2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * KVM/MIPS: MIPS specific KVM APIs
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sched/signal.h>
21 #include <linux/memblock.h>
22 #include <linux/pgtable.h>
26 #include <asm/cacheflush.h>
27 #include <asm/mmu_context.h>
28 #include <asm/pgalloc.h>
30 #include <linux/kvm_host.h>
32 #include "interrupt.h"
35 #define CREATE_TRACE_POINTS
39 #define VECTORSPACING 0x100 /* for EI/VI mode */
42 struct kvm_stats_debugfs_item debugfs_entries
[] = {
43 VCPU_STAT("wait", wait_exits
),
44 VCPU_STAT("cache", cache_exits
),
45 VCPU_STAT("signal", signal_exits
),
46 VCPU_STAT("interrupt", int_exits
),
47 VCPU_STAT("cop_unusable", cop_unusable_exits
),
48 VCPU_STAT("tlbmod", tlbmod_exits
),
49 VCPU_STAT("tlbmiss_ld", tlbmiss_ld_exits
),
50 VCPU_STAT("tlbmiss_st", tlbmiss_st_exits
),
51 VCPU_STAT("addrerr_st", addrerr_st_exits
),
52 VCPU_STAT("addrerr_ld", addrerr_ld_exits
),
53 VCPU_STAT("syscall", syscall_exits
),
54 VCPU_STAT("resvd_inst", resvd_inst_exits
),
55 VCPU_STAT("break_inst", break_inst_exits
),
56 VCPU_STAT("trap_inst", trap_inst_exits
),
57 VCPU_STAT("msa_fpe", msa_fpe_exits
),
58 VCPU_STAT("fpe", fpe_exits
),
59 VCPU_STAT("msa_disabled", msa_disabled_exits
),
60 VCPU_STAT("flush_dcache", flush_dcache_exits
),
61 #ifdef CONFIG_KVM_MIPS_VZ
62 VCPU_STAT("vz_gpsi", vz_gpsi_exits
),
63 VCPU_STAT("vz_gsfc", vz_gsfc_exits
),
64 VCPU_STAT("vz_hc", vz_hc_exits
),
65 VCPU_STAT("vz_grr", vz_grr_exits
),
66 VCPU_STAT("vz_gva", vz_gva_exits
),
67 VCPU_STAT("vz_ghfc", vz_ghfc_exits
),
68 VCPU_STAT("vz_gpa", vz_gpa_exits
),
69 VCPU_STAT("vz_resvd", vz_resvd_exits
),
70 #ifdef CONFIG_CPU_LOONGSON64
71 VCPU_STAT("vz_cpucfg", vz_cpucfg_exits
),
74 VCPU_STAT("halt_successful_poll", halt_successful_poll
),
75 VCPU_STAT("halt_attempted_poll", halt_attempted_poll
),
76 VCPU_STAT("halt_poll_invalid", halt_poll_invalid
),
77 VCPU_STAT("halt_wakeup", halt_wakeup
),
78 VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns
),
79 VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns
),
83 bool kvm_trace_guest_mode_change
;
85 int kvm_guest_mode_change_trace_reg(void)
87 kvm_trace_guest_mode_change
= true;
91 void kvm_guest_mode_change_trace_unreg(void)
93 kvm_trace_guest_mode_change
= false;
97 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
98 * Config7, so we are "runnable" if interrupts are pending
100 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
102 return !!(vcpu
->arch
.pending_exceptions
);
105 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu
*vcpu
)
110 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
115 int kvm_arch_hardware_enable(void)
117 return kvm_mips_callbacks
->hardware_enable();
120 void kvm_arch_hardware_disable(void)
122 kvm_mips_callbacks
->hardware_disable();
125 int kvm_arch_hardware_setup(void *opaque
)
130 int kvm_arch_check_processor_compat(void *opaque
)
135 extern void kvm_init_loongson_ipi(struct kvm
*kvm
);
137 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
140 case KVM_VM_MIPS_AUTO
:
142 #ifdef CONFIG_KVM_MIPS_VZ
149 /* Unsupported KVM type */
153 /* Allocate page table to map GPA -> RPA */
154 kvm
->arch
.gpa_mm
.pgd
= kvm_pgd_alloc();
155 if (!kvm
->arch
.gpa_mm
.pgd
)
158 #ifdef CONFIG_CPU_LOONGSON64
159 kvm_init_loongson_ipi(kvm
);
165 void kvm_mips_free_vcpus(struct kvm
*kvm
)
168 struct kvm_vcpu
*vcpu
;
170 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
171 kvm_vcpu_destroy(vcpu
);
174 mutex_lock(&kvm
->lock
);
176 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
177 kvm
->vcpus
[i
] = NULL
;
179 atomic_set(&kvm
->online_vcpus
, 0);
181 mutex_unlock(&kvm
->lock
);
184 static void kvm_mips_free_gpa_pt(struct kvm
*kvm
)
186 /* It should always be safe to remove after flushing the whole range */
187 WARN_ON(!kvm_mips_flush_gpa_pt(kvm
, 0, ~0));
188 pgd_free(NULL
, kvm
->arch
.gpa_mm
.pgd
);
191 void kvm_arch_destroy_vm(struct kvm
*kvm
)
193 kvm_mips_free_vcpus(kvm
);
194 kvm_mips_free_gpa_pt(kvm
);
197 long kvm_arch_dev_ioctl(struct file
*filp
, unsigned int ioctl
,
203 void kvm_arch_flush_shadow_all(struct kvm
*kvm
)
205 /* Flush whole GPA */
206 kvm_mips_flush_gpa_pt(kvm
, 0, ~0);
208 /* Let implementation do the rest */
209 kvm_mips_callbacks
->flush_shadow_all(kvm
);
212 void kvm_arch_flush_shadow_memslot(struct kvm
*kvm
,
213 struct kvm_memory_slot
*slot
)
216 * The slot has been made invalid (ready for moving or deletion), so we
217 * need to ensure that it can no longer be accessed by any guest VCPUs.
220 spin_lock(&kvm
->mmu_lock
);
221 /* Flush slot from GPA */
222 kvm_mips_flush_gpa_pt(kvm
, slot
->base_gfn
,
223 slot
->base_gfn
+ slot
->npages
- 1);
224 /* Let implementation do the rest */
225 kvm_mips_callbacks
->flush_shadow_memslot(kvm
, slot
);
226 spin_unlock(&kvm
->mmu_lock
);
229 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
230 struct kvm_memory_slot
*memslot
,
231 const struct kvm_userspace_memory_region
*mem
,
232 enum kvm_mr_change change
)
237 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
238 const struct kvm_userspace_memory_region
*mem
,
239 struct kvm_memory_slot
*old
,
240 const struct kvm_memory_slot
*new,
241 enum kvm_mr_change change
)
245 kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
246 __func__
, kvm
, mem
->slot
, mem
->guest_phys_addr
,
247 mem
->memory_size
, mem
->userspace_addr
);
250 * If dirty page logging is enabled, write protect all pages in the slot
251 * ready for dirty logging.
253 * There is no need to do this in any of the following cases:
254 * CREATE: No dirty mappings will already exist.
255 * MOVE/DELETE: The old mappings will already have been cleaned up by
256 * kvm_arch_flush_shadow_memslot()
258 if (change
== KVM_MR_FLAGS_ONLY
&&
259 (!(old
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) &&
260 new->flags
& KVM_MEM_LOG_DIRTY_PAGES
)) {
261 spin_lock(&kvm
->mmu_lock
);
262 /* Write protect GPA page table entries */
263 needs_flush
= kvm_mips_mkclean_gpa_pt(kvm
, new->base_gfn
,
264 new->base_gfn
+ new->npages
- 1);
265 /* Let implementation do the rest */
267 kvm_mips_callbacks
->flush_shadow_memslot(kvm
, new);
268 spin_unlock(&kvm
->mmu_lock
);
272 static inline void dump_handler(const char *symbol
, void *start
, void *end
)
276 pr_debug("LEAF(%s)\n", symbol
);
278 pr_debug("\t.set push\n");
279 pr_debug("\t.set noreorder\n");
281 for (p
= start
; p
< (u32
*)end
; ++p
)
282 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p
, p
);
284 pr_debug("\t.set\tpop\n");
286 pr_debug("\tEND(%s)\n", symbol
);
289 /* low level hrtimer wake routine */
290 static enum hrtimer_restart
kvm_mips_comparecount_wakeup(struct hrtimer
*timer
)
292 struct kvm_vcpu
*vcpu
;
294 vcpu
= container_of(timer
, struct kvm_vcpu
, arch
.comparecount_timer
);
296 kvm_mips_callbacks
->queue_timer_int(vcpu
);
299 rcuwait_wake_up(&vcpu
->wait
);
301 return kvm_mips_count_timeout(vcpu
);
304 int kvm_arch_vcpu_precreate(struct kvm
*kvm
, unsigned int id
)
309 int kvm_arch_vcpu_create(struct kvm_vcpu
*vcpu
)
312 void *gebase
, *p
, *handler
, *refill_start
, *refill_end
;
315 kvm_debug("kvm @ %p: create cpu %d at %p\n",
316 vcpu
->kvm
, vcpu
->vcpu_id
, vcpu
);
318 err
= kvm_mips_callbacks
->vcpu_init(vcpu
);
322 hrtimer_init(&vcpu
->arch
.comparecount_timer
, CLOCK_MONOTONIC
,
324 vcpu
->arch
.comparecount_timer
.function
= kvm_mips_comparecount_wakeup
;
327 * Allocate space for host mode exception handlers that handle
330 if (cpu_has_veic
|| cpu_has_vint
)
331 size
= 0x200 + VECTORSPACING
* 64;
335 gebase
= kzalloc(ALIGN(size
, PAGE_SIZE
), GFP_KERNEL
);
339 goto out_uninit_vcpu
;
341 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
342 ALIGN(size
, PAGE_SIZE
), gebase
);
345 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
346 * limits us to the low 512MB of physical address space. If the memory
347 * we allocate is out of range, just give up now.
349 if (!cpu_has_ebase_wg
&& virt_to_phys(gebase
) >= 0x20000000) {
350 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
353 goto out_free_gebase
;
357 vcpu
->arch
.guest_ebase
= gebase
;
359 /* Build guest exception vectors dynamically in unmapped memory */
360 handler
= gebase
+ 0x2000;
362 /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
363 refill_start
= gebase
;
364 if (IS_ENABLED(CONFIG_KVM_MIPS_VZ
) && IS_ENABLED(CONFIG_64BIT
))
365 refill_start
+= 0x080;
366 refill_end
= kvm_mips_build_tlb_refill_exception(refill_start
, handler
);
368 /* General Exception Entry point */
369 kvm_mips_build_exception(gebase
+ 0x180, handler
);
371 /* For vectored interrupts poke the exception code @ all offsets 0-7 */
372 for (i
= 0; i
< 8; i
++) {
373 kvm_debug("L1 Vectored handler @ %p\n",
374 gebase
+ 0x200 + (i
* VECTORSPACING
));
375 kvm_mips_build_exception(gebase
+ 0x200 + i
* VECTORSPACING
,
379 /* General exit handler */
381 p
= kvm_mips_build_exit(p
);
383 /* Guest entry routine */
384 vcpu
->arch
.vcpu_run
= p
;
385 p
= kvm_mips_build_vcpu_run(p
);
387 /* Dump the generated code */
388 pr_debug("#include <asm/asm.h>\n");
389 pr_debug("#include <asm/regdef.h>\n");
391 dump_handler("kvm_vcpu_run", vcpu
->arch
.vcpu_run
, p
);
392 dump_handler("kvm_tlb_refill", refill_start
, refill_end
);
393 dump_handler("kvm_gen_exc", gebase
+ 0x180, gebase
+ 0x200);
394 dump_handler("kvm_exit", gebase
+ 0x2000, vcpu
->arch
.vcpu_run
);
396 /* Invalidate the icache for these ranges */
397 flush_icache_range((unsigned long)gebase
,
398 (unsigned long)gebase
+ ALIGN(size
, PAGE_SIZE
));
401 * Allocate comm page for guest kernel, a TLB will be reserved for
402 * mapping GVA @ 0xFFFF8000 to this page
404 vcpu
->arch
.kseg0_commpage
= kzalloc(PAGE_SIZE
<< 1, GFP_KERNEL
);
406 if (!vcpu
->arch
.kseg0_commpage
) {
408 goto out_free_gebase
;
411 kvm_debug("Allocated COMM page @ %p\n", vcpu
->arch
.kseg0_commpage
);
412 kvm_mips_commpage_init(vcpu
);
415 vcpu
->arch
.last_sched_cpu
= -1;
416 vcpu
->arch
.last_exec_cpu
= -1;
418 /* Initial guest state */
419 err
= kvm_mips_callbacks
->vcpu_setup(vcpu
);
421 goto out_free_commpage
;
426 kfree(vcpu
->arch
.kseg0_commpage
);
430 kvm_mips_callbacks
->vcpu_uninit(vcpu
);
434 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
436 hrtimer_cancel(&vcpu
->arch
.comparecount_timer
);
438 kvm_mips_dump_stats(vcpu
);
440 kvm_mmu_free_memory_caches(vcpu
);
441 kfree(vcpu
->arch
.guest_ebase
);
442 kfree(vcpu
->arch
.kseg0_commpage
);
444 kvm_mips_callbacks
->vcpu_uninit(vcpu
);
447 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
448 struct kvm_guest_debug
*dbg
)
453 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
)
459 kvm_sigset_activate(vcpu
);
461 if (vcpu
->mmio_needed
) {
462 if (!vcpu
->mmio_is_write
)
463 kvm_mips_complete_mmio_load(vcpu
);
464 vcpu
->mmio_needed
= 0;
467 if (vcpu
->run
->immediate_exit
)
473 guest_enter_irqoff();
474 trace_kvm_enter(vcpu
);
477 * Make sure the read of VCPU requests in vcpu_run() callback is not
478 * reordered ahead of the write to vcpu->mode, or we could miss a TLB
479 * flush request while the requester sees the VCPU as outside of guest
480 * mode and not needing an IPI.
482 smp_store_mb(vcpu
->mode
, IN_GUEST_MODE
);
484 r
= kvm_mips_callbacks
->vcpu_run(vcpu
);
491 kvm_sigset_deactivate(vcpu
);
497 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
498 struct kvm_mips_interrupt
*irq
)
500 int intr
= (int)irq
->irq
;
501 struct kvm_vcpu
*dvcpu
= NULL
;
503 if (intr
== kvm_priority_to_irq
[MIPS_EXC_INT_IPI_1
] ||
504 intr
== kvm_priority_to_irq
[MIPS_EXC_INT_IPI_2
] ||
505 intr
== (-kvm_priority_to_irq
[MIPS_EXC_INT_IPI_1
]) ||
506 intr
== (-kvm_priority_to_irq
[MIPS_EXC_INT_IPI_2
]))
507 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__
, irq
->cpu
,
513 dvcpu
= vcpu
->kvm
->vcpus
[irq
->cpu
];
515 if (intr
== 2 || intr
== 3 || intr
== 4 || intr
== 6) {
516 kvm_mips_callbacks
->queue_io_int(dvcpu
, irq
);
518 } else if (intr
== -2 || intr
== -3 || intr
== -4 || intr
== -6) {
519 kvm_mips_callbacks
->dequeue_io_int(dvcpu
, irq
);
521 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__
,
526 dvcpu
->arch
.wait
= 0;
528 rcuwait_wake_up(&dvcpu
->wait
);
533 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
534 struct kvm_mp_state
*mp_state
)
539 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
540 struct kvm_mp_state
*mp_state
)
545 static u64 kvm_mips_get_one_regs
[] = {
579 #ifndef CONFIG_CPU_MIPSR6
586 static u64 kvm_mips_get_one_regs_fpu
[] = {
588 KVM_REG_MIPS_FCR_CSR
,
591 static u64 kvm_mips_get_one_regs_msa
[] = {
593 KVM_REG_MIPS_MSA_CSR
,
596 static unsigned long kvm_mips_num_regs(struct kvm_vcpu
*vcpu
)
600 ret
= ARRAY_SIZE(kvm_mips_get_one_regs
);
601 if (kvm_mips_guest_can_have_fpu(&vcpu
->arch
)) {
602 ret
+= ARRAY_SIZE(kvm_mips_get_one_regs_fpu
) + 48;
604 if (boot_cpu_data
.fpu_id
& MIPS_FPIR_F64
)
607 if (kvm_mips_guest_can_have_msa(&vcpu
->arch
))
608 ret
+= ARRAY_SIZE(kvm_mips_get_one_regs_msa
) + 32;
609 ret
+= kvm_mips_callbacks
->num_regs(vcpu
);
614 static int kvm_mips_copy_reg_indices(struct kvm_vcpu
*vcpu
, u64 __user
*indices
)
619 if (copy_to_user(indices
, kvm_mips_get_one_regs
,
620 sizeof(kvm_mips_get_one_regs
)))
622 indices
+= ARRAY_SIZE(kvm_mips_get_one_regs
);
624 if (kvm_mips_guest_can_have_fpu(&vcpu
->arch
)) {
625 if (copy_to_user(indices
, kvm_mips_get_one_regs_fpu
,
626 sizeof(kvm_mips_get_one_regs_fpu
)))
628 indices
+= ARRAY_SIZE(kvm_mips_get_one_regs_fpu
);
630 for (i
= 0; i
< 32; ++i
) {
631 index
= KVM_REG_MIPS_FPR_32(i
);
632 if (copy_to_user(indices
, &index
, sizeof(index
)))
636 /* skip odd doubles if no F64 */
637 if (i
& 1 && !(boot_cpu_data
.fpu_id
& MIPS_FPIR_F64
))
640 index
= KVM_REG_MIPS_FPR_64(i
);
641 if (copy_to_user(indices
, &index
, sizeof(index
)))
647 if (kvm_mips_guest_can_have_msa(&vcpu
->arch
)) {
648 if (copy_to_user(indices
, kvm_mips_get_one_regs_msa
,
649 sizeof(kvm_mips_get_one_regs_msa
)))
651 indices
+= ARRAY_SIZE(kvm_mips_get_one_regs_msa
);
653 for (i
= 0; i
< 32; ++i
) {
654 index
= KVM_REG_MIPS_VEC_128(i
);
655 if (copy_to_user(indices
, &index
, sizeof(index
)))
661 return kvm_mips_callbacks
->copy_reg_indices(vcpu
, indices
);
664 static int kvm_mips_get_reg(struct kvm_vcpu
*vcpu
,
665 const struct kvm_one_reg
*reg
)
667 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
668 struct mips_fpu_struct
*fpu
= &vcpu
->arch
.fpu
;
675 /* General purpose registers */
676 case KVM_REG_MIPS_R0
... KVM_REG_MIPS_R31
:
677 v
= (long)vcpu
->arch
.gprs
[reg
->id
- KVM_REG_MIPS_R0
];
679 #ifndef CONFIG_CPU_MIPSR6
680 case KVM_REG_MIPS_HI
:
681 v
= (long)vcpu
->arch
.hi
;
683 case KVM_REG_MIPS_LO
:
684 v
= (long)vcpu
->arch
.lo
;
687 case KVM_REG_MIPS_PC
:
688 v
= (long)vcpu
->arch
.pc
;
691 /* Floating point registers */
692 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
693 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
695 idx
= reg
->id
- KVM_REG_MIPS_FPR_32(0);
696 /* Odd singles in top of even double when FR=0 */
697 if (kvm_read_c0_guest_status(cop0
) & ST0_FR
)
698 v
= get_fpr32(&fpu
->fpr
[idx
], 0);
700 v
= get_fpr32(&fpu
->fpr
[idx
& ~1], idx
& 1);
702 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
703 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
705 idx
= reg
->id
- KVM_REG_MIPS_FPR_64(0);
706 /* Can't access odd doubles in FR=0 mode */
707 if (idx
& 1 && !(kvm_read_c0_guest_status(cop0
) & ST0_FR
))
709 v
= get_fpr64(&fpu
->fpr
[idx
], 0);
711 case KVM_REG_MIPS_FCR_IR
:
712 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
714 v
= boot_cpu_data
.fpu_id
;
716 case KVM_REG_MIPS_FCR_CSR
:
717 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
722 /* MIPS SIMD Architecture (MSA) registers */
723 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
724 if (!kvm_mips_guest_has_msa(&vcpu
->arch
))
726 /* Can't access MSA registers in FR=0 mode */
727 if (!(kvm_read_c0_guest_status(cop0
) & ST0_FR
))
729 idx
= reg
->id
- KVM_REG_MIPS_VEC_128(0);
730 #ifdef CONFIG_CPU_LITTLE_ENDIAN
731 /* least significant byte first */
732 vs
[0] = get_fpr64(&fpu
->fpr
[idx
], 0);
733 vs
[1] = get_fpr64(&fpu
->fpr
[idx
], 1);
735 /* most significant byte first */
736 vs
[0] = get_fpr64(&fpu
->fpr
[idx
], 1);
737 vs
[1] = get_fpr64(&fpu
->fpr
[idx
], 0);
740 case KVM_REG_MIPS_MSA_IR
:
741 if (!kvm_mips_guest_has_msa(&vcpu
->arch
))
743 v
= boot_cpu_data
.msa_id
;
745 case KVM_REG_MIPS_MSA_CSR
:
746 if (!kvm_mips_guest_has_msa(&vcpu
->arch
))
751 /* registers to be handled specially */
753 ret
= kvm_mips_callbacks
->get_one_reg(vcpu
, reg
, &v
);
758 if ((reg
->id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U64
) {
759 u64 __user
*uaddr64
= (u64 __user
*)(long)reg
->addr
;
761 return put_user(v
, uaddr64
);
762 } else if ((reg
->id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U32
) {
763 u32 __user
*uaddr32
= (u32 __user
*)(long)reg
->addr
;
766 return put_user(v32
, uaddr32
);
767 } else if ((reg
->id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U128
) {
768 void __user
*uaddr
= (void __user
*)(long)reg
->addr
;
770 return copy_to_user(uaddr
, vs
, 16) ? -EFAULT
: 0;
776 static int kvm_mips_set_reg(struct kvm_vcpu
*vcpu
,
777 const struct kvm_one_reg
*reg
)
779 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
780 struct mips_fpu_struct
*fpu
= &vcpu
->arch
.fpu
;
785 if ((reg
->id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U64
) {
786 u64 __user
*uaddr64
= (u64 __user
*)(long)reg
->addr
;
788 if (get_user(v
, uaddr64
) != 0)
790 } else if ((reg
->id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U32
) {
791 u32 __user
*uaddr32
= (u32 __user
*)(long)reg
->addr
;
794 if (get_user(v32
, uaddr32
) != 0)
797 } else if ((reg
->id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U128
) {
798 void __user
*uaddr
= (void __user
*)(long)reg
->addr
;
800 return copy_from_user(vs
, uaddr
, 16) ? -EFAULT
: 0;
806 /* General purpose registers */
807 case KVM_REG_MIPS_R0
:
808 /* Silently ignore requests to set $0 */
810 case KVM_REG_MIPS_R1
... KVM_REG_MIPS_R31
:
811 vcpu
->arch
.gprs
[reg
->id
- KVM_REG_MIPS_R0
] = v
;
813 #ifndef CONFIG_CPU_MIPSR6
814 case KVM_REG_MIPS_HI
:
817 case KVM_REG_MIPS_LO
:
821 case KVM_REG_MIPS_PC
:
825 /* Floating point registers */
826 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
827 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
829 idx
= reg
->id
- KVM_REG_MIPS_FPR_32(0);
830 /* Odd singles in top of even double when FR=0 */
831 if (kvm_read_c0_guest_status(cop0
) & ST0_FR
)
832 set_fpr32(&fpu
->fpr
[idx
], 0, v
);
834 set_fpr32(&fpu
->fpr
[idx
& ~1], idx
& 1, v
);
836 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
837 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
839 idx
= reg
->id
- KVM_REG_MIPS_FPR_64(0);
840 /* Can't access odd doubles in FR=0 mode */
841 if (idx
& 1 && !(kvm_read_c0_guest_status(cop0
) & ST0_FR
))
843 set_fpr64(&fpu
->fpr
[idx
], 0, v
);
845 case KVM_REG_MIPS_FCR_IR
:
846 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
850 case KVM_REG_MIPS_FCR_CSR
:
851 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
856 /* MIPS SIMD Architecture (MSA) registers */
857 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
858 if (!kvm_mips_guest_has_msa(&vcpu
->arch
))
860 idx
= reg
->id
- KVM_REG_MIPS_VEC_128(0);
861 #ifdef CONFIG_CPU_LITTLE_ENDIAN
862 /* least significant byte first */
863 set_fpr64(&fpu
->fpr
[idx
], 0, vs
[0]);
864 set_fpr64(&fpu
->fpr
[idx
], 1, vs
[1]);
866 /* most significant byte first */
867 set_fpr64(&fpu
->fpr
[idx
], 1, vs
[0]);
868 set_fpr64(&fpu
->fpr
[idx
], 0, vs
[1]);
871 case KVM_REG_MIPS_MSA_IR
:
872 if (!kvm_mips_guest_has_msa(&vcpu
->arch
))
876 case KVM_REG_MIPS_MSA_CSR
:
877 if (!kvm_mips_guest_has_msa(&vcpu
->arch
))
882 /* registers to be handled specially */
884 return kvm_mips_callbacks
->set_one_reg(vcpu
, reg
, v
);
889 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu
*vcpu
,
890 struct kvm_enable_cap
*cap
)
894 if (!kvm_vm_ioctl_check_extension(vcpu
->kvm
, cap
->cap
))
902 case KVM_CAP_MIPS_FPU
:
903 vcpu
->arch
.fpu_enabled
= true;
905 case KVM_CAP_MIPS_MSA
:
906 vcpu
->arch
.msa_enabled
= true;
916 long kvm_arch_vcpu_async_ioctl(struct file
*filp
, unsigned int ioctl
,
919 struct kvm_vcpu
*vcpu
= filp
->private_data
;
920 void __user
*argp
= (void __user
*)arg
;
922 if (ioctl
== KVM_INTERRUPT
) {
923 struct kvm_mips_interrupt irq
;
925 if (copy_from_user(&irq
, argp
, sizeof(irq
)))
927 kvm_debug("[%d] %s: irq: %d\n", vcpu
->vcpu_id
, __func__
,
930 return kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
936 long kvm_arch_vcpu_ioctl(struct file
*filp
, unsigned int ioctl
,
939 struct kvm_vcpu
*vcpu
= filp
->private_data
;
940 void __user
*argp
= (void __user
*)arg
;
946 case KVM_SET_ONE_REG
:
947 case KVM_GET_ONE_REG
: {
948 struct kvm_one_reg reg
;
951 if (copy_from_user(®
, argp
, sizeof(reg
)))
953 if (ioctl
== KVM_SET_ONE_REG
)
954 r
= kvm_mips_set_reg(vcpu
, ®
);
956 r
= kvm_mips_get_reg(vcpu
, ®
);
959 case KVM_GET_REG_LIST
: {
960 struct kvm_reg_list __user
*user_list
= argp
;
961 struct kvm_reg_list reg_list
;
965 if (copy_from_user(®_list
, user_list
, sizeof(reg_list
)))
968 reg_list
.n
= kvm_mips_num_regs(vcpu
);
969 if (copy_to_user(user_list
, ®_list
, sizeof(reg_list
)))
974 r
= kvm_mips_copy_reg_indices(vcpu
, user_list
->reg
);
977 case KVM_ENABLE_CAP
: {
978 struct kvm_enable_cap cap
;
981 if (copy_from_user(&cap
, argp
, sizeof(cap
)))
983 r
= kvm_vcpu_ioctl_enable_cap(vcpu
, &cap
);
994 void kvm_arch_sync_dirty_log(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
)
999 void kvm_arch_flush_remote_tlbs_memslot(struct kvm
*kvm
,
1000 struct kvm_memory_slot
*memslot
)
1002 /* Let implementation handle TLB/GVA invalidation */
1003 kvm_mips_callbacks
->flush_shadow_memslot(kvm
, memslot
);
1006 long kvm_arch_vm_ioctl(struct file
*filp
, unsigned int ioctl
, unsigned long arg
)
1018 int kvm_arch_init(void *opaque
)
1020 if (kvm_mips_callbacks
) {
1021 kvm_err("kvm: module already exists\n");
1025 return kvm_mips_emulation_init(&kvm_mips_callbacks
);
1028 void kvm_arch_exit(void)
1030 kvm_mips_callbacks
= NULL
;
1033 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
1034 struct kvm_sregs
*sregs
)
1036 return -ENOIOCTLCMD
;
1039 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
1040 struct kvm_sregs
*sregs
)
1042 return -ENOIOCTLCMD
;
1045 void kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
1049 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
1051 return -ENOIOCTLCMD
;
1054 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
1056 return -ENOIOCTLCMD
;
1059 vm_fault_t
kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
1061 return VM_FAULT_SIGBUS
;
1064 int kvm_vm_ioctl_check_extension(struct kvm
*kvm
, long ext
)
1069 case KVM_CAP_ONE_REG
:
1070 case KVM_CAP_ENABLE_CAP
:
1071 case KVM_CAP_READONLY_MEM
:
1072 case KVM_CAP_SYNC_MMU
:
1073 case KVM_CAP_IMMEDIATE_EXIT
:
1076 case KVM_CAP_NR_VCPUS
:
1077 r
= num_online_cpus();
1079 case KVM_CAP_MAX_VCPUS
:
1082 case KVM_CAP_MAX_VCPU_ID
:
1083 r
= KVM_MAX_VCPU_ID
;
1085 case KVM_CAP_MIPS_FPU
:
1086 /* We don't handle systems with inconsistent cpu_has_fpu */
1087 r
= !!raw_cpu_has_fpu
;
1089 case KVM_CAP_MIPS_MSA
:
1091 * We don't support MSA vector partitioning yet:
1092 * 1) It would require explicit support which can't be tested
1093 * yet due to lack of support in current hardware.
1094 * 2) It extends the state that would need to be saved/restored
1095 * by e.g. QEMU for migration.
1097 * When vector partitioning hardware becomes available, support
1098 * could be added by requiring a flag when enabling
1099 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1100 * to save/restore the appropriate extra state.
1102 r
= cpu_has_msa
&& !(boot_cpu_data
.msa_id
& MSA_IR_WRPF
);
1105 r
= kvm_mips_callbacks
->check_extension(kvm
, ext
);
1111 int kvm_cpu_has_pending_timer(struct kvm_vcpu
*vcpu
)
1113 return kvm_mips_pending_timer(vcpu
) ||
1114 kvm_read_c0_guest_cause(vcpu
->arch
.cop0
) & C_TI
;
1117 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu
*vcpu
)
1120 struct mips_coproc
*cop0
;
1125 kvm_debug("VCPU Register Dump:\n");
1126 kvm_debug("\tpc = 0x%08lx\n", vcpu
->arch
.pc
);
1127 kvm_debug("\texceptions: %08lx\n", vcpu
->arch
.pending_exceptions
);
1129 for (i
= 0; i
< 32; i
+= 4) {
1130 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i
,
1132 vcpu
->arch
.gprs
[i
+ 1],
1133 vcpu
->arch
.gprs
[i
+ 2], vcpu
->arch
.gprs
[i
+ 3]);
1135 kvm_debug("\thi: 0x%08lx\n", vcpu
->arch
.hi
);
1136 kvm_debug("\tlo: 0x%08lx\n", vcpu
->arch
.lo
);
1138 cop0
= vcpu
->arch
.cop0
;
1139 kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1140 kvm_read_c0_guest_status(cop0
),
1141 kvm_read_c0_guest_cause(cop0
));
1143 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0
));
1148 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
1154 for (i
= 1; i
< ARRAY_SIZE(vcpu
->arch
.gprs
); i
++)
1155 vcpu
->arch
.gprs
[i
] = regs
->gpr
[i
];
1156 vcpu
->arch
.gprs
[0] = 0; /* zero is special, and cannot be set. */
1157 vcpu
->arch
.hi
= regs
->hi
;
1158 vcpu
->arch
.lo
= regs
->lo
;
1159 vcpu
->arch
.pc
= regs
->pc
;
1165 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
1171 for (i
= 0; i
< ARRAY_SIZE(vcpu
->arch
.gprs
); i
++)
1172 regs
->gpr
[i
] = vcpu
->arch
.gprs
[i
];
1174 regs
->hi
= vcpu
->arch
.hi
;
1175 regs
->lo
= vcpu
->arch
.lo
;
1176 regs
->pc
= vcpu
->arch
.pc
;
1182 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
1183 struct kvm_translation
*tr
)
1188 static void kvm_mips_set_c0_status(void)
1190 u32 status
= read_c0_status();
1195 write_c0_status(status
);
1200 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1202 int kvm_mips_handle_exit(struct kvm_vcpu
*vcpu
)
1204 struct kvm_run
*run
= vcpu
->run
;
1205 u32 cause
= vcpu
->arch
.host_cp0_cause
;
1206 u32 exccode
= (cause
>> CAUSEB_EXCCODE
) & 0x1f;
1207 u32 __user
*opc
= (u32 __user
*) vcpu
->arch
.pc
;
1208 unsigned long badvaddr
= vcpu
->arch
.host_cp0_badvaddr
;
1209 enum emulation_result er
= EMULATE_DONE
;
1211 int ret
= RESUME_GUEST
;
1213 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
1215 /* re-enable HTW before enabling interrupts */
1216 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ
))
1219 /* Set a default exit reason */
1220 run
->exit_reason
= KVM_EXIT_UNKNOWN
;
1221 run
->ready_for_interrupt_injection
= 1;
1224 * Set the appropriate status bits based on host CPU features,
1225 * before we hit the scheduler
1227 kvm_mips_set_c0_status();
1231 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1232 cause
, opc
, run
, vcpu
);
1233 trace_kvm_exit(vcpu
, exccode
);
1235 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ
)) {
1237 * Do a privilege check, if in UM most of these exit conditions
1238 * end up causing an exception to be delivered to the Guest
1241 er
= kvm_mips_check_privilege(cause
, opc
, vcpu
);
1242 if (er
== EMULATE_PRIV_FAIL
) {
1244 } else if (er
== EMULATE_FAIL
) {
1245 run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
1253 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu
->vcpu_id
, opc
);
1255 ++vcpu
->stat
.int_exits
;
1264 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc
);
1266 ++vcpu
->stat
.cop_unusable_exits
;
1267 ret
= kvm_mips_callbacks
->handle_cop_unusable(vcpu
);
1268 /* XXXKYMA: Might need to return to user space */
1269 if (run
->exit_reason
== KVM_EXIT_IRQ_WINDOW_OPEN
)
1274 ++vcpu
->stat
.tlbmod_exits
;
1275 ret
= kvm_mips_callbacks
->handle_tlb_mod(vcpu
);
1279 kvm_debug("TLB ST fault: cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1280 cause
, kvm_read_c0_guest_status(vcpu
->arch
.cop0
), opc
,
1283 ++vcpu
->stat
.tlbmiss_st_exits
;
1284 ret
= kvm_mips_callbacks
->handle_tlb_st_miss(vcpu
);
1288 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1289 cause
, opc
, badvaddr
);
1291 ++vcpu
->stat
.tlbmiss_ld_exits
;
1292 ret
= kvm_mips_callbacks
->handle_tlb_ld_miss(vcpu
);
1296 ++vcpu
->stat
.addrerr_st_exits
;
1297 ret
= kvm_mips_callbacks
->handle_addr_err_st(vcpu
);
1301 ++vcpu
->stat
.addrerr_ld_exits
;
1302 ret
= kvm_mips_callbacks
->handle_addr_err_ld(vcpu
);
1306 ++vcpu
->stat
.syscall_exits
;
1307 ret
= kvm_mips_callbacks
->handle_syscall(vcpu
);
1311 ++vcpu
->stat
.resvd_inst_exits
;
1312 ret
= kvm_mips_callbacks
->handle_res_inst(vcpu
);
1316 ++vcpu
->stat
.break_inst_exits
;
1317 ret
= kvm_mips_callbacks
->handle_break(vcpu
);
1321 ++vcpu
->stat
.trap_inst_exits
;
1322 ret
= kvm_mips_callbacks
->handle_trap(vcpu
);
1325 case EXCCODE_MSAFPE
:
1326 ++vcpu
->stat
.msa_fpe_exits
;
1327 ret
= kvm_mips_callbacks
->handle_msa_fpe(vcpu
);
1331 ++vcpu
->stat
.fpe_exits
;
1332 ret
= kvm_mips_callbacks
->handle_fpe(vcpu
);
1335 case EXCCODE_MSADIS
:
1336 ++vcpu
->stat
.msa_disabled_exits
;
1337 ret
= kvm_mips_callbacks
->handle_msa_disabled(vcpu
);
1341 /* defer exit accounting to handler */
1342 ret
= kvm_mips_callbacks
->handle_guest_exit(vcpu
);
1346 if (cause
& CAUSEF_BD
)
1349 kvm_get_badinstr(opc
, vcpu
, &inst
);
1350 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n",
1351 exccode
, opc
, inst
, badvaddr
,
1352 kvm_read_c0_guest_status(vcpu
->arch
.cop0
));
1353 kvm_arch_vcpu_dump_regs(vcpu
);
1354 run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
1361 local_irq_disable();
1363 if (ret
== RESUME_GUEST
)
1364 kvm_vz_acquire_htimer(vcpu
);
1366 if (er
== EMULATE_DONE
&& !(ret
& RESUME_HOST
))
1367 kvm_mips_deliver_interrupts(vcpu
, cause
);
1369 if (!(ret
& RESUME_HOST
)) {
1370 /* Only check for signals if not already exiting to userspace */
1371 if (signal_pending(current
)) {
1372 run
->exit_reason
= KVM_EXIT_INTR
;
1373 ret
= (-EINTR
<< 2) | RESUME_HOST
;
1374 ++vcpu
->stat
.signal_exits
;
1375 trace_kvm_exit(vcpu
, KVM_TRACE_EXIT_SIGNAL
);
1379 if (ret
== RESUME_GUEST
) {
1380 trace_kvm_reenter(vcpu
);
1383 * Make sure the read of VCPU requests in vcpu_reenter()
1384 * callback is not reordered ahead of the write to vcpu->mode,
1385 * or we could miss a TLB flush request while the requester sees
1386 * the VCPU as outside of guest mode and not needing an IPI.
1388 smp_store_mb(vcpu
->mode
, IN_GUEST_MODE
);
1390 kvm_mips_callbacks
->vcpu_reenter(vcpu
);
1393 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1394 * is live), restore FCR31 / MSACSR.
1396 * This should be before returning to the guest exception
1397 * vector, as it may well cause an [MSA] FP exception if there
1398 * are pending exception bits unmasked. (see
1399 * kvm_mips_csr_die_notifier() for how that is handled).
1401 if (kvm_mips_guest_has_fpu(&vcpu
->arch
) &&
1402 read_c0_status() & ST0_CU1
)
1403 __kvm_restore_fcsr(&vcpu
->arch
);
1405 if (kvm_mips_guest_has_msa(&vcpu
->arch
) &&
1406 read_c0_config5() & MIPS_CONF5_MSAEN
)
1407 __kvm_restore_msacsr(&vcpu
->arch
);
1410 /* Disable HTW before returning to guest or host */
1411 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ
))
1417 /* Enable FPU for guest and restore context */
1418 void kvm_own_fpu(struct kvm_vcpu
*vcpu
)
1420 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
1421 unsigned int sr
, cfg5
;
1425 sr
= kvm_read_c0_guest_status(cop0
);
1428 * If MSA state is already live, it is undefined how it interacts with
1429 * FR=0 FPU state, and we don't want to hit reserved instruction
1430 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1431 * play it safe and save it first.
1433 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1434 * get called when guest CU1 is set, however we can't trust the guest
1435 * not to clobber the status register directly via the commpage.
1437 if (cpu_has_msa
&& sr
& ST0_CU1
&& !(sr
& ST0_FR
) &&
1438 vcpu
->arch
.aux_inuse
& KVM_MIPS_AUX_MSA
)
1442 * Enable FPU for guest
1443 * We set FR and FRE according to guest context
1445 change_c0_status(ST0_CU1
| ST0_FR
, sr
);
1447 cfg5
= kvm_read_c0_guest_config5(cop0
);
1448 change_c0_config5(MIPS_CONF5_FRE
, cfg5
);
1450 enable_fpu_hazard();
1452 /* If guest FPU state not active, restore it now */
1453 if (!(vcpu
->arch
.aux_inuse
& KVM_MIPS_AUX_FPU
)) {
1454 __kvm_restore_fpu(&vcpu
->arch
);
1455 vcpu
->arch
.aux_inuse
|= KVM_MIPS_AUX_FPU
;
1456 trace_kvm_aux(vcpu
, KVM_TRACE_AUX_RESTORE
, KVM_TRACE_AUX_FPU
);
1458 trace_kvm_aux(vcpu
, KVM_TRACE_AUX_ENABLE
, KVM_TRACE_AUX_FPU
);
1464 #ifdef CONFIG_CPU_HAS_MSA
1465 /* Enable MSA for guest and restore context */
1466 void kvm_own_msa(struct kvm_vcpu
*vcpu
)
1468 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
1469 unsigned int sr
, cfg5
;
1474 * Enable FPU if enabled in guest, since we're restoring FPU context
1475 * anyway. We set FR and FRE according to guest context.
1477 if (kvm_mips_guest_has_fpu(&vcpu
->arch
)) {
1478 sr
= kvm_read_c0_guest_status(cop0
);
1481 * If FR=0 FPU state is already live, it is undefined how it
1482 * interacts with MSA state, so play it safe and save it first.
1484 if (!(sr
& ST0_FR
) &&
1485 (vcpu
->arch
.aux_inuse
& (KVM_MIPS_AUX_FPU
|
1486 KVM_MIPS_AUX_MSA
)) == KVM_MIPS_AUX_FPU
)
1489 change_c0_status(ST0_CU1
| ST0_FR
, sr
);
1490 if (sr
& ST0_CU1
&& cpu_has_fre
) {
1491 cfg5
= kvm_read_c0_guest_config5(cop0
);
1492 change_c0_config5(MIPS_CONF5_FRE
, cfg5
);
1496 /* Enable MSA for guest */
1497 set_c0_config5(MIPS_CONF5_MSAEN
);
1498 enable_fpu_hazard();
1500 switch (vcpu
->arch
.aux_inuse
& (KVM_MIPS_AUX_FPU
| KVM_MIPS_AUX_MSA
)) {
1501 case KVM_MIPS_AUX_FPU
:
1503 * Guest FPU state already loaded, only restore upper MSA state
1505 __kvm_restore_msa_upper(&vcpu
->arch
);
1506 vcpu
->arch
.aux_inuse
|= KVM_MIPS_AUX_MSA
;
1507 trace_kvm_aux(vcpu
, KVM_TRACE_AUX_RESTORE
, KVM_TRACE_AUX_MSA
);
1510 /* Neither FPU or MSA already active, restore full MSA state */
1511 __kvm_restore_msa(&vcpu
->arch
);
1512 vcpu
->arch
.aux_inuse
|= KVM_MIPS_AUX_MSA
;
1513 if (kvm_mips_guest_has_fpu(&vcpu
->arch
))
1514 vcpu
->arch
.aux_inuse
|= KVM_MIPS_AUX_FPU
;
1515 trace_kvm_aux(vcpu
, KVM_TRACE_AUX_RESTORE
,
1516 KVM_TRACE_AUX_FPU_MSA
);
1519 trace_kvm_aux(vcpu
, KVM_TRACE_AUX_ENABLE
, KVM_TRACE_AUX_MSA
);
1527 /* Drop FPU & MSA without saving it */
1528 void kvm_drop_fpu(struct kvm_vcpu
*vcpu
)
1531 if (cpu_has_msa
&& vcpu
->arch
.aux_inuse
& KVM_MIPS_AUX_MSA
) {
1533 trace_kvm_aux(vcpu
, KVM_TRACE_AUX_DISCARD
, KVM_TRACE_AUX_MSA
);
1534 vcpu
->arch
.aux_inuse
&= ~KVM_MIPS_AUX_MSA
;
1536 if (vcpu
->arch
.aux_inuse
& KVM_MIPS_AUX_FPU
) {
1537 clear_c0_status(ST0_CU1
| ST0_FR
);
1538 trace_kvm_aux(vcpu
, KVM_TRACE_AUX_DISCARD
, KVM_TRACE_AUX_FPU
);
1539 vcpu
->arch
.aux_inuse
&= ~KVM_MIPS_AUX_FPU
;
1544 /* Save and disable FPU & MSA */
1545 void kvm_lose_fpu(struct kvm_vcpu
*vcpu
)
1548 * With T&E, FPU & MSA get disabled in root context (hardware) when it
1549 * is disabled in guest context (software), but the register state in
1550 * the hardware may still be in use.
1551 * This is why we explicitly re-enable the hardware before saving.
1555 if (cpu_has_msa
&& vcpu
->arch
.aux_inuse
& KVM_MIPS_AUX_MSA
) {
1556 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ
)) {
1557 set_c0_config5(MIPS_CONF5_MSAEN
);
1558 enable_fpu_hazard();
1561 __kvm_save_msa(&vcpu
->arch
);
1562 trace_kvm_aux(vcpu
, KVM_TRACE_AUX_SAVE
, KVM_TRACE_AUX_FPU_MSA
);
1564 /* Disable MSA & FPU */
1566 if (vcpu
->arch
.aux_inuse
& KVM_MIPS_AUX_FPU
) {
1567 clear_c0_status(ST0_CU1
| ST0_FR
);
1568 disable_fpu_hazard();
1570 vcpu
->arch
.aux_inuse
&= ~(KVM_MIPS_AUX_FPU
| KVM_MIPS_AUX_MSA
);
1571 } else if (vcpu
->arch
.aux_inuse
& KVM_MIPS_AUX_FPU
) {
1572 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ
)) {
1573 set_c0_status(ST0_CU1
);
1574 enable_fpu_hazard();
1577 __kvm_save_fpu(&vcpu
->arch
);
1578 vcpu
->arch
.aux_inuse
&= ~KVM_MIPS_AUX_FPU
;
1579 trace_kvm_aux(vcpu
, KVM_TRACE_AUX_SAVE
, KVM_TRACE_AUX_FPU
);
1582 clear_c0_status(ST0_CU1
| ST0_FR
);
1583 disable_fpu_hazard();
1589 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1590 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1591 * exception if cause bits are set in the value being written.
1593 static int kvm_mips_csr_die_notify(struct notifier_block
*self
,
1594 unsigned long cmd
, void *ptr
)
1596 struct die_args
*args
= (struct die_args
*)ptr
;
1597 struct pt_regs
*regs
= args
->regs
;
1600 /* Only interested in FPE and MSAFPE */
1601 if (cmd
!= DIE_FP
&& cmd
!= DIE_MSAFP
)
1604 /* Return immediately if guest context isn't active */
1605 if (!(current
->flags
& PF_VCPU
))
1608 /* Should never get here from user mode */
1609 BUG_ON(user_mode(regs
));
1611 pc
= instruction_pointer(regs
);
1614 /* match 2nd instruction in __kvm_restore_fcsr */
1615 if (pc
!= (unsigned long)&__kvm_restore_fcsr
+ 4)
1619 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1621 pc
< (unsigned long)&__kvm_restore_msacsr
+ 4 ||
1622 pc
> (unsigned long)&__kvm_restore_msacsr
+ 8)
1627 /* Move PC forward a little and continue executing */
1628 instruction_pointer(regs
) += 4;
1633 static struct notifier_block kvm_mips_csr_die_notifier
= {
1634 .notifier_call
= kvm_mips_csr_die_notify
,
1637 static u32 kvm_default_priority_to_irq
[MIPS_EXC_MAX
] = {
1638 [MIPS_EXC_INT_TIMER
] = C_IRQ5
,
1639 [MIPS_EXC_INT_IO_1
] = C_IRQ0
,
1640 [MIPS_EXC_INT_IPI_1
] = C_IRQ1
,
1641 [MIPS_EXC_INT_IPI_2
] = C_IRQ2
,
1644 static u32 kvm_loongson3_priority_to_irq
[MIPS_EXC_MAX
] = {
1645 [MIPS_EXC_INT_TIMER
] = C_IRQ5
,
1646 [MIPS_EXC_INT_IO_1
] = C_IRQ0
,
1647 [MIPS_EXC_INT_IO_2
] = C_IRQ1
,
1648 [MIPS_EXC_INT_IPI_1
] = C_IRQ4
,
1651 u32
*kvm_priority_to_irq
= kvm_default_priority_to_irq
;
1653 u32
kvm_irq_to_priority(u32 irq
)
1657 for (i
= MIPS_EXC_INT_TIMER
; i
< MIPS_EXC_MAX
; i
++) {
1658 if (kvm_priority_to_irq
[i
] == (1 << (irq
+ 8)))
1662 return MIPS_EXC_MAX
;
1665 static int __init
kvm_mips_init(void)
1670 pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1674 ret
= kvm_mips_entry_setup();
1678 ret
= kvm_init(NULL
, sizeof(struct kvm_vcpu
), 0, THIS_MODULE
);
1683 if (boot_cpu_type() == CPU_LOONGSON64
)
1684 kvm_priority_to_irq
= kvm_loongson3_priority_to_irq
;
1686 register_die_notifier(&kvm_mips_csr_die_notifier
);
1691 static void __exit
kvm_mips_exit(void)
1695 unregister_die_notifier(&kvm_mips_csr_die_notifier
);
1698 module_init(kvm_mips_init
);
1699 module_exit(kvm_mips_exit
);
1701 EXPORT_TRACEPOINT_SYMBOL(kvm_exit
);