2 * Public API and common code for kernel->userspace relay file support.
4 * See Documentation/filesystems/relay.rst for an overview.
6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
9 * Moved to kernel/relay.c by Paul Mundt, 2006.
10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
11 * (mathieu.desnoyers@polymtl.ca)
13 * This file is released under the GPL.
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex
);
28 static LIST_HEAD(relay_channels
);
31 * fault() vm_op implementation for relay file mapping.
33 static vm_fault_t
relay_buf_fault(struct vm_fault
*vmf
)
36 struct rchan_buf
*buf
= vmf
->vma
->vm_private_data
;
37 pgoff_t pgoff
= vmf
->pgoff
;
42 page
= vmalloc_to_page(buf
->start
+ (pgoff
<< PAGE_SHIFT
));
44 return VM_FAULT_SIGBUS
;
52 * vm_ops for relay file mappings.
54 static const struct vm_operations_struct relay_file_mmap_ops
= {
55 .fault
= relay_buf_fault
,
59 * allocate an array of pointers of struct page
61 static struct page
**relay_alloc_page_array(unsigned int n_pages
)
63 const size_t pa_size
= n_pages
* sizeof(struct page
*);
64 if (pa_size
> PAGE_SIZE
)
65 return vzalloc(pa_size
);
66 return kzalloc(pa_size
, GFP_KERNEL
);
70 * free an array of pointers of struct page
72 static void relay_free_page_array(struct page
**array
)
78 * relay_mmap_buf: - mmap channel buffer to process address space
79 * @buf: relay channel buffer
80 * @vma: vm_area_struct describing memory to be mapped
82 * Returns 0 if ok, negative on error
84 * Caller should already have grabbed mmap_lock.
86 static int relay_mmap_buf(struct rchan_buf
*buf
, struct vm_area_struct
*vma
)
88 unsigned long length
= vma
->vm_end
- vma
->vm_start
;
93 if (length
!= (unsigned long)buf
->chan
->alloc_size
)
96 vma
->vm_ops
= &relay_file_mmap_ops
;
97 vma
->vm_flags
|= VM_DONTEXPAND
;
98 vma
->vm_private_data
= buf
;
104 * relay_alloc_buf - allocate a channel buffer
105 * @buf: the buffer struct
106 * @size: total size of the buffer
108 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
109 * passed in size will get page aligned, if it isn't already.
111 static void *relay_alloc_buf(struct rchan_buf
*buf
, size_t *size
)
114 unsigned int i
, j
, n_pages
;
116 *size
= PAGE_ALIGN(*size
);
117 n_pages
= *size
>> PAGE_SHIFT
;
119 buf
->page_array
= relay_alloc_page_array(n_pages
);
120 if (!buf
->page_array
)
123 for (i
= 0; i
< n_pages
; i
++) {
124 buf
->page_array
[i
] = alloc_page(GFP_KERNEL
);
125 if (unlikely(!buf
->page_array
[i
]))
127 set_page_private(buf
->page_array
[i
], (unsigned long)buf
);
129 mem
= vmap(buf
->page_array
, n_pages
, VM_MAP
, PAGE_KERNEL
);
133 memset(mem
, 0, *size
);
134 buf
->page_count
= n_pages
;
138 for (j
= 0; j
< i
; j
++)
139 __free_page(buf
->page_array
[j
]);
140 relay_free_page_array(buf
->page_array
);
145 * relay_create_buf - allocate and initialize a channel buffer
146 * @chan: the relay channel
148 * Returns channel buffer if successful, %NULL otherwise.
150 static struct rchan_buf
*relay_create_buf(struct rchan
*chan
)
152 struct rchan_buf
*buf
;
154 if (chan
->n_subbufs
> KMALLOC_MAX_SIZE
/ sizeof(size_t *))
157 buf
= kzalloc(sizeof(struct rchan_buf
), GFP_KERNEL
);
160 buf
->padding
= kmalloc_array(chan
->n_subbufs
, sizeof(size_t *),
165 buf
->start
= relay_alloc_buf(buf
, &chan
->alloc_size
);
170 kref_get(&buf
->chan
->kref
);
180 * relay_destroy_channel - free the channel struct
181 * @kref: target kernel reference that contains the relay channel
183 * Should only be called from kref_put().
185 static void relay_destroy_channel(struct kref
*kref
)
187 struct rchan
*chan
= container_of(kref
, struct rchan
, kref
);
188 free_percpu(chan
->buf
);
193 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer
194 * @buf: the buffer struct
196 static void relay_destroy_buf(struct rchan_buf
*buf
)
198 struct rchan
*chan
= buf
->chan
;
201 if (likely(buf
->start
)) {
203 for (i
= 0; i
< buf
->page_count
; i
++)
204 __free_page(buf
->page_array
[i
]);
205 relay_free_page_array(buf
->page_array
);
207 *per_cpu_ptr(chan
->buf
, buf
->cpu
) = NULL
;
210 kref_put(&chan
->kref
, relay_destroy_channel
);
214 * relay_remove_buf - remove a channel buffer
215 * @kref: target kernel reference that contains the relay buffer
217 * Removes the file from the filesystem, which also frees the
218 * rchan_buf_struct and the channel buffer. Should only be called from
221 static void relay_remove_buf(struct kref
*kref
)
223 struct rchan_buf
*buf
= container_of(kref
, struct rchan_buf
, kref
);
224 relay_destroy_buf(buf
);
228 * relay_buf_empty - boolean, is the channel buffer empty?
229 * @buf: channel buffer
231 * Returns 1 if the buffer is empty, 0 otherwise.
233 static int relay_buf_empty(struct rchan_buf
*buf
)
235 return (buf
->subbufs_produced
- buf
->subbufs_consumed
) ? 0 : 1;
239 * relay_buf_full - boolean, is the channel buffer full?
240 * @buf: channel buffer
242 * Returns 1 if the buffer is full, 0 otherwise.
244 int relay_buf_full(struct rchan_buf
*buf
)
246 size_t ready
= buf
->subbufs_produced
- buf
->subbufs_consumed
;
247 return (ready
>= buf
->chan
->n_subbufs
) ? 1 : 0;
249 EXPORT_SYMBOL_GPL(relay_buf_full
);
252 * High-level relay kernel API and associated functions.
255 static int relay_subbuf_start(struct rchan_buf
*buf
, void *subbuf
,
256 void *prev_subbuf
, size_t prev_padding
)
258 if (!buf
->chan
->cb
->subbuf_start
)
259 return !relay_buf_full(buf
);
261 return buf
->chan
->cb
->subbuf_start(buf
, subbuf
,
262 prev_subbuf
, prev_padding
);
266 * wakeup_readers - wake up readers waiting on a channel
267 * @work: contains the channel buffer
269 * This is the function used to defer reader waking
271 static void wakeup_readers(struct irq_work
*work
)
273 struct rchan_buf
*buf
;
275 buf
= container_of(work
, struct rchan_buf
, wakeup_work
);
276 wake_up_interruptible(&buf
->read_wait
);
280 * __relay_reset - reset a channel buffer
281 * @buf: the channel buffer
282 * @init: 1 if this is a first-time initialization
284 * See relay_reset() for description of effect.
286 static void __relay_reset(struct rchan_buf
*buf
, unsigned int init
)
291 init_waitqueue_head(&buf
->read_wait
);
292 kref_init(&buf
->kref
);
293 init_irq_work(&buf
->wakeup_work
, wakeup_readers
);
295 irq_work_sync(&buf
->wakeup_work
);
298 buf
->subbufs_produced
= 0;
299 buf
->subbufs_consumed
= 0;
300 buf
->bytes_consumed
= 0;
302 buf
->data
= buf
->start
;
305 for (i
= 0; i
< buf
->chan
->n_subbufs
; i
++)
308 relay_subbuf_start(buf
, buf
->data
, NULL
, 0);
312 * relay_reset - reset the channel
315 * This has the effect of erasing all data from all channel buffers
316 * and restarting the channel in its initial state. The buffers
317 * are not freed, so any mappings are still in effect.
319 * NOTE. Care should be taken that the channel isn't actually
320 * being used by anything when this call is made.
322 void relay_reset(struct rchan
*chan
)
324 struct rchan_buf
*buf
;
330 if (chan
->is_global
&& (buf
= *per_cpu_ptr(chan
->buf
, 0))) {
331 __relay_reset(buf
, 0);
335 mutex_lock(&relay_channels_mutex
);
336 for_each_possible_cpu(i
)
337 if ((buf
= *per_cpu_ptr(chan
->buf
, i
)))
338 __relay_reset(buf
, 0);
339 mutex_unlock(&relay_channels_mutex
);
341 EXPORT_SYMBOL_GPL(relay_reset
);
343 static inline void relay_set_buf_dentry(struct rchan_buf
*buf
,
344 struct dentry
*dentry
)
346 buf
->dentry
= dentry
;
347 d_inode(buf
->dentry
)->i_size
= buf
->early_bytes
;
350 static struct dentry
*relay_create_buf_file(struct rchan
*chan
,
351 struct rchan_buf
*buf
,
354 struct dentry
*dentry
;
357 tmpname
= kzalloc(NAME_MAX
+ 1, GFP_KERNEL
);
360 snprintf(tmpname
, NAME_MAX
, "%s%d", chan
->base_filename
, cpu
);
362 /* Create file in fs */
363 dentry
= chan
->cb
->create_buf_file(tmpname
, chan
->parent
,
375 * relay_open_buf - create a new relay channel buffer
377 * used by relay_open() and CPU hotplug.
379 static struct rchan_buf
*relay_open_buf(struct rchan
*chan
, unsigned int cpu
)
381 struct rchan_buf
*buf
= NULL
;
382 struct dentry
*dentry
;
385 return *per_cpu_ptr(chan
->buf
, 0);
387 buf
= relay_create_buf(chan
);
391 if (chan
->has_base_filename
) {
392 dentry
= relay_create_buf_file(chan
, buf
, cpu
);
395 relay_set_buf_dentry(buf
, dentry
);
397 /* Only retrieve global info, nothing more, nothing less */
398 dentry
= chan
->cb
->create_buf_file(NULL
, NULL
,
401 if (IS_ERR_OR_NULL(dentry
))
406 __relay_reset(buf
, 1);
408 if(chan
->is_global
) {
409 *per_cpu_ptr(chan
->buf
, 0) = buf
;
416 relay_destroy_buf(buf
);
421 * relay_close_buf - close a channel buffer
422 * @buf: channel buffer
424 * Marks the buffer finalized and restores the default callbacks.
425 * The channel buffer and channel buffer data structure are then freed
426 * automatically when the last reference is given up.
428 static void relay_close_buf(struct rchan_buf
*buf
)
431 irq_work_sync(&buf
->wakeup_work
);
432 buf
->chan
->cb
->remove_buf_file(buf
->dentry
);
433 kref_put(&buf
->kref
, relay_remove_buf
);
436 int relay_prepare_cpu(unsigned int cpu
)
439 struct rchan_buf
*buf
;
441 mutex_lock(&relay_channels_mutex
);
442 list_for_each_entry(chan
, &relay_channels
, list
) {
443 if ((buf
= *per_cpu_ptr(chan
->buf
, cpu
)))
445 buf
= relay_open_buf(chan
, cpu
);
447 pr_err("relay: cpu %d buffer creation failed\n", cpu
);
448 mutex_unlock(&relay_channels_mutex
);
451 *per_cpu_ptr(chan
->buf
, cpu
) = buf
;
453 mutex_unlock(&relay_channels_mutex
);
458 * relay_open - create a new relay channel
459 * @base_filename: base name of files to create, %NULL for buffering only
460 * @parent: dentry of parent directory, %NULL for root directory or buffer
461 * @subbuf_size: size of sub-buffers
462 * @n_subbufs: number of sub-buffers
463 * @cb: client callback functions
464 * @private_data: user-defined data
466 * Returns channel pointer if successful, %NULL otherwise.
468 * Creates a channel buffer for each cpu using the sizes and
469 * attributes specified. The created channel buffer files
470 * will be named base_filename0...base_filenameN-1. File
471 * permissions will be %S_IRUSR.
473 * If opening a buffer (@parent = NULL) that you later wish to register
474 * in a filesystem, call relay_late_setup_files() once the @parent dentry
477 struct rchan
*relay_open(const char *base_filename
,
478 struct dentry
*parent
,
481 const struct rchan_callbacks
*cb
,
486 struct rchan_buf
*buf
;
488 if (!(subbuf_size
&& n_subbufs
))
490 if (subbuf_size
> UINT_MAX
/ n_subbufs
)
492 if (!cb
|| !cb
->create_buf_file
|| !cb
->remove_buf_file
)
495 chan
= kzalloc(sizeof(struct rchan
), GFP_KERNEL
);
499 chan
->buf
= alloc_percpu(struct rchan_buf
*);
505 chan
->version
= RELAYFS_CHANNEL_VERSION
;
506 chan
->n_subbufs
= n_subbufs
;
507 chan
->subbuf_size
= subbuf_size
;
508 chan
->alloc_size
= PAGE_ALIGN(subbuf_size
* n_subbufs
);
509 chan
->parent
= parent
;
510 chan
->private_data
= private_data
;
512 chan
->has_base_filename
= 1;
513 strlcpy(chan
->base_filename
, base_filename
, NAME_MAX
);
516 kref_init(&chan
->kref
);
518 mutex_lock(&relay_channels_mutex
);
519 for_each_online_cpu(i
) {
520 buf
= relay_open_buf(chan
, i
);
523 *per_cpu_ptr(chan
->buf
, i
) = buf
;
525 list_add(&chan
->list
, &relay_channels
);
526 mutex_unlock(&relay_channels_mutex
);
531 for_each_possible_cpu(i
) {
532 if ((buf
= *per_cpu_ptr(chan
->buf
, i
)))
533 relay_close_buf(buf
);
536 kref_put(&chan
->kref
, relay_destroy_channel
);
537 mutex_unlock(&relay_channels_mutex
);
540 EXPORT_SYMBOL_GPL(relay_open
);
542 struct rchan_percpu_buf_dispatcher
{
543 struct rchan_buf
*buf
;
544 struct dentry
*dentry
;
547 /* Called in atomic context. */
548 static void __relay_set_buf_dentry(void *info
)
550 struct rchan_percpu_buf_dispatcher
*p
= info
;
552 relay_set_buf_dentry(p
->buf
, p
->dentry
);
556 * relay_late_setup_files - triggers file creation
557 * @chan: channel to operate on
558 * @base_filename: base name of files to create
559 * @parent: dentry of parent directory, %NULL for root directory
561 * Returns 0 if successful, non-zero otherwise.
563 * Use to setup files for a previously buffer-only channel created
564 * by relay_open() with a NULL parent dentry.
566 * For example, this is useful for perfomring early tracing in kernel,
567 * before VFS is up and then exposing the early results once the dentry
570 int relay_late_setup_files(struct rchan
*chan
,
571 const char *base_filename
,
572 struct dentry
*parent
)
575 unsigned int i
, curr_cpu
;
577 struct dentry
*dentry
;
578 struct rchan_buf
*buf
;
579 struct rchan_percpu_buf_dispatcher disp
;
581 if (!chan
|| !base_filename
)
584 strlcpy(chan
->base_filename
, base_filename
, NAME_MAX
);
586 mutex_lock(&relay_channels_mutex
);
587 /* Is chan already set up? */
588 if (unlikely(chan
->has_base_filename
)) {
589 mutex_unlock(&relay_channels_mutex
);
592 chan
->has_base_filename
= 1;
593 chan
->parent
= parent
;
595 if (chan
->is_global
) {
597 buf
= *per_cpu_ptr(chan
->buf
, 0);
598 if (!WARN_ON_ONCE(!buf
)) {
599 dentry
= relay_create_buf_file(chan
, buf
, 0);
600 if (dentry
&& !WARN_ON_ONCE(!chan
->is_global
)) {
601 relay_set_buf_dentry(buf
, dentry
);
605 mutex_unlock(&relay_channels_mutex
);
609 curr_cpu
= get_cpu();
611 * The CPU hotplug notifier ran before us and created buffers with
612 * no files associated. So it's safe to call relay_setup_buf_file()
613 * on all currently online CPUs.
615 for_each_online_cpu(i
) {
616 buf
= *per_cpu_ptr(chan
->buf
, i
);
617 if (unlikely(!buf
)) {
618 WARN_ONCE(1, KERN_ERR
"CPU has no buffer!\n");
623 dentry
= relay_create_buf_file(chan
, buf
, i
);
624 if (unlikely(!dentry
)) {
630 local_irq_save(flags
);
631 relay_set_buf_dentry(buf
, dentry
);
632 local_irq_restore(flags
);
635 disp
.dentry
= dentry
;
637 /* relay_channels_mutex must be held, so wait. */
638 err
= smp_call_function_single(i
,
639 __relay_set_buf_dentry
,
646 mutex_unlock(&relay_channels_mutex
);
650 EXPORT_SYMBOL_GPL(relay_late_setup_files
);
653 * relay_switch_subbuf - switch to a new sub-buffer
654 * @buf: channel buffer
655 * @length: size of current event
657 * Returns either the length passed in or 0 if full.
659 * Performs sub-buffer-switch tasks such as invoking callbacks,
660 * updating padding counts, waking up readers, etc.
662 size_t relay_switch_subbuf(struct rchan_buf
*buf
, size_t length
)
665 size_t old_subbuf
, new_subbuf
;
667 if (unlikely(length
> buf
->chan
->subbuf_size
))
670 if (buf
->offset
!= buf
->chan
->subbuf_size
+ 1) {
671 buf
->prev_padding
= buf
->chan
->subbuf_size
- buf
->offset
;
672 old_subbuf
= buf
->subbufs_produced
% buf
->chan
->n_subbufs
;
673 buf
->padding
[old_subbuf
] = buf
->prev_padding
;
674 buf
->subbufs_produced
++;
676 d_inode(buf
->dentry
)->i_size
+=
677 buf
->chan
->subbuf_size
-
678 buf
->padding
[old_subbuf
];
680 buf
->early_bytes
+= buf
->chan
->subbuf_size
-
681 buf
->padding
[old_subbuf
];
683 if (waitqueue_active(&buf
->read_wait
)) {
685 * Calling wake_up_interruptible() from here
686 * will deadlock if we happen to be logging
687 * from the scheduler (trying to re-grab
688 * rq->lock), so defer it.
690 irq_work_queue(&buf
->wakeup_work
);
695 new_subbuf
= buf
->subbufs_produced
% buf
->chan
->n_subbufs
;
696 new = buf
->start
+ new_subbuf
* buf
->chan
->subbuf_size
;
698 if (!relay_subbuf_start(buf
, new, old
, buf
->prev_padding
)) {
699 buf
->offset
= buf
->chan
->subbuf_size
+ 1;
703 buf
->padding
[new_subbuf
] = 0;
705 if (unlikely(length
+ buf
->offset
> buf
->chan
->subbuf_size
))
711 buf
->chan
->last_toobig
= length
;
714 EXPORT_SYMBOL_GPL(relay_switch_subbuf
);
717 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
719 * @cpu: the cpu associated with the channel buffer to update
720 * @subbufs_consumed: number of sub-buffers to add to current buf's count
722 * Adds to the channel buffer's consumed sub-buffer count.
723 * subbufs_consumed should be the number of sub-buffers newly consumed,
724 * not the total consumed.
726 * NOTE. Kernel clients don't need to call this function if the channel
727 * mode is 'overwrite'.
729 void relay_subbufs_consumed(struct rchan
*chan
,
731 size_t subbufs_consumed
)
733 struct rchan_buf
*buf
;
735 if (!chan
|| cpu
>= NR_CPUS
)
738 buf
= *per_cpu_ptr(chan
->buf
, cpu
);
739 if (!buf
|| subbufs_consumed
> chan
->n_subbufs
)
742 if (subbufs_consumed
> buf
->subbufs_produced
- buf
->subbufs_consumed
)
743 buf
->subbufs_consumed
= buf
->subbufs_produced
;
745 buf
->subbufs_consumed
+= subbufs_consumed
;
747 EXPORT_SYMBOL_GPL(relay_subbufs_consumed
);
750 * relay_close - close the channel
753 * Closes all channel buffers and frees the channel.
755 void relay_close(struct rchan
*chan
)
757 struct rchan_buf
*buf
;
763 mutex_lock(&relay_channels_mutex
);
764 if (chan
->is_global
&& (buf
= *per_cpu_ptr(chan
->buf
, 0)))
765 relay_close_buf(buf
);
767 for_each_possible_cpu(i
)
768 if ((buf
= *per_cpu_ptr(chan
->buf
, i
)))
769 relay_close_buf(buf
);
771 if (chan
->last_toobig
)
772 printk(KERN_WARNING
"relay: one or more items not logged "
773 "[item size (%zd) > sub-buffer size (%zd)]\n",
774 chan
->last_toobig
, chan
->subbuf_size
);
776 list_del(&chan
->list
);
777 kref_put(&chan
->kref
, relay_destroy_channel
);
778 mutex_unlock(&relay_channels_mutex
);
780 EXPORT_SYMBOL_GPL(relay_close
);
783 * relay_flush - close the channel
786 * Flushes all channel buffers, i.e. forces buffer switch.
788 void relay_flush(struct rchan
*chan
)
790 struct rchan_buf
*buf
;
796 if (chan
->is_global
&& (buf
= *per_cpu_ptr(chan
->buf
, 0))) {
797 relay_switch_subbuf(buf
, 0);
801 mutex_lock(&relay_channels_mutex
);
802 for_each_possible_cpu(i
)
803 if ((buf
= *per_cpu_ptr(chan
->buf
, i
)))
804 relay_switch_subbuf(buf
, 0);
805 mutex_unlock(&relay_channels_mutex
);
807 EXPORT_SYMBOL_GPL(relay_flush
);
810 * relay_file_open - open file op for relay files
814 * Increments the channel buffer refcount.
816 static int relay_file_open(struct inode
*inode
, struct file
*filp
)
818 struct rchan_buf
*buf
= inode
->i_private
;
819 kref_get(&buf
->kref
);
820 filp
->private_data
= buf
;
822 return nonseekable_open(inode
, filp
);
826 * relay_file_mmap - mmap file op for relay files
828 * @vma: the vma describing what to map
830 * Calls upon relay_mmap_buf() to map the file into user space.
832 static int relay_file_mmap(struct file
*filp
, struct vm_area_struct
*vma
)
834 struct rchan_buf
*buf
= filp
->private_data
;
835 return relay_mmap_buf(buf
, vma
);
839 * relay_file_poll - poll file op for relay files
845 static __poll_t
relay_file_poll(struct file
*filp
, poll_table
*wait
)
848 struct rchan_buf
*buf
= filp
->private_data
;
853 if (filp
->f_mode
& FMODE_READ
) {
854 poll_wait(filp
, &buf
->read_wait
, wait
);
855 if (!relay_buf_empty(buf
))
856 mask
|= EPOLLIN
| EPOLLRDNORM
;
863 * relay_file_release - release file op for relay files
867 * Decrements the channel refcount, as the filesystem is
868 * no longer using it.
870 static int relay_file_release(struct inode
*inode
, struct file
*filp
)
872 struct rchan_buf
*buf
= filp
->private_data
;
873 kref_put(&buf
->kref
, relay_remove_buf
);
879 * relay_file_read_consume - update the consumed count for the buffer
881 static void relay_file_read_consume(struct rchan_buf
*buf
,
883 size_t bytes_consumed
)
885 size_t subbuf_size
= buf
->chan
->subbuf_size
;
886 size_t n_subbufs
= buf
->chan
->n_subbufs
;
889 if (buf
->subbufs_produced
== buf
->subbufs_consumed
&&
890 buf
->offset
== buf
->bytes_consumed
)
893 if (buf
->bytes_consumed
+ bytes_consumed
> subbuf_size
) {
894 relay_subbufs_consumed(buf
->chan
, buf
->cpu
, 1);
895 buf
->bytes_consumed
= 0;
898 buf
->bytes_consumed
+= bytes_consumed
;
900 read_subbuf
= buf
->subbufs_consumed
% n_subbufs
;
902 read_subbuf
= read_pos
/ buf
->chan
->subbuf_size
;
903 if (buf
->bytes_consumed
+ buf
->padding
[read_subbuf
] == subbuf_size
) {
904 if ((read_subbuf
== buf
->subbufs_produced
% n_subbufs
) &&
905 (buf
->offset
== subbuf_size
))
907 relay_subbufs_consumed(buf
->chan
, buf
->cpu
, 1);
908 buf
->bytes_consumed
= 0;
913 * relay_file_read_avail - boolean, are there unconsumed bytes available?
915 static int relay_file_read_avail(struct rchan_buf
*buf
)
917 size_t subbuf_size
= buf
->chan
->subbuf_size
;
918 size_t n_subbufs
= buf
->chan
->n_subbufs
;
919 size_t produced
= buf
->subbufs_produced
;
922 relay_file_read_consume(buf
, 0, 0);
924 consumed
= buf
->subbufs_consumed
;
926 if (unlikely(buf
->offset
> subbuf_size
)) {
927 if (produced
== consumed
)
932 if (unlikely(produced
- consumed
>= n_subbufs
)) {
933 consumed
= produced
- n_subbufs
+ 1;
934 buf
->subbufs_consumed
= consumed
;
935 buf
->bytes_consumed
= 0;
938 produced
= (produced
% n_subbufs
) * subbuf_size
+ buf
->offset
;
939 consumed
= (consumed
% n_subbufs
) * subbuf_size
+ buf
->bytes_consumed
;
941 if (consumed
> produced
)
942 produced
+= n_subbufs
* subbuf_size
;
944 if (consumed
== produced
) {
945 if (buf
->offset
== subbuf_size
&&
946 buf
->subbufs_produced
> buf
->subbufs_consumed
)
955 * relay_file_read_subbuf_avail - return bytes available in sub-buffer
956 * @read_pos: file read position
957 * @buf: relay channel buffer
959 static size_t relay_file_read_subbuf_avail(size_t read_pos
,
960 struct rchan_buf
*buf
)
962 size_t padding
, avail
= 0;
963 size_t read_subbuf
, read_offset
, write_subbuf
, write_offset
;
964 size_t subbuf_size
= buf
->chan
->subbuf_size
;
966 write_subbuf
= (buf
->data
- buf
->start
) / subbuf_size
;
967 write_offset
= buf
->offset
> subbuf_size
? subbuf_size
: buf
->offset
;
968 read_subbuf
= read_pos
/ subbuf_size
;
969 read_offset
= read_pos
% subbuf_size
;
970 padding
= buf
->padding
[read_subbuf
];
972 if (read_subbuf
== write_subbuf
) {
973 if (read_offset
+ padding
< write_offset
)
974 avail
= write_offset
- (read_offset
+ padding
);
976 avail
= (subbuf_size
- padding
) - read_offset
;
982 * relay_file_read_start_pos - find the first available byte to read
983 * @buf: relay channel buffer
985 * If the read_pos is in the middle of padding, return the
986 * position of the first actually available byte, otherwise
987 * return the original value.
989 static size_t relay_file_read_start_pos(struct rchan_buf
*buf
)
991 size_t read_subbuf
, padding
, padding_start
, padding_end
;
992 size_t subbuf_size
= buf
->chan
->subbuf_size
;
993 size_t n_subbufs
= buf
->chan
->n_subbufs
;
994 size_t consumed
= buf
->subbufs_consumed
% n_subbufs
;
995 size_t read_pos
= consumed
* subbuf_size
+ buf
->bytes_consumed
;
997 read_subbuf
= read_pos
/ subbuf_size
;
998 padding
= buf
->padding
[read_subbuf
];
999 padding_start
= (read_subbuf
+ 1) * subbuf_size
- padding
;
1000 padding_end
= (read_subbuf
+ 1) * subbuf_size
;
1001 if (read_pos
>= padding_start
&& read_pos
< padding_end
) {
1002 read_subbuf
= (read_subbuf
+ 1) % n_subbufs
;
1003 read_pos
= read_subbuf
* subbuf_size
;
1010 * relay_file_read_end_pos - return the new read position
1011 * @read_pos: file read position
1012 * @buf: relay channel buffer
1013 * @count: number of bytes to be read
1015 static size_t relay_file_read_end_pos(struct rchan_buf
*buf
,
1019 size_t read_subbuf
, padding
, end_pos
;
1020 size_t subbuf_size
= buf
->chan
->subbuf_size
;
1021 size_t n_subbufs
= buf
->chan
->n_subbufs
;
1023 read_subbuf
= read_pos
/ subbuf_size
;
1024 padding
= buf
->padding
[read_subbuf
];
1025 if (read_pos
% subbuf_size
+ count
+ padding
== subbuf_size
)
1026 end_pos
= (read_subbuf
+ 1) * subbuf_size
;
1028 end_pos
= read_pos
+ count
;
1029 if (end_pos
>= subbuf_size
* n_subbufs
)
1035 static ssize_t
relay_file_read(struct file
*filp
,
1036 char __user
*buffer
,
1040 struct rchan_buf
*buf
= filp
->private_data
;
1041 size_t read_start
, avail
;
1048 inode_lock(file_inode(filp
));
1052 if (!relay_file_read_avail(buf
))
1055 read_start
= relay_file_read_start_pos(buf
);
1056 avail
= relay_file_read_subbuf_avail(read_start
, buf
);
1060 avail
= min(count
, avail
);
1061 from
= buf
->start
+ read_start
;
1063 if (copy_to_user(buffer
, from
, avail
))
1070 relay_file_read_consume(buf
, read_start
, ret
);
1071 *ppos
= relay_file_read_end_pos(buf
, read_start
, ret
);
1073 inode_unlock(file_inode(filp
));
1078 static void relay_consume_bytes(struct rchan_buf
*rbuf
, int bytes_consumed
)
1080 rbuf
->bytes_consumed
+= bytes_consumed
;
1082 if (rbuf
->bytes_consumed
>= rbuf
->chan
->subbuf_size
) {
1083 relay_subbufs_consumed(rbuf
->chan
, rbuf
->cpu
, 1);
1084 rbuf
->bytes_consumed
%= rbuf
->chan
->subbuf_size
;
1088 static void relay_pipe_buf_release(struct pipe_inode_info
*pipe
,
1089 struct pipe_buffer
*buf
)
1091 struct rchan_buf
*rbuf
;
1093 rbuf
= (struct rchan_buf
*)page_private(buf
->page
);
1094 relay_consume_bytes(rbuf
, buf
->private);
1097 static const struct pipe_buf_operations relay_pipe_buf_ops
= {
1098 .release
= relay_pipe_buf_release
,
1099 .try_steal
= generic_pipe_buf_try_steal
,
1100 .get
= generic_pipe_buf_get
,
1103 static void relay_page_release(struct splice_pipe_desc
*spd
, unsigned int i
)
1108 * subbuf_splice_actor - splice up to one subbuf's worth of data
1110 static ssize_t
subbuf_splice_actor(struct file
*in
,
1112 struct pipe_inode_info
*pipe
,
1117 unsigned int pidx
, poff
, total_len
, subbuf_pages
, nr_pages
;
1118 struct rchan_buf
*rbuf
= in
->private_data
;
1119 unsigned int subbuf_size
= rbuf
->chan
->subbuf_size
;
1120 uint64_t pos
= (uint64_t) *ppos
;
1121 uint32_t alloc_size
= (uint32_t) rbuf
->chan
->alloc_size
;
1122 size_t read_start
= (size_t) do_div(pos
, alloc_size
);
1123 size_t read_subbuf
= read_start
/ subbuf_size
;
1124 size_t padding
= rbuf
->padding
[read_subbuf
];
1125 size_t nonpad_end
= read_subbuf
* subbuf_size
+ subbuf_size
- padding
;
1126 struct page
*pages
[PIPE_DEF_BUFFERS
];
1127 struct partial_page partial
[PIPE_DEF_BUFFERS
];
1128 struct splice_pipe_desc spd
= {
1131 .nr_pages_max
= PIPE_DEF_BUFFERS
,
1133 .ops
= &relay_pipe_buf_ops
,
1134 .spd_release
= relay_page_release
,
1138 if (rbuf
->subbufs_produced
== rbuf
->subbufs_consumed
)
1140 if (splice_grow_spd(pipe
, &spd
))
1144 * Adjust read len, if longer than what is available
1146 if (len
> (subbuf_size
- read_start
% subbuf_size
))
1147 len
= subbuf_size
- read_start
% subbuf_size
;
1149 subbuf_pages
= rbuf
->chan
->alloc_size
>> PAGE_SHIFT
;
1150 pidx
= (read_start
/ PAGE_SIZE
) % subbuf_pages
;
1151 poff
= read_start
& ~PAGE_MASK
;
1152 nr_pages
= min_t(unsigned int, subbuf_pages
, spd
.nr_pages_max
);
1154 for (total_len
= 0; spd
.nr_pages
< nr_pages
; spd
.nr_pages
++) {
1155 unsigned int this_len
, this_end
, private;
1156 unsigned int cur_pos
= read_start
+ total_len
;
1161 this_len
= min_t(unsigned long, len
, PAGE_SIZE
- poff
);
1164 spd
.pages
[spd
.nr_pages
] = rbuf
->page_array
[pidx
];
1165 spd
.partial
[spd
.nr_pages
].offset
= poff
;
1167 this_end
= cur_pos
+ this_len
;
1168 if (this_end
>= nonpad_end
) {
1169 this_len
= nonpad_end
- cur_pos
;
1170 private = this_len
+ padding
;
1172 spd
.partial
[spd
.nr_pages
].len
= this_len
;
1173 spd
.partial
[spd
.nr_pages
].private = private;
1176 total_len
+= this_len
;
1178 pidx
= (pidx
+ 1) % subbuf_pages
;
1180 if (this_end
>= nonpad_end
) {
1190 ret
= *nonpad_ret
= splice_to_pipe(pipe
, &spd
);
1191 if (ret
< 0 || ret
< total_len
)
1194 if (read_start
+ ret
== nonpad_end
)
1198 splice_shrink_spd(&spd
);
1202 static ssize_t
relay_file_splice_read(struct file
*in
,
1204 struct pipe_inode_info
*pipe
,
1215 while (len
&& !spliced
) {
1216 ret
= subbuf_splice_actor(in
, ppos
, pipe
, len
, flags
, &nonpad_ret
);
1220 if (flags
& SPLICE_F_NONBLOCK
)
1230 spliced
+= nonpad_ret
;
1240 const struct file_operations relay_file_operations
= {
1241 .open
= relay_file_open
,
1242 .poll
= relay_file_poll
,
1243 .mmap
= relay_file_mmap
,
1244 .read
= relay_file_read
,
1245 .llseek
= no_llseek
,
1246 .release
= relay_file_release
,
1247 .splice_read
= relay_file_splice_read
,
1249 EXPORT_SYMBOL_GPL(relay_file_operations
);