit 16) in the c0_status register. */
1832 printk(KERN_INFO
"Enable cache parity protection for "
1833 "MIPS 20KC/25KF CPUs.\n");
1834 clear_c0_status(ST0_DE
);
1841 asmlinkage
void cache_parity_error(void)
1843 const int field
= 2 * sizeof(unsigned long);
1844 unsigned int reg_val
;
1846 /* For the moment, report the problem and hang. */
1847 printk("Cache error exception:\n");
1848 printk("cp0_errorepc == %0*lx\n", field
, read_c0_errorepc());
1849 reg_val
= read_c0_cacheerr();
1850 printk("c0_cacheerr == %08x\n", reg_val
);
1852 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1853 reg_val
& (1<<30) ? "secondary" : "primary",
1854 reg_val
& (1<<31) ? "data" : "insn");
1855 if ((cpu_has_mips_r2_r6
) &&
1856 ((current_cpu_data
.processor_id
& 0xff0000) == PRID_COMP_MIPS
)) {
1857 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1858 reg_val
& (1<<29) ? "ED " : "",
1859 reg_val
& (1<<28) ? "ET " : "",
1860 reg_val
& (1<<27) ? "ES " : "",
1861 reg_val
& (1<<26) ? "EE " : "",
1862 reg_val
& (1<<25) ? "EB " : "",
1863 reg_val
& (1<<24) ? "EI " : "",
1864 reg_val
& (1<<23) ? "E1 " : "",
1865 reg_val
& (1<<22) ? "E0 " : "");
1867 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1868 reg_val
& (1<<29) ? "ED " : "",
1869 reg_val
& (1<<28) ? "ET " : "",
1870 reg_val
& (1<<26) ? "EE " : "",
1871 reg_val
& (1<<25) ? "EB " : "",
1872 reg_val
& (1<<24) ? "EI " : "",
1873 reg_val
& (1<<23) ? "E1 " : "",
1874 reg_val
& (1<<22) ? "E0 " : "");
1876 printk("IDX: 0x%08x\n", reg_val
& ((1<<22)-1));
1878 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1879 if (reg_val
& (1<<22))
1880 printk("DErrAddr0: 0x%0*lx\n", field
, read_c0_derraddr0());
1882 if (reg_val
& (1<<23))
1883 printk("DErrAddr1: 0x%0*lx\n", field
, read_c0_derraddr1());
1886 panic("Can't handle the cache error!");
1889 asmlinkage
void do_ftlb(void)
1891 const int field
= 2 * sizeof(unsigned long);
1892 unsigned int reg_val
;
1894 /* For the moment, report the problem and hang. */
1895 if ((cpu_has_mips_r2_r6
) &&
1896 (((current_cpu_data
.processor_id
& 0xff0000) == PRID_COMP_MIPS
) ||
1897 ((current_cpu_data
.processor_id
& 0xff0000) == PRID_COMP_LOONGSON
))) {
1898 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1900 pr_err("cp0_errorepc == %0*lx\n", field
, read_c0_errorepc());
1901 reg_val
= read_c0_cacheerr();
1902 pr_err("c0_cacheerr == %08x\n", reg_val
);
1904 if ((reg_val
& 0xc0000000) == 0xc0000000) {
1905 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1907 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1908 reg_val
& (1<<30) ? "secondary" : "primary",
1909 reg_val
& (1<<31) ? "data" : "insn");
1912 pr_err("FTLB error exception\n");
1914 /* Just print the cacheerr bits for now */
1915 cache_parity_error();
1918 asmlinkage
void do_gsexc(struct pt_regs
*regs
, u32 diag1
)
1920 u32 exccode
= (diag1
& LOONGSON_DIAG1_EXCCODE
) >>
1921 LOONGSON_DIAG1_EXCCODE_SHIFT
;
1922 enum ctx_state prev_state
;
1924 prev_state
= exception_enter();
1928 /* Undocumented exception, will trigger on certain
1929 * also-undocumented instructions accessible from userspace.
1930 * Processor state is not otherwise corrupted, but currently
1931 * we don't know how to proceed. Maybe there is some
1932 * undocumented control flag to enable the instructions?
1938 /* None of the other exceptions, documented or not, have
1939 * further details given; none are encountered in the wild
1940 * either. Panic in case some of them turn out to be fatal.
1943 panic("Unhandled Loongson exception - GSCause = %08x", diag1
);
1946 exception_exit(prev_state
);
1950 * SDBBP EJTAG debug exception handler.
1951 * We skip the instruction and return to the next instruction.
1953 void ejtag_exception_handler(struct pt_regs
*regs
)
1955 const int field
= 2 * sizeof(unsigned long);
1956 unsigned long depc
, old_epc
, old_ra
;
1959 printk(KERN_DEBUG
"SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1960 depc
= read_c0_depc();
1961 debug
= read_c0_debug();
1962 printk(KERN_DEBUG
"c0_depc = %0*lx, DEBUG = %08x\n", field
, depc
, debug
);
1963 if (debug
& 0x80000000) {
1965 * In branch delay slot.
1966 * We cheat a little bit here and use EPC to calculate the
1967 * debug return address (DEPC). EPC is restored after the
1970 old_epc
= regs
->cp0_epc
;
1971 old_ra
= regs
->regs
[31];
1972 regs
->cp0_epc
= depc
;
1973 compute_return_epc(regs
);
1974 depc
= regs
->cp0_epc
;
1975 regs
->cp0_epc
= old_epc
;
1976 regs
->regs
[31] = old_ra
;
1979 write_c0_depc(depc
);
1982 printk(KERN_DEBUG
"\n\n----- Enable EJTAG single stepping ----\n\n");
1983 write_c0_debug(debug
| 0x100);
1988 * NMI exception handler.
1989 * No lock; only written during early bootup by CPU 0.
1991 static RAW_NOTIFIER_HEAD(nmi_chain
);
1993 int register_nmi_notifier(struct notifier_block
*nb
)
1995 return raw_notifier_chain_register(&nmi_chain
, nb
);
1998 void __noreturn
nmi_exception_handler(struct pt_regs
*regs
)
2003 raw_notifier_call_chain(&nmi_chain
, 0, regs
);
2005 snprintf(str
, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
2006 smp_processor_id(), regs
->cp0_epc
);
2007 regs
->cp0_epc
= read_c0_errorepc();
2012 #define VECTORSPACING 0x100 /* for EI/VI mode */
2014 unsigned long ebase
;
2015 EXPORT_SYMBOL_GPL(ebase
);
2016 unsigned long exception_handlers
[32];
2017 unsigned long vi_handlers
[64];
2019 void __init
*set_except_vector(int n
, void *addr
)
2021 unsigned long handler
= (unsigned long) addr
;
2022 unsigned long old_handler
;
2024 #ifdef CONFIG_CPU_MICROMIPS
2026 * Only the TLB handlers are cache aligned with an even
2027 * address. All other handlers are on an odd address and
2028 * require no modification. Otherwise, MIPS32 mode will
2029 * be entered when handling any TLB exceptions. That
2030 * would be bad...since we must stay in microMIPS mode.
2032 if (!(handler
& 0x1))
2035 old_handler
= xchg(&exception_handlers
[n
], handler
);
2037 if (n
== 0 && cpu_has_divec
) {
2038 #ifdef CONFIG_CPU_MICROMIPS
2039 unsigned long jump_mask
= ~((1 << 27) - 1);
2041 unsigned long jump_mask
= ~((1 << 28) - 1);
2043 u32
*buf
= (u32
*)(ebase
+ 0x200);
2044 unsigned int k0
= 26;
2045 if ((handler
& jump_mask
) == ((ebase
+ 0x200) & jump_mask
)) {
2046 uasm_i_j(&buf
, handler
& ~jump_mask
);
2049 UASM_i_LA(&buf
, k0
, handler
);
2050 uasm_i_jr(&buf
, k0
);
2053 local_flush_icache_range(ebase
+ 0x200, (unsigned long)buf
);
2055 return (void *)old_handler
;
2058 static void do_default_vi(void)
2060 show_regs(get_irq_regs());
2061 panic("Caught unexpected vectored interrupt.");
2064 static void *set_vi_srs_handler(int n
, vi_handler_t addr
, int srs
)
2066 unsigned long handler
;
2067 unsigned long old_handler
= vi_handlers
[n
];
2068 int srssets
= current_cpu_data
.srsets
;
2072 BUG_ON(!cpu_has_veic
&& !cpu_has_vint
);
2075 handler
= (unsigned long) do_default_vi
;
2078 handler
= (unsigned long) addr
;
2079 vi_handlers
[n
] = handler
;
2081 b
= (unsigned char *)(ebase
+ 0x200 + n
*VECTORSPACING
);
2084 panic("Shadow register set %d not supported", srs
);
2087 if (board_bind_eic_interrupt
)
2088 board_bind_eic_interrupt(n
, srs
);
2089 } else if (cpu_has_vint
) {
2090 /* SRSMap is only defined if shadow sets are implemented */
2092 change_c0_srsmap(0xf << n
*4, srs
<< n
*4);
2097 * If no shadow set is selected then use the default handler
2098 * that does normal register saving and standard interrupt exit
2100 extern char except_vec_vi
, except_vec_vi_lui
;
2101 extern char except_vec_vi_ori
, except_vec_vi_end
;
2102 extern char rollback_except_vec_vi
;
2103 char *vec_start
= using_rollback_handler() ?
2104 &rollback_except_vec_vi
: &except_vec_vi
;
2105 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2106 const int lui_offset
= &except_vec_vi_lui
- vec_start
+ 2;
2107 const int ori_offset
= &except_vec_vi_ori
- vec_start
+ 2;
2109 const int lui_offset
= &except_vec_vi_lui
- vec_start
;
2110 const int ori_offset
= &except_vec_vi_ori
- vec_start
;
2112 const int handler_len
= &except_vec_vi_end
- vec_start
;
2114 if (handler_len
> VECTORSPACING
) {
2116 * Sigh... panicing won't help as the console
2117 * is probably not configured :(
2119 panic("VECTORSPACING too small");
2122 set_handler(((unsigned long)b
- ebase
), vec_start
,
2123 #ifdef CONFIG_CPU_MICROMIPS
2128 h
= (u16
*)(b
+ lui_offset
);
2129 *h
= (handler
>> 16) & 0xffff;
2130 h
= (u16
*)(b
+ ori_offset
);
2131 *h
= (handler
& 0xffff);
2132 local_flush_icache_range((unsigned long)b
,
2133 (unsigned long)(b
+handler_len
));
2137 * In other cases jump directly to the interrupt handler. It
2138 * is the handler's responsibility to save registers if required
2139 * (eg hi/lo) and return from the exception using "eret".
2145 #ifdef CONFIG_CPU_MICROMIPS
2146 insn
= 0xd4000000 | (((u32
)handler
& 0x07ffffff) >> 1);
2148 insn
= 0x08000000 | (((u32
)handler
& 0x0fffffff) >> 2);
2150 h
[0] = (insn
>> 16) & 0xffff;
2151 h
[1] = insn
& 0xffff;
2154 local_flush_icache_range((unsigned long)b
,
2155 (unsigned long)(b
+8));
2158 return (void *)old_handler
;
2161 void *set_vi_handler(int n
, vi_handler_t addr
)
2163 return set_vi_srs_handler(n
, addr
, 0);
2166 extern void tlb_init(void);
2171 int cp0_compare_irq
;
2172 EXPORT_SYMBOL_GPL(cp0_compare_irq
);
2173 int cp0_compare_irq_shift
;
2176 * Performance counter IRQ or -1 if shared with timer
2178 int cp0_perfcount_irq
;
2179 EXPORT_SYMBOL_GPL(cp0_perfcount_irq
);
2182 * Fast debug channel IRQ or -1 if not present
2185 EXPORT_SYMBOL_GPL(cp0_fdc_irq
);
2189 static int __init
ulri_disable(char *s
)
2191 pr_info("Disabling ulri\n");
2196 __setup("noulri", ulri_disable
);
2198 /* configure STATUS register */
2199 static void configure_status(void)
2202 * Disable coprocessors and select 32-bit or 64-bit addressing
2203 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2204 * flag that some firmware may have left set and the TS bit (for
2205 * IP27). Set XX for ISA IV code to work.
2207 unsigned int status_set
= ST0_KERNEL_CUMASK
;
2209 status_set
|= ST0_FR
|ST0_KX
|ST0_SX
|ST0_UX
;
2211 if (current_cpu_data
.isa_level
& MIPS_CPU_ISA_IV
)
2212 status_set
|= ST0_XX
;
2214 status_set
|= ST0_MX
;
2216 change_c0_status(ST0_CU
|ST0_MX
|ST0_RE
|ST0_FR
|ST0_BEV
|ST0_TS
|ST0_KX
|ST0_SX
|ST0_UX
,
2218 back_to_back_c0_hazard();
2221 unsigned int hwrena
;
2222 EXPORT_SYMBOL_GPL(hwrena
);
2224 /* configure HWRENA register */
2225 static void configure_hwrena(void)
2227 hwrena
= cpu_hwrena_impl_bits
;
2229 if (cpu_has_mips_r2_r6
)
2230 hwrena
|= MIPS_HWRENA_CPUNUM
|
2231 MIPS_HWRENA_SYNCISTEP
|
2235 if (!noulri
&& cpu_has_userlocal
)
2236 hwrena
|= MIPS_HWRENA_ULR
;
2239 write_c0_hwrena(hwrena
);
2242 static void configure_exception_vector(void)
2244 if (cpu_has_mips_r2_r6
) {
2245 unsigned long sr
= set_c0_status(ST0_BEV
);
2246 /* If available, use WG to set top bits of EBASE */
2247 if (cpu_has_ebase_wg
) {
2249 write_c0_ebase_64(ebase
| MIPS_EBASE_WG
);
2251 write_c0_ebase(ebase
| MIPS_EBASE_WG
);
2254 write_c0_ebase(ebase
);
2255 write_c0_status(sr
);
2257 if (cpu_has_veic
|| cpu_has_vint
) {
2258 /* Setting vector spacing enables EI/VI mode */
2259 change_c0_intctl(0x3e0, VECTORSPACING
);
2261 if (cpu_has_divec
) {
2262 if (cpu_has_mipsmt
) {
2263 unsigned int vpflags
= dvpe();
2264 set_c0_cause(CAUSEF_IV
);
2267 set_c0_cause(CAUSEF_IV
);
2271 void per_cpu_trap_init(bool is_boot_cpu
)
2273 unsigned int cpu
= smp_processor_id();
2278 configure_exception_vector();
2281 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2283 * o read IntCtl.IPTI to determine the timer interrupt
2284 * o read IntCtl.IPPCI to determine the performance counter interrupt
2285 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2287 if (cpu_has_mips_r2_r6
) {
2288 cp0_compare_irq_shift
= CAUSEB_TI
- CAUSEB_IP
;
2289 cp0_compare_irq
= (read_c0_intctl() >> INTCTLB_IPTI
) & 7;
2290 cp0_perfcount_irq
= (read_c0_intctl() >> INTCTLB_IPPCI
) & 7;
2291 cp0_fdc_irq
= (read_c0_intctl() >> INTCTLB_IPFDC
) & 7;
2296 cp0_compare_irq
= CP0_LEGACY_COMPARE_IRQ
;
2297 cp0_compare_irq_shift
= CP0_LEGACY_PERFCNT_IRQ
;
2298 cp0_perfcount_irq
= -1;
2303 cpu_data
[cpu
].asid_cache
= 0;
2304 else if (!cpu_data
[cpu
].asid_cache
)
2305 cpu_data
[cpu
].asid_cache
= asid_first_version(cpu
);
2308 current
->active_mm
= &init_mm
;
2309 BUG_ON(current
->mm
);
2310 enter_lazy_tlb(&init_mm
, current
);
2312 /* Boot CPU's cache setup in setup_arch(). */
2316 TLBMISS_HANDLER_SETUP();
2319 /* Install CPU exception handler */
2320 void set_handler(unsigned long offset
, void *addr
, unsigned long size
)
2322 #ifdef CONFIG_CPU_MICROMIPS
2323 memcpy((void *)(ebase
+ offset
), ((unsigned char *)addr
- 1), size
);
2325 memcpy((void *)(ebase
+ offset
), addr
, size
);
2327 local_flush_icache_range(ebase
+ offset
, ebase
+ offset
+ size
);
2330 static const char panic_null_cerr
[] =
2331 "Trying to set NULL cache error exception handler\n";
2334 * Install uncached CPU exception handler.
2335 * This is suitable only for the cache error exception which is the only
2336 * exception handler that is being run uncached.
2338 void set_uncached_handler(unsigned long offset
, void *addr
,
2341 unsigned long uncached_ebase
= CKSEG1ADDR(ebase
);
2344 panic(panic_null_cerr
);
2346 memcpy((void *)(uncached_ebase
+ offset
), addr
, size
);
2349 static int __initdata rdhwr_noopt
;
2350 static int __init
set_rdhwr_noopt(char *str
)
2356 __setup("rdhwr_noopt", set_rdhwr_noopt
);
2358 void __init
trap_init(void)
2360 extern char except_vec3_generic
;
2361 extern char except_vec4
;
2362 extern char except_vec3_r4000
;
2363 unsigned long i
, vec_size
;
2364 phys_addr_t ebase_pa
;
2368 if (!cpu_has_mips_r2_r6
) {
2370 ebase_pa
= virt_to_phys((void *)ebase
);
2373 memblock_reserve(ebase_pa
, vec_size
);
2375 if (cpu_has_veic
|| cpu_has_vint
)
2376 vec_size
= 0x200 + VECTORSPACING
*64;
2378 vec_size
= PAGE_SIZE
;
2380 ebase_pa
= memblock_phys_alloc(vec_size
, 1 << fls(vec_size
));
2382 panic("%s: Failed to allocate %lu bytes align=0x%x\n",
2383 __func__
, vec_size
, 1 << fls(vec_size
));
2386 * Try to ensure ebase resides in KSeg0 if possible.
2388 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2389 * hitting a poorly defined exception base for Cache Errors.
2390 * The allocation is likely to be in the low 512MB of physical,
2391 * in which case we should be able to convert to KSeg0.
2393 * EVA is special though as it allows segments to be rearranged
2394 * and to become uncached during cache error handling.
2396 if (!IS_ENABLED(CONFIG_EVA
) && !WARN_ON(ebase_pa
>= 0x20000000))
2397 ebase
= CKSEG0ADDR(ebase_pa
);
2399 ebase
= (unsigned long)phys_to_virt(ebase_pa
);
2402 if (cpu_has_mmips
) {
2403 unsigned int config3
= read_c0_config3();
2405 if (IS_ENABLED(CONFIG_CPU_MICROMIPS
))
2406 write_c0_config3(config3
| MIPS_CONF3_ISA_OE
);
2408 write_c0_config3(config3
& ~MIPS_CONF3_ISA_OE
);
2411 if (board_ebase_setup
)
2412 board_ebase_setup();
2413 per_cpu_trap_init(true);
2414 memblock_set_bottom_up(false);
2417 * Copy the generic exception handlers to their final destination.
2418 * This will be overridden later as suitable for a particular
2421 set_handler(0x180, &except_vec3_generic
, 0x80);
2424 * Setup default vectors
2426 for (i
= 0; i
<= 31; i
++)
2427 set_except_vector(i
, handle_reserved
);
2430 * Copy the EJTAG debug exception vector handler code to it's final
2433 if (cpu_has_ejtag
&& board_ejtag_handler_setup
)
2434 board_ejtag_handler_setup();
2437 * Only some CPUs have the watch exceptions.
2440 set_except_vector(EXCCODE_WATCH
, handle_watch
);
2443 * Initialise interrupt handlers
2445 if (cpu_has_veic
|| cpu_has_vint
) {
2446 int nvec
= cpu_has_veic
? 64 : 8;
2447 for (i
= 0; i
< nvec
; i
++)
2448 set_vi_handler(i
, NULL
);
2450 else if (cpu_has_divec
)
2451 set_handler(0x200, &except_vec4
, 0x8);
2454 * Some CPUs can enable/disable for cache parity detection, but does
2455 * it different ways.
2457 parity_protection_init();
2460 * The Data Bus Errors / Instruction Bus Errors are signaled
2461 * by external hardware. Therefore these two exceptions
2462 * may have board specific handlers.
2467 set_except_vector(EXCCODE_INT
, using_rollback_handler() ?
2468 rollback_handle_int
: handle_int
);
2469 set_except_vector(EXCCODE_MOD
, handle_tlbm
);
2470 set_except_vector(EXCCODE_TLBL
, handle_tlbl
);
2471 set_except_vector(EXCCODE_TLBS
, handle_tlbs
);
2473 set_except_vector(EXCCODE_ADEL
, handle_adel
);
2474 set_except_vector(EXCCODE_ADES
, handle_ades
);
2476 set_except_vector(EXCCODE_IBE
, handle_ibe
);
2477 set_except_vector(EXCCODE_DBE
, handle_dbe
);
2479 set_except_vector(EXCCODE_SYS
, handle_sys
);
2480 set_except_vector(EXCCODE_BP
, handle_bp
);
2483 set_except_vector(EXCCODE_RI
, handle_ri
);
2485 if (cpu_has_vtag_icache
)
2486 set_except_vector(EXCCODE_RI
, handle_ri_rdhwr_tlbp
);
2487 else if (current_cpu_type() == CPU_LOONGSON64
)
2488 set_except_vector(EXCCODE_RI
, handle_ri_rdhwr_tlbp
);
2490 set_except_vector(EXCCODE_RI
, handle_ri_rdhwr
);
2493 set_except_vector(EXCCODE_CPU
, handle_cpu
);
2494 set_except_vector(EXCCODE_OV
, handle_ov
);
2495 set_except_vector(EXCCODE_TR
, handle_tr
);
2496 set_except_vector(EXCCODE_MSAFPE
, handle_msa_fpe
);
2498 if (board_nmi_handler_setup
)
2499 board_nmi_handler_setup();
2501 if (cpu_has_fpu
&& !cpu_has_nofpuex
)
2502 set_except_vector(EXCCODE_FPE
, handle_fpe
);
2504 if (cpu_has_ftlbparex
)
2505 set_except_vector(MIPS_EXCCODE_TLBPAR
, handle_ftlb
);
2507 if (cpu_has_gsexcex
)
2508 set_except_vector(LOONGSON_EXCCODE_GSEXC
, handle_gsexc
);
2510 if (cpu_has_rixiex
) {
2511 set_except_vector(EXCCODE_TLBRI
, tlb_do_page_fault_0
);
2512 set_except_vector(EXCCODE_TLBXI
, tlb_do_page_fault_0
);
2515 set_except_vector(EXCCODE_MSADIS
, handle_msa
);
2516 set_except_vector(EXCCODE_MDMX
, handle_mdmx
);
2519 set_except_vector(EXCCODE_MCHECK
, handle_mcheck
);
2522 set_except_vector(EXCCODE_THREAD
, handle_mt
);
2524 set_except_vector(EXCCODE_DSPDIS
, handle_dsp
);
2526 if (board_cache_error_setup
)
2527 board_cache_error_setup();
2530 /* Special exception: R4[04]00 uses also the divec space. */
2531 set_handler(0x180, &except_vec3_r4000
, 0x100);
2532 else if (cpu_has_4kex
)
2533 set_handler(0x180, &except_vec3_generic
, 0x80);
2535 set_handler(0x080, &except_vec3_generic
, 0x80);
2537 local_flush_icache_range(ebase
, ebase
+ vec_size
);
2539 sort_extable(__start___dbe_table
, __stop___dbe_table
);
2541 cu2_notifier(default_cu2_call
, 0x80000000); /* Run last */
2544 static int trap_pm_notifier(struct notifier_block
*self
, unsigned long cmd
,
2548 case CPU_PM_ENTER_FAILED
:
2552 configure_exception_vector();
2554 /* Restore register with CPU number for TLB handlers */
2555 TLBMISS_HANDLER_RESTORE();
2563 static struct notifier_block trap_pm_notifier_block
= {
2564 .notifier_call
= trap_pm_notifier
,
2567 static int __init
trap_pm_init(void)
2569 return cpu_pm_register_notifier(&trap_pm_notifier_block
);
2571 arch_initcall(trap_pm_init
);