2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * KVM/MIPS: Instruction/Exception emulation
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/ktime.h>
15 #include <linux/kvm_host.h>
16 #include <linux/vmalloc.h>
18 #include <linux/memblock.h>
19 #include <linux/random.h>
21 #include <asm/cacheflush.h>
22 #include <asm/cacheops.h>
23 #include <asm/cpu-info.h>
24 #include <asm/mmu_context.h>
25 #include <asm/tlbflush.h>
29 #include <asm/r4kcache.h>
30 #define CONFIG_MIPS_MT
32 #include "interrupt.h"
38 * Compute the return address and do emulate branch simulation, if required.
39 * This function should be called only in branch delay slot active.
41 static int kvm_compute_return_epc(struct kvm_vcpu
*vcpu
, unsigned long instpc
,
44 unsigned int dspcontrol
;
45 union mips_instruction insn
;
46 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
52 kvm_err("%s: unaligned epc\n", __func__
);
56 /* Read the instruction */
57 err
= kvm_get_badinstrp((u32
*)epc
, vcpu
, &insn
.word
);
61 switch (insn
.i_format
.opcode
) {
62 /* jr and jalr are in r_format format. */
64 switch (insn
.r_format
.func
) {
66 arch
->gprs
[insn
.r_format
.rd
] = epc
+ 8;
69 nextpc
= arch
->gprs
[insn
.r_format
.rs
];
77 * This group contains:
78 * bltz_op, bgez_op, bltzl_op, bgezl_op,
79 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
82 switch (insn
.i_format
.rt
) {
85 if ((long)arch
->gprs
[insn
.i_format
.rs
] < 0)
86 epc
= epc
+ 4 + (insn
.i_format
.simmediate
<< 2);
94 if ((long)arch
->gprs
[insn
.i_format
.rs
] >= 0)
95 epc
= epc
+ 4 + (insn
.i_format
.simmediate
<< 2);
103 arch
->gprs
[31] = epc
+ 8;
104 if ((long)arch
->gprs
[insn
.i_format
.rs
] < 0)
105 epc
= epc
+ 4 + (insn
.i_format
.simmediate
<< 2);
113 arch
->gprs
[31] = epc
+ 8;
114 if ((long)arch
->gprs
[insn
.i_format
.rs
] >= 0)
115 epc
= epc
+ 4 + (insn
.i_format
.simmediate
<< 2);
122 kvm_err("%s: DSP branch but not DSP ASE\n",
127 dspcontrol
= rddsp(0x01);
129 if (dspcontrol
>= 32)
130 epc
= epc
+ 4 + (insn
.i_format
.simmediate
<< 2);
140 /* These are unconditional and in j_format. */
142 arch
->gprs
[31] = instpc
+ 8;
148 epc
|= (insn
.j_format
.target
<< 2);
152 /* These are conditional and in i_format. */
155 if (arch
->gprs
[insn
.i_format
.rs
] ==
156 arch
->gprs
[insn
.i_format
.rt
])
157 epc
= epc
+ 4 + (insn
.i_format
.simmediate
<< 2);
165 if (arch
->gprs
[insn
.i_format
.rs
] !=
166 arch
->gprs
[insn
.i_format
.rt
])
167 epc
= epc
+ 4 + (insn
.i_format
.simmediate
<< 2);
173 case blez_op
: /* POP06 */
174 #ifndef CONFIG_CPU_MIPSR6
175 case blezl_op
: /* removed in R6 */
177 if (insn
.i_format
.rt
!= 0)
179 if ((long)arch
->gprs
[insn
.i_format
.rs
] <= 0)
180 epc
= epc
+ 4 + (insn
.i_format
.simmediate
<< 2);
186 case bgtz_op
: /* POP07 */
187 #ifndef CONFIG_CPU_MIPSR6
188 case bgtzl_op
: /* removed in R6 */
190 if (insn
.i_format
.rt
!= 0)
192 if ((long)arch
->gprs
[insn
.i_format
.rs
] > 0)
193 epc
= epc
+ 4 + (insn
.i_format
.simmediate
<< 2);
199 /* And now the FPA/cp1 branch instructions. */
201 kvm_err("%s: unsupported cop1_op\n", __func__
);
204 #ifdef CONFIG_CPU_MIPSR6
205 /* R6 added the following compact branches with forbidden slots */
206 case blezl_op
: /* POP26 */
207 case bgtzl_op
: /* POP27 */
208 /* only rt == 0 isn't compact branch */
209 if (insn
.i_format
.rt
!= 0)
214 /* only rs == rt == 0 is reserved, rest are compact branches */
215 if (insn
.i_format
.rs
!= 0 || insn
.i_format
.rt
!= 0)
220 /* only rs == 0 isn't compact branch */
221 if (insn
.i_format
.rs
!= 0)
226 * If we've hit an exception on the forbidden slot, then
227 * the branch must not have been taken.
234 /* Fall through - Compact branches not supported before R6 */
244 enum emulation_result
update_pc(struct kvm_vcpu
*vcpu
, u32 cause
)
248 if (cause
& CAUSEF_BD
) {
249 err
= kvm_compute_return_epc(vcpu
, vcpu
->arch
.pc
,
257 kvm_debug("update_pc(): New PC: %#lx\n", vcpu
->arch
.pc
);
263 * kvm_get_badinstr() - Get bad instruction encoding.
264 * @opc: Guest pointer to faulting instruction.
265 * @vcpu: KVM VCPU information.
267 * Gets the instruction encoding of the faulting instruction, using the saved
268 * BadInstr register value if it exists, otherwise falling back to reading guest
271 * Returns: The instruction encoding of the faulting instruction.
273 int kvm_get_badinstr(u32
*opc
, struct kvm_vcpu
*vcpu
, u32
*out
)
275 if (cpu_has_badinstr
) {
276 *out
= vcpu
->arch
.host_cp0_badinstr
;
279 return kvm_get_inst(opc
, vcpu
, out
);
284 * kvm_get_badinstrp() - Get bad prior instruction encoding.
285 * @opc: Guest pointer to prior faulting instruction.
286 * @vcpu: KVM VCPU information.
288 * Gets the instruction encoding of the prior faulting instruction (the branch
289 * containing the delay slot which faulted), using the saved BadInstrP register
290 * value if it exists, otherwise falling back to reading guest memory at @opc.
292 * Returns: The instruction encoding of the prior faulting instruction.
294 int kvm_get_badinstrp(u32
*opc
, struct kvm_vcpu
*vcpu
, u32
*out
)
296 if (cpu_has_badinstrp
) {
297 *out
= vcpu
->arch
.host_cp0_badinstrp
;
300 return kvm_get_inst(opc
, vcpu
, out
);
305 * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
306 * @vcpu: Virtual CPU.
308 * Returns: 1 if the CP0_Count timer is disabled by either the guest
309 * CP0_Cause.DC bit or the count_ctl.DC bit.
310 * 0 otherwise (in which case CP0_Count timer is running).
312 int kvm_mips_count_disabled(struct kvm_vcpu
*vcpu
)
314 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
316 return (vcpu
->arch
.count_ctl
& KVM_REG_MIPS_COUNT_CTL_DC
) ||
317 (kvm_read_c0_guest_cause(cop0
) & CAUSEF_DC
);
321 * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
323 * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
325 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
327 static u32
kvm_mips_ktime_to_count(struct kvm_vcpu
*vcpu
, ktime_t now
)
332 now_ns
= ktime_to_ns(now
);
333 delta
= now_ns
+ vcpu
->arch
.count_dyn_bias
;
335 if (delta
>= vcpu
->arch
.count_period
) {
336 /* If delta is out of safe range the bias needs adjusting */
337 periods
= div64_s64(now_ns
, vcpu
->arch
.count_period
);
338 vcpu
->arch
.count_dyn_bias
= -periods
* vcpu
->arch
.count_period
;
339 /* Recalculate delta with new bias */
340 delta
= now_ns
+ vcpu
->arch
.count_dyn_bias
;
344 * We've ensured that:
345 * delta < count_period
347 * Therefore the intermediate delta*count_hz will never overflow since
348 * at the boundary condition:
349 * delta = count_period
350 * delta = NSEC_PER_SEC * 2^32 / count_hz
351 * delta * count_hz = NSEC_PER_SEC * 2^32
353 return div_u64(delta
* vcpu
->arch
.count_hz
, NSEC_PER_SEC
);
357 * kvm_mips_count_time() - Get effective current time.
358 * @vcpu: Virtual CPU.
360 * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
361 * except when the master disable bit is set in count_ctl, in which case it is
362 * count_resume, i.e. the time that the count was disabled.
364 * Returns: Effective monotonic ktime for CP0_Count.
366 static inline ktime_t
kvm_mips_count_time(struct kvm_vcpu
*vcpu
)
368 if (unlikely(vcpu
->arch
.count_ctl
& KVM_REG_MIPS_COUNT_CTL_DC
))
369 return vcpu
->arch
.count_resume
;
375 * kvm_mips_read_count_running() - Read the current count value as if running.
376 * @vcpu: Virtual CPU.
377 * @now: Kernel time to read CP0_Count at.
379 * Returns the current guest CP0_Count register at time @now and handles if the
380 * timer interrupt is pending and hasn't been handled yet.
382 * Returns: The current value of the guest CP0_Count register.
384 static u32
kvm_mips_read_count_running(struct kvm_vcpu
*vcpu
, ktime_t now
)
386 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
387 ktime_t expires
, threshold
;
391 /* Calculate the biased and scaled guest CP0_Count */
392 count
= vcpu
->arch
.count_bias
+ kvm_mips_ktime_to_count(vcpu
, now
);
393 compare
= kvm_read_c0_guest_compare(cop0
);
396 * Find whether CP0_Count has reached the closest timer interrupt. If
397 * not, we shouldn't inject it.
399 if ((s32
)(count
- compare
) < 0)
403 * The CP0_Count we're going to return has already reached the closest
404 * timer interrupt. Quickly check if it really is a new interrupt by
405 * looking at whether the interval until the hrtimer expiry time is
406 * less than 1/4 of the timer period.
408 expires
= hrtimer_get_expires(&vcpu
->arch
.comparecount_timer
);
409 threshold
= ktime_add_ns(now
, vcpu
->arch
.count_period
/ 4);
410 if (ktime_before(expires
, threshold
)) {
412 * Cancel it while we handle it so there's no chance of
413 * interference with the timeout handler.
415 running
= hrtimer_cancel(&vcpu
->arch
.comparecount_timer
);
417 /* Nothing should be waiting on the timeout */
418 kvm_mips_callbacks
->queue_timer_int(vcpu
);
421 * Restart the timer if it was running based on the expiry time
422 * we read, so that we don't push it back 2 periods.
425 expires
= ktime_add_ns(expires
,
426 vcpu
->arch
.count_period
);
427 hrtimer_start(&vcpu
->arch
.comparecount_timer
, expires
,
436 * kvm_mips_read_count() - Read the current count value.
437 * @vcpu: Virtual CPU.
439 * Read the current guest CP0_Count value, taking into account whether the timer
442 * Returns: The current guest CP0_Count value.
444 u32
kvm_mips_read_count(struct kvm_vcpu
*vcpu
)
446 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
448 /* If count disabled just read static copy of count */
449 if (kvm_mips_count_disabled(vcpu
))
450 return kvm_read_c0_guest_count(cop0
);
452 return kvm_mips_read_count_running(vcpu
, ktime_get());
456 * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
457 * @vcpu: Virtual CPU.
458 * @count: Output pointer for CP0_Count value at point of freeze.
460 * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
461 * at the point it was frozen. It is guaranteed that any pending interrupts at
462 * the point it was frozen are handled, and none after that point.
464 * This is useful where the time/CP0_Count is needed in the calculation of the
467 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
469 * Returns: The ktime at the point of freeze.
471 ktime_t
kvm_mips_freeze_hrtimer(struct kvm_vcpu
*vcpu
, u32
*count
)
475 /* stop hrtimer before finding time */
476 hrtimer_cancel(&vcpu
->arch
.comparecount_timer
);
479 /* find count at this point and handle pending hrtimer */
480 *count
= kvm_mips_read_count_running(vcpu
, now
);
486 * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
487 * @vcpu: Virtual CPU.
488 * @now: ktime at point of resume.
489 * @count: CP0_Count at point of resume.
491 * Resumes the timer and updates the timer expiry based on @now and @count.
492 * This can be used in conjunction with kvm_mips_freeze_timer() when timer
493 * parameters need to be changed.
495 * It is guaranteed that a timer interrupt immediately after resume will be
496 * handled, but not if CP_Compare is exactly at @count. That case is already
497 * handled by kvm_mips_freeze_timer().
499 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
501 static void kvm_mips_resume_hrtimer(struct kvm_vcpu
*vcpu
,
502 ktime_t now
, u32 count
)
504 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
509 /* Calculate timeout (wrap 0 to 2^32) */
510 compare
= kvm_read_c0_guest_compare(cop0
);
511 delta
= (u64
)(u32
)(compare
- count
- 1) + 1;
512 delta
= div_u64(delta
* NSEC_PER_SEC
, vcpu
->arch
.count_hz
);
513 expire
= ktime_add_ns(now
, delta
);
515 /* Update hrtimer to use new timeout */
516 hrtimer_cancel(&vcpu
->arch
.comparecount_timer
);
517 hrtimer_start(&vcpu
->arch
.comparecount_timer
, expire
, HRTIMER_MODE_ABS
);
521 * kvm_mips_restore_hrtimer() - Restore hrtimer after a gap, updating expiry.
522 * @vcpu: Virtual CPU.
523 * @before: Time before Count was saved, lower bound of drift calculation.
524 * @count: CP0_Count at point of restore.
525 * @min_drift: Minimum amount of drift permitted before correction.
528 * Restores the timer from a particular @count, accounting for drift. This can
529 * be used in conjunction with kvm_mips_freeze_timer() when a hardware timer is
530 * to be used for a period of time, but the exact ktime corresponding to the
531 * final Count that must be restored is not known.
533 * It is gauranteed that a timer interrupt immediately after restore will be
534 * handled, but not if CP0_Compare is exactly at @count. That case should
535 * already be handled when the hardware timer state is saved.
537 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is not
540 * Returns: Amount of correction to count_bias due to drift.
542 int kvm_mips_restore_hrtimer(struct kvm_vcpu
*vcpu
, ktime_t before
,
543 u32 count
, int min_drift
)
545 ktime_t now
, count_time
;
546 u32 now_count
, before_count
;
550 /* Calculate expected count at before */
551 before_count
= vcpu
->arch
.count_bias
+
552 kvm_mips_ktime_to_count(vcpu
, before
);
555 * Detect significantly negative drift, where count is lower than
556 * expected. Some negative drift is expected when hardware counter is
557 * set after kvm_mips_freeze_timer(), and it is harmless to allow the
558 * time to jump forwards a little, within reason. If the drift is too
559 * significant, adjust the bias to avoid a big Guest.CP0_Count jump.
561 drift
= count
- before_count
;
562 if (drift
< min_drift
) {
564 vcpu
->arch
.count_bias
+= drift
;
569 /* Calculate expected count right now */
571 now_count
= vcpu
->arch
.count_bias
+ kvm_mips_ktime_to_count(vcpu
, now
);
574 * Detect positive drift, where count is higher than expected, and
575 * adjust the bias to avoid guest time going backwards.
577 drift
= count
- now_count
;
580 vcpu
->arch
.count_bias
+= drift
;
585 /* Subtract nanosecond delta to find ktime when count was read */
586 delta
= (u64
)(u32
)(now_count
- count
);
587 delta
= div_u64(delta
* NSEC_PER_SEC
, vcpu
->arch
.count_hz
);
588 count_time
= ktime_sub_ns(now
, delta
);
591 /* Resume using the calculated ktime */
592 kvm_mips_resume_hrtimer(vcpu
, count_time
, count
);
597 * kvm_mips_write_count() - Modify the count and update timer.
598 * @vcpu: Virtual CPU.
599 * @count: Guest CP0_Count value to set.
601 * Sets the CP0_Count value and updates the timer accordingly.
603 void kvm_mips_write_count(struct kvm_vcpu
*vcpu
, u32 count
)
605 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
609 now
= kvm_mips_count_time(vcpu
);
610 vcpu
->arch
.count_bias
= count
- kvm_mips_ktime_to_count(vcpu
, now
);
612 if (kvm_mips_count_disabled(vcpu
))
613 /* The timer's disabled, adjust the static count */
614 kvm_write_c0_guest_count(cop0
, count
);
617 kvm_mips_resume_hrtimer(vcpu
, now
, count
);
621 * kvm_mips_init_count() - Initialise timer.
622 * @vcpu: Virtual CPU.
623 * @count_hz: Frequency of timer.
625 * Initialise the timer to the specified frequency, zero it, and set it going if
628 void kvm_mips_init_count(struct kvm_vcpu
*vcpu
, unsigned long count_hz
)
630 vcpu
->arch
.count_hz
= count_hz
;
631 vcpu
->arch
.count_period
= div_u64((u64
)NSEC_PER_SEC
<< 32, count_hz
);
632 vcpu
->arch
.count_dyn_bias
= 0;
635 kvm_mips_write_count(vcpu
, 0);
639 * kvm_mips_set_count_hz() - Update the frequency of the timer.
640 * @vcpu: Virtual CPU.
641 * @count_hz: Frequency of CP0_Count timer in Hz.
643 * Change the frequency of the CP0_Count timer. This is done atomically so that
644 * CP0_Count is continuous and no timer interrupt is lost.
646 * Returns: -EINVAL if @count_hz is out of range.
649 int kvm_mips_set_count_hz(struct kvm_vcpu
*vcpu
, s64 count_hz
)
651 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
656 /* ensure the frequency is in a sensible range... */
657 if (count_hz
<= 0 || count_hz
> NSEC_PER_SEC
)
659 /* ... and has actually changed */
660 if (vcpu
->arch
.count_hz
== count_hz
)
663 /* Safely freeze timer so we can keep it continuous */
664 dc
= kvm_mips_count_disabled(vcpu
);
666 now
= kvm_mips_count_time(vcpu
);
667 count
= kvm_read_c0_guest_count(cop0
);
669 now
= kvm_mips_freeze_hrtimer(vcpu
, &count
);
672 /* Update the frequency */
673 vcpu
->arch
.count_hz
= count_hz
;
674 vcpu
->arch
.count_period
= div_u64((u64
)NSEC_PER_SEC
<< 32, count_hz
);
675 vcpu
->arch
.count_dyn_bias
= 0;
677 /* Calculate adjusted bias so dynamic count is unchanged */
678 vcpu
->arch
.count_bias
= count
- kvm_mips_ktime_to_count(vcpu
, now
);
680 /* Update and resume hrtimer */
682 kvm_mips_resume_hrtimer(vcpu
, now
, count
);
687 * kvm_mips_write_compare() - Modify compare and update timer.
688 * @vcpu: Virtual CPU.
689 * @compare: New CP0_Compare value.
690 * @ack: Whether to acknowledge timer interrupt.
692 * Update CP0_Compare to a new value and update the timeout.
693 * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
694 * any pending timer interrupt is preserved.
696 void kvm_mips_write_compare(struct kvm_vcpu
*vcpu
, u32 compare
, bool ack
)
698 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
700 u32 old_compare
= kvm_read_c0_guest_compare(cop0
);
701 s32 delta
= compare
- old_compare
;
703 ktime_t now
= ktime_set(0, 0); /* silence bogus GCC warning */
706 /* if unchanged, must just be an ack */
707 if (old_compare
== compare
) {
710 kvm_mips_callbacks
->dequeue_timer_int(vcpu
);
711 kvm_write_c0_guest_compare(cop0
, compare
);
716 * If guest CP0_Compare moves forward, CP0_GTOffset should be adjusted
717 * too to prevent guest CP0_Count hitting guest CP0_Compare.
719 * The new GTOffset corresponds to the new value of CP0_Compare, and is
720 * set prior to it being written into the guest context. We disable
721 * preemption until the new value is written to prevent restore of a
722 * GTOffset corresponding to the old CP0_Compare value.
724 if (IS_ENABLED(CONFIG_KVM_MIPS_VZ
) && delta
> 0) {
726 write_c0_gtoffset(compare
- read_c0_count());
727 back_to_back_c0_hazard();
730 /* freeze_hrtimer() takes care of timer interrupts <= count */
731 dc
= kvm_mips_count_disabled(vcpu
);
733 now
= kvm_mips_freeze_hrtimer(vcpu
, &count
);
736 kvm_mips_callbacks
->dequeue_timer_int(vcpu
);
737 else if (IS_ENABLED(CONFIG_KVM_MIPS_VZ
))
739 * With VZ, writing CP0_Compare acks (clears) CP0_Cause.TI, so
740 * preserve guest CP0_Cause.TI if we don't want to ack it.
742 cause
= kvm_read_c0_guest_cause(cop0
);
744 kvm_write_c0_guest_compare(cop0
, compare
);
746 if (IS_ENABLED(CONFIG_KVM_MIPS_VZ
)) {
750 back_to_back_c0_hazard();
752 if (!ack
&& cause
& CAUSEF_TI
)
753 kvm_write_c0_guest_cause(cop0
, cause
);
756 /* resume_hrtimer() takes care of timer interrupts > count */
758 kvm_mips_resume_hrtimer(vcpu
, now
, count
);
761 * If guest CP0_Compare is moving backward, we delay CP0_GTOffset change
762 * until after the new CP0_Compare is written, otherwise new guest
763 * CP0_Count could hit new guest CP0_Compare.
765 if (IS_ENABLED(CONFIG_KVM_MIPS_VZ
) && delta
<= 0)
766 write_c0_gtoffset(compare
- read_c0_count());
770 * kvm_mips_count_disable() - Disable count.
771 * @vcpu: Virtual CPU.
773 * Disable the CP0_Count timer. A timer interrupt on or before the final stop
774 * time will be handled but not after.
776 * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
777 * count_ctl.DC has been set (count disabled).
779 * Returns: The time that the timer was stopped.
781 static ktime_t
kvm_mips_count_disable(struct kvm_vcpu
*vcpu
)
783 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
788 hrtimer_cancel(&vcpu
->arch
.comparecount_timer
);
790 /* Set the static count from the dynamic count, handling pending TI */
792 count
= kvm_mips_read_count_running(vcpu
, now
);
793 kvm_write_c0_guest_count(cop0
, count
);
799 * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
800 * @vcpu: Virtual CPU.
802 * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
803 * before the final stop time will be handled if the timer isn't disabled by
804 * count_ctl.DC, but not after.
806 * Assumes CP0_Cause.DC is clear (count enabled).
808 void kvm_mips_count_disable_cause(struct kvm_vcpu
*vcpu
)
810 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
812 kvm_set_c0_guest_cause(cop0
, CAUSEF_DC
);
813 if (!(vcpu
->arch
.count_ctl
& KVM_REG_MIPS_COUNT_CTL_DC
))
814 kvm_mips_count_disable(vcpu
);
818 * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
819 * @vcpu: Virtual CPU.
821 * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
822 * the start time will be handled if the timer isn't disabled by count_ctl.DC,
823 * potentially before even returning, so the caller should be careful with
824 * ordering of CP0_Cause modifications so as not to lose it.
826 * Assumes CP0_Cause.DC is set (count disabled).
828 void kvm_mips_count_enable_cause(struct kvm_vcpu
*vcpu
)
830 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
833 kvm_clear_c0_guest_cause(cop0
, CAUSEF_DC
);
836 * Set the dynamic count to match the static count.
837 * This starts the hrtimer if count_ctl.DC allows it.
838 * Otherwise it conveniently updates the biases.
840 count
= kvm_read_c0_guest_count(cop0
);
841 kvm_mips_write_count(vcpu
, count
);
845 * kvm_mips_set_count_ctl() - Update the count control KVM register.
846 * @vcpu: Virtual CPU.
847 * @count_ctl: Count control register new value.
849 * Set the count control KVM register. The timer is updated accordingly.
851 * Returns: -EINVAL if reserved bits are set.
854 int kvm_mips_set_count_ctl(struct kvm_vcpu
*vcpu
, s64 count_ctl
)
856 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
857 s64 changed
= count_ctl
^ vcpu
->arch
.count_ctl
;
862 /* Only allow defined bits to be changed */
863 if (changed
& ~(s64
)(KVM_REG_MIPS_COUNT_CTL_DC
))
866 /* Apply new value */
867 vcpu
->arch
.count_ctl
= count_ctl
;
869 /* Master CP0_Count disable */
870 if (changed
& KVM_REG_MIPS_COUNT_CTL_DC
) {
871 /* Is CP0_Cause.DC already disabling CP0_Count? */
872 if (kvm_read_c0_guest_cause(cop0
) & CAUSEF_DC
) {
873 if (count_ctl
& KVM_REG_MIPS_COUNT_CTL_DC
)
874 /* Just record the current time */
875 vcpu
->arch
.count_resume
= ktime_get();
876 } else if (count_ctl
& KVM_REG_MIPS_COUNT_CTL_DC
) {
877 /* disable timer and record current time */
878 vcpu
->arch
.count_resume
= kvm_mips_count_disable(vcpu
);
881 * Calculate timeout relative to static count at resume
882 * time (wrap 0 to 2^32).
884 count
= kvm_read_c0_guest_count(cop0
);
885 compare
= kvm_read_c0_guest_compare(cop0
);
886 delta
= (u64
)(u32
)(compare
- count
- 1) + 1;
887 delta
= div_u64(delta
* NSEC_PER_SEC
,
888 vcpu
->arch
.count_hz
);
889 expire
= ktime_add_ns(vcpu
->arch
.count_resume
, delta
);
891 /* Handle pending interrupt */
893 if (ktime_compare(now
, expire
) >= 0)
894 /* Nothing should be waiting on the timeout */
895 kvm_mips_callbacks
->queue_timer_int(vcpu
);
897 /* Resume hrtimer without changing bias */
898 count
= kvm_mips_read_count_running(vcpu
, now
);
899 kvm_mips_resume_hrtimer(vcpu
, now
, count
);
907 * kvm_mips_set_count_resume() - Update the count resume KVM register.
908 * @vcpu: Virtual CPU.
909 * @count_resume: Count resume register new value.
911 * Set the count resume KVM register.
913 * Returns: -EINVAL if out of valid range (0..now).
916 int kvm_mips_set_count_resume(struct kvm_vcpu
*vcpu
, s64 count_resume
)
919 * It doesn't make sense for the resume time to be in the future, as it
920 * would be possible for the next interrupt to be more than a full
921 * period in the future.
923 if (count_resume
< 0 || count_resume
> ktime_to_ns(ktime_get()))
926 vcpu
->arch
.count_resume
= ns_to_ktime(count_resume
);
931 * kvm_mips_count_timeout() - Push timer forward on timeout.
932 * @vcpu: Virtual CPU.
934 * Handle an hrtimer event by push the hrtimer forward a period.
936 * Returns: The hrtimer_restart value to return to the hrtimer subsystem.
938 enum hrtimer_restart
kvm_mips_count_timeout(struct kvm_vcpu
*vcpu
)
940 /* Add the Count period to the current expiry time */
941 hrtimer_add_expires_ns(&vcpu
->arch
.comparecount_timer
,
942 vcpu
->arch
.count_period
);
943 return HRTIMER_RESTART
;
946 enum emulation_result
kvm_mips_emul_eret(struct kvm_vcpu
*vcpu
)
948 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
949 enum emulation_result er
= EMULATE_DONE
;
951 if (kvm_read_c0_guest_status(cop0
) & ST0_ERL
) {
952 kvm_clear_c0_guest_status(cop0
, ST0_ERL
);
953 vcpu
->arch
.pc
= kvm_read_c0_guest_errorepc(cop0
);
954 } else if (kvm_read_c0_guest_status(cop0
) & ST0_EXL
) {
955 kvm_debug("[%#lx] ERET to %#lx\n", vcpu
->arch
.pc
,
956 kvm_read_c0_guest_epc(cop0
));
957 kvm_clear_c0_guest_status(cop0
, ST0_EXL
);
958 vcpu
->arch
.pc
= kvm_read_c0_guest_epc(cop0
);
961 kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
969 enum emulation_result
kvm_mips_emul_wait(struct kvm_vcpu
*vcpu
)
971 kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu
->arch
.pc
,
972 vcpu
->arch
.pending_exceptions
);
974 ++vcpu
->stat
.wait_exits
;
975 trace_kvm_exit(vcpu
, KVM_TRACE_EXIT_WAIT
);
976 if (!vcpu
->arch
.pending_exceptions
) {
977 kvm_vz_lose_htimer(vcpu
);
979 kvm_vcpu_block(vcpu
);
982 * We we are runnable, then definitely go off to user space to
983 * check if any I/O interrupts are pending.
985 if (kvm_check_request(KVM_REQ_UNHALT
, vcpu
)) {
986 kvm_clear_request(KVM_REQ_UNHALT
, vcpu
);
987 vcpu
->run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
994 static void kvm_mips_change_entryhi(struct kvm_vcpu
*vcpu
,
995 unsigned long entryhi
)
997 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
998 struct mm_struct
*kern_mm
= &vcpu
->arch
.guest_kernel_mm
;
1000 u32 nasid
= entryhi
& KVM_ENTRYHI_ASID
;
1002 if (((kvm_read_c0_guest_entryhi(cop0
) & KVM_ENTRYHI_ASID
) != nasid
)) {
1003 trace_kvm_asid_change(vcpu
, kvm_read_c0_guest_entryhi(cop0
) &
1004 KVM_ENTRYHI_ASID
, nasid
);
1007 * Flush entries from the GVA page tables.
1008 * Guest user page table will get flushed lazily on re-entry to
1009 * guest user if the guest ASID actually changes.
1011 kvm_mips_flush_gva_pt(kern_mm
->pgd
, KMF_KERN
);
1014 * Regenerate/invalidate kernel MMU context.
1015 * The user MMU context will be regenerated lazily on re-entry
1016 * to guest user if the guest ASID actually changes.
1019 cpu
= smp_processor_id();
1020 get_new_mmu_context(kern_mm
);
1021 for_each_possible_cpu(i
)
1023 set_cpu_context(i
, kern_mm
, 0);
1026 kvm_write_c0_guest_entryhi(cop0
, entryhi
);
1029 enum emulation_result
kvm_mips_emul_tlbr(struct kvm_vcpu
*vcpu
)
1031 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
1032 struct kvm_mips_tlb
*tlb
;
1033 unsigned long pc
= vcpu
->arch
.pc
;
1036 index
= kvm_read_c0_guest_index(cop0
);
1037 if (index
< 0 || index
>= KVM_MIPS_GUEST_TLB_SIZE
) {
1039 kvm_debug("[%#lx] TLBR Index %#x out of range\n", pc
, index
);
1040 index
&= KVM_MIPS_GUEST_TLB_SIZE
- 1;
1043 tlb
= &vcpu
->arch
.guest_tlb
[index
];
1044 kvm_write_c0_guest_pagemask(cop0
, tlb
->tlb_mask
);
1045 kvm_write_c0_guest_entrylo0(cop0
, tlb
->tlb_lo
[0]);
1046 kvm_write_c0_guest_entrylo1(cop0
, tlb
->tlb_lo
[1]);
1047 kvm_mips_change_entryhi(vcpu
, tlb
->tlb_hi
);
1049 return EMULATE_DONE
;
1053 * kvm_mips_invalidate_guest_tlb() - Indicates a change in guest MMU map.
1054 * @vcpu: VCPU with changed mappings.
1055 * @tlb: TLB entry being removed.
1057 * This is called to indicate a single change in guest MMU mappings, so that we
1058 * can arrange TLB flushes on this and other CPUs.
1060 static void kvm_mips_invalidate_guest_tlb(struct kvm_vcpu
*vcpu
,
1061 struct kvm_mips_tlb
*tlb
)
1063 struct mm_struct
*kern_mm
= &vcpu
->arch
.guest_kernel_mm
;
1064 struct mm_struct
*user_mm
= &vcpu
->arch
.guest_user_mm
;
1068 /* No need to flush for entries which are already invalid */
1069 if (!((tlb
->tlb_lo
[0] | tlb
->tlb_lo
[1]) & ENTRYLO_V
))
1071 /* Don't touch host kernel page tables or TLB mappings */
1072 if ((unsigned long)tlb
->tlb_hi
> 0x7fffffff)
1074 /* User address space doesn't need flushing for KSeg2/3 changes */
1075 user
= tlb
->tlb_hi
< KVM_GUEST_KSEG0
;
1079 /* Invalidate page table entries */
1080 kvm_trap_emul_invalidate_gva(vcpu
, tlb
->tlb_hi
& VPN2_MASK
, user
);
1083 * Probe the shadow host TLB for the entry being overwritten, if one
1084 * matches, invalidate it
1086 kvm_mips_host_tlb_inv(vcpu
, tlb
->tlb_hi
, user
, true);
1088 /* Invalidate the whole ASID on other CPUs */
1089 cpu
= smp_processor_id();
1090 for_each_possible_cpu(i
) {
1094 set_cpu_context(i
, user_mm
, 0);
1095 set_cpu_context(i
, kern_mm
, 0);
1101 /* Write Guest TLB Entry @ Index */
1102 enum emulation_result
kvm_mips_emul_tlbwi(struct kvm_vcpu
*vcpu
)
1104 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
1105 int index
= kvm_read_c0_guest_index(cop0
);
1106 struct kvm_mips_tlb
*tlb
= NULL
;
1107 unsigned long pc
= vcpu
->arch
.pc
;
1109 if (index
< 0 || index
>= KVM_MIPS_GUEST_TLB_SIZE
) {
1110 kvm_debug("%s: illegal index: %d\n", __func__
, index
);
1111 kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
1112 pc
, index
, kvm_read_c0_guest_entryhi(cop0
),
1113 kvm_read_c0_guest_entrylo0(cop0
),
1114 kvm_read_c0_guest_entrylo1(cop0
),
1115 kvm_read_c0_guest_pagemask(cop0
));
1116 index
= (index
& ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE
;
1119 tlb
= &vcpu
->arch
.guest_tlb
[index
];
1121 kvm_mips_invalidate_guest_tlb(vcpu
, tlb
);
1123 tlb
->tlb_mask
= kvm_read_c0_guest_pagemask(cop0
);
1124 tlb
->tlb_hi
= kvm_read_c0_guest_entryhi(cop0
);
1125 tlb
->tlb_lo
[0] = kvm_read_c0_guest_entrylo0(cop0
);
1126 tlb
->tlb_lo
[1] = kvm_read_c0_guest_entrylo1(cop0
);
1128 kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
1129 pc
, index
, kvm_read_c0_guest_entryhi(cop0
),
1130 kvm_read_c0_guest_entrylo0(cop0
),
1131 kvm_read_c0_guest_entrylo1(cop0
),
1132 kvm_read_c0_guest_pagemask(cop0
));
1134 return EMULATE_DONE
;
1137 /* Write Guest TLB Entry @ Random Index */
1138 enum emulation_result
kvm_mips_emul_tlbwr(struct kvm_vcpu
*vcpu
)
1140 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
1141 struct kvm_mips_tlb
*tlb
= NULL
;
1142 unsigned long pc
= vcpu
->arch
.pc
;
1145 index
= prandom_u32_max(KVM_MIPS_GUEST_TLB_SIZE
);
1146 tlb
= &vcpu
->arch
.guest_tlb
[index
];
1148 kvm_mips_invalidate_guest_tlb(vcpu
, tlb
);
1150 tlb
->tlb_mask
= kvm_read_c0_guest_pagemask(cop0
);
1151 tlb
->tlb_hi
= kvm_read_c0_guest_entryhi(cop0
);
1152 tlb
->tlb_lo
[0] = kvm_read_c0_guest_entrylo0(cop0
);
1153 tlb
->tlb_lo
[1] = kvm_read_c0_guest_entrylo1(cop0
);
1155 kvm_debug("[%#lx] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
1156 pc
, index
, kvm_read_c0_guest_entryhi(cop0
),
1157 kvm_read_c0_guest_entrylo0(cop0
),
1158 kvm_read_c0_guest_entrylo1(cop0
));
1160 return EMULATE_DONE
;
1163 enum emulation_result
kvm_mips_emul_tlbp(struct kvm_vcpu
*vcpu
)
1165 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
1166 long entryhi
= kvm_read_c0_guest_entryhi(cop0
);
1167 unsigned long pc
= vcpu
->arch
.pc
;
1170 index
= kvm_mips_guest_tlb_lookup(vcpu
, entryhi
);
1172 kvm_write_c0_guest_index(cop0
, index
);
1174 kvm_debug("[%#lx] COP0_TLBP (entryhi: %#lx), index: %d\n", pc
, entryhi
,
1177 return EMULATE_DONE
;
1181 * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
1182 * @vcpu: Virtual CPU.
1184 * Finds the mask of bits which are writable in the guest's Config1 CP0
1185 * register, by userland (currently read-only to the guest).
1187 unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu
*vcpu
)
1189 unsigned int mask
= 0;
1191 /* Permit FPU to be present if FPU is supported */
1192 if (kvm_mips_guest_can_have_fpu(&vcpu
->arch
))
1193 mask
|= MIPS_CONF1_FP
;
1199 * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
1200 * @vcpu: Virtual CPU.
1202 * Finds the mask of bits which are writable in the guest's Config3 CP0
1203 * register, by userland (currently read-only to the guest).
1205 unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu
*vcpu
)
1207 /* Config4 and ULRI are optional */
1208 unsigned int mask
= MIPS_CONF_M
| MIPS_CONF3_ULRI
;
1210 /* Permit MSA to be present if MSA is supported */
1211 if (kvm_mips_guest_can_have_msa(&vcpu
->arch
))
1212 mask
|= MIPS_CONF3_MSA
;
1218 * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
1219 * @vcpu: Virtual CPU.
1221 * Finds the mask of bits which are writable in the guest's Config4 CP0
1222 * register, by userland (currently read-only to the guest).
1224 unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu
*vcpu
)
1226 /* Config5 is optional */
1227 unsigned int mask
= MIPS_CONF_M
;
1230 mask
|= 0xfc << MIPS_CONF4_KSCREXIST_SHIFT
;
1236 * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
1237 * @vcpu: Virtual CPU.
1239 * Finds the mask of bits which are writable in the guest's Config5 CP0
1240 * register, by the guest itself.
1242 unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu
*vcpu
)
1244 unsigned int mask
= 0;
1246 /* Permit MSAEn changes if MSA supported and enabled */
1247 if (kvm_mips_guest_has_msa(&vcpu
->arch
))
1248 mask
|= MIPS_CONF5_MSAEN
;
1251 * Permit guest FPU mode changes if FPU is enabled and the relevant
1252 * feature exists according to FIR register.
1254 if (kvm_mips_guest_has_fpu(&vcpu
->arch
)) {
1256 mask
|= MIPS_CONF5_FRE
;
1257 /* We don't support UFR or UFE */
1263 enum emulation_result
kvm_mips_emulate_CP0(union mips_instruction inst
,
1264 u32
*opc
, u32 cause
,
1265 struct kvm_vcpu
*vcpu
)
1267 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
1268 enum emulation_result er
= EMULATE_DONE
;
1270 unsigned long curr_pc
;
1273 * Update PC and hold onto current PC in case there is
1274 * an error and we want to rollback the PC
1276 curr_pc
= vcpu
->arch
.pc
;
1277 er
= update_pc(vcpu
, cause
);
1278 if (er
== EMULATE_FAIL
)
1281 if (inst
.co_format
.co
) {
1282 switch (inst
.co_format
.func
) {
1283 case tlbr_op
: /* Read indexed TLB entry */
1284 er
= kvm_mips_emul_tlbr(vcpu
);
1286 case tlbwi_op
: /* Write indexed */
1287 er
= kvm_mips_emul_tlbwi(vcpu
);
1289 case tlbwr_op
: /* Write random */
1290 er
= kvm_mips_emul_tlbwr(vcpu
);
1292 case tlbp_op
: /* TLB Probe */
1293 er
= kvm_mips_emul_tlbp(vcpu
);
1296 kvm_err("!!!COP0_RFE!!!\n");
1299 er
= kvm_mips_emul_eret(vcpu
);
1300 goto dont_update_pc
;
1302 er
= kvm_mips_emul_wait(vcpu
);
1305 er
= kvm_mips_emul_hypcall(vcpu
, inst
);
1309 rt
= inst
.c0r_format
.rt
;
1310 rd
= inst
.c0r_format
.rd
;
1311 sel
= inst
.c0r_format
.sel
;
1313 switch (inst
.c0r_format
.rs
) {
1315 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1316 cop0
->stat
[rd
][sel
]++;
1319 if ((rd
== MIPS_CP0_COUNT
) && (sel
== 0)) {
1320 vcpu
->arch
.gprs
[rt
] =
1321 (s32
)kvm_mips_read_count(vcpu
);
1322 } else if ((rd
== MIPS_CP0_ERRCTL
) && (sel
== 0)) {
1323 vcpu
->arch
.gprs
[rt
] = 0x0;
1324 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1325 kvm_mips_trans_mfc0(inst
, opc
, vcpu
);
1328 vcpu
->arch
.gprs
[rt
] = (s32
)cop0
->reg
[rd
][sel
];
1330 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1331 kvm_mips_trans_mfc0(inst
, opc
, vcpu
);
1335 trace_kvm_hwr(vcpu
, KVM_TRACE_MFC0
,
1336 KVM_TRACE_COP0(rd
, sel
),
1337 vcpu
->arch
.gprs
[rt
]);
1341 vcpu
->arch
.gprs
[rt
] = cop0
->reg
[rd
][sel
];
1343 trace_kvm_hwr(vcpu
, KVM_TRACE_DMFC0
,
1344 KVM_TRACE_COP0(rd
, sel
),
1345 vcpu
->arch
.gprs
[rt
]);
1349 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1350 cop0
->stat
[rd
][sel
]++;
1352 trace_kvm_hwr(vcpu
, KVM_TRACE_MTC0
,
1353 KVM_TRACE_COP0(rd
, sel
),
1354 vcpu
->arch
.gprs
[rt
]);
1356 if ((rd
== MIPS_CP0_TLB_INDEX
)
1357 && (vcpu
->arch
.gprs
[rt
] >=
1358 KVM_MIPS_GUEST_TLB_SIZE
)) {
1359 kvm_err("Invalid TLB Index: %ld",
1360 vcpu
->arch
.gprs
[rt
]);
1364 if ((rd
== MIPS_CP0_PRID
) && (sel
== 1)) {
1366 * Preserve core number, and keep the exception
1367 * base in guest KSeg0.
1369 kvm_change_c0_guest_ebase(cop0
, 0x1ffff000,
1370 vcpu
->arch
.gprs
[rt
]);
1371 } else if (rd
== MIPS_CP0_TLB_HI
&& sel
== 0) {
1372 kvm_mips_change_entryhi(vcpu
,
1373 vcpu
->arch
.gprs
[rt
]);
1375 /* Are we writing to COUNT */
1376 else if ((rd
== MIPS_CP0_COUNT
) && (sel
== 0)) {
1377 kvm_mips_write_count(vcpu
, vcpu
->arch
.gprs
[rt
]);
1379 } else if ((rd
== MIPS_CP0_COMPARE
) && (sel
== 0)) {
1380 /* If we are writing to COMPARE */
1381 /* Clear pending timer interrupt, if any */
1382 kvm_mips_write_compare(vcpu
,
1383 vcpu
->arch
.gprs
[rt
],
1385 } else if ((rd
== MIPS_CP0_STATUS
) && (sel
== 0)) {
1386 unsigned int old_val
, val
, change
;
1388 old_val
= kvm_read_c0_guest_status(cop0
);
1389 val
= vcpu
->arch
.gprs
[rt
];
1390 change
= val
^ old_val
;
1392 /* Make sure that the NMI bit is never set */
1396 * Don't allow CU1 or FR to be set unless FPU
1397 * capability enabled and exists in guest
1400 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
1401 val
&= ~(ST0_CU1
| ST0_FR
);
1404 * Also don't allow FR to be set if host doesn't
1407 if (!(current_cpu_data
.fpu_id
& MIPS_FPIR_F64
))
1411 /* Handle changes in FPU mode */
1415 * FPU and Vector register state is made
1416 * UNPREDICTABLE by a change of FR, so don't
1417 * even bother saving it.
1419 if (change
& ST0_FR
)
1423 * If MSA state is already live, it is undefined
1424 * how it interacts with FR=0 FPU state, and we
1425 * don't want to hit reserved instruction
1426 * exceptions trying to save the MSA state later
1427 * when CU=1 && FR=1, so play it safe and save
1430 if (change
& ST0_CU1
&& !(val
& ST0_FR
) &&
1431 vcpu
->arch
.aux_inuse
& KVM_MIPS_AUX_MSA
)
1435 * Propagate CU1 (FPU enable) changes
1436 * immediately if the FPU context is already
1437 * loaded. When disabling we leave the context
1438 * loaded so it can be quickly enabled again in
1441 if (change
& ST0_CU1
&&
1442 vcpu
->arch
.aux_inuse
& KVM_MIPS_AUX_FPU
)
1443 change_c0_status(ST0_CU1
, val
);
1447 kvm_write_c0_guest_status(cop0
, val
);
1449 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1451 * If FPU present, we need CU1/FR bits to take
1452 * effect fairly soon.
1454 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
1455 kvm_mips_trans_mtc0(inst
, opc
, vcpu
);
1457 } else if ((rd
== MIPS_CP0_CONFIG
) && (sel
== 5)) {
1458 unsigned int old_val
, val
, change
, wrmask
;
1460 old_val
= kvm_read_c0_guest_config5(cop0
);
1461 val
= vcpu
->arch
.gprs
[rt
];
1463 /* Only a few bits are writable in Config5 */
1464 wrmask
= kvm_mips_config5_wrmask(vcpu
);
1465 change
= (val
^ old_val
) & wrmask
;
1466 val
= old_val
^ change
;
1469 /* Handle changes in FPU/MSA modes */
1473 * Propagate FRE changes immediately if the FPU
1474 * context is already loaded.
1476 if (change
& MIPS_CONF5_FRE
&&
1477 vcpu
->arch
.aux_inuse
& KVM_MIPS_AUX_FPU
)
1478 change_c0_config5(MIPS_CONF5_FRE
, val
);
1481 * Propagate MSAEn changes immediately if the
1482 * MSA context is already loaded. When disabling
1483 * we leave the context loaded so it can be
1484 * quickly enabled again in the near future.
1486 if (change
& MIPS_CONF5_MSAEN
&&
1487 vcpu
->arch
.aux_inuse
& KVM_MIPS_AUX_MSA
)
1488 change_c0_config5(MIPS_CONF5_MSAEN
,
1493 kvm_write_c0_guest_config5(cop0
, val
);
1494 } else if ((rd
== MIPS_CP0_CAUSE
) && (sel
== 0)) {
1495 u32 old_cause
, new_cause
;
1497 old_cause
= kvm_read_c0_guest_cause(cop0
);
1498 new_cause
= vcpu
->arch
.gprs
[rt
];
1499 /* Update R/W bits */
1500 kvm_change_c0_guest_cause(cop0
, 0x08800300,
1502 /* DC bit enabling/disabling timer? */
1503 if ((old_cause
^ new_cause
) & CAUSEF_DC
) {
1504 if (new_cause
& CAUSEF_DC
)
1505 kvm_mips_count_disable_cause(vcpu
);
1507 kvm_mips_count_enable_cause(vcpu
);
1509 } else if ((rd
== MIPS_CP0_HWRENA
) && (sel
== 0)) {
1510 u32 mask
= MIPS_HWRENA_CPUNUM
|
1511 MIPS_HWRENA_SYNCISTEP
|
1515 if (kvm_read_c0_guest_config3(cop0
) &
1517 mask
|= MIPS_HWRENA_ULR
;
1518 cop0
->reg
[rd
][sel
] = vcpu
->arch
.gprs
[rt
] & mask
;
1520 cop0
->reg
[rd
][sel
] = vcpu
->arch
.gprs
[rt
];
1521 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1522 kvm_mips_trans_mtc0(inst
, opc
, vcpu
);
1528 kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1529 vcpu
->arch
.pc
, rt
, rd
, sel
);
1530 trace_kvm_hwr(vcpu
, KVM_TRACE_DMTC0
,
1531 KVM_TRACE_COP0(rd
, sel
),
1532 vcpu
->arch
.gprs
[rt
]);
1537 #ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1538 cop0
->stat
[MIPS_CP0_STATUS
][0]++;
1541 vcpu
->arch
.gprs
[rt
] =
1542 kvm_read_c0_guest_status(cop0
);
1544 if (inst
.mfmc0_format
.sc
) {
1545 kvm_debug("[%#lx] mfmc0_op: EI\n",
1547 kvm_set_c0_guest_status(cop0
, ST0_IE
);
1549 kvm_debug("[%#lx] mfmc0_op: DI\n",
1551 kvm_clear_c0_guest_status(cop0
, ST0_IE
);
1558 u32 css
= cop0
->reg
[MIPS_CP0_STATUS
][2] & 0xf;
1560 (cop0
->reg
[MIPS_CP0_STATUS
][2] >> 6) & 0xf;
1562 * We don't support any shadow register sets, so
1563 * SRSCtl[PSS] == SRSCtl[CSS] = 0
1569 kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss
, rd
,
1570 vcpu
->arch
.gprs
[rt
]);
1571 vcpu
->arch
.gprs
[rd
] = vcpu
->arch
.gprs
[rt
];
1575 kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1576 vcpu
->arch
.pc
, inst
.c0r_format
.rs
);
1583 /* Rollback PC only if emulation was unsuccessful */
1584 if (er
== EMULATE_FAIL
)
1585 vcpu
->arch
.pc
= curr_pc
;
1589 * This is for special instructions whose emulation
1590 * updates the PC, so do not overwrite the PC under
1597 enum emulation_result
kvm_mips_emulate_store(union mips_instruction inst
,
1599 struct kvm_vcpu
*vcpu
)
1602 enum emulation_result er
;
1604 struct kvm_run
*run
= vcpu
->run
;
1605 void *data
= run
->mmio
.data
;
1607 unsigned long curr_pc
;
1610 * Update PC and hold onto current PC in case there is
1611 * an error and we want to rollback the PC
1613 curr_pc
= vcpu
->arch
.pc
;
1614 er
= update_pc(vcpu
, cause
);
1615 if (er
== EMULATE_FAIL
)
1618 rt
= inst
.i_format
.rt
;
1620 run
->mmio
.phys_addr
= kvm_mips_callbacks
->gva_to_gpa(
1621 vcpu
->arch
.host_cp0_badvaddr
);
1622 if (run
->mmio
.phys_addr
== KVM_INVALID_ADDR
)
1625 switch (inst
.i_format
.opcode
) {
1626 #if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
1629 *(u64
*)data
= vcpu
->arch
.gprs
[rt
];
1631 kvm_debug("[%#lx] OP_SD: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
1632 vcpu
->arch
.pc
, vcpu
->arch
.host_cp0_badvaddr
,
1633 vcpu
->arch
.gprs
[rt
], *(u64
*)data
);
1639 *(u32
*)data
= vcpu
->arch
.gprs
[rt
];
1641 kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1642 vcpu
->arch
.pc
, vcpu
->arch
.host_cp0_badvaddr
,
1643 vcpu
->arch
.gprs
[rt
], *(u32
*)data
);
1648 *(u16
*)data
= vcpu
->arch
.gprs
[rt
];
1650 kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1651 vcpu
->arch
.pc
, vcpu
->arch
.host_cp0_badvaddr
,
1652 vcpu
->arch
.gprs
[rt
], *(u16
*)data
);
1657 *(u8
*)data
= vcpu
->arch
.gprs
[rt
];
1659 kvm_debug("[%#lx] OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1660 vcpu
->arch
.pc
, vcpu
->arch
.host_cp0_badvaddr
,
1661 vcpu
->arch
.gprs
[rt
], *(u8
*)data
);
1665 run
->mmio
.phys_addr
= kvm_mips_callbacks
->gva_to_gpa(
1666 vcpu
->arch
.host_cp0_badvaddr
) & (~0x3);
1668 imme
= vcpu
->arch
.host_cp0_badvaddr
& 0x3;
1671 *(u32
*)data
= ((*(u32
*)data
) & 0xffffff00) |
1672 (vcpu
->arch
.gprs
[rt
] >> 24);
1675 *(u32
*)data
= ((*(u32
*)data
) & 0xffff0000) |
1676 (vcpu
->arch
.gprs
[rt
] >> 16);
1679 *(u32
*)data
= ((*(u32
*)data
) & 0xff000000) |
1680 (vcpu
->arch
.gprs
[rt
] >> 8);
1683 *(u32
*)data
= vcpu
->arch
.gprs
[rt
];
1689 kvm_debug("[%#lx] OP_SWL: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1690 vcpu
->arch
.pc
, vcpu
->arch
.host_cp0_badvaddr
,
1691 vcpu
->arch
.gprs
[rt
], *(u32
*)data
);
1695 run
->mmio
.phys_addr
= kvm_mips_callbacks
->gva_to_gpa(
1696 vcpu
->arch
.host_cp0_badvaddr
) & (~0x3);
1698 imme
= vcpu
->arch
.host_cp0_badvaddr
& 0x3;
1701 *(u32
*)data
= vcpu
->arch
.gprs
[rt
];
1704 *(u32
*)data
= ((*(u32
*)data
) & 0xff) |
1705 (vcpu
->arch
.gprs
[rt
] << 8);
1708 *(u32
*)data
= ((*(u32
*)data
) & 0xffff) |
1709 (vcpu
->arch
.gprs
[rt
] << 16);
1712 *(u32
*)data
= ((*(u32
*)data
) & 0xffffff) |
1713 (vcpu
->arch
.gprs
[rt
] << 24);
1719 kvm_debug("[%#lx] OP_SWR: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1720 vcpu
->arch
.pc
, vcpu
->arch
.host_cp0_badvaddr
,
1721 vcpu
->arch
.gprs
[rt
], *(u32
*)data
);
1724 #if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
1726 run
->mmio
.phys_addr
= kvm_mips_callbacks
->gva_to_gpa(
1727 vcpu
->arch
.host_cp0_badvaddr
) & (~0x7);
1730 imme
= vcpu
->arch
.host_cp0_badvaddr
& 0x7;
1733 *(u64
*)data
= ((*(u64
*)data
) & 0xffffffffffffff00) |
1734 ((vcpu
->arch
.gprs
[rt
] >> 56) & 0xff);
1737 *(u64
*)data
= ((*(u64
*)data
) & 0xffffffffffff0000) |
1738 ((vcpu
->arch
.gprs
[rt
] >> 48) & 0xffff);
1741 *(u64
*)data
= ((*(u64
*)data
) & 0xffffffffff000000) |
1742 ((vcpu
->arch
.gprs
[rt
] >> 40) & 0xffffff);
1745 *(u64
*)data
= ((*(u64
*)data
) & 0xffffffff00000000) |
1746 ((vcpu
->arch
.gprs
[rt
] >> 32) & 0xffffffff);
1749 *(u64
*)data
= ((*(u64
*)data
) & 0xffffff0000000000) |
1750 ((vcpu
->arch
.gprs
[rt
] >> 24) & 0xffffffffff);
1753 *(u64
*)data
= ((*(u64
*)data
) & 0xffff000000000000) |
1754 ((vcpu
->arch
.gprs
[rt
] >> 16) & 0xffffffffffff);
1757 *(u64
*)data
= ((*(u64
*)data
) & 0xff00000000000000) |
1758 ((vcpu
->arch
.gprs
[rt
] >> 8) & 0xffffffffffffff);
1761 *(u64
*)data
= vcpu
->arch
.gprs
[rt
];
1767 kvm_debug("[%#lx] OP_SDL: eaddr: %#lx, gpr: %#lx, data: %llx\n",
1768 vcpu
->arch
.pc
, vcpu
->arch
.host_cp0_badvaddr
,
1769 vcpu
->arch
.gprs
[rt
], *(u64
*)data
);
1773 run
->mmio
.phys_addr
= kvm_mips_callbacks
->gva_to_gpa(
1774 vcpu
->arch
.host_cp0_badvaddr
) & (~0x7);
1777 imme
= vcpu
->arch
.host_cp0_badvaddr
& 0x7;
1780 *(u64
*)data
= vcpu
->arch
.gprs
[rt
];
1783 *(u64
*)data
= ((*(u64
*)data
) & 0xff) |
1784 (vcpu
->arch
.gprs
[rt
] << 8);
1787 *(u64
*)data
= ((*(u64
*)data
) & 0xffff) |
1788 (vcpu
->arch
.gprs
[rt
] << 16);
1791 *(u64
*)data
= ((*(u64
*)data
) & 0xffffff) |
1792 (vcpu
->arch
.gprs
[rt
] << 24);
1795 *(u64
*)data
= ((*(u64
*)data
) & 0xffffffff) |
1796 (vcpu
->arch
.gprs
[rt
] << 32);
1799 *(u64
*)data
= ((*(u64
*)data
) & 0xffffffffff) |
1800 (vcpu
->arch
.gprs
[rt
] << 40);
1803 *(u64
*)data
= ((*(u64
*)data
) & 0xffffffffffff) |
1804 (vcpu
->arch
.gprs
[rt
] << 48);
1807 *(u64
*)data
= ((*(u64
*)data
) & 0xffffffffffffff) |
1808 (vcpu
->arch
.gprs
[rt
] << 56);
1814 kvm_debug("[%#lx] OP_SDR: eaddr: %#lx, gpr: %#lx, data: %llx\n",
1815 vcpu
->arch
.pc
, vcpu
->arch
.host_cp0_badvaddr
,
1816 vcpu
->arch
.gprs
[rt
], *(u64
*)data
);
1820 #ifdef CONFIG_CPU_LOONGSON64
1822 rt
= inst
.loongson3_lsdc2_format
.rt
;
1823 switch (inst
.loongson3_lsdc2_format
.opcode1
) {
1825 * Loongson-3 overridden sdc2 instructions.
1826 * opcode1 instruction
1827 * 0x0 gssbx: store 1 bytes from GPR
1828 * 0x1 gsshx: store 2 bytes from GPR
1829 * 0x2 gsswx: store 4 bytes from GPR
1830 * 0x3 gssdx: store 8 bytes from GPR
1834 *(u8
*)data
= vcpu
->arch
.gprs
[rt
];
1836 kvm_debug("[%#lx] OP_GSSBX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1837 vcpu
->arch
.pc
, vcpu
->arch
.host_cp0_badvaddr
,
1838 vcpu
->arch
.gprs
[rt
], *(u8
*)data
);
1842 *(u16
*)data
= vcpu
->arch
.gprs
[rt
];
1844 kvm_debug("[%#lx] OP_GSSSHX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1845 vcpu
->arch
.pc
, vcpu
->arch
.host_cp0_badvaddr
,
1846 vcpu
->arch
.gprs
[rt
], *(u16
*)data
);
1850 *(u32
*)data
= vcpu
->arch
.gprs
[rt
];
1852 kvm_debug("[%#lx] OP_GSSWX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1853 vcpu
->arch
.pc
, vcpu
->arch
.host_cp0_badvaddr
,
1854 vcpu
->arch
.gprs
[rt
], *(u32
*)data
);
1858 *(u64
*)data
= vcpu
->arch
.gprs
[rt
];
1860 kvm_debug("[%#lx] OP_GSSDX: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
1861 vcpu
->arch
.pc
, vcpu
->arch
.host_cp0_badvaddr
,
1862 vcpu
->arch
.gprs
[rt
], *(u64
*)data
);
1865 kvm_err("Godson Extended GS-Store not yet supported (inst=0x%08x)\n",
1872 kvm_err("Store not yet supported (inst=0x%08x)\n",
1877 vcpu
->mmio_needed
= 1;
1878 run
->mmio
.is_write
= 1;
1879 vcpu
->mmio_is_write
= 1;
1881 r
= kvm_io_bus_write(vcpu
, KVM_MMIO_BUS
,
1882 run
->mmio
.phys_addr
, run
->mmio
.len
, data
);
1885 vcpu
->mmio_needed
= 0;
1886 return EMULATE_DONE
;
1889 return EMULATE_DO_MMIO
;
1892 /* Rollback PC if emulation was unsuccessful */
1893 vcpu
->arch
.pc
= curr_pc
;
1894 return EMULATE_FAIL
;
1897 enum emulation_result
kvm_mips_emulate_load(union mips_instruction inst
,
1898 u32 cause
, struct kvm_vcpu
*vcpu
)
1900 struct kvm_run
*run
= vcpu
->run
;
1902 enum emulation_result er
;
1903 unsigned long curr_pc
;
1907 rt
= inst
.i_format
.rt
;
1908 op
= inst
.i_format
.opcode
;
1911 * Find the resume PC now while we have safe and easy access to the
1912 * prior branch instruction, and save it for
1913 * kvm_mips_complete_mmio_load() to restore later.
1915 curr_pc
= vcpu
->arch
.pc
;
1916 er
= update_pc(vcpu
, cause
);
1917 if (er
== EMULATE_FAIL
)
1919 vcpu
->arch
.io_pc
= vcpu
->arch
.pc
;
1920 vcpu
->arch
.pc
= curr_pc
;
1922 vcpu
->arch
.io_gpr
= rt
;
1924 run
->mmio
.phys_addr
= kvm_mips_callbacks
->gva_to_gpa(
1925 vcpu
->arch
.host_cp0_badvaddr
);
1926 if (run
->mmio
.phys_addr
== KVM_INVALID_ADDR
)
1927 return EMULATE_FAIL
;
1929 vcpu
->mmio_needed
= 2; /* signed */
1931 #if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
1937 vcpu
->mmio_needed
= 1; /* unsigned */
1945 vcpu
->mmio_needed
= 1; /* unsigned */
1952 vcpu
->mmio_needed
= 1; /* unsigned */
1959 run
->mmio
.phys_addr
= kvm_mips_callbacks
->gva_to_gpa(
1960 vcpu
->arch
.host_cp0_badvaddr
) & (~0x3);
1963 imme
= vcpu
->arch
.host_cp0_badvaddr
& 0x3;
1966 vcpu
->mmio_needed
= 3; /* 1 byte */
1969 vcpu
->mmio_needed
= 4; /* 2 bytes */
1972 vcpu
->mmio_needed
= 5; /* 3 bytes */
1975 vcpu
->mmio_needed
= 6; /* 4 bytes */
1983 run
->mmio
.phys_addr
= kvm_mips_callbacks
->gva_to_gpa(
1984 vcpu
->arch
.host_cp0_badvaddr
) & (~0x3);
1987 imme
= vcpu
->arch
.host_cp0_badvaddr
& 0x3;
1990 vcpu
->mmio_needed
= 7; /* 4 bytes */
1993 vcpu
->mmio_needed
= 8; /* 3 bytes */
1996 vcpu
->mmio_needed
= 9; /* 2 bytes */
1999 vcpu
->mmio_needed
= 10; /* 1 byte */
2006 #if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
2008 run
->mmio
.phys_addr
= kvm_mips_callbacks
->gva_to_gpa(
2009 vcpu
->arch
.host_cp0_badvaddr
) & (~0x7);
2012 imme
= vcpu
->arch
.host_cp0_badvaddr
& 0x7;
2015 vcpu
->mmio_needed
= 11; /* 1 byte */
2018 vcpu
->mmio_needed
= 12; /* 2 bytes */
2021 vcpu
->mmio_needed
= 13; /* 3 bytes */
2024 vcpu
->mmio_needed
= 14; /* 4 bytes */
2027 vcpu
->mmio_needed
= 15; /* 5 bytes */
2030 vcpu
->mmio_needed
= 16; /* 6 bytes */
2033 vcpu
->mmio_needed
= 17; /* 7 bytes */
2036 vcpu
->mmio_needed
= 18; /* 8 bytes */
2044 run
->mmio
.phys_addr
= kvm_mips_callbacks
->gva_to_gpa(
2045 vcpu
->arch
.host_cp0_badvaddr
) & (~0x7);
2048 imme
= vcpu
->arch
.host_cp0_badvaddr
& 0x7;
2051 vcpu
->mmio_needed
= 19; /* 8 bytes */
2054 vcpu
->mmio_needed
= 20; /* 7 bytes */
2057 vcpu
->mmio_needed
= 21; /* 6 bytes */
2060 vcpu
->mmio_needed
= 22; /* 5 bytes */
2063 vcpu
->mmio_needed
= 23; /* 4 bytes */
2066 vcpu
->mmio_needed
= 24; /* 3 bytes */
2069 vcpu
->mmio_needed
= 25; /* 2 bytes */
2072 vcpu
->mmio_needed
= 26; /* 1 byte */
2080 #ifdef CONFIG_CPU_LOONGSON64
2082 rt
= inst
.loongson3_lsdc2_format
.rt
;
2083 switch (inst
.loongson3_lsdc2_format
.opcode1
) {
2085 * Loongson-3 overridden ldc2 instructions.
2086 * opcode1 instruction
2087 * 0x0 gslbx: store 1 bytes from GPR
2088 * 0x1 gslhx: store 2 bytes from GPR
2089 * 0x2 gslwx: store 4 bytes from GPR
2090 * 0x3 gsldx: store 8 bytes from GPR
2094 vcpu
->mmio_needed
= 27; /* signed */
2098 vcpu
->mmio_needed
= 28; /* signed */
2102 vcpu
->mmio_needed
= 29; /* signed */
2106 vcpu
->mmio_needed
= 30; /* signed */
2109 kvm_err("Godson Extended GS-Load for float not yet supported (inst=0x%08x)\n",
2117 kvm_err("Load not yet supported (inst=0x%08x)\n",
2119 vcpu
->mmio_needed
= 0;
2120 return EMULATE_FAIL
;
2123 run
->mmio
.is_write
= 0;
2124 vcpu
->mmio_is_write
= 0;
2126 r
= kvm_io_bus_read(vcpu
, KVM_MMIO_BUS
,
2127 run
->mmio
.phys_addr
, run
->mmio
.len
, run
->mmio
.data
);
2130 kvm_mips_complete_mmio_load(vcpu
);
2131 vcpu
->mmio_needed
= 0;
2132 return EMULATE_DONE
;
2135 return EMULATE_DO_MMIO
;
2138 #ifndef CONFIG_KVM_MIPS_VZ
2139 static enum emulation_result
kvm_mips_guest_cache_op(int (*fn
)(unsigned long),
2140 unsigned long curr_pc
,
2142 struct kvm_vcpu
*vcpu
,
2148 /* Carefully attempt the cache operation */
2149 kvm_trap_emul_gva_lockless_begin(vcpu
);
2151 kvm_trap_emul_gva_lockless_end(vcpu
);
2154 return EMULATE_DONE
;
2157 * Try to handle the fault and retry, maybe we just raced with a
2160 switch (kvm_trap_emul_gva_fault(vcpu
, addr
, false)) {
2163 /* bad virtual or physical address */
2164 return EMULATE_FAIL
;
2166 /* no matching guest TLB */
2167 vcpu
->arch
.host_cp0_badvaddr
= addr
;
2168 vcpu
->arch
.pc
= curr_pc
;
2169 kvm_mips_emulate_tlbmiss_ld(cause
, NULL
, vcpu
);
2170 return EMULATE_EXCEPT
;
2171 case KVM_MIPS_TLBINV
:
2172 /* invalid matching guest TLB */
2173 vcpu
->arch
.host_cp0_badvaddr
= addr
;
2174 vcpu
->arch
.pc
= curr_pc
;
2175 kvm_mips_emulate_tlbinv_ld(cause
, NULL
, vcpu
);
2176 return EMULATE_EXCEPT
;
2183 enum emulation_result
kvm_mips_emulate_cache(union mips_instruction inst
,
2184 u32
*opc
, u32 cause
,
2185 struct kvm_vcpu
*vcpu
)
2187 enum emulation_result er
= EMULATE_DONE
;
2188 u32 cache
, op_inst
, op
, base
;
2190 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
2192 unsigned long curr_pc
;
2195 * Update PC and hold onto current PC in case there is
2196 * an error and we want to rollback the PC
2198 curr_pc
= vcpu
->arch
.pc
;
2199 er
= update_pc(vcpu
, cause
);
2200 if (er
== EMULATE_FAIL
)
2203 base
= inst
.i_format
.rs
;
2204 op_inst
= inst
.i_format
.rt
;
2205 if (cpu_has_mips_r6
)
2206 offset
= inst
.spec3_format
.simmediate
;
2208 offset
= inst
.i_format
.simmediate
;
2209 cache
= op_inst
& CacheOp_Cache
;
2210 op
= op_inst
& CacheOp_Op
;
2212 va
= arch
->gprs
[base
] + offset
;
2214 kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
2215 cache
, op
, base
, arch
->gprs
[base
], offset
);
2218 * Treat INDEX_INV as a nop, basically issued by Linux on startup to
2219 * invalidate the caches entirely by stepping through all the
2222 if (op
== Index_Writeback_Inv
) {
2223 kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
2224 vcpu
->arch
.pc
, vcpu
->arch
.gprs
[31], cache
, op
, base
,
2225 arch
->gprs
[base
], offset
);
2227 if (cache
== Cache_D
) {
2228 #ifdef CONFIG_CPU_R4K_CACHE_TLB
2231 switch (boot_cpu_type()) {
2232 case CPU_CAVIUM_OCTEON3
:
2233 /* locally flush icache */
2234 local_flush_icache_range(0, 0);
2237 __flush_cache_all();
2241 } else if (cache
== Cache_I
) {
2242 #ifdef CONFIG_CPU_R4K_CACHE_TLB
2245 switch (boot_cpu_type()) {
2246 case CPU_CAVIUM_OCTEON3
:
2247 /* locally flush icache */
2248 local_flush_icache_range(0, 0);
2256 kvm_err("%s: unsupported CACHE INDEX operation\n",
2258 return EMULATE_FAIL
;
2261 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
2262 kvm_mips_trans_cache_index(inst
, opc
, vcpu
);
2267 /* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
2268 if (op_inst
== Hit_Writeback_Inv_D
|| op_inst
== Hit_Invalidate_D
) {
2270 * Perform the dcache part of icache synchronisation on the
2273 er
= kvm_mips_guest_cache_op(protected_writeback_dcache_line
,
2274 curr_pc
, va
, vcpu
, cause
);
2275 if (er
!= EMULATE_DONE
)
2277 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
2279 * Replace the CACHE instruction, with a SYNCI, not the same,
2282 kvm_mips_trans_cache_va(inst
, opc
, vcpu
);
2284 } else if (op_inst
== Hit_Invalidate_I
) {
2285 /* Perform the icache synchronisation on the guest's behalf */
2286 er
= kvm_mips_guest_cache_op(protected_writeback_dcache_line
,
2287 curr_pc
, va
, vcpu
, cause
);
2288 if (er
!= EMULATE_DONE
)
2290 er
= kvm_mips_guest_cache_op(protected_flush_icache_line
,
2291 curr_pc
, va
, vcpu
, cause
);
2292 if (er
!= EMULATE_DONE
)
2295 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
2296 /* Replace the CACHE instruction, with a SYNCI */
2297 kvm_mips_trans_cache_va(inst
, opc
, vcpu
);
2300 kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
2301 cache
, op
, base
, arch
->gprs
[base
], offset
);
2306 /* Rollback PC only if emulation was unsuccessful */
2307 if (er
== EMULATE_FAIL
)
2308 vcpu
->arch
.pc
= curr_pc
;
2309 /* Guest exception needs guest to resume */
2310 if (er
== EMULATE_EXCEPT
)
2316 enum emulation_result
kvm_mips_emulate_inst(u32 cause
, u32
*opc
,
2317 struct kvm_vcpu
*vcpu
)
2319 union mips_instruction inst
;
2320 enum emulation_result er
= EMULATE_DONE
;
2323 /* Fetch the instruction. */
2324 if (cause
& CAUSEF_BD
)
2326 err
= kvm_get_badinstr(opc
, vcpu
, &inst
.word
);
2328 return EMULATE_FAIL
;
2330 switch (inst
.r_format
.opcode
) {
2332 er
= kvm_mips_emulate_CP0(inst
, opc
, cause
, vcpu
);
2335 #ifndef CONFIG_CPU_MIPSR6
2337 ++vcpu
->stat
.cache_exits
;
2338 trace_kvm_exit(vcpu
, KVM_TRACE_EXIT_CACHE
);
2339 er
= kvm_mips_emulate_cache(inst
, opc
, cause
, vcpu
);
2343 switch (inst
.spec3_format
.func
) {
2345 ++vcpu
->stat
.cache_exits
;
2346 trace_kvm_exit(vcpu
, KVM_TRACE_EXIT_CACHE
);
2347 er
= kvm_mips_emulate_cache(inst
, opc
, cause
,
2358 kvm_err("Instruction emulation not supported (%p/%#x)\n", opc
,
2360 kvm_arch_vcpu_dump_regs(vcpu
);
2367 #endif /* CONFIG_KVM_MIPS_VZ */
2370 * kvm_mips_guest_exception_base() - Find guest exception vector base address.
2372 * Returns: The base address of the current guest exception vector, taking
2373 * both Guest.CP0_Status.BEV and Guest.CP0_EBase into account.
2375 long kvm_mips_guest_exception_base(struct kvm_vcpu
*vcpu
)
2377 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
2379 if (kvm_read_c0_guest_status(cop0
) & ST0_BEV
)
2380 return KVM_GUEST_CKSEG1ADDR(0x1fc00200);
2382 return kvm_read_c0_guest_ebase(cop0
) & MIPS_EBASE_BASE
;
2385 enum emulation_result
kvm_mips_emulate_syscall(u32 cause
,
2387 struct kvm_vcpu
*vcpu
)
2389 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
2390 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
2391 enum emulation_result er
= EMULATE_DONE
;
2393 if ((kvm_read_c0_guest_status(cop0
) & ST0_EXL
) == 0) {
2395 kvm_write_c0_guest_epc(cop0
, arch
->pc
);
2396 kvm_set_c0_guest_status(cop0
, ST0_EXL
);
2398 if (cause
& CAUSEF_BD
)
2399 kvm_set_c0_guest_cause(cop0
, CAUSEF_BD
);
2401 kvm_clear_c0_guest_cause(cop0
, CAUSEF_BD
);
2403 kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch
->pc
);
2405 kvm_change_c0_guest_cause(cop0
, (0xff),
2406 (EXCCODE_SYS
<< CAUSEB_EXCCODE
));
2408 /* Set PC to the exception entry point */
2409 arch
->pc
= kvm_mips_guest_exception_base(vcpu
) + 0x180;
2412 kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
2419 enum emulation_result
kvm_mips_emulate_tlbmiss_ld(u32 cause
,
2421 struct kvm_vcpu
*vcpu
)
2423 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
2424 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
2425 unsigned long entryhi
= (vcpu
->arch
. host_cp0_badvaddr
& VPN2_MASK
) |
2426 (kvm_read_c0_guest_entryhi(cop0
) & KVM_ENTRYHI_ASID
);
2428 if ((kvm_read_c0_guest_status(cop0
) & ST0_EXL
) == 0) {
2430 kvm_write_c0_guest_epc(cop0
, arch
->pc
);
2431 kvm_set_c0_guest_status(cop0
, ST0_EXL
);
2433 if (cause
& CAUSEF_BD
)
2434 kvm_set_c0_guest_cause(cop0
, CAUSEF_BD
);
2436 kvm_clear_c0_guest_cause(cop0
, CAUSEF_BD
);
2438 kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
2441 /* set pc to the exception entry point */
2442 arch
->pc
= kvm_mips_guest_exception_base(vcpu
) + 0x0;
2445 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
2448 arch
->pc
= kvm_mips_guest_exception_base(vcpu
) + 0x180;
2451 kvm_change_c0_guest_cause(cop0
, (0xff),
2452 (EXCCODE_TLBL
<< CAUSEB_EXCCODE
));
2454 /* setup badvaddr, context and entryhi registers for the guest */
2455 kvm_write_c0_guest_badvaddr(cop0
, vcpu
->arch
.host_cp0_badvaddr
);
2456 /* XXXKYMA: is the context register used by linux??? */
2457 kvm_write_c0_guest_entryhi(cop0
, entryhi
);
2459 return EMULATE_DONE
;
2462 enum emulation_result
kvm_mips_emulate_tlbinv_ld(u32 cause
,
2464 struct kvm_vcpu
*vcpu
)
2466 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
2467 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
2468 unsigned long entryhi
=
2469 (vcpu
->arch
.host_cp0_badvaddr
& VPN2_MASK
) |
2470 (kvm_read_c0_guest_entryhi(cop0
) & KVM_ENTRYHI_ASID
);
2472 if ((kvm_read_c0_guest_status(cop0
) & ST0_EXL
) == 0) {
2474 kvm_write_c0_guest_epc(cop0
, arch
->pc
);
2475 kvm_set_c0_guest_status(cop0
, ST0_EXL
);
2477 if (cause
& CAUSEF_BD
)
2478 kvm_set_c0_guest_cause(cop0
, CAUSEF_BD
);
2480 kvm_clear_c0_guest_cause(cop0
, CAUSEF_BD
);
2482 kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
2485 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
2489 /* set pc to the exception entry point */
2490 arch
->pc
= kvm_mips_guest_exception_base(vcpu
) + 0x180;
2492 kvm_change_c0_guest_cause(cop0
, (0xff),
2493 (EXCCODE_TLBL
<< CAUSEB_EXCCODE
));
2495 /* setup badvaddr, context and entryhi registers for the guest */
2496 kvm_write_c0_guest_badvaddr(cop0
, vcpu
->arch
.host_cp0_badvaddr
);
2497 /* XXXKYMA: is the context register used by linux??? */
2498 kvm_write_c0_guest_entryhi(cop0
, entryhi
);
2500 return EMULATE_DONE
;
2503 enum emulation_result
kvm_mips_emulate_tlbmiss_st(u32 cause
,
2505 struct kvm_vcpu
*vcpu
)
2507 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
2508 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
2509 unsigned long entryhi
= (vcpu
->arch
.host_cp0_badvaddr
& VPN2_MASK
) |
2510 (kvm_read_c0_guest_entryhi(cop0
) & KVM_ENTRYHI_ASID
);
2512 if ((kvm_read_c0_guest_status(cop0
) & ST0_EXL
) == 0) {
2514 kvm_write_c0_guest_epc(cop0
, arch
->pc
);
2515 kvm_set_c0_guest_status(cop0
, ST0_EXL
);
2517 if (cause
& CAUSEF_BD
)
2518 kvm_set_c0_guest_cause(cop0
, CAUSEF_BD
);
2520 kvm_clear_c0_guest_cause(cop0
, CAUSEF_BD
);
2522 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2525 /* Set PC to the exception entry point */
2526 arch
->pc
= kvm_mips_guest_exception_base(vcpu
) + 0x0;
2528 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2530 arch
->pc
= kvm_mips_guest_exception_base(vcpu
) + 0x180;
2533 kvm_change_c0_guest_cause(cop0
, (0xff),
2534 (EXCCODE_TLBS
<< CAUSEB_EXCCODE
));
2536 /* setup badvaddr, context and entryhi registers for the guest */
2537 kvm_write_c0_guest_badvaddr(cop0
, vcpu
->arch
.host_cp0_badvaddr
);
2538 /* XXXKYMA: is the context register used by linux??? */
2539 kvm_write_c0_guest_entryhi(cop0
, entryhi
);
2541 return EMULATE_DONE
;
2544 enum emulation_result
kvm_mips_emulate_tlbinv_st(u32 cause
,
2546 struct kvm_vcpu
*vcpu
)
2548 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
2549 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
2550 unsigned long entryhi
= (vcpu
->arch
.host_cp0_badvaddr
& VPN2_MASK
) |
2551 (kvm_read_c0_guest_entryhi(cop0
) & KVM_ENTRYHI_ASID
);
2553 if ((kvm_read_c0_guest_status(cop0
) & ST0_EXL
) == 0) {
2555 kvm_write_c0_guest_epc(cop0
, arch
->pc
);
2556 kvm_set_c0_guest_status(cop0
, ST0_EXL
);
2558 if (cause
& CAUSEF_BD
)
2559 kvm_set_c0_guest_cause(cop0
, CAUSEF_BD
);
2561 kvm_clear_c0_guest_cause(cop0
, CAUSEF_BD
);
2563 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2566 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2570 /* Set PC to the exception entry point */
2571 arch
->pc
= kvm_mips_guest_exception_base(vcpu
) + 0x180;
2573 kvm_change_c0_guest_cause(cop0
, (0xff),
2574 (EXCCODE_TLBS
<< CAUSEB_EXCCODE
));
2576 /* setup badvaddr, context and entryhi registers for the guest */
2577 kvm_write_c0_guest_badvaddr(cop0
, vcpu
->arch
.host_cp0_badvaddr
);
2578 /* XXXKYMA: is the context register used by linux??? */
2579 kvm_write_c0_guest_entryhi(cop0
, entryhi
);
2581 return EMULATE_DONE
;
2584 enum emulation_result
kvm_mips_emulate_tlbmod(u32 cause
,
2586 struct kvm_vcpu
*vcpu
)
2588 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
2589 unsigned long entryhi
= (vcpu
->arch
.host_cp0_badvaddr
& VPN2_MASK
) |
2590 (kvm_read_c0_guest_entryhi(cop0
) & KVM_ENTRYHI_ASID
);
2591 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
2593 if ((kvm_read_c0_guest_status(cop0
) & ST0_EXL
) == 0) {
2595 kvm_write_c0_guest_epc(cop0
, arch
->pc
);
2596 kvm_set_c0_guest_status(cop0
, ST0_EXL
);
2598 if (cause
& CAUSEF_BD
)
2599 kvm_set_c0_guest_cause(cop0
, CAUSEF_BD
);
2601 kvm_clear_c0_guest_cause(cop0
, CAUSEF_BD
);
2603 kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2606 kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2610 arch
->pc
= kvm_mips_guest_exception_base(vcpu
) + 0x180;
2612 kvm_change_c0_guest_cause(cop0
, (0xff),
2613 (EXCCODE_MOD
<< CAUSEB_EXCCODE
));
2615 /* setup badvaddr, context and entryhi registers for the guest */
2616 kvm_write_c0_guest_badvaddr(cop0
, vcpu
->arch
.host_cp0_badvaddr
);
2617 /* XXXKYMA: is the context register used by linux??? */
2618 kvm_write_c0_guest_entryhi(cop0
, entryhi
);
2620 return EMULATE_DONE
;
2623 enum emulation_result
kvm_mips_emulate_fpu_exc(u32 cause
,
2625 struct kvm_vcpu
*vcpu
)
2627 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
2628 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
2630 if ((kvm_read_c0_guest_status(cop0
) & ST0_EXL
) == 0) {
2632 kvm_write_c0_guest_epc(cop0
, arch
->pc
);
2633 kvm_set_c0_guest_status(cop0
, ST0_EXL
);
2635 if (cause
& CAUSEF_BD
)
2636 kvm_set_c0_guest_cause(cop0
, CAUSEF_BD
);
2638 kvm_clear_c0_guest_cause(cop0
, CAUSEF_BD
);
2642 arch
->pc
= kvm_mips_guest_exception_base(vcpu
) + 0x180;
2644 kvm_change_c0_guest_cause(cop0
, (0xff),
2645 (EXCCODE_CPU
<< CAUSEB_EXCCODE
));
2646 kvm_change_c0_guest_cause(cop0
, (CAUSEF_CE
), (0x1 << CAUSEB_CE
));
2648 return EMULATE_DONE
;
2651 enum emulation_result
kvm_mips_emulate_ri_exc(u32 cause
,
2653 struct kvm_vcpu
*vcpu
)
2655 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
2656 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
2657 enum emulation_result er
= EMULATE_DONE
;
2659 if ((kvm_read_c0_guest_status(cop0
) & ST0_EXL
) == 0) {
2661 kvm_write_c0_guest_epc(cop0
, arch
->pc
);
2662 kvm_set_c0_guest_status(cop0
, ST0_EXL
);
2664 if (cause
& CAUSEF_BD
)
2665 kvm_set_c0_guest_cause(cop0
, CAUSEF_BD
);
2667 kvm_clear_c0_guest_cause(cop0
, CAUSEF_BD
);
2669 kvm_debug("Delivering RI @ pc %#lx\n", arch
->pc
);
2671 kvm_change_c0_guest_cause(cop0
, (0xff),
2672 (EXCCODE_RI
<< CAUSEB_EXCCODE
));
2674 /* Set PC to the exception entry point */
2675 arch
->pc
= kvm_mips_guest_exception_base(vcpu
) + 0x180;
2678 kvm_err("Trying to deliver RI when EXL is already set\n");
2685 enum emulation_result
kvm_mips_emulate_bp_exc(u32 cause
,
2687 struct kvm_vcpu
*vcpu
)
2689 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
2690 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
2691 enum emulation_result er
= EMULATE_DONE
;
2693 if ((kvm_read_c0_guest_status(cop0
) & ST0_EXL
) == 0) {
2695 kvm_write_c0_guest_epc(cop0
, arch
->pc
);
2696 kvm_set_c0_guest_status(cop0
, ST0_EXL
);
2698 if (cause
& CAUSEF_BD
)
2699 kvm_set_c0_guest_cause(cop0
, CAUSEF_BD
);
2701 kvm_clear_c0_guest_cause(cop0
, CAUSEF_BD
);
2703 kvm_debug("Delivering BP @ pc %#lx\n", arch
->pc
);
2705 kvm_change_c0_guest_cause(cop0
, (0xff),
2706 (EXCCODE_BP
<< CAUSEB_EXCCODE
));
2708 /* Set PC to the exception entry point */
2709 arch
->pc
= kvm_mips_guest_exception_base(vcpu
) + 0x180;
2712 kvm_err("Trying to deliver BP when EXL is already set\n");
2719 enum emulation_result
kvm_mips_emulate_trap_exc(u32 cause
,
2721 struct kvm_vcpu
*vcpu
)
2723 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
2724 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
2725 enum emulation_result er
= EMULATE_DONE
;
2727 if ((kvm_read_c0_guest_status(cop0
) & ST0_EXL
) == 0) {
2729 kvm_write_c0_guest_epc(cop0
, arch
->pc
);
2730 kvm_set_c0_guest_status(cop0
, ST0_EXL
);
2732 if (cause
& CAUSEF_BD
)
2733 kvm_set_c0_guest_cause(cop0
, CAUSEF_BD
);
2735 kvm_clear_c0_guest_cause(cop0
, CAUSEF_BD
);
2737 kvm_debug("Delivering TRAP @ pc %#lx\n", arch
->pc
);
2739 kvm_change_c0_guest_cause(cop0
, (0xff),
2740 (EXCCODE_TR
<< CAUSEB_EXCCODE
));
2742 /* Set PC to the exception entry point */
2743 arch
->pc
= kvm_mips_guest_exception_base(vcpu
) + 0x180;
2746 kvm_err("Trying to deliver TRAP when EXL is already set\n");
2753 enum emulation_result
kvm_mips_emulate_msafpe_exc(u32 cause
,
2755 struct kvm_vcpu
*vcpu
)
2757 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
2758 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
2759 enum emulation_result er
= EMULATE_DONE
;
2761 if ((kvm_read_c0_guest_status(cop0
) & ST0_EXL
) == 0) {
2763 kvm_write_c0_guest_epc(cop0
, arch
->pc
);
2764 kvm_set_c0_guest_status(cop0
, ST0_EXL
);
2766 if (cause
& CAUSEF_BD
)
2767 kvm_set_c0_guest_cause(cop0
, CAUSEF_BD
);
2769 kvm_clear_c0_guest_cause(cop0
, CAUSEF_BD
);
2771 kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch
->pc
);
2773 kvm_change_c0_guest_cause(cop0
, (0xff),
2774 (EXCCODE_MSAFPE
<< CAUSEB_EXCCODE
));
2776 /* Set PC to the exception entry point */
2777 arch
->pc
= kvm_mips_guest_exception_base(vcpu
) + 0x180;
2780 kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2787 enum emulation_result
kvm_mips_emulate_fpe_exc(u32 cause
,
2789 struct kvm_vcpu
*vcpu
)
2791 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
2792 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
2793 enum emulation_result er
= EMULATE_DONE
;
2795 if ((kvm_read_c0_guest_status(cop0
) & ST0_EXL
) == 0) {
2797 kvm_write_c0_guest_epc(cop0
, arch
->pc
);
2798 kvm_set_c0_guest_status(cop0
, ST0_EXL
);
2800 if (cause
& CAUSEF_BD
)
2801 kvm_set_c0_guest_cause(cop0
, CAUSEF_BD
);
2803 kvm_clear_c0_guest_cause(cop0
, CAUSEF_BD
);
2805 kvm_debug("Delivering FPE @ pc %#lx\n", arch
->pc
);
2807 kvm_change_c0_guest_cause(cop0
, (0xff),
2808 (EXCCODE_FPE
<< CAUSEB_EXCCODE
));
2810 /* Set PC to the exception entry point */
2811 arch
->pc
= kvm_mips_guest_exception_base(vcpu
) + 0x180;
2814 kvm_err("Trying to deliver FPE when EXL is already set\n");
2821 enum emulation_result
kvm_mips_emulate_msadis_exc(u32 cause
,
2823 struct kvm_vcpu
*vcpu
)
2825 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
2826 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
2827 enum emulation_result er
= EMULATE_DONE
;
2829 if ((kvm_read_c0_guest_status(cop0
) & ST0_EXL
) == 0) {
2831 kvm_write_c0_guest_epc(cop0
, arch
->pc
);
2832 kvm_set_c0_guest_status(cop0
, ST0_EXL
);
2834 if (cause
& CAUSEF_BD
)
2835 kvm_set_c0_guest_cause(cop0
, CAUSEF_BD
);
2837 kvm_clear_c0_guest_cause(cop0
, CAUSEF_BD
);
2839 kvm_debug("Delivering MSADIS @ pc %#lx\n", arch
->pc
);
2841 kvm_change_c0_guest_cause(cop0
, (0xff),
2842 (EXCCODE_MSADIS
<< CAUSEB_EXCCODE
));
2844 /* Set PC to the exception entry point */
2845 arch
->pc
= kvm_mips_guest_exception_base(vcpu
) + 0x180;
2848 kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2855 enum emulation_result
kvm_mips_handle_ri(u32 cause
, u32
*opc
,
2856 struct kvm_vcpu
*vcpu
)
2858 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
2859 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
2860 enum emulation_result er
= EMULATE_DONE
;
2861 unsigned long curr_pc
;
2862 union mips_instruction inst
;
2866 * Update PC and hold onto current PC in case there is
2867 * an error and we want to rollback the PC
2869 curr_pc
= vcpu
->arch
.pc
;
2870 er
= update_pc(vcpu
, cause
);
2871 if (er
== EMULATE_FAIL
)
2874 /* Fetch the instruction. */
2875 if (cause
& CAUSEF_BD
)
2877 err
= kvm_get_badinstr(opc
, vcpu
, &inst
.word
);
2879 kvm_err("%s: Cannot get inst @ %p (%d)\n", __func__
, opc
, err
);
2880 return EMULATE_FAIL
;
2883 if (inst
.r_format
.opcode
== spec3_op
&&
2884 inst
.r_format
.func
== rdhwr_op
&&
2885 inst
.r_format
.rs
== 0 &&
2886 (inst
.r_format
.re
>> 3) == 0) {
2887 int usermode
= !KVM_GUEST_KERNEL_MODE(vcpu
);
2888 int rd
= inst
.r_format
.rd
;
2889 int rt
= inst
.r_format
.rt
;
2890 int sel
= inst
.r_format
.re
& 0x7;
2892 /* If usermode, check RDHWR rd is allowed by guest HWREna */
2893 if (usermode
&& !(kvm_read_c0_guest_hwrena(cop0
) & BIT(rd
))) {
2894 kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2899 case MIPS_HWR_CPUNUM
: /* CPU number */
2900 arch
->gprs
[rt
] = vcpu
->vcpu_id
;
2902 case MIPS_HWR_SYNCISTEP
: /* SYNCI length */
2903 arch
->gprs
[rt
] = min(current_cpu_data
.dcache
.linesz
,
2904 current_cpu_data
.icache
.linesz
);
2906 case MIPS_HWR_CC
: /* Read count register */
2907 arch
->gprs
[rt
] = (s32
)kvm_mips_read_count(vcpu
);
2909 case MIPS_HWR_CCRES
: /* Count register resolution */
2910 switch (current_cpu_data
.cputype
) {
2919 case MIPS_HWR_ULR
: /* Read UserLocal register */
2920 arch
->gprs
[rt
] = kvm_read_c0_guest_userlocal(cop0
);
2924 kvm_debug("RDHWR %#x not supported @ %p\n", rd
, opc
);
2928 trace_kvm_hwr(vcpu
, KVM_TRACE_RDHWR
, KVM_TRACE_HWR(rd
, sel
),
2929 vcpu
->arch
.gprs
[rt
]);
2931 kvm_debug("Emulate RI not supported @ %p: %#x\n",
2936 return EMULATE_DONE
;
2940 * Rollback PC (if in branch delay slot then the PC already points to
2941 * branch target), and pass the RI exception to the guest OS.
2943 vcpu
->arch
.pc
= curr_pc
;
2944 return kvm_mips_emulate_ri_exc(cause
, opc
, vcpu
);
2947 enum emulation_result
kvm_mips_complete_mmio_load(struct kvm_vcpu
*vcpu
)
2949 struct kvm_run
*run
= vcpu
->run
;
2950 unsigned long *gpr
= &vcpu
->arch
.gprs
[vcpu
->arch
.io_gpr
];
2951 enum emulation_result er
= EMULATE_DONE
;
2953 if (run
->mmio
.len
> sizeof(*gpr
)) {
2954 kvm_err("Bad MMIO length: %d", run
->mmio
.len
);
2959 /* Restore saved resume PC */
2960 vcpu
->arch
.pc
= vcpu
->arch
.io_pc
;
2962 switch (run
->mmio
.len
) {
2964 switch (vcpu
->mmio_needed
) {
2966 *gpr
= (vcpu
->arch
.gprs
[vcpu
->arch
.io_gpr
] & 0xffffffffffffff) |
2967 (((*(s64
*)run
->mmio
.data
) & 0xff) << 56);
2970 *gpr
= (vcpu
->arch
.gprs
[vcpu
->arch
.io_gpr
] & 0xffffffffffff) |
2971 (((*(s64
*)run
->mmio
.data
) & 0xffff) << 48);
2974 *gpr
= (vcpu
->arch
.gprs
[vcpu
->arch
.io_gpr
] & 0xffffffffff) |
2975 (((*(s64
*)run
->mmio
.data
) & 0xffffff) << 40);
2978 *gpr
= (vcpu
->arch
.gprs
[vcpu
->arch
.io_gpr
] & 0xffffffff) |
2979 (((*(s64
*)run
->mmio
.data
) & 0xffffffff) << 32);
2982 *gpr
= (vcpu
->arch
.gprs
[vcpu
->arch
.io_gpr
] & 0xffffff) |
2983 (((*(s64
*)run
->mmio
.data
) & 0xffffffffff) << 24);
2986 *gpr
= (vcpu
->arch
.gprs
[vcpu
->arch
.io_gpr
] & 0xffff) |
2987 (((*(s64
*)run
->mmio
.data
) & 0xffffffffffff) << 16);
2990 *gpr
= (vcpu
->arch
.gprs
[vcpu
->arch
.io_gpr
] & 0xff) |
2991 (((*(s64
*)run
->mmio
.data
) & 0xffffffffffffff) << 8);
2995 *gpr
= *(s64
*)run
->mmio
.data
;
2998 *gpr
= (vcpu
->arch
.gprs
[vcpu
->arch
.io_gpr
] & 0xff00000000000000) |
2999 ((((*(s64
*)run
->mmio
.data
)) >> 8) & 0xffffffffffffff);
3002 *gpr
= (vcpu
->arch
.gprs
[vcpu
->arch
.io_gpr
] & 0xffff000000000000) |
3003 ((((*(s64
*)run
->mmio
.data
)) >> 16) & 0xffffffffffff);
3006 *gpr
= (vcpu
->arch
.gprs
[vcpu
->arch
.io_gpr
] & 0xffffff0000000000) |
3007 ((((*(s64
*)run
->mmio
.data
)) >> 24) & 0xffffffffff);
3010 *gpr
= (vcpu
->arch
.gprs
[vcpu
->arch
.io_gpr
] & 0xffffffff00000000) |
3011 ((((*(s64
*)run
->mmio
.data
)) >> 32) & 0xffffffff);
3014 *gpr
= (vcpu
->arch
.gprs
[vcpu
->arch
.io_gpr
] & 0xffffffffff000000) |
3015 ((((*(s64
*)run
->mmio
.data
)) >> 40) & 0xffffff);
3018 *gpr
= (vcpu
->arch
.gprs
[vcpu
->arch
.io_gpr
] & 0xffffffffffff0000) |
3019 ((((*(s64
*)run
->mmio
.data
)) >> 48) & 0xffff);
3022 *gpr
= (vcpu
->arch
.gprs
[vcpu
->arch
.io_gpr
] & 0xffffffffffffff00) |
3023 ((((*(s64
*)run
->mmio
.data
)) >> 56) & 0xff);
3026 *gpr
= *(s64
*)run
->mmio
.data
;
3031 switch (vcpu
->mmio_needed
) {
3033 *gpr
= *(u32
*)run
->mmio
.data
;
3036 *gpr
= *(s32
*)run
->mmio
.data
;
3039 *gpr
= (vcpu
->arch
.gprs
[vcpu
->arch
.io_gpr
] & 0xffffff) |
3040 (((*(s32
*)run
->mmio
.data
) & 0xff) << 24);
3043 *gpr
= (vcpu
->arch
.gprs
[vcpu
->arch
.io_gpr
] & 0xffff) |
3044 (((*(s32
*)run
->mmio
.data
) & 0xffff) << 16);
3047 *gpr
= (vcpu
->arch
.gprs
[vcpu
->arch
.io_gpr
] & 0xff) |
3048 (((*(s32
*)run
->mmio
.data
) & 0xffffff) << 8);
3052 *gpr
= *(s32
*)run
->mmio
.data
;
3055 *gpr
= (vcpu
->arch
.gprs
[vcpu
->arch
.io_gpr
] & 0xff000000) |
3056 ((((*(s32
*)run
->mmio
.data
)) >> 8) & 0xffffff);
3059 *gpr
= (vcpu
->arch
.gprs
[vcpu
->arch
.io_gpr
] & 0xffff0000) |
3060 ((((*(s32
*)run
->mmio
.data
)) >> 16) & 0xffff);
3063 *gpr
= (vcpu
->arch
.gprs
[vcpu
->arch
.io_gpr
] & 0xffffff00) |
3064 ((((*(s32
*)run
->mmio
.data
)) >> 24) & 0xff);
3067 *gpr
= *(s32
*)run
->mmio
.data
;
3072 if (vcpu
->mmio_needed
== 1)
3073 *gpr
= *(u16
*)run
->mmio
.data
;
3075 *gpr
= *(s16
*)run
->mmio
.data
;
3079 if (vcpu
->mmio_needed
== 1)
3080 *gpr
= *(u8
*)run
->mmio
.data
;
3082 *gpr
= *(s8
*)run
->mmio
.data
;
3090 static enum emulation_result
kvm_mips_emulate_exc(u32 cause
,
3092 struct kvm_vcpu
*vcpu
)
3094 u32 exccode
= (cause
>> CAUSEB_EXCCODE
) & 0x1f;
3095 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
3096 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
3097 enum emulation_result er
= EMULATE_DONE
;
3099 if ((kvm_read_c0_guest_status(cop0
) & ST0_EXL
) == 0) {
3101 kvm_write_c0_guest_epc(cop0
, arch
->pc
);
3102 kvm_set_c0_guest_status(cop0
, ST0_EXL
);
3104 if (cause
& CAUSEF_BD
)
3105 kvm_set_c0_guest_cause(cop0
, CAUSEF_BD
);
3107 kvm_clear_c0_guest_cause(cop0
, CAUSEF_BD
);
3109 kvm_change_c0_guest_cause(cop0
, (0xff),
3110 (exccode
<< CAUSEB_EXCCODE
));
3112 /* Set PC to the exception entry point */
3113 arch
->pc
= kvm_mips_guest_exception_base(vcpu
) + 0x180;
3114 kvm_write_c0_guest_badvaddr(cop0
, vcpu
->arch
.host_cp0_badvaddr
);
3116 kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
3117 exccode
, kvm_read_c0_guest_epc(cop0
),
3118 kvm_read_c0_guest_badvaddr(cop0
));
3120 kvm_err("Trying to deliver EXC when EXL is already set\n");
3127 enum emulation_result
kvm_mips_check_privilege(u32 cause
,
3129 struct kvm_vcpu
*vcpu
)
3131 enum emulation_result er
= EMULATE_DONE
;
3132 u32 exccode
= (cause
>> CAUSEB_EXCCODE
) & 0x1f;
3133 unsigned long badvaddr
= vcpu
->arch
.host_cp0_badvaddr
;
3135 int usermode
= !KVM_GUEST_KERNEL_MODE(vcpu
);
3144 case EXCCODE_MSAFPE
:
3146 case EXCCODE_MSADIS
:
3150 if (((cause
& CAUSEF_CE
) >> CAUSEB_CE
) == 0)
3151 er
= EMULATE_PRIV_FAIL
;
3159 * We we are accessing Guest kernel space, then send an
3160 * address error exception to the guest
3162 if (badvaddr
>= (unsigned long) KVM_GUEST_KSEG0
) {
3163 kvm_debug("%s: LD MISS @ %#lx\n", __func__
,
3166 cause
|= (EXCCODE_ADEL
<< CAUSEB_EXCCODE
);
3167 er
= EMULATE_PRIV_FAIL
;
3173 * We we are accessing Guest kernel space, then send an
3174 * address error exception to the guest
3176 if (badvaddr
>= (unsigned long) KVM_GUEST_KSEG0
) {
3177 kvm_debug("%s: ST MISS @ %#lx\n", __func__
,
3180 cause
|= (EXCCODE_ADES
<< CAUSEB_EXCCODE
);
3181 er
= EMULATE_PRIV_FAIL
;
3186 kvm_debug("%s: address error ST @ %#lx\n", __func__
,
3188 if ((badvaddr
& PAGE_MASK
) == KVM_GUEST_COMMPAGE_ADDR
) {
3190 cause
|= (EXCCODE_TLBS
<< CAUSEB_EXCCODE
);
3192 er
= EMULATE_PRIV_FAIL
;
3195 kvm_debug("%s: address error LD @ %#lx\n", __func__
,
3197 if ((badvaddr
& PAGE_MASK
) == KVM_GUEST_COMMPAGE_ADDR
) {
3199 cause
|= (EXCCODE_TLBL
<< CAUSEB_EXCCODE
);
3201 er
= EMULATE_PRIV_FAIL
;
3204 er
= EMULATE_PRIV_FAIL
;
3209 if (er
== EMULATE_PRIV_FAIL
)
3210 kvm_mips_emulate_exc(cause
, opc
, vcpu
);
3216 * User Address (UA) fault, this could happen if
3217 * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
3218 * case we pass on the fault to the guest kernel and let it handle it.
3219 * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
3220 * case we inject the TLB from the Guest TLB into the shadow host TLB
3222 enum emulation_result
kvm_mips_handle_tlbmiss(u32 cause
,
3224 struct kvm_vcpu
*vcpu
,
3227 enum emulation_result er
= EMULATE_DONE
;
3228 u32 exccode
= (cause
>> CAUSEB_EXCCODE
) & 0x1f;
3229 unsigned long va
= vcpu
->arch
.host_cp0_badvaddr
;
3232 kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx\n",
3233 vcpu
->arch
.host_cp0_badvaddr
);
3236 * KVM would not have got the exception if this entry was valid in the
3237 * shadow host TLB. Check the Guest TLB, if the entry is not there then
3238 * send the guest an exception. The guest exc handler should then inject
3239 * an entry into the guest TLB.
3241 index
= kvm_mips_guest_tlb_lookup(vcpu
,
3243 (kvm_read_c0_guest_entryhi(vcpu
->arch
.cop0
) &
3246 if (exccode
== EXCCODE_TLBL
) {
3247 er
= kvm_mips_emulate_tlbmiss_ld(cause
, opc
, vcpu
);
3248 } else if (exccode
== EXCCODE_TLBS
) {
3249 er
= kvm_mips_emulate_tlbmiss_st(cause
, opc
, vcpu
);
3251 kvm_err("%s: invalid exc code: %d\n", __func__
,
3256 struct kvm_mips_tlb
*tlb
= &vcpu
->arch
.guest_tlb
[index
];
3259 * Check if the entry is valid, if not then setup a TLB invalid
3260 * exception to the guest
3262 if (!TLB_IS_VALID(*tlb
, va
)) {
3263 if (exccode
== EXCCODE_TLBL
) {
3264 er
= kvm_mips_emulate_tlbinv_ld(cause
, opc
,
3266 } else if (exccode
== EXCCODE_TLBS
) {
3267 er
= kvm_mips_emulate_tlbinv_st(cause
, opc
,
3270 kvm_err("%s: invalid exc code: %d\n", __func__
,
3275 kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
3276 tlb
->tlb_hi
, tlb
->tlb_lo
[0], tlb
->tlb_lo
[1]);
3278 * OK we have a Guest TLB entry, now inject it into the
3281 if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu
, tlb
, va
,
3283 kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n",
3284 __func__
, va
, index
, vcpu
,