Merge tag 'usb-5.11-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[linux/fpc-iii.git] / kernel / sched / topology.c
blob5d3675c7a76be2ec290cc437a3c4ddc4ff25b00f
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Scheduler topology setup/handling methods
4 */
5 #include "sched.h"
7 DEFINE_MUTEX(sched_domains_mutex);
9 /* Protected by sched_domains_mutex: */
10 static cpumask_var_t sched_domains_tmpmask;
11 static cpumask_var_t sched_domains_tmpmask2;
13 #ifdef CONFIG_SCHED_DEBUG
15 static int __init sched_debug_setup(char *str)
17 sched_debug_enabled = true;
19 return 0;
21 early_param("sched_debug", sched_debug_setup);
23 static inline bool sched_debug(void)
25 return sched_debug_enabled;
28 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
29 const struct sd_flag_debug sd_flag_debug[] = {
30 #include <linux/sched/sd_flags.h>
32 #undef SD_FLAG
34 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
35 struct cpumask *groupmask)
37 struct sched_group *group = sd->groups;
38 unsigned long flags = sd->flags;
39 unsigned int idx;
41 cpumask_clear(groupmask);
43 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
44 printk(KERN_CONT "span=%*pbl level=%s\n",
45 cpumask_pr_args(sched_domain_span(sd)), sd->name);
47 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
48 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
50 if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
51 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
54 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
55 unsigned int flag = BIT(idx);
56 unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
58 if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
59 !(sd->child->flags & flag))
60 printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
61 sd_flag_debug[idx].name);
63 if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
64 !(sd->parent->flags & flag))
65 printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
66 sd_flag_debug[idx].name);
69 printk(KERN_DEBUG "%*s groups:", level + 1, "");
70 do {
71 if (!group) {
72 printk("\n");
73 printk(KERN_ERR "ERROR: group is NULL\n");
74 break;
77 if (!cpumask_weight(sched_group_span(group))) {
78 printk(KERN_CONT "\n");
79 printk(KERN_ERR "ERROR: empty group\n");
80 break;
83 if (!(sd->flags & SD_OVERLAP) &&
84 cpumask_intersects(groupmask, sched_group_span(group))) {
85 printk(KERN_CONT "\n");
86 printk(KERN_ERR "ERROR: repeated CPUs\n");
87 break;
90 cpumask_or(groupmask, groupmask, sched_group_span(group));
92 printk(KERN_CONT " %d:{ span=%*pbl",
93 group->sgc->id,
94 cpumask_pr_args(sched_group_span(group)));
96 if ((sd->flags & SD_OVERLAP) &&
97 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
98 printk(KERN_CONT " mask=%*pbl",
99 cpumask_pr_args(group_balance_mask(group)));
102 if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
103 printk(KERN_CONT " cap=%lu", group->sgc->capacity);
105 if (group == sd->groups && sd->child &&
106 !cpumask_equal(sched_domain_span(sd->child),
107 sched_group_span(group))) {
108 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
111 printk(KERN_CONT " }");
113 group = group->next;
115 if (group != sd->groups)
116 printk(KERN_CONT ",");
118 } while (group != sd->groups);
119 printk(KERN_CONT "\n");
121 if (!cpumask_equal(sched_domain_span(sd), groupmask))
122 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
124 if (sd->parent &&
125 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
126 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
127 return 0;
130 static void sched_domain_debug(struct sched_domain *sd, int cpu)
132 int level = 0;
134 if (!sched_debug_enabled)
135 return;
137 if (!sd) {
138 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
139 return;
142 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
144 for (;;) {
145 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
146 break;
147 level++;
148 sd = sd->parent;
149 if (!sd)
150 break;
153 #else /* !CONFIG_SCHED_DEBUG */
155 # define sched_debug_enabled 0
156 # define sched_domain_debug(sd, cpu) do { } while (0)
157 static inline bool sched_debug(void)
159 return false;
161 #endif /* CONFIG_SCHED_DEBUG */
163 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
164 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
165 static const unsigned int SD_DEGENERATE_GROUPS_MASK =
166 #include <linux/sched/sd_flags.h>
168 #undef SD_FLAG
170 static int sd_degenerate(struct sched_domain *sd)
172 if (cpumask_weight(sched_domain_span(sd)) == 1)
173 return 1;
175 /* Following flags need at least 2 groups */
176 if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
177 (sd->groups != sd->groups->next))
178 return 0;
180 /* Following flags don't use groups */
181 if (sd->flags & (SD_WAKE_AFFINE))
182 return 0;
184 return 1;
187 static int
188 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
190 unsigned long cflags = sd->flags, pflags = parent->flags;
192 if (sd_degenerate(parent))
193 return 1;
195 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
196 return 0;
198 /* Flags needing groups don't count if only 1 group in parent */
199 if (parent->groups == parent->groups->next)
200 pflags &= ~SD_DEGENERATE_GROUPS_MASK;
202 if (~cflags & pflags)
203 return 0;
205 return 1;
208 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
209 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
210 unsigned int sysctl_sched_energy_aware = 1;
211 DEFINE_MUTEX(sched_energy_mutex);
212 bool sched_energy_update;
214 void rebuild_sched_domains_energy(void)
216 mutex_lock(&sched_energy_mutex);
217 sched_energy_update = true;
218 rebuild_sched_domains();
219 sched_energy_update = false;
220 mutex_unlock(&sched_energy_mutex);
223 #ifdef CONFIG_PROC_SYSCTL
224 int sched_energy_aware_handler(struct ctl_table *table, int write,
225 void *buffer, size_t *lenp, loff_t *ppos)
227 int ret, state;
229 if (write && !capable(CAP_SYS_ADMIN))
230 return -EPERM;
232 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
233 if (!ret && write) {
234 state = static_branch_unlikely(&sched_energy_present);
235 if (state != sysctl_sched_energy_aware)
236 rebuild_sched_domains_energy();
239 return ret;
241 #endif
243 static void free_pd(struct perf_domain *pd)
245 struct perf_domain *tmp;
247 while (pd) {
248 tmp = pd->next;
249 kfree(pd);
250 pd = tmp;
254 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
256 while (pd) {
257 if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
258 return pd;
259 pd = pd->next;
262 return NULL;
265 static struct perf_domain *pd_init(int cpu)
267 struct em_perf_domain *obj = em_cpu_get(cpu);
268 struct perf_domain *pd;
270 if (!obj) {
271 if (sched_debug())
272 pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
273 return NULL;
276 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
277 if (!pd)
278 return NULL;
279 pd->em_pd = obj;
281 return pd;
284 static void perf_domain_debug(const struct cpumask *cpu_map,
285 struct perf_domain *pd)
287 if (!sched_debug() || !pd)
288 return;
290 printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
292 while (pd) {
293 printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
294 cpumask_first(perf_domain_span(pd)),
295 cpumask_pr_args(perf_domain_span(pd)),
296 em_pd_nr_perf_states(pd->em_pd));
297 pd = pd->next;
300 printk(KERN_CONT "\n");
303 static void destroy_perf_domain_rcu(struct rcu_head *rp)
305 struct perf_domain *pd;
307 pd = container_of(rp, struct perf_domain, rcu);
308 free_pd(pd);
311 static void sched_energy_set(bool has_eas)
313 if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
314 if (sched_debug())
315 pr_info("%s: stopping EAS\n", __func__);
316 static_branch_disable_cpuslocked(&sched_energy_present);
317 } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
318 if (sched_debug())
319 pr_info("%s: starting EAS\n", __func__);
320 static_branch_enable_cpuslocked(&sched_energy_present);
325 * EAS can be used on a root domain if it meets all the following conditions:
326 * 1. an Energy Model (EM) is available;
327 * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
328 * 3. no SMT is detected.
329 * 4. the EM complexity is low enough to keep scheduling overheads low;
330 * 5. schedutil is driving the frequency of all CPUs of the rd;
331 * 6. frequency invariance support is present;
333 * The complexity of the Energy Model is defined as:
335 * C = nr_pd * (nr_cpus + nr_ps)
337 * with parameters defined as:
338 * - nr_pd: the number of performance domains
339 * - nr_cpus: the number of CPUs
340 * - nr_ps: the sum of the number of performance states of all performance
341 * domains (for example, on a system with 2 performance domains,
342 * with 10 performance states each, nr_ps = 2 * 10 = 20).
344 * It is generally not a good idea to use such a model in the wake-up path on
345 * very complex platforms because of the associated scheduling overheads. The
346 * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
347 * with per-CPU DVFS and less than 8 performance states each, for example.
349 #define EM_MAX_COMPLEXITY 2048
351 extern struct cpufreq_governor schedutil_gov;
352 static bool build_perf_domains(const struct cpumask *cpu_map)
354 int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map);
355 struct perf_domain *pd = NULL, *tmp;
356 int cpu = cpumask_first(cpu_map);
357 struct root_domain *rd = cpu_rq(cpu)->rd;
358 struct cpufreq_policy *policy;
359 struct cpufreq_governor *gov;
361 if (!sysctl_sched_energy_aware)
362 goto free;
364 /* EAS is enabled for asymmetric CPU capacity topologies. */
365 if (!per_cpu(sd_asym_cpucapacity, cpu)) {
366 if (sched_debug()) {
367 pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
368 cpumask_pr_args(cpu_map));
370 goto free;
373 /* EAS definitely does *not* handle SMT */
374 if (sched_smt_active()) {
375 pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
376 cpumask_pr_args(cpu_map));
377 goto free;
380 if (!arch_scale_freq_invariant()) {
381 if (sched_debug()) {
382 pr_warn("rd %*pbl: Disabling EAS: frequency-invariant load tracking not yet supported",
383 cpumask_pr_args(cpu_map));
385 goto free;
388 for_each_cpu(i, cpu_map) {
389 /* Skip already covered CPUs. */
390 if (find_pd(pd, i))
391 continue;
393 /* Do not attempt EAS if schedutil is not being used. */
394 policy = cpufreq_cpu_get(i);
395 if (!policy)
396 goto free;
397 gov = policy->governor;
398 cpufreq_cpu_put(policy);
399 if (gov != &schedutil_gov) {
400 if (rd->pd)
401 pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
402 cpumask_pr_args(cpu_map));
403 goto free;
406 /* Create the new pd and add it to the local list. */
407 tmp = pd_init(i);
408 if (!tmp)
409 goto free;
410 tmp->next = pd;
411 pd = tmp;
414 * Count performance domains and performance states for the
415 * complexity check.
417 nr_pd++;
418 nr_ps += em_pd_nr_perf_states(pd->em_pd);
421 /* Bail out if the Energy Model complexity is too high. */
422 if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) {
423 WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
424 cpumask_pr_args(cpu_map));
425 goto free;
428 perf_domain_debug(cpu_map, pd);
430 /* Attach the new list of performance domains to the root domain. */
431 tmp = rd->pd;
432 rcu_assign_pointer(rd->pd, pd);
433 if (tmp)
434 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
436 return !!pd;
438 free:
439 free_pd(pd);
440 tmp = rd->pd;
441 rcu_assign_pointer(rd->pd, NULL);
442 if (tmp)
443 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
445 return false;
447 #else
448 static void free_pd(struct perf_domain *pd) { }
449 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
451 static void free_rootdomain(struct rcu_head *rcu)
453 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
455 cpupri_cleanup(&rd->cpupri);
456 cpudl_cleanup(&rd->cpudl);
457 free_cpumask_var(rd->dlo_mask);
458 free_cpumask_var(rd->rto_mask);
459 free_cpumask_var(rd->online);
460 free_cpumask_var(rd->span);
461 free_pd(rd->pd);
462 kfree(rd);
465 void rq_attach_root(struct rq *rq, struct root_domain *rd)
467 struct root_domain *old_rd = NULL;
468 unsigned long flags;
470 raw_spin_lock_irqsave(&rq->lock, flags);
472 if (rq->rd) {
473 old_rd = rq->rd;
475 if (cpumask_test_cpu(rq->cpu, old_rd->online))
476 set_rq_offline(rq);
478 cpumask_clear_cpu(rq->cpu, old_rd->span);
481 * If we dont want to free the old_rd yet then
482 * set old_rd to NULL to skip the freeing later
483 * in this function:
485 if (!atomic_dec_and_test(&old_rd->refcount))
486 old_rd = NULL;
489 atomic_inc(&rd->refcount);
490 rq->rd = rd;
492 cpumask_set_cpu(rq->cpu, rd->span);
493 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
494 set_rq_online(rq);
496 raw_spin_unlock_irqrestore(&rq->lock, flags);
498 if (old_rd)
499 call_rcu(&old_rd->rcu, free_rootdomain);
502 void sched_get_rd(struct root_domain *rd)
504 atomic_inc(&rd->refcount);
507 void sched_put_rd(struct root_domain *rd)
509 if (!atomic_dec_and_test(&rd->refcount))
510 return;
512 call_rcu(&rd->rcu, free_rootdomain);
515 static int init_rootdomain(struct root_domain *rd)
517 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
518 goto out;
519 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
520 goto free_span;
521 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
522 goto free_online;
523 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
524 goto free_dlo_mask;
526 #ifdef HAVE_RT_PUSH_IPI
527 rd->rto_cpu = -1;
528 raw_spin_lock_init(&rd->rto_lock);
529 init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
530 #endif
532 rd->visit_gen = 0;
533 init_dl_bw(&rd->dl_bw);
534 if (cpudl_init(&rd->cpudl) != 0)
535 goto free_rto_mask;
537 if (cpupri_init(&rd->cpupri) != 0)
538 goto free_cpudl;
539 return 0;
541 free_cpudl:
542 cpudl_cleanup(&rd->cpudl);
543 free_rto_mask:
544 free_cpumask_var(rd->rto_mask);
545 free_dlo_mask:
546 free_cpumask_var(rd->dlo_mask);
547 free_online:
548 free_cpumask_var(rd->online);
549 free_span:
550 free_cpumask_var(rd->span);
551 out:
552 return -ENOMEM;
556 * By default the system creates a single root-domain with all CPUs as
557 * members (mimicking the global state we have today).
559 struct root_domain def_root_domain;
561 void init_defrootdomain(void)
563 init_rootdomain(&def_root_domain);
565 atomic_set(&def_root_domain.refcount, 1);
568 static struct root_domain *alloc_rootdomain(void)
570 struct root_domain *rd;
572 rd = kzalloc(sizeof(*rd), GFP_KERNEL);
573 if (!rd)
574 return NULL;
576 if (init_rootdomain(rd) != 0) {
577 kfree(rd);
578 return NULL;
581 return rd;
584 static void free_sched_groups(struct sched_group *sg, int free_sgc)
586 struct sched_group *tmp, *first;
588 if (!sg)
589 return;
591 first = sg;
592 do {
593 tmp = sg->next;
595 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
596 kfree(sg->sgc);
598 if (atomic_dec_and_test(&sg->ref))
599 kfree(sg);
600 sg = tmp;
601 } while (sg != first);
604 static void destroy_sched_domain(struct sched_domain *sd)
607 * A normal sched domain may have multiple group references, an
608 * overlapping domain, having private groups, only one. Iterate,
609 * dropping group/capacity references, freeing where none remain.
611 free_sched_groups(sd->groups, 1);
613 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
614 kfree(sd->shared);
615 kfree(sd);
618 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
620 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
622 while (sd) {
623 struct sched_domain *parent = sd->parent;
624 destroy_sched_domain(sd);
625 sd = parent;
629 static void destroy_sched_domains(struct sched_domain *sd)
631 if (sd)
632 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
636 * Keep a special pointer to the highest sched_domain that has
637 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
638 * allows us to avoid some pointer chasing select_idle_sibling().
640 * Also keep a unique ID per domain (we use the first CPU number in
641 * the cpumask of the domain), this allows us to quickly tell if
642 * two CPUs are in the same cache domain, see cpus_share_cache().
644 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
645 DEFINE_PER_CPU(int, sd_llc_size);
646 DEFINE_PER_CPU(int, sd_llc_id);
647 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
648 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
649 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
650 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
651 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
653 static void update_top_cache_domain(int cpu)
655 struct sched_domain_shared *sds = NULL;
656 struct sched_domain *sd;
657 int id = cpu;
658 int size = 1;
660 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
661 if (sd) {
662 id = cpumask_first(sched_domain_span(sd));
663 size = cpumask_weight(sched_domain_span(sd));
664 sds = sd->shared;
667 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
668 per_cpu(sd_llc_size, cpu) = size;
669 per_cpu(sd_llc_id, cpu) = id;
670 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
672 sd = lowest_flag_domain(cpu, SD_NUMA);
673 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
675 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
676 rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
678 sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY);
679 rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
683 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
684 * hold the hotplug lock.
686 static void
687 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
689 struct rq *rq = cpu_rq(cpu);
690 struct sched_domain *tmp;
691 int numa_distance = 0;
693 /* Remove the sched domains which do not contribute to scheduling. */
694 for (tmp = sd; tmp; ) {
695 struct sched_domain *parent = tmp->parent;
696 if (!parent)
697 break;
699 if (sd_parent_degenerate(tmp, parent)) {
700 tmp->parent = parent->parent;
701 if (parent->parent)
702 parent->parent->child = tmp;
704 * Transfer SD_PREFER_SIBLING down in case of a
705 * degenerate parent; the spans match for this
706 * so the property transfers.
708 if (parent->flags & SD_PREFER_SIBLING)
709 tmp->flags |= SD_PREFER_SIBLING;
710 destroy_sched_domain(parent);
711 } else
712 tmp = tmp->parent;
715 if (sd && sd_degenerate(sd)) {
716 tmp = sd;
717 sd = sd->parent;
718 destroy_sched_domain(tmp);
719 if (sd)
720 sd->child = NULL;
723 for (tmp = sd; tmp; tmp = tmp->parent)
724 numa_distance += !!(tmp->flags & SD_NUMA);
727 * FIXME: Diameter >=3 is misrepresented.
729 * Smallest diameter=3 topology is:
731 * node 0 1 2 3
732 * 0: 10 20 30 40
733 * 1: 20 10 20 30
734 * 2: 30 20 10 20
735 * 3: 40 30 20 10
737 * 0 --- 1 --- 2 --- 3
739 * NUMA-3 0-3 N/A N/A 0-3
740 * groups: {0-2},{1-3} {1-3},{0-2}
742 * NUMA-2 0-2 0-3 0-3 1-3
743 * groups: {0-1},{1-3} {0-2},{2-3} {1-3},{0-1} {2-3},{0-2}
745 * NUMA-1 0-1 0-2 1-3 2-3
746 * groups: {0},{1} {1},{2},{0} {2},{3},{1} {3},{2}
748 * NUMA-0 0 1 2 3
750 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
751 * group span isn't a subset of the domain span.
753 WARN_ONCE(numa_distance > 2, "Shortest NUMA path spans too many nodes\n");
755 sched_domain_debug(sd, cpu);
757 rq_attach_root(rq, rd);
758 tmp = rq->sd;
759 rcu_assign_pointer(rq->sd, sd);
760 dirty_sched_domain_sysctl(cpu);
761 destroy_sched_domains(tmp);
763 update_top_cache_domain(cpu);
766 struct s_data {
767 struct sched_domain * __percpu *sd;
768 struct root_domain *rd;
771 enum s_alloc {
772 sa_rootdomain,
773 sa_sd,
774 sa_sd_storage,
775 sa_none,
779 * Return the canonical balance CPU for this group, this is the first CPU
780 * of this group that's also in the balance mask.
782 * The balance mask are all those CPUs that could actually end up at this
783 * group. See build_balance_mask().
785 * Also see should_we_balance().
787 int group_balance_cpu(struct sched_group *sg)
789 return cpumask_first(group_balance_mask(sg));
794 * NUMA topology (first read the regular topology blurb below)
796 * Given a node-distance table, for example:
798 * node 0 1 2 3
799 * 0: 10 20 30 20
800 * 1: 20 10 20 30
801 * 2: 30 20 10 20
802 * 3: 20 30 20 10
804 * which represents a 4 node ring topology like:
806 * 0 ----- 1
807 * | |
808 * | |
809 * | |
810 * 3 ----- 2
812 * We want to construct domains and groups to represent this. The way we go
813 * about doing this is to build the domains on 'hops'. For each NUMA level we
814 * construct the mask of all nodes reachable in @level hops.
816 * For the above NUMA topology that gives 3 levels:
818 * NUMA-2 0-3 0-3 0-3 0-3
819 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
821 * NUMA-1 0-1,3 0-2 1-3 0,2-3
822 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
824 * NUMA-0 0 1 2 3
827 * As can be seen; things don't nicely line up as with the regular topology.
828 * When we iterate a domain in child domain chunks some nodes can be
829 * represented multiple times -- hence the "overlap" naming for this part of
830 * the topology.
832 * In order to minimize this overlap, we only build enough groups to cover the
833 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
835 * Because:
837 * - the first group of each domain is its child domain; this
838 * gets us the first 0-1,3
839 * - the only uncovered node is 2, who's child domain is 1-3.
841 * However, because of the overlap, computing a unique CPU for each group is
842 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
843 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
844 * end up at those groups (they would end up in group: 0-1,3).
846 * To correct this we have to introduce the group balance mask. This mask
847 * will contain those CPUs in the group that can reach this group given the
848 * (child) domain tree.
850 * With this we can once again compute balance_cpu and sched_group_capacity
851 * relations.
853 * XXX include words on how balance_cpu is unique and therefore can be
854 * used for sched_group_capacity links.
857 * Another 'interesting' topology is:
859 * node 0 1 2 3
860 * 0: 10 20 20 30
861 * 1: 20 10 20 20
862 * 2: 20 20 10 20
863 * 3: 30 20 20 10
865 * Which looks a little like:
867 * 0 ----- 1
868 * | / |
869 * | / |
870 * | / |
871 * 2 ----- 3
873 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
874 * are not.
876 * This leads to a few particularly weird cases where the sched_domain's are
877 * not of the same number for each CPU. Consider:
879 * NUMA-2 0-3 0-3
880 * groups: {0-2},{1-3} {1-3},{0-2}
882 * NUMA-1 0-2 0-3 0-3 1-3
884 * NUMA-0 0 1 2 3
890 * Build the balance mask; it contains only those CPUs that can arrive at this
891 * group and should be considered to continue balancing.
893 * We do this during the group creation pass, therefore the group information
894 * isn't complete yet, however since each group represents a (child) domain we
895 * can fully construct this using the sched_domain bits (which are already
896 * complete).
898 static void
899 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
901 const struct cpumask *sg_span = sched_group_span(sg);
902 struct sd_data *sdd = sd->private;
903 struct sched_domain *sibling;
904 int i;
906 cpumask_clear(mask);
908 for_each_cpu(i, sg_span) {
909 sibling = *per_cpu_ptr(sdd->sd, i);
912 * Can happen in the asymmetric case, where these siblings are
913 * unused. The mask will not be empty because those CPUs that
914 * do have the top domain _should_ span the domain.
916 if (!sibling->child)
917 continue;
919 /* If we would not end up here, we can't continue from here */
920 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
921 continue;
923 cpumask_set_cpu(i, mask);
926 /* We must not have empty masks here */
927 WARN_ON_ONCE(cpumask_empty(mask));
931 * XXX: This creates per-node group entries; since the load-balancer will
932 * immediately access remote memory to construct this group's load-balance
933 * statistics having the groups node local is of dubious benefit.
935 static struct sched_group *
936 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
938 struct sched_group *sg;
939 struct cpumask *sg_span;
941 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
942 GFP_KERNEL, cpu_to_node(cpu));
944 if (!sg)
945 return NULL;
947 sg_span = sched_group_span(sg);
948 if (sd->child)
949 cpumask_copy(sg_span, sched_domain_span(sd->child));
950 else
951 cpumask_copy(sg_span, sched_domain_span(sd));
953 atomic_inc(&sg->ref);
954 return sg;
957 static void init_overlap_sched_group(struct sched_domain *sd,
958 struct sched_group *sg)
960 struct cpumask *mask = sched_domains_tmpmask2;
961 struct sd_data *sdd = sd->private;
962 struct cpumask *sg_span;
963 int cpu;
965 build_balance_mask(sd, sg, mask);
966 cpu = cpumask_first_and(sched_group_span(sg), mask);
968 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
969 if (atomic_inc_return(&sg->sgc->ref) == 1)
970 cpumask_copy(group_balance_mask(sg), mask);
971 else
972 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
975 * Initialize sgc->capacity such that even if we mess up the
976 * domains and no possible iteration will get us here, we won't
977 * die on a /0 trap.
979 sg_span = sched_group_span(sg);
980 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
981 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
982 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
985 static int
986 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
988 struct sched_group *first = NULL, *last = NULL, *sg;
989 const struct cpumask *span = sched_domain_span(sd);
990 struct cpumask *covered = sched_domains_tmpmask;
991 struct sd_data *sdd = sd->private;
992 struct sched_domain *sibling;
993 int i;
995 cpumask_clear(covered);
997 for_each_cpu_wrap(i, span, cpu) {
998 struct cpumask *sg_span;
1000 if (cpumask_test_cpu(i, covered))
1001 continue;
1003 sibling = *per_cpu_ptr(sdd->sd, i);
1006 * Asymmetric node setups can result in situations where the
1007 * domain tree is of unequal depth, make sure to skip domains
1008 * that already cover the entire range.
1010 * In that case build_sched_domains() will have terminated the
1011 * iteration early and our sibling sd spans will be empty.
1012 * Domains should always include the CPU they're built on, so
1013 * check that.
1015 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1016 continue;
1018 sg = build_group_from_child_sched_domain(sibling, cpu);
1019 if (!sg)
1020 goto fail;
1022 sg_span = sched_group_span(sg);
1023 cpumask_or(covered, covered, sg_span);
1025 init_overlap_sched_group(sd, sg);
1027 if (!first)
1028 first = sg;
1029 if (last)
1030 last->next = sg;
1031 last = sg;
1032 last->next = first;
1034 sd->groups = first;
1036 return 0;
1038 fail:
1039 free_sched_groups(first, 0);
1041 return -ENOMEM;
1046 * Package topology (also see the load-balance blurb in fair.c)
1048 * The scheduler builds a tree structure to represent a number of important
1049 * topology features. By default (default_topology[]) these include:
1051 * - Simultaneous multithreading (SMT)
1052 * - Multi-Core Cache (MC)
1053 * - Package (DIE)
1055 * Where the last one more or less denotes everything up to a NUMA node.
1057 * The tree consists of 3 primary data structures:
1059 * sched_domain -> sched_group -> sched_group_capacity
1060 * ^ ^ ^ ^
1061 * `-' `-'
1063 * The sched_domains are per-CPU and have a two way link (parent & child) and
1064 * denote the ever growing mask of CPUs belonging to that level of topology.
1066 * Each sched_domain has a circular (double) linked list of sched_group's, each
1067 * denoting the domains of the level below (or individual CPUs in case of the
1068 * first domain level). The sched_group linked by a sched_domain includes the
1069 * CPU of that sched_domain [*].
1071 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1073 * CPU 0 1 2 3 4 5 6 7
1075 * DIE [ ]
1076 * MC [ ] [ ]
1077 * SMT [ ] [ ] [ ] [ ]
1079 * - or -
1081 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1082 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1083 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1085 * CPU 0 1 2 3 4 5 6 7
1087 * One way to think about it is: sched_domain moves you up and down among these
1088 * topology levels, while sched_group moves you sideways through it, at child
1089 * domain granularity.
1091 * sched_group_capacity ensures each unique sched_group has shared storage.
1093 * There are two related construction problems, both require a CPU that
1094 * uniquely identify each group (for a given domain):
1096 * - The first is the balance_cpu (see should_we_balance() and the
1097 * load-balance blub in fair.c); for each group we only want 1 CPU to
1098 * continue balancing at a higher domain.
1100 * - The second is the sched_group_capacity; we want all identical groups
1101 * to share a single sched_group_capacity.
1103 * Since these topologies are exclusive by construction. That is, its
1104 * impossible for an SMT thread to belong to multiple cores, and cores to
1105 * be part of multiple caches. There is a very clear and unique location
1106 * for each CPU in the hierarchy.
1108 * Therefore computing a unique CPU for each group is trivial (the iteration
1109 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1110 * group), we can simply pick the first CPU in each group.
1113 * [*] in other words, the first group of each domain is its child domain.
1116 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1118 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1119 struct sched_domain *child = sd->child;
1120 struct sched_group *sg;
1121 bool already_visited;
1123 if (child)
1124 cpu = cpumask_first(sched_domain_span(child));
1126 sg = *per_cpu_ptr(sdd->sg, cpu);
1127 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1129 /* Increase refcounts for claim_allocations: */
1130 already_visited = atomic_inc_return(&sg->ref) > 1;
1131 /* sgc visits should follow a similar trend as sg */
1132 WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1134 /* If we have already visited that group, it's already initialized. */
1135 if (already_visited)
1136 return sg;
1138 if (child) {
1139 cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1140 cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1141 } else {
1142 cpumask_set_cpu(cpu, sched_group_span(sg));
1143 cpumask_set_cpu(cpu, group_balance_mask(sg));
1146 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1147 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1148 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1150 return sg;
1154 * build_sched_groups will build a circular linked list of the groups
1155 * covered by the given span, will set each group's ->cpumask correctly,
1156 * and will initialize their ->sgc.
1158 * Assumes the sched_domain tree is fully constructed
1160 static int
1161 build_sched_groups(struct sched_domain *sd, int cpu)
1163 struct sched_group *first = NULL, *last = NULL;
1164 struct sd_data *sdd = sd->private;
1165 const struct cpumask *span = sched_domain_span(sd);
1166 struct cpumask *covered;
1167 int i;
1169 lockdep_assert_held(&sched_domains_mutex);
1170 covered = sched_domains_tmpmask;
1172 cpumask_clear(covered);
1174 for_each_cpu_wrap(i, span, cpu) {
1175 struct sched_group *sg;
1177 if (cpumask_test_cpu(i, covered))
1178 continue;
1180 sg = get_group(i, sdd);
1182 cpumask_or(covered, covered, sched_group_span(sg));
1184 if (!first)
1185 first = sg;
1186 if (last)
1187 last->next = sg;
1188 last = sg;
1190 last->next = first;
1191 sd->groups = first;
1193 return 0;
1197 * Initialize sched groups cpu_capacity.
1199 * cpu_capacity indicates the capacity of sched group, which is used while
1200 * distributing the load between different sched groups in a sched domain.
1201 * Typically cpu_capacity for all the groups in a sched domain will be same
1202 * unless there are asymmetries in the topology. If there are asymmetries,
1203 * group having more cpu_capacity will pickup more load compared to the
1204 * group having less cpu_capacity.
1206 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1208 struct sched_group *sg = sd->groups;
1210 WARN_ON(!sg);
1212 do {
1213 int cpu, max_cpu = -1;
1215 sg->group_weight = cpumask_weight(sched_group_span(sg));
1217 if (!(sd->flags & SD_ASYM_PACKING))
1218 goto next;
1220 for_each_cpu(cpu, sched_group_span(sg)) {
1221 if (max_cpu < 0)
1222 max_cpu = cpu;
1223 else if (sched_asym_prefer(cpu, max_cpu))
1224 max_cpu = cpu;
1226 sg->asym_prefer_cpu = max_cpu;
1228 next:
1229 sg = sg->next;
1230 } while (sg != sd->groups);
1232 if (cpu != group_balance_cpu(sg))
1233 return;
1235 update_group_capacity(sd, cpu);
1239 * Initializers for schedule domains
1240 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1243 static int default_relax_domain_level = -1;
1244 int sched_domain_level_max;
1246 static int __init setup_relax_domain_level(char *str)
1248 if (kstrtoint(str, 0, &default_relax_domain_level))
1249 pr_warn("Unable to set relax_domain_level\n");
1251 return 1;
1253 __setup("relax_domain_level=", setup_relax_domain_level);
1255 static void set_domain_attribute(struct sched_domain *sd,
1256 struct sched_domain_attr *attr)
1258 int request;
1260 if (!attr || attr->relax_domain_level < 0) {
1261 if (default_relax_domain_level < 0)
1262 return;
1263 request = default_relax_domain_level;
1264 } else
1265 request = attr->relax_domain_level;
1267 if (sd->level > request) {
1268 /* Turn off idle balance on this domain: */
1269 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1273 static void __sdt_free(const struct cpumask *cpu_map);
1274 static int __sdt_alloc(const struct cpumask *cpu_map);
1276 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1277 const struct cpumask *cpu_map)
1279 switch (what) {
1280 case sa_rootdomain:
1281 if (!atomic_read(&d->rd->refcount))
1282 free_rootdomain(&d->rd->rcu);
1283 fallthrough;
1284 case sa_sd:
1285 free_percpu(d->sd);
1286 fallthrough;
1287 case sa_sd_storage:
1288 __sdt_free(cpu_map);
1289 fallthrough;
1290 case sa_none:
1291 break;
1295 static enum s_alloc
1296 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1298 memset(d, 0, sizeof(*d));
1300 if (__sdt_alloc(cpu_map))
1301 return sa_sd_storage;
1302 d->sd = alloc_percpu(struct sched_domain *);
1303 if (!d->sd)
1304 return sa_sd_storage;
1305 d->rd = alloc_rootdomain();
1306 if (!d->rd)
1307 return sa_sd;
1309 return sa_rootdomain;
1313 * NULL the sd_data elements we've used to build the sched_domain and
1314 * sched_group structure so that the subsequent __free_domain_allocs()
1315 * will not free the data we're using.
1317 static void claim_allocations(int cpu, struct sched_domain *sd)
1319 struct sd_data *sdd = sd->private;
1321 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1322 *per_cpu_ptr(sdd->sd, cpu) = NULL;
1324 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1325 *per_cpu_ptr(sdd->sds, cpu) = NULL;
1327 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1328 *per_cpu_ptr(sdd->sg, cpu) = NULL;
1330 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1331 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
1334 #ifdef CONFIG_NUMA
1335 enum numa_topology_type sched_numa_topology_type;
1337 static int sched_domains_numa_levels;
1338 static int sched_domains_curr_level;
1340 int sched_max_numa_distance;
1341 static int *sched_domains_numa_distance;
1342 static struct cpumask ***sched_domains_numa_masks;
1343 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
1344 #endif
1347 * SD_flags allowed in topology descriptions.
1349 * These flags are purely descriptive of the topology and do not prescribe
1350 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1351 * function:
1353 * SD_SHARE_CPUCAPACITY - describes SMT topologies
1354 * SD_SHARE_PKG_RESOURCES - describes shared caches
1355 * SD_NUMA - describes NUMA topologies
1357 * Odd one out, which beside describing the topology has a quirk also
1358 * prescribes the desired behaviour that goes along with it:
1360 * SD_ASYM_PACKING - describes SMT quirks
1362 #define TOPOLOGY_SD_FLAGS \
1363 (SD_SHARE_CPUCAPACITY | \
1364 SD_SHARE_PKG_RESOURCES | \
1365 SD_NUMA | \
1366 SD_ASYM_PACKING)
1368 static struct sched_domain *
1369 sd_init(struct sched_domain_topology_level *tl,
1370 const struct cpumask *cpu_map,
1371 struct sched_domain *child, int dflags, int cpu)
1373 struct sd_data *sdd = &tl->data;
1374 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1375 int sd_id, sd_weight, sd_flags = 0;
1377 #ifdef CONFIG_NUMA
1379 * Ugly hack to pass state to sd_numa_mask()...
1381 sched_domains_curr_level = tl->numa_level;
1382 #endif
1384 sd_weight = cpumask_weight(tl->mask(cpu));
1386 if (tl->sd_flags)
1387 sd_flags = (*tl->sd_flags)();
1388 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1389 "wrong sd_flags in topology description\n"))
1390 sd_flags &= TOPOLOGY_SD_FLAGS;
1392 /* Apply detected topology flags */
1393 sd_flags |= dflags;
1395 *sd = (struct sched_domain){
1396 .min_interval = sd_weight,
1397 .max_interval = 2*sd_weight,
1398 .busy_factor = 16,
1399 .imbalance_pct = 117,
1401 .cache_nice_tries = 0,
1403 .flags = 1*SD_BALANCE_NEWIDLE
1404 | 1*SD_BALANCE_EXEC
1405 | 1*SD_BALANCE_FORK
1406 | 0*SD_BALANCE_WAKE
1407 | 1*SD_WAKE_AFFINE
1408 | 0*SD_SHARE_CPUCAPACITY
1409 | 0*SD_SHARE_PKG_RESOURCES
1410 | 0*SD_SERIALIZE
1411 | 1*SD_PREFER_SIBLING
1412 | 0*SD_NUMA
1413 | sd_flags
1416 .last_balance = jiffies,
1417 .balance_interval = sd_weight,
1418 .max_newidle_lb_cost = 0,
1419 .next_decay_max_lb_cost = jiffies,
1420 .child = child,
1421 #ifdef CONFIG_SCHED_DEBUG
1422 .name = tl->name,
1423 #endif
1426 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1427 sd_id = cpumask_first(sched_domain_span(sd));
1430 * Convert topological properties into behaviour.
1433 /* Don't attempt to spread across CPUs of different capacities. */
1434 if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1435 sd->child->flags &= ~SD_PREFER_SIBLING;
1437 if (sd->flags & SD_SHARE_CPUCAPACITY) {
1438 sd->imbalance_pct = 110;
1440 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1441 sd->imbalance_pct = 117;
1442 sd->cache_nice_tries = 1;
1444 #ifdef CONFIG_NUMA
1445 } else if (sd->flags & SD_NUMA) {
1446 sd->cache_nice_tries = 2;
1448 sd->flags &= ~SD_PREFER_SIBLING;
1449 sd->flags |= SD_SERIALIZE;
1450 if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1451 sd->flags &= ~(SD_BALANCE_EXEC |
1452 SD_BALANCE_FORK |
1453 SD_WAKE_AFFINE);
1456 #endif
1457 } else {
1458 sd->cache_nice_tries = 1;
1462 * For all levels sharing cache; connect a sched_domain_shared
1463 * instance.
1465 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1466 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1467 atomic_inc(&sd->shared->ref);
1468 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1471 sd->private = sdd;
1473 return sd;
1477 * Topology list, bottom-up.
1479 static struct sched_domain_topology_level default_topology[] = {
1480 #ifdef CONFIG_SCHED_SMT
1481 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1482 #endif
1483 #ifdef CONFIG_SCHED_MC
1484 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1485 #endif
1486 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1487 { NULL, },
1490 static struct sched_domain_topology_level *sched_domain_topology =
1491 default_topology;
1493 #define for_each_sd_topology(tl) \
1494 for (tl = sched_domain_topology; tl->mask; tl++)
1496 void set_sched_topology(struct sched_domain_topology_level *tl)
1498 if (WARN_ON_ONCE(sched_smp_initialized))
1499 return;
1501 sched_domain_topology = tl;
1504 #ifdef CONFIG_NUMA
1506 static const struct cpumask *sd_numa_mask(int cpu)
1508 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1511 static void sched_numa_warn(const char *str)
1513 static int done = false;
1514 int i,j;
1516 if (done)
1517 return;
1519 done = true;
1521 printk(KERN_WARNING "ERROR: %s\n\n", str);
1523 for (i = 0; i < nr_node_ids; i++) {
1524 printk(KERN_WARNING " ");
1525 for (j = 0; j < nr_node_ids; j++)
1526 printk(KERN_CONT "%02d ", node_distance(i,j));
1527 printk(KERN_CONT "\n");
1529 printk(KERN_WARNING "\n");
1532 bool find_numa_distance(int distance)
1534 int i;
1536 if (distance == node_distance(0, 0))
1537 return true;
1539 for (i = 0; i < sched_domains_numa_levels; i++) {
1540 if (sched_domains_numa_distance[i] == distance)
1541 return true;
1544 return false;
1548 * A system can have three types of NUMA topology:
1549 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1550 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1551 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1553 * The difference between a glueless mesh topology and a backplane
1554 * topology lies in whether communication between not directly
1555 * connected nodes goes through intermediary nodes (where programs
1556 * could run), or through backplane controllers. This affects
1557 * placement of programs.
1559 * The type of topology can be discerned with the following tests:
1560 * - If the maximum distance between any nodes is 1 hop, the system
1561 * is directly connected.
1562 * - If for two nodes A and B, located N > 1 hops away from each other,
1563 * there is an intermediary node C, which is < N hops away from both
1564 * nodes A and B, the system is a glueless mesh.
1566 static void init_numa_topology_type(void)
1568 int a, b, c, n;
1570 n = sched_max_numa_distance;
1572 if (sched_domains_numa_levels <= 2) {
1573 sched_numa_topology_type = NUMA_DIRECT;
1574 return;
1577 for_each_online_node(a) {
1578 for_each_online_node(b) {
1579 /* Find two nodes furthest removed from each other. */
1580 if (node_distance(a, b) < n)
1581 continue;
1583 /* Is there an intermediary node between a and b? */
1584 for_each_online_node(c) {
1585 if (node_distance(a, c) < n &&
1586 node_distance(b, c) < n) {
1587 sched_numa_topology_type =
1588 NUMA_GLUELESS_MESH;
1589 return;
1593 sched_numa_topology_type = NUMA_BACKPLANE;
1594 return;
1599 void sched_init_numa(void)
1601 int next_distance, curr_distance = node_distance(0, 0);
1602 struct sched_domain_topology_level *tl;
1603 int level = 0;
1604 int i, j, k;
1606 sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL);
1607 if (!sched_domains_numa_distance)
1608 return;
1610 /* Includes NUMA identity node at level 0. */
1611 sched_domains_numa_distance[level++] = curr_distance;
1612 sched_domains_numa_levels = level;
1615 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1616 * unique distances in the node_distance() table.
1618 * Assumes node_distance(0,j) includes all distances in
1619 * node_distance(i,j) in order to avoid cubic time.
1621 next_distance = curr_distance;
1622 for (i = 0; i < nr_node_ids; i++) {
1623 for (j = 0; j < nr_node_ids; j++) {
1624 for (k = 0; k < nr_node_ids; k++) {
1625 int distance = node_distance(i, k);
1627 if (distance > curr_distance &&
1628 (distance < next_distance ||
1629 next_distance == curr_distance))
1630 next_distance = distance;
1633 * While not a strong assumption it would be nice to know
1634 * about cases where if node A is connected to B, B is not
1635 * equally connected to A.
1637 if (sched_debug() && node_distance(k, i) != distance)
1638 sched_numa_warn("Node-distance not symmetric");
1640 if (sched_debug() && i && !find_numa_distance(distance))
1641 sched_numa_warn("Node-0 not representative");
1643 if (next_distance != curr_distance) {
1644 sched_domains_numa_distance[level++] = next_distance;
1645 sched_domains_numa_levels = level;
1646 curr_distance = next_distance;
1647 } else break;
1651 * In case of sched_debug() we verify the above assumption.
1653 if (!sched_debug())
1654 break;
1658 * 'level' contains the number of unique distances
1660 * The sched_domains_numa_distance[] array includes the actual distance
1661 * numbers.
1665 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1666 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1667 * the array will contain less then 'level' members. This could be
1668 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1669 * in other functions.
1671 * We reset it to 'level' at the end of this function.
1673 sched_domains_numa_levels = 0;
1675 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1676 if (!sched_domains_numa_masks)
1677 return;
1680 * Now for each level, construct a mask per node which contains all
1681 * CPUs of nodes that are that many hops away from us.
1683 for (i = 0; i < level; i++) {
1684 sched_domains_numa_masks[i] =
1685 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1686 if (!sched_domains_numa_masks[i])
1687 return;
1689 for (j = 0; j < nr_node_ids; j++) {
1690 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1691 if (!mask)
1692 return;
1694 sched_domains_numa_masks[i][j] = mask;
1696 for_each_node(k) {
1697 if (node_distance(j, k) > sched_domains_numa_distance[i])
1698 continue;
1700 cpumask_or(mask, mask, cpumask_of_node(k));
1705 /* Compute default topology size */
1706 for (i = 0; sched_domain_topology[i].mask; i++);
1708 tl = kzalloc((i + level + 1) *
1709 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1710 if (!tl)
1711 return;
1714 * Copy the default topology bits..
1716 for (i = 0; sched_domain_topology[i].mask; i++)
1717 tl[i] = sched_domain_topology[i];
1720 * Add the NUMA identity distance, aka single NODE.
1722 tl[i++] = (struct sched_domain_topology_level){
1723 .mask = sd_numa_mask,
1724 .numa_level = 0,
1725 SD_INIT_NAME(NODE)
1729 * .. and append 'j' levels of NUMA goodness.
1731 for (j = 1; j < level; i++, j++) {
1732 tl[i] = (struct sched_domain_topology_level){
1733 .mask = sd_numa_mask,
1734 .sd_flags = cpu_numa_flags,
1735 .flags = SDTL_OVERLAP,
1736 .numa_level = j,
1737 SD_INIT_NAME(NUMA)
1741 sched_domain_topology = tl;
1743 sched_domains_numa_levels = level;
1744 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1746 init_numa_topology_type();
1749 void sched_domains_numa_masks_set(unsigned int cpu)
1751 int node = cpu_to_node(cpu);
1752 int i, j;
1754 for (i = 0; i < sched_domains_numa_levels; i++) {
1755 for (j = 0; j < nr_node_ids; j++) {
1756 if (node_distance(j, node) <= sched_domains_numa_distance[i])
1757 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1762 void sched_domains_numa_masks_clear(unsigned int cpu)
1764 int i, j;
1766 for (i = 0; i < sched_domains_numa_levels; i++) {
1767 for (j = 0; j < nr_node_ids; j++)
1768 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1773 * sched_numa_find_closest() - given the NUMA topology, find the cpu
1774 * closest to @cpu from @cpumask.
1775 * cpumask: cpumask to find a cpu from
1776 * cpu: cpu to be close to
1778 * returns: cpu, or nr_cpu_ids when nothing found.
1780 int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1782 int i, j = cpu_to_node(cpu);
1784 for (i = 0; i < sched_domains_numa_levels; i++) {
1785 cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]);
1786 if (cpu < nr_cpu_ids)
1787 return cpu;
1789 return nr_cpu_ids;
1792 #endif /* CONFIG_NUMA */
1794 static int __sdt_alloc(const struct cpumask *cpu_map)
1796 struct sched_domain_topology_level *tl;
1797 int j;
1799 for_each_sd_topology(tl) {
1800 struct sd_data *sdd = &tl->data;
1802 sdd->sd = alloc_percpu(struct sched_domain *);
1803 if (!sdd->sd)
1804 return -ENOMEM;
1806 sdd->sds = alloc_percpu(struct sched_domain_shared *);
1807 if (!sdd->sds)
1808 return -ENOMEM;
1810 sdd->sg = alloc_percpu(struct sched_group *);
1811 if (!sdd->sg)
1812 return -ENOMEM;
1814 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1815 if (!sdd->sgc)
1816 return -ENOMEM;
1818 for_each_cpu(j, cpu_map) {
1819 struct sched_domain *sd;
1820 struct sched_domain_shared *sds;
1821 struct sched_group *sg;
1822 struct sched_group_capacity *sgc;
1824 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1825 GFP_KERNEL, cpu_to_node(j));
1826 if (!sd)
1827 return -ENOMEM;
1829 *per_cpu_ptr(sdd->sd, j) = sd;
1831 sds = kzalloc_node(sizeof(struct sched_domain_shared),
1832 GFP_KERNEL, cpu_to_node(j));
1833 if (!sds)
1834 return -ENOMEM;
1836 *per_cpu_ptr(sdd->sds, j) = sds;
1838 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1839 GFP_KERNEL, cpu_to_node(j));
1840 if (!sg)
1841 return -ENOMEM;
1843 sg->next = sg;
1845 *per_cpu_ptr(sdd->sg, j) = sg;
1847 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1848 GFP_KERNEL, cpu_to_node(j));
1849 if (!sgc)
1850 return -ENOMEM;
1852 #ifdef CONFIG_SCHED_DEBUG
1853 sgc->id = j;
1854 #endif
1856 *per_cpu_ptr(sdd->sgc, j) = sgc;
1860 return 0;
1863 static void __sdt_free(const struct cpumask *cpu_map)
1865 struct sched_domain_topology_level *tl;
1866 int j;
1868 for_each_sd_topology(tl) {
1869 struct sd_data *sdd = &tl->data;
1871 for_each_cpu(j, cpu_map) {
1872 struct sched_domain *sd;
1874 if (sdd->sd) {
1875 sd = *per_cpu_ptr(sdd->sd, j);
1876 if (sd && (sd->flags & SD_OVERLAP))
1877 free_sched_groups(sd->groups, 0);
1878 kfree(*per_cpu_ptr(sdd->sd, j));
1881 if (sdd->sds)
1882 kfree(*per_cpu_ptr(sdd->sds, j));
1883 if (sdd->sg)
1884 kfree(*per_cpu_ptr(sdd->sg, j));
1885 if (sdd->sgc)
1886 kfree(*per_cpu_ptr(sdd->sgc, j));
1888 free_percpu(sdd->sd);
1889 sdd->sd = NULL;
1890 free_percpu(sdd->sds);
1891 sdd->sds = NULL;
1892 free_percpu(sdd->sg);
1893 sdd->sg = NULL;
1894 free_percpu(sdd->sgc);
1895 sdd->sgc = NULL;
1899 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1900 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1901 struct sched_domain *child, int dflags, int cpu)
1903 struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu);
1905 if (child) {
1906 sd->level = child->level + 1;
1907 sched_domain_level_max = max(sched_domain_level_max, sd->level);
1908 child->parent = sd;
1910 if (!cpumask_subset(sched_domain_span(child),
1911 sched_domain_span(sd))) {
1912 pr_err("BUG: arch topology borken\n");
1913 #ifdef CONFIG_SCHED_DEBUG
1914 pr_err(" the %s domain not a subset of the %s domain\n",
1915 child->name, sd->name);
1916 #endif
1917 /* Fixup, ensure @sd has at least @child CPUs. */
1918 cpumask_or(sched_domain_span(sd),
1919 sched_domain_span(sd),
1920 sched_domain_span(child));
1924 set_domain_attribute(sd, attr);
1926 return sd;
1930 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
1931 * any two given CPUs at this (non-NUMA) topology level.
1933 static bool topology_span_sane(struct sched_domain_topology_level *tl,
1934 const struct cpumask *cpu_map, int cpu)
1936 int i;
1938 /* NUMA levels are allowed to overlap */
1939 if (tl->flags & SDTL_OVERLAP)
1940 return true;
1943 * Non-NUMA levels cannot partially overlap - they must be either
1944 * completely equal or completely disjoint. Otherwise we can end up
1945 * breaking the sched_group lists - i.e. a later get_group() pass
1946 * breaks the linking done for an earlier span.
1948 for_each_cpu(i, cpu_map) {
1949 if (i == cpu)
1950 continue;
1952 * We should 'and' all those masks with 'cpu_map' to exactly
1953 * match the topology we're about to build, but that can only
1954 * remove CPUs, which only lessens our ability to detect
1955 * overlaps
1957 if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
1958 cpumask_intersects(tl->mask(cpu), tl->mask(i)))
1959 return false;
1962 return true;
1966 * Find the sched_domain_topology_level where all CPU capacities are visible
1967 * for all CPUs.
1969 static struct sched_domain_topology_level
1970 *asym_cpu_capacity_level(const struct cpumask *cpu_map)
1972 int i, j, asym_level = 0;
1973 bool asym = false;
1974 struct sched_domain_topology_level *tl, *asym_tl = NULL;
1975 unsigned long cap;
1977 /* Is there any asymmetry? */
1978 cap = arch_scale_cpu_capacity(cpumask_first(cpu_map));
1980 for_each_cpu(i, cpu_map) {
1981 if (arch_scale_cpu_capacity(i) != cap) {
1982 asym = true;
1983 break;
1987 if (!asym)
1988 return NULL;
1991 * Examine topology from all CPU's point of views to detect the lowest
1992 * sched_domain_topology_level where a highest capacity CPU is visible
1993 * to everyone.
1995 for_each_cpu(i, cpu_map) {
1996 unsigned long max_capacity = arch_scale_cpu_capacity(i);
1997 int tl_id = 0;
1999 for_each_sd_topology(tl) {
2000 if (tl_id < asym_level)
2001 goto next_level;
2003 for_each_cpu_and(j, tl->mask(i), cpu_map) {
2004 unsigned long capacity;
2006 capacity = arch_scale_cpu_capacity(j);
2008 if (capacity <= max_capacity)
2009 continue;
2011 max_capacity = capacity;
2012 asym_level = tl_id;
2013 asym_tl = tl;
2015 next_level:
2016 tl_id++;
2020 return asym_tl;
2025 * Build sched domains for a given set of CPUs and attach the sched domains
2026 * to the individual CPUs
2028 static int
2029 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2031 enum s_alloc alloc_state = sa_none;
2032 struct sched_domain *sd;
2033 struct s_data d;
2034 struct rq *rq = NULL;
2035 int i, ret = -ENOMEM;
2036 struct sched_domain_topology_level *tl_asym;
2037 bool has_asym = false;
2039 if (WARN_ON(cpumask_empty(cpu_map)))
2040 goto error;
2042 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2043 if (alloc_state != sa_rootdomain)
2044 goto error;
2046 tl_asym = asym_cpu_capacity_level(cpu_map);
2048 /* Set up domains for CPUs specified by the cpu_map: */
2049 for_each_cpu(i, cpu_map) {
2050 struct sched_domain_topology_level *tl;
2051 int dflags = 0;
2053 sd = NULL;
2054 for_each_sd_topology(tl) {
2055 if (tl == tl_asym) {
2056 dflags |= SD_ASYM_CPUCAPACITY;
2057 has_asym = true;
2060 if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2061 goto error;
2063 sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i);
2065 if (tl == sched_domain_topology)
2066 *per_cpu_ptr(d.sd, i) = sd;
2067 if (tl->flags & SDTL_OVERLAP)
2068 sd->flags |= SD_OVERLAP;
2069 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2070 break;
2074 /* Build the groups for the domains */
2075 for_each_cpu(i, cpu_map) {
2076 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2077 sd->span_weight = cpumask_weight(sched_domain_span(sd));
2078 if (sd->flags & SD_OVERLAP) {
2079 if (build_overlap_sched_groups(sd, i))
2080 goto error;
2081 } else {
2082 if (build_sched_groups(sd, i))
2083 goto error;
2088 /* Calculate CPU capacity for physical packages and nodes */
2089 for (i = nr_cpumask_bits-1; i >= 0; i--) {
2090 if (!cpumask_test_cpu(i, cpu_map))
2091 continue;
2093 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2094 claim_allocations(i, sd);
2095 init_sched_groups_capacity(i, sd);
2099 /* Attach the domains */
2100 rcu_read_lock();
2101 for_each_cpu(i, cpu_map) {
2102 rq = cpu_rq(i);
2103 sd = *per_cpu_ptr(d.sd, i);
2105 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2106 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2107 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2109 cpu_attach_domain(sd, d.rd, i);
2111 rcu_read_unlock();
2113 if (has_asym)
2114 static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2116 if (rq && sched_debug_enabled) {
2117 pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2118 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2121 ret = 0;
2122 error:
2123 __free_domain_allocs(&d, alloc_state, cpu_map);
2125 return ret;
2128 /* Current sched domains: */
2129 static cpumask_var_t *doms_cur;
2131 /* Number of sched domains in 'doms_cur': */
2132 static int ndoms_cur;
2134 /* Attribues of custom domains in 'doms_cur' */
2135 static struct sched_domain_attr *dattr_cur;
2138 * Special case: If a kmalloc() of a doms_cur partition (array of
2139 * cpumask) fails, then fallback to a single sched domain,
2140 * as determined by the single cpumask fallback_doms.
2142 static cpumask_var_t fallback_doms;
2145 * arch_update_cpu_topology lets virtualized architectures update the
2146 * CPU core maps. It is supposed to return 1 if the topology changed
2147 * or 0 if it stayed the same.
2149 int __weak arch_update_cpu_topology(void)
2151 return 0;
2154 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2156 int i;
2157 cpumask_var_t *doms;
2159 doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2160 if (!doms)
2161 return NULL;
2162 for (i = 0; i < ndoms; i++) {
2163 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2164 free_sched_domains(doms, i);
2165 return NULL;
2168 return doms;
2171 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2173 unsigned int i;
2174 for (i = 0; i < ndoms; i++)
2175 free_cpumask_var(doms[i]);
2176 kfree(doms);
2180 * Set up scheduler domains and groups. For now this just excludes isolated
2181 * CPUs, but could be used to exclude other special cases in the future.
2183 int sched_init_domains(const struct cpumask *cpu_map)
2185 int err;
2187 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2188 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2189 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2191 arch_update_cpu_topology();
2192 ndoms_cur = 1;
2193 doms_cur = alloc_sched_domains(ndoms_cur);
2194 if (!doms_cur)
2195 doms_cur = &fallback_doms;
2196 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
2197 err = build_sched_domains(doms_cur[0], NULL);
2198 register_sched_domain_sysctl();
2200 return err;
2204 * Detach sched domains from a group of CPUs specified in cpu_map
2205 * These CPUs will now be attached to the NULL domain
2207 static void detach_destroy_domains(const struct cpumask *cpu_map)
2209 unsigned int cpu = cpumask_any(cpu_map);
2210 int i;
2212 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2213 static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2215 rcu_read_lock();
2216 for_each_cpu(i, cpu_map)
2217 cpu_attach_domain(NULL, &def_root_domain, i);
2218 rcu_read_unlock();
2221 /* handle null as "default" */
2222 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2223 struct sched_domain_attr *new, int idx_new)
2225 struct sched_domain_attr tmp;
2227 /* Fast path: */
2228 if (!new && !cur)
2229 return 1;
2231 tmp = SD_ATTR_INIT;
2233 return !memcmp(cur ? (cur + idx_cur) : &tmp,
2234 new ? (new + idx_new) : &tmp,
2235 sizeof(struct sched_domain_attr));
2239 * Partition sched domains as specified by the 'ndoms_new'
2240 * cpumasks in the array doms_new[] of cpumasks. This compares
2241 * doms_new[] to the current sched domain partitioning, doms_cur[].
2242 * It destroys each deleted domain and builds each new domain.
2244 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2245 * The masks don't intersect (don't overlap.) We should setup one
2246 * sched domain for each mask. CPUs not in any of the cpumasks will
2247 * not be load balanced. If the same cpumask appears both in the
2248 * current 'doms_cur' domains and in the new 'doms_new', we can leave
2249 * it as it is.
2251 * The passed in 'doms_new' should be allocated using
2252 * alloc_sched_domains. This routine takes ownership of it and will
2253 * free_sched_domains it when done with it. If the caller failed the
2254 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2255 * and partition_sched_domains() will fallback to the single partition
2256 * 'fallback_doms', it also forces the domains to be rebuilt.
2258 * If doms_new == NULL it will be replaced with cpu_online_mask.
2259 * ndoms_new == 0 is a special case for destroying existing domains,
2260 * and it will not create the default domain.
2262 * Call with hotplug lock and sched_domains_mutex held
2264 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2265 struct sched_domain_attr *dattr_new)
2267 bool __maybe_unused has_eas = false;
2268 int i, j, n;
2269 int new_topology;
2271 lockdep_assert_held(&sched_domains_mutex);
2273 /* Always unregister in case we don't destroy any domains: */
2274 unregister_sched_domain_sysctl();
2276 /* Let the architecture update CPU core mappings: */
2277 new_topology = arch_update_cpu_topology();
2279 if (!doms_new) {
2280 WARN_ON_ONCE(dattr_new);
2281 n = 0;
2282 doms_new = alloc_sched_domains(1);
2283 if (doms_new) {
2284 n = 1;
2285 cpumask_and(doms_new[0], cpu_active_mask,
2286 housekeeping_cpumask(HK_FLAG_DOMAIN));
2288 } else {
2289 n = ndoms_new;
2292 /* Destroy deleted domains: */
2293 for (i = 0; i < ndoms_cur; i++) {
2294 for (j = 0; j < n && !new_topology; j++) {
2295 if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2296 dattrs_equal(dattr_cur, i, dattr_new, j)) {
2297 struct root_domain *rd;
2300 * This domain won't be destroyed and as such
2301 * its dl_bw->total_bw needs to be cleared. It
2302 * will be recomputed in function
2303 * update_tasks_root_domain().
2305 rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2306 dl_clear_root_domain(rd);
2307 goto match1;
2310 /* No match - a current sched domain not in new doms_new[] */
2311 detach_destroy_domains(doms_cur[i]);
2312 match1:
2316 n = ndoms_cur;
2317 if (!doms_new) {
2318 n = 0;
2319 doms_new = &fallback_doms;
2320 cpumask_and(doms_new[0], cpu_active_mask,
2321 housekeeping_cpumask(HK_FLAG_DOMAIN));
2324 /* Build new domains: */
2325 for (i = 0; i < ndoms_new; i++) {
2326 for (j = 0; j < n && !new_topology; j++) {
2327 if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2328 dattrs_equal(dattr_new, i, dattr_cur, j))
2329 goto match2;
2331 /* No match - add a new doms_new */
2332 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2333 match2:
2337 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2338 /* Build perf. domains: */
2339 for (i = 0; i < ndoms_new; i++) {
2340 for (j = 0; j < n && !sched_energy_update; j++) {
2341 if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2342 cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2343 has_eas = true;
2344 goto match3;
2347 /* No match - add perf. domains for a new rd */
2348 has_eas |= build_perf_domains(doms_new[i]);
2349 match3:
2352 sched_energy_set(has_eas);
2353 #endif
2355 /* Remember the new sched domains: */
2356 if (doms_cur != &fallback_doms)
2357 free_sched_domains(doms_cur, ndoms_cur);
2359 kfree(dattr_cur);
2360 doms_cur = doms_new;
2361 dattr_cur = dattr_new;
2362 ndoms_cur = ndoms_new;
2364 register_sched_domain_sysctl();
2368 * Call with hotplug lock held
2370 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2371 struct sched_domain_attr *dattr_new)
2373 mutex_lock(&sched_domains_mutex);
2374 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2375 mutex_unlock(&sched_domains_mutex);