Merge tag 'usb-5.11-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[linux/fpc-iii.git] / kernel / sched / sched.h
blob12ada79d40f338209e40244b156a69883ffbe0e9
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Scheduler internal types and methods:
4 */
5 #include <linux/sched.h>
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/smt.h>
27 #include <linux/sched/stat.h>
28 #include <linux/sched/sysctl.h>
29 #include <linux/sched/task.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/sched/topology.h>
32 #include <linux/sched/user.h>
33 #include <linux/sched/wake_q.h>
34 #include <linux/sched/xacct.h>
36 #include <uapi/linux/sched/types.h>
38 #include <linux/binfmts.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpufreq.h>
43 #include <linux/cpuidle.h>
44 #include <linux/cpuset.h>
45 #include <linux/ctype.h>
46 #include <linux/debugfs.h>
47 #include <linux/delayacct.h>
48 #include <linux/energy_model.h>
49 #include <linux/init_task.h>
50 #include <linux/kprobes.h>
51 #include <linux/kthread.h>
52 #include <linux/membarrier.h>
53 #include <linux/migrate.h>
54 #include <linux/mmu_context.h>
55 #include <linux/nmi.h>
56 #include <linux/proc_fs.h>
57 #include <linux/prefetch.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcupdate_wait.h>
61 #include <linux/security.h>
62 #include <linux/stop_machine.h>
63 #include <linux/suspend.h>
64 #include <linux/swait.h>
65 #include <linux/syscalls.h>
66 #include <linux/task_work.h>
67 #include <linux/tsacct_kern.h>
69 #include <asm/tlb.h>
71 #ifdef CONFIG_PARAVIRT
72 # include <asm/paravirt.h>
73 #endif
75 #include "cpupri.h"
76 #include "cpudeadline.h"
78 #include <trace/events/sched.h>
80 #ifdef CONFIG_SCHED_DEBUG
81 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
82 #else
83 # define SCHED_WARN_ON(x) ({ (void)(x), 0; })
84 #endif
86 struct rq;
87 struct cpuidle_state;
89 /* task_struct::on_rq states: */
90 #define TASK_ON_RQ_QUEUED 1
91 #define TASK_ON_RQ_MIGRATING 2
93 extern __read_mostly int scheduler_running;
95 extern unsigned long calc_load_update;
96 extern atomic_long_t calc_load_tasks;
98 extern void calc_global_load_tick(struct rq *this_rq);
99 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
101 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
103 * Helpers for converting nanosecond timing to jiffy resolution
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
108 * Increase resolution of nice-level calculations for 64-bit architectures.
109 * The extra resolution improves shares distribution and load balancing of
110 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
111 * hierarchies, especially on larger systems. This is not a user-visible change
112 * and does not change the user-interface for setting shares/weights.
114 * We increase resolution only if we have enough bits to allow this increased
115 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
116 * are pretty high and the returns do not justify the increased costs.
118 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
119 * increase coverage and consistency always enable it on 64-bit platforms.
121 #ifdef CONFIG_64BIT
122 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
123 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
124 # define scale_load_down(w) \
125 ({ \
126 unsigned long __w = (w); \
127 if (__w) \
128 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
129 __w; \
131 #else
132 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
133 # define scale_load(w) (w)
134 # define scale_load_down(w) (w)
135 #endif
138 * Task weight (visible to users) and its load (invisible to users) have
139 * independent resolution, but they should be well calibrated. We use
140 * scale_load() and scale_load_down(w) to convert between them. The
141 * following must be true:
143 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
146 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
149 * Single value that decides SCHED_DEADLINE internal math precision.
150 * 10 -> just above 1us
151 * 9 -> just above 0.5us
153 #define DL_SCALE 10
156 * Single value that denotes runtime == period, ie unlimited time.
158 #define RUNTIME_INF ((u64)~0ULL)
160 static inline int idle_policy(int policy)
162 return policy == SCHED_IDLE;
164 static inline int fair_policy(int policy)
166 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
169 static inline int rt_policy(int policy)
171 return policy == SCHED_FIFO || policy == SCHED_RR;
174 static inline int dl_policy(int policy)
176 return policy == SCHED_DEADLINE;
178 static inline bool valid_policy(int policy)
180 return idle_policy(policy) || fair_policy(policy) ||
181 rt_policy(policy) || dl_policy(policy);
184 static inline int task_has_idle_policy(struct task_struct *p)
186 return idle_policy(p->policy);
189 static inline int task_has_rt_policy(struct task_struct *p)
191 return rt_policy(p->policy);
194 static inline int task_has_dl_policy(struct task_struct *p)
196 return dl_policy(p->policy);
199 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
201 static inline void update_avg(u64 *avg, u64 sample)
203 s64 diff = sample - *avg;
204 *avg += diff / 8;
208 * !! For sched_setattr_nocheck() (kernel) only !!
210 * This is actually gross. :(
212 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
213 * tasks, but still be able to sleep. We need this on platforms that cannot
214 * atomically change clock frequency. Remove once fast switching will be
215 * available on such platforms.
217 * SUGOV stands for SchedUtil GOVernor.
219 #define SCHED_FLAG_SUGOV 0x10000000
221 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
223 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
224 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
225 #else
226 return false;
227 #endif
231 * Tells if entity @a should preempt entity @b.
233 static inline bool
234 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
236 return dl_entity_is_special(a) ||
237 dl_time_before(a->deadline, b->deadline);
241 * This is the priority-queue data structure of the RT scheduling class:
243 struct rt_prio_array {
244 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
245 struct list_head queue[MAX_RT_PRIO];
248 struct rt_bandwidth {
249 /* nests inside the rq lock: */
250 raw_spinlock_t rt_runtime_lock;
251 ktime_t rt_period;
252 u64 rt_runtime;
253 struct hrtimer rt_period_timer;
254 unsigned int rt_period_active;
257 void __dl_clear_params(struct task_struct *p);
259 struct dl_bandwidth {
260 raw_spinlock_t dl_runtime_lock;
261 u64 dl_runtime;
262 u64 dl_period;
265 static inline int dl_bandwidth_enabled(void)
267 return sysctl_sched_rt_runtime >= 0;
271 * To keep the bandwidth of -deadline tasks under control
272 * we need some place where:
273 * - store the maximum -deadline bandwidth of each cpu;
274 * - cache the fraction of bandwidth that is currently allocated in
275 * each root domain;
277 * This is all done in the data structure below. It is similar to the
278 * one used for RT-throttling (rt_bandwidth), with the main difference
279 * that, since here we are only interested in admission control, we
280 * do not decrease any runtime while the group "executes", neither we
281 * need a timer to replenish it.
283 * With respect to SMP, bandwidth is given on a per root domain basis,
284 * meaning that:
285 * - bw (< 100%) is the deadline bandwidth of each CPU;
286 * - total_bw is the currently allocated bandwidth in each root domain;
288 struct dl_bw {
289 raw_spinlock_t lock;
290 u64 bw;
291 u64 total_bw;
294 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
296 static inline
297 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
299 dl_b->total_bw -= tsk_bw;
300 __dl_update(dl_b, (s32)tsk_bw / cpus);
303 static inline
304 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
306 dl_b->total_bw += tsk_bw;
307 __dl_update(dl_b, -((s32)tsk_bw / cpus));
310 static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap,
311 u64 old_bw, u64 new_bw)
313 return dl_b->bw != -1 &&
314 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
318 * Verify the fitness of task @p to run on @cpu taking into account the
319 * CPU original capacity and the runtime/deadline ratio of the task.
321 * The function will return true if the CPU original capacity of the
322 * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
323 * task and false otherwise.
325 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
327 unsigned long cap = arch_scale_cpu_capacity(cpu);
329 return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
332 extern void init_dl_bw(struct dl_bw *dl_b);
333 extern int sched_dl_global_validate(void);
334 extern void sched_dl_do_global(void);
335 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
336 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
337 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
338 extern bool __checkparam_dl(const struct sched_attr *attr);
339 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
340 extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
341 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
342 extern bool dl_cpu_busy(unsigned int cpu);
344 #ifdef CONFIG_CGROUP_SCHED
346 #include <linux/cgroup.h>
347 #include <linux/psi.h>
349 struct cfs_rq;
350 struct rt_rq;
352 extern struct list_head task_groups;
354 struct cfs_bandwidth {
355 #ifdef CONFIG_CFS_BANDWIDTH
356 raw_spinlock_t lock;
357 ktime_t period;
358 u64 quota;
359 u64 runtime;
360 s64 hierarchical_quota;
362 u8 idle;
363 u8 period_active;
364 u8 slack_started;
365 struct hrtimer period_timer;
366 struct hrtimer slack_timer;
367 struct list_head throttled_cfs_rq;
369 /* Statistics: */
370 int nr_periods;
371 int nr_throttled;
372 u64 throttled_time;
373 #endif
376 /* Task group related information */
377 struct task_group {
378 struct cgroup_subsys_state css;
380 #ifdef CONFIG_FAIR_GROUP_SCHED
381 /* schedulable entities of this group on each CPU */
382 struct sched_entity **se;
383 /* runqueue "owned" by this group on each CPU */
384 struct cfs_rq **cfs_rq;
385 unsigned long shares;
387 #ifdef CONFIG_SMP
389 * load_avg can be heavily contended at clock tick time, so put
390 * it in its own cacheline separated from the fields above which
391 * will also be accessed at each tick.
393 atomic_long_t load_avg ____cacheline_aligned;
394 #endif
395 #endif
397 #ifdef CONFIG_RT_GROUP_SCHED
398 struct sched_rt_entity **rt_se;
399 struct rt_rq **rt_rq;
401 struct rt_bandwidth rt_bandwidth;
402 #endif
404 struct rcu_head rcu;
405 struct list_head list;
407 struct task_group *parent;
408 struct list_head siblings;
409 struct list_head children;
411 #ifdef CONFIG_SCHED_AUTOGROUP
412 struct autogroup *autogroup;
413 #endif
415 struct cfs_bandwidth cfs_bandwidth;
417 #ifdef CONFIG_UCLAMP_TASK_GROUP
418 /* The two decimal precision [%] value requested from user-space */
419 unsigned int uclamp_pct[UCLAMP_CNT];
420 /* Clamp values requested for a task group */
421 struct uclamp_se uclamp_req[UCLAMP_CNT];
422 /* Effective clamp values used for a task group */
423 struct uclamp_se uclamp[UCLAMP_CNT];
424 #endif
428 #ifdef CONFIG_FAIR_GROUP_SCHED
429 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
432 * A weight of 0 or 1 can cause arithmetics problems.
433 * A weight of a cfs_rq is the sum of weights of which entities
434 * are queued on this cfs_rq, so a weight of a entity should not be
435 * too large, so as the shares value of a task group.
436 * (The default weight is 1024 - so there's no practical
437 * limitation from this.)
439 #define MIN_SHARES (1UL << 1)
440 #define MAX_SHARES (1UL << 18)
441 #endif
443 typedef int (*tg_visitor)(struct task_group *, void *);
445 extern int walk_tg_tree_from(struct task_group *from,
446 tg_visitor down, tg_visitor up, void *data);
449 * Iterate the full tree, calling @down when first entering a node and @up when
450 * leaving it for the final time.
452 * Caller must hold rcu_lock or sufficient equivalent.
454 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
456 return walk_tg_tree_from(&root_task_group, down, up, data);
459 extern int tg_nop(struct task_group *tg, void *data);
461 extern void free_fair_sched_group(struct task_group *tg);
462 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
463 extern void online_fair_sched_group(struct task_group *tg);
464 extern void unregister_fair_sched_group(struct task_group *tg);
465 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
466 struct sched_entity *se, int cpu,
467 struct sched_entity *parent);
468 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
470 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
471 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
472 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
474 extern void free_rt_sched_group(struct task_group *tg);
475 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
476 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
477 struct sched_rt_entity *rt_se, int cpu,
478 struct sched_rt_entity *parent);
479 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
480 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
481 extern long sched_group_rt_runtime(struct task_group *tg);
482 extern long sched_group_rt_period(struct task_group *tg);
483 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
485 extern struct task_group *sched_create_group(struct task_group *parent);
486 extern void sched_online_group(struct task_group *tg,
487 struct task_group *parent);
488 extern void sched_destroy_group(struct task_group *tg);
489 extern void sched_offline_group(struct task_group *tg);
491 extern void sched_move_task(struct task_struct *tsk);
493 #ifdef CONFIG_FAIR_GROUP_SCHED
494 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
496 #ifdef CONFIG_SMP
497 extern void set_task_rq_fair(struct sched_entity *se,
498 struct cfs_rq *prev, struct cfs_rq *next);
499 #else /* !CONFIG_SMP */
500 static inline void set_task_rq_fair(struct sched_entity *se,
501 struct cfs_rq *prev, struct cfs_rq *next) { }
502 #endif /* CONFIG_SMP */
503 #endif /* CONFIG_FAIR_GROUP_SCHED */
505 #else /* CONFIG_CGROUP_SCHED */
507 struct cfs_bandwidth { };
509 #endif /* CONFIG_CGROUP_SCHED */
511 /* CFS-related fields in a runqueue */
512 struct cfs_rq {
513 struct load_weight load;
514 unsigned int nr_running;
515 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */
516 unsigned int idle_h_nr_running; /* SCHED_IDLE */
518 u64 exec_clock;
519 u64 min_vruntime;
520 #ifndef CONFIG_64BIT
521 u64 min_vruntime_copy;
522 #endif
524 struct rb_root_cached tasks_timeline;
527 * 'curr' points to currently running entity on this cfs_rq.
528 * It is set to NULL otherwise (i.e when none are currently running).
530 struct sched_entity *curr;
531 struct sched_entity *next;
532 struct sched_entity *last;
533 struct sched_entity *skip;
535 #ifdef CONFIG_SCHED_DEBUG
536 unsigned int nr_spread_over;
537 #endif
539 #ifdef CONFIG_SMP
541 * CFS load tracking
543 struct sched_avg avg;
544 #ifndef CONFIG_64BIT
545 u64 load_last_update_time_copy;
546 #endif
547 struct {
548 raw_spinlock_t lock ____cacheline_aligned;
549 int nr;
550 unsigned long load_avg;
551 unsigned long util_avg;
552 unsigned long runnable_avg;
553 } removed;
555 #ifdef CONFIG_FAIR_GROUP_SCHED
556 unsigned long tg_load_avg_contrib;
557 long propagate;
558 long prop_runnable_sum;
561 * h_load = weight * f(tg)
563 * Where f(tg) is the recursive weight fraction assigned to
564 * this group.
566 unsigned long h_load;
567 u64 last_h_load_update;
568 struct sched_entity *h_load_next;
569 #endif /* CONFIG_FAIR_GROUP_SCHED */
570 #endif /* CONFIG_SMP */
572 #ifdef CONFIG_FAIR_GROUP_SCHED
573 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
576 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
577 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
578 * (like users, containers etc.)
580 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
581 * This list is used during load balance.
583 int on_list;
584 struct list_head leaf_cfs_rq_list;
585 struct task_group *tg; /* group that "owns" this runqueue */
587 #ifdef CONFIG_CFS_BANDWIDTH
588 int runtime_enabled;
589 s64 runtime_remaining;
591 u64 throttled_clock;
592 u64 throttled_clock_task;
593 u64 throttled_clock_task_time;
594 int throttled;
595 int throttle_count;
596 struct list_head throttled_list;
597 #endif /* CONFIG_CFS_BANDWIDTH */
598 #endif /* CONFIG_FAIR_GROUP_SCHED */
601 static inline int rt_bandwidth_enabled(void)
603 return sysctl_sched_rt_runtime >= 0;
606 /* RT IPI pull logic requires IRQ_WORK */
607 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
608 # define HAVE_RT_PUSH_IPI
609 #endif
611 /* Real-Time classes' related field in a runqueue: */
612 struct rt_rq {
613 struct rt_prio_array active;
614 unsigned int rt_nr_running;
615 unsigned int rr_nr_running;
616 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
617 struct {
618 int curr; /* highest queued rt task prio */
619 #ifdef CONFIG_SMP
620 int next; /* next highest */
621 #endif
622 } highest_prio;
623 #endif
624 #ifdef CONFIG_SMP
625 unsigned long rt_nr_migratory;
626 unsigned long rt_nr_total;
627 int overloaded;
628 struct plist_head pushable_tasks;
630 #endif /* CONFIG_SMP */
631 int rt_queued;
633 int rt_throttled;
634 u64 rt_time;
635 u64 rt_runtime;
636 /* Nests inside the rq lock: */
637 raw_spinlock_t rt_runtime_lock;
639 #ifdef CONFIG_RT_GROUP_SCHED
640 unsigned long rt_nr_boosted;
642 struct rq *rq;
643 struct task_group *tg;
644 #endif
647 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
649 return rt_rq->rt_queued && rt_rq->rt_nr_running;
652 /* Deadline class' related fields in a runqueue */
653 struct dl_rq {
654 /* runqueue is an rbtree, ordered by deadline */
655 struct rb_root_cached root;
657 unsigned long dl_nr_running;
659 #ifdef CONFIG_SMP
661 * Deadline values of the currently executing and the
662 * earliest ready task on this rq. Caching these facilitates
663 * the decision whether or not a ready but not running task
664 * should migrate somewhere else.
666 struct {
667 u64 curr;
668 u64 next;
669 } earliest_dl;
671 unsigned long dl_nr_migratory;
672 int overloaded;
675 * Tasks on this rq that can be pushed away. They are kept in
676 * an rb-tree, ordered by tasks' deadlines, with caching
677 * of the leftmost (earliest deadline) element.
679 struct rb_root_cached pushable_dl_tasks_root;
680 #else
681 struct dl_bw dl_bw;
682 #endif
684 * "Active utilization" for this runqueue: increased when a
685 * task wakes up (becomes TASK_RUNNING) and decreased when a
686 * task blocks
688 u64 running_bw;
691 * Utilization of the tasks "assigned" to this runqueue (including
692 * the tasks that are in runqueue and the tasks that executed on this
693 * CPU and blocked). Increased when a task moves to this runqueue, and
694 * decreased when the task moves away (migrates, changes scheduling
695 * policy, or terminates).
696 * This is needed to compute the "inactive utilization" for the
697 * runqueue (inactive utilization = this_bw - running_bw).
699 u64 this_bw;
700 u64 extra_bw;
703 * Inverse of the fraction of CPU utilization that can be reclaimed
704 * by the GRUB algorithm.
706 u64 bw_ratio;
709 #ifdef CONFIG_FAIR_GROUP_SCHED
710 /* An entity is a task if it doesn't "own" a runqueue */
711 #define entity_is_task(se) (!se->my_q)
713 static inline void se_update_runnable(struct sched_entity *se)
715 if (!entity_is_task(se))
716 se->runnable_weight = se->my_q->h_nr_running;
719 static inline long se_runnable(struct sched_entity *se)
721 if (entity_is_task(se))
722 return !!se->on_rq;
723 else
724 return se->runnable_weight;
727 #else
728 #define entity_is_task(se) 1
730 static inline void se_update_runnable(struct sched_entity *se) {}
732 static inline long se_runnable(struct sched_entity *se)
734 return !!se->on_rq;
736 #endif
738 #ifdef CONFIG_SMP
740 * XXX we want to get rid of these helpers and use the full load resolution.
742 static inline long se_weight(struct sched_entity *se)
744 return scale_load_down(se->load.weight);
748 static inline bool sched_asym_prefer(int a, int b)
750 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
753 struct perf_domain {
754 struct em_perf_domain *em_pd;
755 struct perf_domain *next;
756 struct rcu_head rcu;
759 /* Scheduling group status flags */
760 #define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
761 #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
764 * We add the notion of a root-domain which will be used to define per-domain
765 * variables. Each exclusive cpuset essentially defines an island domain by
766 * fully partitioning the member CPUs from any other cpuset. Whenever a new
767 * exclusive cpuset is created, we also create and attach a new root-domain
768 * object.
771 struct root_domain {
772 atomic_t refcount;
773 atomic_t rto_count;
774 struct rcu_head rcu;
775 cpumask_var_t span;
776 cpumask_var_t online;
779 * Indicate pullable load on at least one CPU, e.g:
780 * - More than one runnable task
781 * - Running task is misfit
783 int overload;
785 /* Indicate one or more cpus over-utilized (tipping point) */
786 int overutilized;
789 * The bit corresponding to a CPU gets set here if such CPU has more
790 * than one runnable -deadline task (as it is below for RT tasks).
792 cpumask_var_t dlo_mask;
793 atomic_t dlo_count;
794 struct dl_bw dl_bw;
795 struct cpudl cpudl;
798 * Indicate whether a root_domain's dl_bw has been checked or
799 * updated. It's monotonously increasing value.
801 * Also, some corner cases, like 'wrap around' is dangerous, but given
802 * that u64 is 'big enough'. So that shouldn't be a concern.
804 u64 visit_gen;
806 #ifdef HAVE_RT_PUSH_IPI
808 * For IPI pull requests, loop across the rto_mask.
810 struct irq_work rto_push_work;
811 raw_spinlock_t rto_lock;
812 /* These are only updated and read within rto_lock */
813 int rto_loop;
814 int rto_cpu;
815 /* These atomics are updated outside of a lock */
816 atomic_t rto_loop_next;
817 atomic_t rto_loop_start;
818 #endif
820 * The "RT overload" flag: it gets set if a CPU has more than
821 * one runnable RT task.
823 cpumask_var_t rto_mask;
824 struct cpupri cpupri;
826 unsigned long max_cpu_capacity;
829 * NULL-terminated list of performance domains intersecting with the
830 * CPUs of the rd. Protected by RCU.
832 struct perf_domain __rcu *pd;
835 extern void init_defrootdomain(void);
836 extern int sched_init_domains(const struct cpumask *cpu_map);
837 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
838 extern void sched_get_rd(struct root_domain *rd);
839 extern void sched_put_rd(struct root_domain *rd);
841 #ifdef HAVE_RT_PUSH_IPI
842 extern void rto_push_irq_work_func(struct irq_work *work);
843 #endif
844 #endif /* CONFIG_SMP */
846 #ifdef CONFIG_UCLAMP_TASK
848 * struct uclamp_bucket - Utilization clamp bucket
849 * @value: utilization clamp value for tasks on this clamp bucket
850 * @tasks: number of RUNNABLE tasks on this clamp bucket
852 * Keep track of how many tasks are RUNNABLE for a given utilization
853 * clamp value.
855 struct uclamp_bucket {
856 unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
857 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
861 * struct uclamp_rq - rq's utilization clamp
862 * @value: currently active clamp values for a rq
863 * @bucket: utilization clamp buckets affecting a rq
865 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
866 * A clamp value is affecting a rq when there is at least one task RUNNABLE
867 * (or actually running) with that value.
869 * There are up to UCLAMP_CNT possible different clamp values, currently there
870 * are only two: minimum utilization and maximum utilization.
872 * All utilization clamping values are MAX aggregated, since:
873 * - for util_min: we want to run the CPU at least at the max of the minimum
874 * utilization required by its currently RUNNABLE tasks.
875 * - for util_max: we want to allow the CPU to run up to the max of the
876 * maximum utilization allowed by its currently RUNNABLE tasks.
878 * Since on each system we expect only a limited number of different
879 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
880 * the metrics required to compute all the per-rq utilization clamp values.
882 struct uclamp_rq {
883 unsigned int value;
884 struct uclamp_bucket bucket[UCLAMP_BUCKETS];
887 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
888 #endif /* CONFIG_UCLAMP_TASK */
891 * This is the main, per-CPU runqueue data structure.
893 * Locking rule: those places that want to lock multiple runqueues
894 * (such as the load balancing or the thread migration code), lock
895 * acquire operations must be ordered by ascending &runqueue.
897 struct rq {
898 /* runqueue lock: */
899 raw_spinlock_t lock;
902 * nr_running and cpu_load should be in the same cacheline because
903 * remote CPUs use both these fields when doing load calculation.
905 unsigned int nr_running;
906 #ifdef CONFIG_NUMA_BALANCING
907 unsigned int nr_numa_running;
908 unsigned int nr_preferred_running;
909 unsigned int numa_migrate_on;
910 #endif
911 #ifdef CONFIG_NO_HZ_COMMON
912 #ifdef CONFIG_SMP
913 unsigned long last_blocked_load_update_tick;
914 unsigned int has_blocked_load;
915 call_single_data_t nohz_csd;
916 #endif /* CONFIG_SMP */
917 unsigned int nohz_tick_stopped;
918 atomic_t nohz_flags;
919 #endif /* CONFIG_NO_HZ_COMMON */
921 #ifdef CONFIG_SMP
922 unsigned int ttwu_pending;
923 #endif
924 u64 nr_switches;
926 #ifdef CONFIG_UCLAMP_TASK
927 /* Utilization clamp values based on CPU's RUNNABLE tasks */
928 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
929 unsigned int uclamp_flags;
930 #define UCLAMP_FLAG_IDLE 0x01
931 #endif
933 struct cfs_rq cfs;
934 struct rt_rq rt;
935 struct dl_rq dl;
937 #ifdef CONFIG_FAIR_GROUP_SCHED
938 /* list of leaf cfs_rq on this CPU: */
939 struct list_head leaf_cfs_rq_list;
940 struct list_head *tmp_alone_branch;
941 #endif /* CONFIG_FAIR_GROUP_SCHED */
944 * This is part of a global counter where only the total sum
945 * over all CPUs matters. A task can increase this counter on
946 * one CPU and if it got migrated afterwards it may decrease
947 * it on another CPU. Always updated under the runqueue lock:
949 unsigned long nr_uninterruptible;
951 struct task_struct __rcu *curr;
952 struct task_struct *idle;
953 struct task_struct *stop;
954 unsigned long next_balance;
955 struct mm_struct *prev_mm;
957 unsigned int clock_update_flags;
958 u64 clock;
959 /* Ensure that all clocks are in the same cache line */
960 u64 clock_task ____cacheline_aligned;
961 u64 clock_pelt;
962 unsigned long lost_idle_time;
964 atomic_t nr_iowait;
966 #ifdef CONFIG_MEMBARRIER
967 int membarrier_state;
968 #endif
970 #ifdef CONFIG_SMP
971 struct root_domain *rd;
972 struct sched_domain __rcu *sd;
974 unsigned long cpu_capacity;
975 unsigned long cpu_capacity_orig;
977 struct callback_head *balance_callback;
979 unsigned char nohz_idle_balance;
980 unsigned char idle_balance;
982 unsigned long misfit_task_load;
984 /* For active balancing */
985 int active_balance;
986 int push_cpu;
987 struct cpu_stop_work active_balance_work;
989 /* CPU of this runqueue: */
990 int cpu;
991 int online;
993 struct list_head cfs_tasks;
995 struct sched_avg avg_rt;
996 struct sched_avg avg_dl;
997 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
998 struct sched_avg avg_irq;
999 #endif
1000 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1001 struct sched_avg avg_thermal;
1002 #endif
1003 u64 idle_stamp;
1004 u64 avg_idle;
1006 /* This is used to determine avg_idle's max value */
1007 u64 max_idle_balance_cost;
1009 #ifdef CONFIG_HOTPLUG_CPU
1010 struct rcuwait hotplug_wait;
1011 #endif
1012 #endif /* CONFIG_SMP */
1014 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1015 u64 prev_irq_time;
1016 #endif
1017 #ifdef CONFIG_PARAVIRT
1018 u64 prev_steal_time;
1019 #endif
1020 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1021 u64 prev_steal_time_rq;
1022 #endif
1024 /* calc_load related fields */
1025 unsigned long calc_load_update;
1026 long calc_load_active;
1028 #ifdef CONFIG_SCHED_HRTICK
1029 #ifdef CONFIG_SMP
1030 call_single_data_t hrtick_csd;
1031 #endif
1032 struct hrtimer hrtick_timer;
1033 #endif
1035 #ifdef CONFIG_SCHEDSTATS
1036 /* latency stats */
1037 struct sched_info rq_sched_info;
1038 unsigned long long rq_cpu_time;
1039 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1041 /* sys_sched_yield() stats */
1042 unsigned int yld_count;
1044 /* schedule() stats */
1045 unsigned int sched_count;
1046 unsigned int sched_goidle;
1048 /* try_to_wake_up() stats */
1049 unsigned int ttwu_count;
1050 unsigned int ttwu_local;
1051 #endif
1053 #ifdef CONFIG_CPU_IDLE
1054 /* Must be inspected within a rcu lock section */
1055 struct cpuidle_state *idle_state;
1056 #endif
1058 #ifdef CONFIG_SMP
1059 unsigned int nr_pinned;
1060 #endif
1061 unsigned int push_busy;
1062 struct cpu_stop_work push_work;
1065 #ifdef CONFIG_FAIR_GROUP_SCHED
1067 /* CPU runqueue to which this cfs_rq is attached */
1068 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1070 return cfs_rq->rq;
1073 #else
1075 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1077 return container_of(cfs_rq, struct rq, cfs);
1079 #endif
1081 static inline int cpu_of(struct rq *rq)
1083 #ifdef CONFIG_SMP
1084 return rq->cpu;
1085 #else
1086 return 0;
1087 #endif
1090 #define MDF_PUSH 0x01
1092 static inline bool is_migration_disabled(struct task_struct *p)
1094 #ifdef CONFIG_SMP
1095 return p->migration_disabled;
1096 #else
1097 return false;
1098 #endif
1101 #ifdef CONFIG_SCHED_SMT
1102 extern void __update_idle_core(struct rq *rq);
1104 static inline void update_idle_core(struct rq *rq)
1106 if (static_branch_unlikely(&sched_smt_present))
1107 __update_idle_core(rq);
1110 #else
1111 static inline void update_idle_core(struct rq *rq) { }
1112 #endif
1114 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1116 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
1117 #define this_rq() this_cpu_ptr(&runqueues)
1118 #define task_rq(p) cpu_rq(task_cpu(p))
1119 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
1120 #define raw_rq() raw_cpu_ptr(&runqueues)
1122 extern void update_rq_clock(struct rq *rq);
1124 static inline u64 __rq_clock_broken(struct rq *rq)
1126 return READ_ONCE(rq->clock);
1130 * rq::clock_update_flags bits
1132 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1133 * call to __schedule(). This is an optimisation to avoid
1134 * neighbouring rq clock updates.
1136 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1137 * in effect and calls to update_rq_clock() are being ignored.
1139 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1140 * made to update_rq_clock() since the last time rq::lock was pinned.
1142 * If inside of __schedule(), clock_update_flags will have been
1143 * shifted left (a left shift is a cheap operation for the fast path
1144 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1146 * if (rq-clock_update_flags >= RQCF_UPDATED)
1148 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1149 * one position though, because the next rq_unpin_lock() will shift it
1150 * back.
1152 #define RQCF_REQ_SKIP 0x01
1153 #define RQCF_ACT_SKIP 0x02
1154 #define RQCF_UPDATED 0x04
1156 static inline void assert_clock_updated(struct rq *rq)
1159 * The only reason for not seeing a clock update since the
1160 * last rq_pin_lock() is if we're currently skipping updates.
1162 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1165 static inline u64 rq_clock(struct rq *rq)
1167 lockdep_assert_held(&rq->lock);
1168 assert_clock_updated(rq);
1170 return rq->clock;
1173 static inline u64 rq_clock_task(struct rq *rq)
1175 lockdep_assert_held(&rq->lock);
1176 assert_clock_updated(rq);
1178 return rq->clock_task;
1182 * By default the decay is the default pelt decay period.
1183 * The decay shift can change the decay period in
1184 * multiples of 32.
1185 * Decay shift Decay period(ms)
1186 * 0 32
1187 * 1 64
1188 * 2 128
1189 * 3 256
1190 * 4 512
1192 extern int sched_thermal_decay_shift;
1194 static inline u64 rq_clock_thermal(struct rq *rq)
1196 return rq_clock_task(rq) >> sched_thermal_decay_shift;
1199 static inline void rq_clock_skip_update(struct rq *rq)
1201 lockdep_assert_held(&rq->lock);
1202 rq->clock_update_flags |= RQCF_REQ_SKIP;
1206 * See rt task throttling, which is the only time a skip
1207 * request is cancelled.
1209 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1211 lockdep_assert_held(&rq->lock);
1212 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1215 struct rq_flags {
1216 unsigned long flags;
1217 struct pin_cookie cookie;
1218 #ifdef CONFIG_SCHED_DEBUG
1220 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1221 * current pin context is stashed here in case it needs to be
1222 * restored in rq_repin_lock().
1224 unsigned int clock_update_flags;
1225 #endif
1228 extern struct callback_head balance_push_callback;
1231 * Lockdep annotation that avoids accidental unlocks; it's like a
1232 * sticky/continuous lockdep_assert_held().
1234 * This avoids code that has access to 'struct rq *rq' (basically everything in
1235 * the scheduler) from accidentally unlocking the rq if they do not also have a
1236 * copy of the (on-stack) 'struct rq_flags rf'.
1238 * Also see Documentation/locking/lockdep-design.rst.
1240 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1242 rf->cookie = lockdep_pin_lock(&rq->lock);
1244 #ifdef CONFIG_SCHED_DEBUG
1245 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1246 rf->clock_update_flags = 0;
1247 #ifdef CONFIG_SMP
1248 SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1249 #endif
1250 #endif
1253 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1255 #ifdef CONFIG_SCHED_DEBUG
1256 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1257 rf->clock_update_flags = RQCF_UPDATED;
1258 #endif
1260 lockdep_unpin_lock(&rq->lock, rf->cookie);
1263 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1265 lockdep_repin_lock(&rq->lock, rf->cookie);
1267 #ifdef CONFIG_SCHED_DEBUG
1269 * Restore the value we stashed in @rf for this pin context.
1271 rq->clock_update_flags |= rf->clock_update_flags;
1272 #endif
1275 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1276 __acquires(rq->lock);
1278 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1279 __acquires(p->pi_lock)
1280 __acquires(rq->lock);
1282 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1283 __releases(rq->lock)
1285 rq_unpin_lock(rq, rf);
1286 raw_spin_unlock(&rq->lock);
1289 static inline void
1290 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1291 __releases(rq->lock)
1292 __releases(p->pi_lock)
1294 rq_unpin_lock(rq, rf);
1295 raw_spin_unlock(&rq->lock);
1296 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1299 static inline void
1300 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1301 __acquires(rq->lock)
1303 raw_spin_lock_irqsave(&rq->lock, rf->flags);
1304 rq_pin_lock(rq, rf);
1307 static inline void
1308 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1309 __acquires(rq->lock)
1311 raw_spin_lock_irq(&rq->lock);
1312 rq_pin_lock(rq, rf);
1315 static inline void
1316 rq_lock(struct rq *rq, struct rq_flags *rf)
1317 __acquires(rq->lock)
1319 raw_spin_lock(&rq->lock);
1320 rq_pin_lock(rq, rf);
1323 static inline void
1324 rq_relock(struct rq *rq, struct rq_flags *rf)
1325 __acquires(rq->lock)
1327 raw_spin_lock(&rq->lock);
1328 rq_repin_lock(rq, rf);
1331 static inline void
1332 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1333 __releases(rq->lock)
1335 rq_unpin_lock(rq, rf);
1336 raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1339 static inline void
1340 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1341 __releases(rq->lock)
1343 rq_unpin_lock(rq, rf);
1344 raw_spin_unlock_irq(&rq->lock);
1347 static inline void
1348 rq_unlock(struct rq *rq, struct rq_flags *rf)
1349 __releases(rq->lock)
1351 rq_unpin_lock(rq, rf);
1352 raw_spin_unlock(&rq->lock);
1355 static inline struct rq *
1356 this_rq_lock_irq(struct rq_flags *rf)
1357 __acquires(rq->lock)
1359 struct rq *rq;
1361 local_irq_disable();
1362 rq = this_rq();
1363 rq_lock(rq, rf);
1364 return rq;
1367 #ifdef CONFIG_NUMA
1368 enum numa_topology_type {
1369 NUMA_DIRECT,
1370 NUMA_GLUELESS_MESH,
1371 NUMA_BACKPLANE,
1373 extern enum numa_topology_type sched_numa_topology_type;
1374 extern int sched_max_numa_distance;
1375 extern bool find_numa_distance(int distance);
1376 extern void sched_init_numa(void);
1377 extern void sched_domains_numa_masks_set(unsigned int cpu);
1378 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1379 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1380 #else
1381 static inline void sched_init_numa(void) { }
1382 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1383 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1384 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1386 return nr_cpu_ids;
1388 #endif
1390 #ifdef CONFIG_NUMA_BALANCING
1391 /* The regions in numa_faults array from task_struct */
1392 enum numa_faults_stats {
1393 NUMA_MEM = 0,
1394 NUMA_CPU,
1395 NUMA_MEMBUF,
1396 NUMA_CPUBUF
1398 extern void sched_setnuma(struct task_struct *p, int node);
1399 extern int migrate_task_to(struct task_struct *p, int cpu);
1400 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1401 int cpu, int scpu);
1402 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1403 #else
1404 static inline void
1405 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1408 #endif /* CONFIG_NUMA_BALANCING */
1410 #ifdef CONFIG_SMP
1412 static inline void
1413 queue_balance_callback(struct rq *rq,
1414 struct callback_head *head,
1415 void (*func)(struct rq *rq))
1417 lockdep_assert_held(&rq->lock);
1419 if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1420 return;
1422 head->func = (void (*)(struct callback_head *))func;
1423 head->next = rq->balance_callback;
1424 rq->balance_callback = head;
1427 #define rcu_dereference_check_sched_domain(p) \
1428 rcu_dereference_check((p), \
1429 lockdep_is_held(&sched_domains_mutex))
1432 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1433 * See destroy_sched_domains: call_rcu for details.
1435 * The domain tree of any CPU may only be accessed from within
1436 * preempt-disabled sections.
1438 #define for_each_domain(cpu, __sd) \
1439 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1440 __sd; __sd = __sd->parent)
1443 * highest_flag_domain - Return highest sched_domain containing flag.
1444 * @cpu: The CPU whose highest level of sched domain is to
1445 * be returned.
1446 * @flag: The flag to check for the highest sched_domain
1447 * for the given CPU.
1449 * Returns the highest sched_domain of a CPU which contains the given flag.
1451 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1453 struct sched_domain *sd, *hsd = NULL;
1455 for_each_domain(cpu, sd) {
1456 if (!(sd->flags & flag))
1457 break;
1458 hsd = sd;
1461 return hsd;
1464 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1466 struct sched_domain *sd;
1468 for_each_domain(cpu, sd) {
1469 if (sd->flags & flag)
1470 break;
1473 return sd;
1476 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1477 DECLARE_PER_CPU(int, sd_llc_size);
1478 DECLARE_PER_CPU(int, sd_llc_id);
1479 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1480 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1481 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1482 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1483 extern struct static_key_false sched_asym_cpucapacity;
1485 struct sched_group_capacity {
1486 atomic_t ref;
1488 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1489 * for a single CPU.
1491 unsigned long capacity;
1492 unsigned long min_capacity; /* Min per-CPU capacity in group */
1493 unsigned long max_capacity; /* Max per-CPU capacity in group */
1494 unsigned long next_update;
1495 int imbalance; /* XXX unrelated to capacity but shared group state */
1497 #ifdef CONFIG_SCHED_DEBUG
1498 int id;
1499 #endif
1501 unsigned long cpumask[]; /* Balance mask */
1504 struct sched_group {
1505 struct sched_group *next; /* Must be a circular list */
1506 atomic_t ref;
1508 unsigned int group_weight;
1509 struct sched_group_capacity *sgc;
1510 int asym_prefer_cpu; /* CPU of highest priority in group */
1513 * The CPUs this group covers.
1515 * NOTE: this field is variable length. (Allocated dynamically
1516 * by attaching extra space to the end of the structure,
1517 * depending on how many CPUs the kernel has booted up with)
1519 unsigned long cpumask[];
1522 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1524 return to_cpumask(sg->cpumask);
1528 * See build_balance_mask().
1530 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1532 return to_cpumask(sg->sgc->cpumask);
1536 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1537 * @group: The group whose first CPU is to be returned.
1539 static inline unsigned int group_first_cpu(struct sched_group *group)
1541 return cpumask_first(sched_group_span(group));
1544 extern int group_balance_cpu(struct sched_group *sg);
1546 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1547 void register_sched_domain_sysctl(void);
1548 void dirty_sched_domain_sysctl(int cpu);
1549 void unregister_sched_domain_sysctl(void);
1550 #else
1551 static inline void register_sched_domain_sysctl(void)
1554 static inline void dirty_sched_domain_sysctl(int cpu)
1557 static inline void unregister_sched_domain_sysctl(void)
1560 #endif
1562 extern void flush_smp_call_function_from_idle(void);
1564 #else /* !CONFIG_SMP: */
1565 static inline void flush_smp_call_function_from_idle(void) { }
1566 #endif
1568 #include "stats.h"
1569 #include "autogroup.h"
1571 #ifdef CONFIG_CGROUP_SCHED
1574 * Return the group to which this tasks belongs.
1576 * We cannot use task_css() and friends because the cgroup subsystem
1577 * changes that value before the cgroup_subsys::attach() method is called,
1578 * therefore we cannot pin it and might observe the wrong value.
1580 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1581 * core changes this before calling sched_move_task().
1583 * Instead we use a 'copy' which is updated from sched_move_task() while
1584 * holding both task_struct::pi_lock and rq::lock.
1586 static inline struct task_group *task_group(struct task_struct *p)
1588 return p->sched_task_group;
1591 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1592 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1594 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1595 struct task_group *tg = task_group(p);
1596 #endif
1598 #ifdef CONFIG_FAIR_GROUP_SCHED
1599 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1600 p->se.cfs_rq = tg->cfs_rq[cpu];
1601 p->se.parent = tg->se[cpu];
1602 #endif
1604 #ifdef CONFIG_RT_GROUP_SCHED
1605 p->rt.rt_rq = tg->rt_rq[cpu];
1606 p->rt.parent = tg->rt_se[cpu];
1607 #endif
1610 #else /* CONFIG_CGROUP_SCHED */
1612 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1613 static inline struct task_group *task_group(struct task_struct *p)
1615 return NULL;
1618 #endif /* CONFIG_CGROUP_SCHED */
1620 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1622 set_task_rq(p, cpu);
1623 #ifdef CONFIG_SMP
1625 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1626 * successfully executed on another CPU. We must ensure that updates of
1627 * per-task data have been completed by this moment.
1629 smp_wmb();
1630 #ifdef CONFIG_THREAD_INFO_IN_TASK
1631 WRITE_ONCE(p->cpu, cpu);
1632 #else
1633 WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1634 #endif
1635 p->wake_cpu = cpu;
1636 #endif
1640 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1642 #ifdef CONFIG_SCHED_DEBUG
1643 # include <linux/static_key.h>
1644 # define const_debug __read_mostly
1645 #else
1646 # define const_debug const
1647 #endif
1649 #define SCHED_FEAT(name, enabled) \
1650 __SCHED_FEAT_##name ,
1652 enum {
1653 #include "features.h"
1654 __SCHED_FEAT_NR,
1657 #undef SCHED_FEAT
1659 #ifdef CONFIG_SCHED_DEBUG
1662 * To support run-time toggling of sched features, all the translation units
1663 * (but core.c) reference the sysctl_sched_features defined in core.c.
1665 extern const_debug unsigned int sysctl_sched_features;
1667 #ifdef CONFIG_JUMP_LABEL
1668 #define SCHED_FEAT(name, enabled) \
1669 static __always_inline bool static_branch_##name(struct static_key *key) \
1671 return static_key_##enabled(key); \
1674 #include "features.h"
1675 #undef SCHED_FEAT
1677 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1678 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1680 #else /* !CONFIG_JUMP_LABEL */
1682 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1684 #endif /* CONFIG_JUMP_LABEL */
1686 #else /* !SCHED_DEBUG */
1689 * Each translation unit has its own copy of sysctl_sched_features to allow
1690 * constants propagation at compile time and compiler optimization based on
1691 * features default.
1693 #define SCHED_FEAT(name, enabled) \
1694 (1UL << __SCHED_FEAT_##name) * enabled |
1695 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1696 #include "features.h"
1698 #undef SCHED_FEAT
1700 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1702 #endif /* SCHED_DEBUG */
1704 extern struct static_key_false sched_numa_balancing;
1705 extern struct static_key_false sched_schedstats;
1707 static inline u64 global_rt_period(void)
1709 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1712 static inline u64 global_rt_runtime(void)
1714 if (sysctl_sched_rt_runtime < 0)
1715 return RUNTIME_INF;
1717 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1720 static inline int task_current(struct rq *rq, struct task_struct *p)
1722 return rq->curr == p;
1725 static inline int task_running(struct rq *rq, struct task_struct *p)
1727 #ifdef CONFIG_SMP
1728 return p->on_cpu;
1729 #else
1730 return task_current(rq, p);
1731 #endif
1734 static inline int task_on_rq_queued(struct task_struct *p)
1736 return p->on_rq == TASK_ON_RQ_QUEUED;
1739 static inline int task_on_rq_migrating(struct task_struct *p)
1741 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
1744 /* Wake flags. The first three directly map to some SD flag value */
1745 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
1746 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
1747 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */
1749 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */
1750 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */
1751 #define WF_ON_CPU 0x40 /* Wakee is on_cpu */
1753 #ifdef CONFIG_SMP
1754 static_assert(WF_EXEC == SD_BALANCE_EXEC);
1755 static_assert(WF_FORK == SD_BALANCE_FORK);
1756 static_assert(WF_TTWU == SD_BALANCE_WAKE);
1757 #endif
1760 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1761 * of tasks with abnormal "nice" values across CPUs the contribution that
1762 * each task makes to its run queue's load is weighted according to its
1763 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1764 * scaled version of the new time slice allocation that they receive on time
1765 * slice expiry etc.
1768 #define WEIGHT_IDLEPRIO 3
1769 #define WMULT_IDLEPRIO 1431655765
1771 extern const int sched_prio_to_weight[40];
1772 extern const u32 sched_prio_to_wmult[40];
1775 * {de,en}queue flags:
1777 * DEQUEUE_SLEEP - task is no longer runnable
1778 * ENQUEUE_WAKEUP - task just became runnable
1780 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1781 * are in a known state which allows modification. Such pairs
1782 * should preserve as much state as possible.
1784 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1785 * in the runqueue.
1787 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1788 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1789 * ENQUEUE_MIGRATED - the task was migrated during wakeup
1793 #define DEQUEUE_SLEEP 0x01
1794 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
1795 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
1796 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
1798 #define ENQUEUE_WAKEUP 0x01
1799 #define ENQUEUE_RESTORE 0x02
1800 #define ENQUEUE_MOVE 0x04
1801 #define ENQUEUE_NOCLOCK 0x08
1803 #define ENQUEUE_HEAD 0x10
1804 #define ENQUEUE_REPLENISH 0x20
1805 #ifdef CONFIG_SMP
1806 #define ENQUEUE_MIGRATED 0x40
1807 #else
1808 #define ENQUEUE_MIGRATED 0x00
1809 #endif
1811 #define RETRY_TASK ((void *)-1UL)
1813 struct sched_class {
1815 #ifdef CONFIG_UCLAMP_TASK
1816 int uclamp_enabled;
1817 #endif
1819 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1820 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1821 void (*yield_task) (struct rq *rq);
1822 bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
1824 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1826 struct task_struct *(*pick_next_task)(struct rq *rq);
1828 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1829 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
1831 #ifdef CONFIG_SMP
1832 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1833 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
1834 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1836 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1838 void (*set_cpus_allowed)(struct task_struct *p,
1839 const struct cpumask *newmask,
1840 u32 flags);
1842 void (*rq_online)(struct rq *rq);
1843 void (*rq_offline)(struct rq *rq);
1845 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
1846 #endif
1848 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1849 void (*task_fork)(struct task_struct *p);
1850 void (*task_dead)(struct task_struct *p);
1853 * The switched_from() call is allowed to drop rq->lock, therefore we
1854 * cannot assume the switched_from/switched_to pair is serliazed by
1855 * rq->lock. They are however serialized by p->pi_lock.
1857 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1858 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1859 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1860 int oldprio);
1862 unsigned int (*get_rr_interval)(struct rq *rq,
1863 struct task_struct *task);
1865 void (*update_curr)(struct rq *rq);
1867 #define TASK_SET_GROUP 0
1868 #define TASK_MOVE_GROUP 1
1870 #ifdef CONFIG_FAIR_GROUP_SCHED
1871 void (*task_change_group)(struct task_struct *p, int type);
1872 #endif
1875 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1877 WARN_ON_ONCE(rq->curr != prev);
1878 prev->sched_class->put_prev_task(rq, prev);
1881 static inline void set_next_task(struct rq *rq, struct task_struct *next)
1883 WARN_ON_ONCE(rq->curr != next);
1884 next->sched_class->set_next_task(rq, next, false);
1889 * Helper to define a sched_class instance; each one is placed in a separate
1890 * section which is ordered by the linker script:
1892 * include/asm-generic/vmlinux.lds.h
1894 * Also enforce alignment on the instance, not the type, to guarantee layout.
1896 #define DEFINE_SCHED_CLASS(name) \
1897 const struct sched_class name##_sched_class \
1898 __aligned(__alignof__(struct sched_class)) \
1899 __section("__" #name "_sched_class")
1901 /* Defined in include/asm-generic/vmlinux.lds.h */
1902 extern struct sched_class __begin_sched_classes[];
1903 extern struct sched_class __end_sched_classes[];
1905 #define sched_class_highest (__end_sched_classes - 1)
1906 #define sched_class_lowest (__begin_sched_classes - 1)
1908 #define for_class_range(class, _from, _to) \
1909 for (class = (_from); class != (_to); class--)
1911 #define for_each_class(class) \
1912 for_class_range(class, sched_class_highest, sched_class_lowest)
1914 extern const struct sched_class stop_sched_class;
1915 extern const struct sched_class dl_sched_class;
1916 extern const struct sched_class rt_sched_class;
1917 extern const struct sched_class fair_sched_class;
1918 extern const struct sched_class idle_sched_class;
1920 static inline bool sched_stop_runnable(struct rq *rq)
1922 return rq->stop && task_on_rq_queued(rq->stop);
1925 static inline bool sched_dl_runnable(struct rq *rq)
1927 return rq->dl.dl_nr_running > 0;
1930 static inline bool sched_rt_runnable(struct rq *rq)
1932 return rq->rt.rt_queued > 0;
1935 static inline bool sched_fair_runnable(struct rq *rq)
1937 return rq->cfs.nr_running > 0;
1940 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1941 extern struct task_struct *pick_next_task_idle(struct rq *rq);
1943 #define SCA_CHECK 0x01
1944 #define SCA_MIGRATE_DISABLE 0x02
1945 #define SCA_MIGRATE_ENABLE 0x04
1947 #ifdef CONFIG_SMP
1949 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1951 extern void trigger_load_balance(struct rq *rq);
1953 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
1955 static inline struct task_struct *get_push_task(struct rq *rq)
1957 struct task_struct *p = rq->curr;
1959 lockdep_assert_held(&rq->lock);
1961 if (rq->push_busy)
1962 return NULL;
1964 if (p->nr_cpus_allowed == 1)
1965 return NULL;
1967 rq->push_busy = true;
1968 return get_task_struct(p);
1971 extern int push_cpu_stop(void *arg);
1973 #endif
1975 #ifdef CONFIG_CPU_IDLE
1976 static inline void idle_set_state(struct rq *rq,
1977 struct cpuidle_state *idle_state)
1979 rq->idle_state = idle_state;
1982 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1984 SCHED_WARN_ON(!rcu_read_lock_held());
1986 return rq->idle_state;
1988 #else
1989 static inline void idle_set_state(struct rq *rq,
1990 struct cpuidle_state *idle_state)
1994 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1996 return NULL;
1998 #endif
2000 extern void schedule_idle(void);
2002 extern void sysrq_sched_debug_show(void);
2003 extern void sched_init_granularity(void);
2004 extern void update_max_interval(void);
2006 extern void init_sched_dl_class(void);
2007 extern void init_sched_rt_class(void);
2008 extern void init_sched_fair_class(void);
2010 extern void reweight_task(struct task_struct *p, int prio);
2012 extern void resched_curr(struct rq *rq);
2013 extern void resched_cpu(int cpu);
2015 extern struct rt_bandwidth def_rt_bandwidth;
2016 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2018 extern struct dl_bandwidth def_dl_bandwidth;
2019 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
2020 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2021 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2023 #define BW_SHIFT 20
2024 #define BW_UNIT (1 << BW_SHIFT)
2025 #define RATIO_SHIFT 8
2026 #define MAX_BW_BITS (64 - BW_SHIFT)
2027 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1)
2028 unsigned long to_ratio(u64 period, u64 runtime);
2030 extern void init_entity_runnable_average(struct sched_entity *se);
2031 extern void post_init_entity_util_avg(struct task_struct *p);
2033 #ifdef CONFIG_NO_HZ_FULL
2034 extern bool sched_can_stop_tick(struct rq *rq);
2035 extern int __init sched_tick_offload_init(void);
2038 * Tick may be needed by tasks in the runqueue depending on their policy and
2039 * requirements. If tick is needed, lets send the target an IPI to kick it out of
2040 * nohz mode if necessary.
2042 static inline void sched_update_tick_dependency(struct rq *rq)
2044 int cpu = cpu_of(rq);
2046 if (!tick_nohz_full_cpu(cpu))
2047 return;
2049 if (sched_can_stop_tick(rq))
2050 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2051 else
2052 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2054 #else
2055 static inline int sched_tick_offload_init(void) { return 0; }
2056 static inline void sched_update_tick_dependency(struct rq *rq) { }
2057 #endif
2059 static inline void add_nr_running(struct rq *rq, unsigned count)
2061 unsigned prev_nr = rq->nr_running;
2063 rq->nr_running = prev_nr + count;
2064 if (trace_sched_update_nr_running_tp_enabled()) {
2065 call_trace_sched_update_nr_running(rq, count);
2068 #ifdef CONFIG_SMP
2069 if (prev_nr < 2 && rq->nr_running >= 2) {
2070 if (!READ_ONCE(rq->rd->overload))
2071 WRITE_ONCE(rq->rd->overload, 1);
2073 #endif
2075 sched_update_tick_dependency(rq);
2078 static inline void sub_nr_running(struct rq *rq, unsigned count)
2080 rq->nr_running -= count;
2081 if (trace_sched_update_nr_running_tp_enabled()) {
2082 call_trace_sched_update_nr_running(rq, -count);
2085 /* Check if we still need preemption */
2086 sched_update_tick_dependency(rq);
2089 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2090 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2092 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2094 extern const_debug unsigned int sysctl_sched_nr_migrate;
2095 extern const_debug unsigned int sysctl_sched_migration_cost;
2097 #ifdef CONFIG_SCHED_HRTICK
2100 * Use hrtick when:
2101 * - enabled by features
2102 * - hrtimer is actually high res
2104 static inline int hrtick_enabled(struct rq *rq)
2106 if (!sched_feat(HRTICK))
2107 return 0;
2108 if (!cpu_active(cpu_of(rq)))
2109 return 0;
2110 return hrtimer_is_hres_active(&rq->hrtick_timer);
2113 void hrtick_start(struct rq *rq, u64 delay);
2115 #else
2117 static inline int hrtick_enabled(struct rq *rq)
2119 return 0;
2122 #endif /* CONFIG_SCHED_HRTICK */
2124 #ifndef arch_scale_freq_tick
2125 static __always_inline
2126 void arch_scale_freq_tick(void)
2129 #endif
2131 #ifndef arch_scale_freq_capacity
2133 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2134 * @cpu: the CPU in question.
2136 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2138 * f_curr
2139 * ------ * SCHED_CAPACITY_SCALE
2140 * f_max
2142 static __always_inline
2143 unsigned long arch_scale_freq_capacity(int cpu)
2145 return SCHED_CAPACITY_SCALE;
2147 #endif
2149 #ifdef CONFIG_SMP
2150 #ifdef CONFIG_PREEMPTION
2152 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
2155 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2156 * way at the expense of forcing extra atomic operations in all
2157 * invocations. This assures that the double_lock is acquired using the
2158 * same underlying policy as the spinlock_t on this architecture, which
2159 * reduces latency compared to the unfair variant below. However, it
2160 * also adds more overhead and therefore may reduce throughput.
2162 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2163 __releases(this_rq->lock)
2164 __acquires(busiest->lock)
2165 __acquires(this_rq->lock)
2167 raw_spin_unlock(&this_rq->lock);
2168 double_rq_lock(this_rq, busiest);
2170 return 1;
2173 #else
2175 * Unfair double_lock_balance: Optimizes throughput at the expense of
2176 * latency by eliminating extra atomic operations when the locks are
2177 * already in proper order on entry. This favors lower CPU-ids and will
2178 * grant the double lock to lower CPUs over higher ids under contention,
2179 * regardless of entry order into the function.
2181 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2182 __releases(this_rq->lock)
2183 __acquires(busiest->lock)
2184 __acquires(this_rq->lock)
2186 int ret = 0;
2188 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
2189 if (busiest < this_rq) {
2190 raw_spin_unlock(&this_rq->lock);
2191 raw_spin_lock(&busiest->lock);
2192 raw_spin_lock_nested(&this_rq->lock,
2193 SINGLE_DEPTH_NESTING);
2194 ret = 1;
2195 } else
2196 raw_spin_lock_nested(&busiest->lock,
2197 SINGLE_DEPTH_NESTING);
2199 return ret;
2202 #endif /* CONFIG_PREEMPTION */
2205 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2207 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2209 if (unlikely(!irqs_disabled())) {
2210 /* printk() doesn't work well under rq->lock */
2211 raw_spin_unlock(&this_rq->lock);
2212 BUG_ON(1);
2215 return _double_lock_balance(this_rq, busiest);
2218 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2219 __releases(busiest->lock)
2221 raw_spin_unlock(&busiest->lock);
2222 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2225 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2227 if (l1 > l2)
2228 swap(l1, l2);
2230 spin_lock(l1);
2231 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2234 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2236 if (l1 > l2)
2237 swap(l1, l2);
2239 spin_lock_irq(l1);
2240 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2243 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2245 if (l1 > l2)
2246 swap(l1, l2);
2248 raw_spin_lock(l1);
2249 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2253 * double_rq_lock - safely lock two runqueues
2255 * Note this does not disable interrupts like task_rq_lock,
2256 * you need to do so manually before calling.
2258 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2259 __acquires(rq1->lock)
2260 __acquires(rq2->lock)
2262 BUG_ON(!irqs_disabled());
2263 if (rq1 == rq2) {
2264 raw_spin_lock(&rq1->lock);
2265 __acquire(rq2->lock); /* Fake it out ;) */
2266 } else {
2267 if (rq1 < rq2) {
2268 raw_spin_lock(&rq1->lock);
2269 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2270 } else {
2271 raw_spin_lock(&rq2->lock);
2272 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2278 * double_rq_unlock - safely unlock two runqueues
2280 * Note this does not restore interrupts like task_rq_unlock,
2281 * you need to do so manually after calling.
2283 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2284 __releases(rq1->lock)
2285 __releases(rq2->lock)
2287 raw_spin_unlock(&rq1->lock);
2288 if (rq1 != rq2)
2289 raw_spin_unlock(&rq2->lock);
2290 else
2291 __release(rq2->lock);
2294 extern void set_rq_online (struct rq *rq);
2295 extern void set_rq_offline(struct rq *rq);
2296 extern bool sched_smp_initialized;
2298 #else /* CONFIG_SMP */
2301 * double_rq_lock - safely lock two runqueues
2303 * Note this does not disable interrupts like task_rq_lock,
2304 * you need to do so manually before calling.
2306 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2307 __acquires(rq1->lock)
2308 __acquires(rq2->lock)
2310 BUG_ON(!irqs_disabled());
2311 BUG_ON(rq1 != rq2);
2312 raw_spin_lock(&rq1->lock);
2313 __acquire(rq2->lock); /* Fake it out ;) */
2317 * double_rq_unlock - safely unlock two runqueues
2319 * Note this does not restore interrupts like task_rq_unlock,
2320 * you need to do so manually after calling.
2322 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2323 __releases(rq1->lock)
2324 __releases(rq2->lock)
2326 BUG_ON(rq1 != rq2);
2327 raw_spin_unlock(&rq1->lock);
2328 __release(rq2->lock);
2331 #endif
2333 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2334 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2336 #ifdef CONFIG_SCHED_DEBUG
2337 extern bool sched_debug_enabled;
2339 extern void print_cfs_stats(struct seq_file *m, int cpu);
2340 extern void print_rt_stats(struct seq_file *m, int cpu);
2341 extern void print_dl_stats(struct seq_file *m, int cpu);
2342 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2343 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2344 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2345 #ifdef CONFIG_NUMA_BALANCING
2346 extern void
2347 show_numa_stats(struct task_struct *p, struct seq_file *m);
2348 extern void
2349 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2350 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2351 #endif /* CONFIG_NUMA_BALANCING */
2352 #endif /* CONFIG_SCHED_DEBUG */
2354 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2355 extern void init_rt_rq(struct rt_rq *rt_rq);
2356 extern void init_dl_rq(struct dl_rq *dl_rq);
2358 extern void cfs_bandwidth_usage_inc(void);
2359 extern void cfs_bandwidth_usage_dec(void);
2361 #ifdef CONFIG_NO_HZ_COMMON
2362 #define NOHZ_BALANCE_KICK_BIT 0
2363 #define NOHZ_STATS_KICK_BIT 1
2365 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
2366 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2368 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2370 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
2372 extern void nohz_balance_exit_idle(struct rq *rq);
2373 #else
2374 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2375 #endif
2378 #ifdef CONFIG_SMP
2379 static inline
2380 void __dl_update(struct dl_bw *dl_b, s64 bw)
2382 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2383 int i;
2385 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2386 "sched RCU must be held");
2387 for_each_cpu_and(i, rd->span, cpu_active_mask) {
2388 struct rq *rq = cpu_rq(i);
2390 rq->dl.extra_bw += bw;
2393 #else
2394 static inline
2395 void __dl_update(struct dl_bw *dl_b, s64 bw)
2397 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2399 dl->extra_bw += bw;
2401 #endif
2404 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2405 struct irqtime {
2406 u64 total;
2407 u64 tick_delta;
2408 u64 irq_start_time;
2409 struct u64_stats_sync sync;
2412 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2415 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2416 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2417 * and never move forward.
2419 static inline u64 irq_time_read(int cpu)
2421 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2422 unsigned int seq;
2423 u64 total;
2425 do {
2426 seq = __u64_stats_fetch_begin(&irqtime->sync);
2427 total = irqtime->total;
2428 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2430 return total;
2432 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2434 #ifdef CONFIG_CPU_FREQ
2435 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2438 * cpufreq_update_util - Take a note about CPU utilization changes.
2439 * @rq: Runqueue to carry out the update for.
2440 * @flags: Update reason flags.
2442 * This function is called by the scheduler on the CPU whose utilization is
2443 * being updated.
2445 * It can only be called from RCU-sched read-side critical sections.
2447 * The way cpufreq is currently arranged requires it to evaluate the CPU
2448 * performance state (frequency/voltage) on a regular basis to prevent it from
2449 * being stuck in a completely inadequate performance level for too long.
2450 * That is not guaranteed to happen if the updates are only triggered from CFS
2451 * and DL, though, because they may not be coming in if only RT tasks are
2452 * active all the time (or there are RT tasks only).
2454 * As a workaround for that issue, this function is called periodically by the
2455 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2456 * but that really is a band-aid. Going forward it should be replaced with
2457 * solutions targeted more specifically at RT tasks.
2459 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2461 struct update_util_data *data;
2463 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2464 cpu_of(rq)));
2465 if (data)
2466 data->func(data, rq_clock(rq), flags);
2468 #else
2469 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2470 #endif /* CONFIG_CPU_FREQ */
2472 #ifdef CONFIG_UCLAMP_TASK
2473 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2476 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
2477 * @rq: The rq to clamp against. Must not be NULL.
2478 * @util: The util value to clamp.
2479 * @p: The task to clamp against. Can be NULL if you want to clamp
2480 * against @rq only.
2482 * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
2484 * If sched_uclamp_used static key is disabled, then just return the util
2485 * without any clamping since uclamp aggregation at the rq level in the fast
2486 * path is disabled, rendering this operation a NOP.
2488 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
2489 * will return the correct effective uclamp value of the task even if the
2490 * static key is disabled.
2492 static __always_inline
2493 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2494 struct task_struct *p)
2496 unsigned long min_util;
2497 unsigned long max_util;
2499 if (!static_branch_likely(&sched_uclamp_used))
2500 return util;
2502 min_util = READ_ONCE(rq->uclamp[UCLAMP_MIN].value);
2503 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
2505 if (p) {
2506 min_util = max(min_util, uclamp_eff_value(p, UCLAMP_MIN));
2507 max_util = max(max_util, uclamp_eff_value(p, UCLAMP_MAX));
2511 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2512 * RUNNABLE tasks with _different_ clamps, we can end up with an
2513 * inversion. Fix it now when the clamps are applied.
2515 if (unlikely(min_util >= max_util))
2516 return min_util;
2518 return clamp(util, min_util, max_util);
2522 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
2523 * by default in the fast path and only gets turned on once userspace performs
2524 * an operation that requires it.
2526 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
2527 * hence is active.
2529 static inline bool uclamp_is_used(void)
2531 return static_branch_likely(&sched_uclamp_used);
2533 #else /* CONFIG_UCLAMP_TASK */
2534 static inline
2535 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2536 struct task_struct *p)
2538 return util;
2541 static inline bool uclamp_is_used(void)
2543 return false;
2545 #endif /* CONFIG_UCLAMP_TASK */
2547 #ifdef arch_scale_freq_capacity
2548 # ifndef arch_scale_freq_invariant
2549 # define arch_scale_freq_invariant() true
2550 # endif
2551 #else
2552 # define arch_scale_freq_invariant() false
2553 #endif
2555 #ifdef CONFIG_SMP
2556 static inline unsigned long capacity_orig_of(int cpu)
2558 return cpu_rq(cpu)->cpu_capacity_orig;
2560 #endif
2563 * enum schedutil_type - CPU utilization type
2564 * @FREQUENCY_UTIL: Utilization used to select frequency
2565 * @ENERGY_UTIL: Utilization used during energy calculation
2567 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2568 * need to be aggregated differently depending on the usage made of them. This
2569 * enum is used within schedutil_freq_util() to differentiate the types of
2570 * utilization expected by the callers, and adjust the aggregation accordingly.
2572 enum schedutil_type {
2573 FREQUENCY_UTIL,
2574 ENERGY_UTIL,
2577 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2579 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2580 unsigned long max, enum schedutil_type type,
2581 struct task_struct *p);
2583 static inline unsigned long cpu_bw_dl(struct rq *rq)
2585 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2588 static inline unsigned long cpu_util_dl(struct rq *rq)
2590 return READ_ONCE(rq->avg_dl.util_avg);
2593 static inline unsigned long cpu_util_cfs(struct rq *rq)
2595 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2597 if (sched_feat(UTIL_EST)) {
2598 util = max_t(unsigned long, util,
2599 READ_ONCE(rq->cfs.avg.util_est.enqueued));
2602 return util;
2605 static inline unsigned long cpu_util_rt(struct rq *rq)
2607 return READ_ONCE(rq->avg_rt.util_avg);
2609 #else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2610 static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2611 unsigned long max, enum schedutil_type type,
2612 struct task_struct *p)
2614 return 0;
2616 #endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2618 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
2619 static inline unsigned long cpu_util_irq(struct rq *rq)
2621 return rq->avg_irq.util_avg;
2624 static inline
2625 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2627 util *= (max - irq);
2628 util /= max;
2630 return util;
2633 #else
2634 static inline unsigned long cpu_util_irq(struct rq *rq)
2636 return 0;
2639 static inline
2640 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2642 return util;
2644 #endif
2646 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2648 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
2650 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2652 static inline bool sched_energy_enabled(void)
2654 return static_branch_unlikely(&sched_energy_present);
2657 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2659 #define perf_domain_span(pd) NULL
2660 static inline bool sched_energy_enabled(void) { return false; }
2662 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2664 #ifdef CONFIG_MEMBARRIER
2666 * The scheduler provides memory barriers required by membarrier between:
2667 * - prior user-space memory accesses and store to rq->membarrier_state,
2668 * - store to rq->membarrier_state and following user-space memory accesses.
2669 * In the same way it provides those guarantees around store to rq->curr.
2671 static inline void membarrier_switch_mm(struct rq *rq,
2672 struct mm_struct *prev_mm,
2673 struct mm_struct *next_mm)
2675 int membarrier_state;
2677 if (prev_mm == next_mm)
2678 return;
2680 membarrier_state = atomic_read(&next_mm->membarrier_state);
2681 if (READ_ONCE(rq->membarrier_state) == membarrier_state)
2682 return;
2684 WRITE_ONCE(rq->membarrier_state, membarrier_state);
2686 #else
2687 static inline void membarrier_switch_mm(struct rq *rq,
2688 struct mm_struct *prev_mm,
2689 struct mm_struct *next_mm)
2692 #endif
2694 #ifdef CONFIG_SMP
2695 static inline bool is_per_cpu_kthread(struct task_struct *p)
2697 if (!(p->flags & PF_KTHREAD))
2698 return false;
2700 if (p->nr_cpus_allowed != 1)
2701 return false;
2703 return true;
2705 #endif
2707 void swake_up_all_locked(struct swait_queue_head *q);
2708 void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);