usb: renesas_usbhs: disable TX IRQ before starting TX DMAC transfer
[linux/fpc-iii.git] / drivers / net / fddi / defxx.c
blob2aa57270838fb6e67ec6f54106cb21391e7fcd25
1 /*
2 * File Name:
3 * defxx.c
5 * Copyright Information:
6 * Copyright Digital Equipment Corporation 1996.
8 * This software may be used and distributed according to the terms of
9 * the GNU General Public License, incorporated herein by reference.
11 * Abstract:
12 * A Linux device driver supporting the Digital Equipment Corporation
13 * FDDI TURBOchannel, EISA and PCI controller families. Supported
14 * adapters include:
16 * DEC FDDIcontroller/TURBOchannel (DEFTA)
17 * DEC FDDIcontroller/EISA (DEFEA)
18 * DEC FDDIcontroller/PCI (DEFPA)
20 * The original author:
21 * LVS Lawrence V. Stefani <lstefani@yahoo.com>
23 * Maintainers:
24 * macro Maciej W. Rozycki <macro@linux-mips.org>
26 * Credits:
27 * I'd like to thank Patricia Cross for helping me get started with
28 * Linux, David Davies for a lot of help upgrading and configuring
29 * my development system and for answering many OS and driver
30 * development questions, and Alan Cox for recommendations and
31 * integration help on getting FDDI support into Linux. LVS
33 * Driver Architecture:
34 * The driver architecture is largely based on previous driver work
35 * for other operating systems. The upper edge interface and
36 * functions were largely taken from existing Linux device drivers
37 * such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
38 * driver.
40 * Adapter Probe -
41 * The driver scans for supported EISA adapters by reading the
42 * SLOT ID register for each EISA slot and making a match
43 * against the expected value.
45 * Bus-Specific Initialization -
46 * This driver currently supports both EISA and PCI controller
47 * families. While the custom DMA chip and FDDI logic is similar
48 * or identical, the bus logic is very different. After
49 * initialization, the only bus-specific differences is in how the
50 * driver enables and disables interrupts. Other than that, the
51 * run-time critical code behaves the same on both families.
52 * It's important to note that both adapter families are configured
53 * to I/O map, rather than memory map, the adapter registers.
55 * Driver Open/Close -
56 * In the driver open routine, the driver ISR (interrupt service
57 * routine) is registered and the adapter is brought to an
58 * operational state. In the driver close routine, the opposite
59 * occurs; the driver ISR is deregistered and the adapter is
60 * brought to a safe, but closed state. Users may use consecutive
61 * commands to bring the adapter up and down as in the following
62 * example:
63 * ifconfig fddi0 up
64 * ifconfig fddi0 down
65 * ifconfig fddi0 up
67 * Driver Shutdown -
68 * Apparently, there is no shutdown or halt routine support under
69 * Linux. This routine would be called during "reboot" or
70 * "shutdown" to allow the driver to place the adapter in a safe
71 * state before a warm reboot occurs. To be really safe, the user
72 * should close the adapter before shutdown (eg. ifconfig fddi0 down)
73 * to ensure that the adapter DMA engine is taken off-line. However,
74 * the current driver code anticipates this problem and always issues
75 * a soft reset of the adapter at the beginning of driver initialization.
76 * A future driver enhancement in this area may occur in 2.1.X where
77 * Alan indicated that a shutdown handler may be implemented.
79 * Interrupt Service Routine -
80 * The driver supports shared interrupts, so the ISR is registered for
81 * each board with the appropriate flag and the pointer to that board's
82 * device structure. This provides the context during interrupt
83 * processing to support shared interrupts and multiple boards.
85 * Interrupt enabling/disabling can occur at many levels. At the host
86 * end, you can disable system interrupts, or disable interrupts at the
87 * PIC (on Intel systems). Across the bus, both EISA and PCI adapters
88 * have a bus-logic chip interrupt enable/disable as well as a DMA
89 * controller interrupt enable/disable.
91 * The driver currently enables and disables adapter interrupts at the
92 * bus-logic chip and assumes that Linux will take care of clearing or
93 * acknowledging any host-based interrupt chips.
95 * Control Functions -
96 * Control functions are those used to support functions such as adding
97 * or deleting multicast addresses, enabling or disabling packet
98 * reception filters, or other custom/proprietary commands. Presently,
99 * the driver supports the "get statistics", "set multicast list", and
100 * "set mac address" functions defined by Linux. A list of possible
101 * enhancements include:
103 * - Custom ioctl interface for executing port interface commands
104 * - Custom ioctl interface for adding unicast addresses to
105 * adapter CAM (to support bridge functions).
106 * - Custom ioctl interface for supporting firmware upgrades.
108 * Hardware (port interface) Support Routines -
109 * The driver function names that start with "dfx_hw_" represent
110 * low-level port interface routines that are called frequently. They
111 * include issuing a DMA or port control command to the adapter,
112 * resetting the adapter, or reading the adapter state. Since the
113 * driver initialization and run-time code must make calls into the
114 * port interface, these routines were written to be as generic and
115 * usable as possible.
117 * Receive Path -
118 * The adapter DMA engine supports a 256 entry receive descriptor block
119 * of which up to 255 entries can be used at any given time. The
120 * architecture is a standard producer, consumer, completion model in
121 * which the driver "produces" receive buffers to the adapter, the
122 * adapter "consumes" the receive buffers by DMAing incoming packet data,
123 * and the driver "completes" the receive buffers by servicing the
124 * incoming packet, then "produces" a new buffer and starts the cycle
125 * again. Receive buffers can be fragmented in up to 16 fragments
126 * (descriptor entries). For simplicity, this driver posts
127 * single-fragment receive buffers of 4608 bytes, then allocates a
128 * sk_buff, copies the data, then reposts the buffer. To reduce CPU
129 * utilization, a better approach would be to pass up the receive
130 * buffer (no extra copy) then allocate and post a replacement buffer.
131 * This is a performance enhancement that should be looked into at
132 * some point.
134 * Transmit Path -
135 * Like the receive path, the adapter DMA engine supports a 256 entry
136 * transmit descriptor block of which up to 255 entries can be used at
137 * any given time. Transmit buffers can be fragmented in up to 255
138 * fragments (descriptor entries). This driver always posts one
139 * fragment per transmit packet request.
141 * The fragment contains the entire packet from FC to end of data.
142 * Before posting the buffer to the adapter, the driver sets a three-byte
143 * packet request header (PRH) which is required by the Motorola MAC chip
144 * used on the adapters. The PRH tells the MAC the type of token to
145 * receive/send, whether or not to generate and append the CRC, whether
146 * synchronous or asynchronous framing is used, etc. Since the PRH
147 * definition is not necessarily consistent across all FDDI chipsets,
148 * the driver, rather than the common FDDI packet handler routines,
149 * sets these bytes.
151 * To reduce the amount of descriptor fetches needed per transmit request,
152 * the driver takes advantage of the fact that there are at least three
153 * bytes available before the skb->data field on the outgoing transmit
154 * request. This is guaranteed by having fddi_setup() in net_init.c set
155 * dev->hard_header_len to 24 bytes. 21 bytes accounts for the largest
156 * header in an 802.2 SNAP frame. The other 3 bytes are the extra "pad"
157 * bytes which we'll use to store the PRH.
159 * There's a subtle advantage to adding these pad bytes to the
160 * hard_header_len, it ensures that the data portion of the packet for
161 * an 802.2 SNAP frame is longword aligned. Other FDDI driver
162 * implementations may not need the extra padding and can start copying
163 * or DMAing directly from the FC byte which starts at skb->data. Should
164 * another driver implementation need ADDITIONAL padding, the net_init.c
165 * module should be updated and dev->hard_header_len should be increased.
166 * NOTE: To maintain the alignment on the data portion of the packet,
167 * dev->hard_header_len should always be evenly divisible by 4 and at
168 * least 24 bytes in size.
170 * Modification History:
171 * Date Name Description
172 * 16-Aug-96 LVS Created.
173 * 20-Aug-96 LVS Updated dfx_probe so that version information
174 * string is only displayed if 1 or more cards are
175 * found. Changed dfx_rcv_queue_process to copy
176 * 3 NULL bytes before FC to ensure that data is
177 * longword aligned in receive buffer.
178 * 09-Sep-96 LVS Updated dfx_ctl_set_multicast_list to enable
179 * LLC group promiscuous mode if multicast list
180 * is too large. LLC individual/group promiscuous
181 * mode is now disabled if IFF_PROMISC flag not set.
182 * dfx_xmt_queue_pkt no longer checks for NULL skb
183 * on Alan Cox recommendation. Added node address
184 * override support.
185 * 12-Sep-96 LVS Reset current address to factory address during
186 * device open. Updated transmit path to post a
187 * single fragment which includes PRH->end of data.
188 * Mar 2000 AC Did various cleanups for 2.3.x
189 * Jun 2000 jgarzik PCI and resource alloc cleanups
190 * Jul 2000 tjeerd Much cleanup and some bug fixes
191 * Sep 2000 tjeerd Fix leak on unload, cosmetic code cleanup
192 * Feb 2001 Skb allocation fixes
193 * Feb 2001 davej PCI enable cleanups.
194 * 04 Aug 2003 macro Converted to the DMA API.
195 * 14 Aug 2004 macro Fix device names reported.
196 * 14 Jun 2005 macro Use irqreturn_t.
197 * 23 Oct 2006 macro Big-endian host support.
198 * 14 Dec 2006 macro TURBOchannel support.
201 /* Include files */
202 #include <linux/bitops.h>
203 #include <linux/compiler.h>
204 #include <linux/delay.h>
205 #include <linux/dma-mapping.h>
206 #include <linux/eisa.h>
207 #include <linux/errno.h>
208 #include <linux/fddidevice.h>
209 #include <linux/interrupt.h>
210 #include <linux/ioport.h>
211 #include <linux/kernel.h>
212 #include <linux/module.h>
213 #include <linux/netdevice.h>
214 #include <linux/pci.h>
215 #include <linux/skbuff.h>
216 #include <linux/slab.h>
217 #include <linux/string.h>
218 #include <linux/tc.h>
220 #include <asm/byteorder.h>
221 #include <asm/io.h>
223 #include "defxx.h"
225 /* Version information string should be updated prior to each new release! */
226 #define DRV_NAME "defxx"
227 #define DRV_VERSION "v1.10"
228 #define DRV_RELDATE "2006/12/14"
230 static char version[] =
231 DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
232 " Lawrence V. Stefani and others\n";
234 #define DYNAMIC_BUFFERS 1
236 #define SKBUFF_RX_COPYBREAK 200
238 * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
239 * alignment for compatibility with old EISA boards.
241 #define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
243 #ifdef CONFIG_EISA
244 #define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
245 #else
246 #define DFX_BUS_EISA(dev) 0
247 #endif
249 #ifdef CONFIG_TC
250 #define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
251 #else
252 #define DFX_BUS_TC(dev) 0
253 #endif
255 #ifdef CONFIG_DEFXX_MMIO
256 #define DFX_MMIO 1
257 #else
258 #define DFX_MMIO 0
259 #endif
261 /* Define module-wide (static) routines */
263 static void dfx_bus_init(struct net_device *dev);
264 static void dfx_bus_uninit(struct net_device *dev);
265 static void dfx_bus_config_check(DFX_board_t *bp);
267 static int dfx_driver_init(struct net_device *dev,
268 const char *print_name,
269 resource_size_t bar_start);
270 static int dfx_adap_init(DFX_board_t *bp, int get_buffers);
272 static int dfx_open(struct net_device *dev);
273 static int dfx_close(struct net_device *dev);
275 static void dfx_int_pr_halt_id(DFX_board_t *bp);
276 static void dfx_int_type_0_process(DFX_board_t *bp);
277 static void dfx_int_common(struct net_device *dev);
278 static irqreturn_t dfx_interrupt(int irq, void *dev_id);
280 static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
281 static void dfx_ctl_set_multicast_list(struct net_device *dev);
282 static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
283 static int dfx_ctl_update_cam(DFX_board_t *bp);
284 static int dfx_ctl_update_filters(DFX_board_t *bp);
286 static int dfx_hw_dma_cmd_req(DFX_board_t *bp);
287 static int dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
288 static void dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
289 static int dfx_hw_adap_state_rd(DFX_board_t *bp);
290 static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
292 static int dfx_rcv_init(DFX_board_t *bp, int get_buffers);
293 static void dfx_rcv_queue_process(DFX_board_t *bp);
294 #ifdef DYNAMIC_BUFFERS
295 static void dfx_rcv_flush(DFX_board_t *bp);
296 #else
297 static inline void dfx_rcv_flush(DFX_board_t *bp) {}
298 #endif
300 static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
301 struct net_device *dev);
302 static int dfx_xmt_done(DFX_board_t *bp);
303 static void dfx_xmt_flush(DFX_board_t *bp);
305 /* Define module-wide (static) variables */
307 static struct pci_driver dfx_pci_driver;
308 static struct eisa_driver dfx_eisa_driver;
309 static struct tc_driver dfx_tc_driver;
313 * =======================
314 * = dfx_port_write_long =
315 * = dfx_port_read_long =
316 * =======================
318 * Overview:
319 * Routines for reading and writing values from/to adapter
321 * Returns:
322 * None
324 * Arguments:
325 * bp - pointer to board information
326 * offset - register offset from base I/O address
327 * data - for dfx_port_write_long, this is a value to write;
328 * for dfx_port_read_long, this is a pointer to store
329 * the read value
331 * Functional Description:
332 * These routines perform the correct operation to read or write
333 * the adapter register.
335 * EISA port block base addresses are based on the slot number in which the
336 * controller is installed. For example, if the EISA controller is installed
337 * in slot 4, the port block base address is 0x4000. If the controller is
338 * installed in slot 2, the port block base address is 0x2000, and so on.
339 * This port block can be used to access PDQ, ESIC, and DEFEA on-board
340 * registers using the register offsets defined in DEFXX.H.
342 * PCI port block base addresses are assigned by the PCI BIOS or system
343 * firmware. There is one 128 byte port block which can be accessed. It
344 * allows for I/O mapping of both PDQ and PFI registers using the register
345 * offsets defined in DEFXX.H.
347 * Return Codes:
348 * None
350 * Assumptions:
351 * bp->base is a valid base I/O address for this adapter.
352 * offset is a valid register offset for this adapter.
354 * Side Effects:
355 * Rather than produce macros for these functions, these routines
356 * are defined using "inline" to ensure that the compiler will
357 * generate inline code and not waste a procedure call and return.
358 * This provides all the benefits of macros, but with the
359 * advantage of strict data type checking.
362 static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data)
364 writel(data, bp->base.mem + offset);
365 mb();
368 static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data)
370 outl(data, bp->base.port + offset);
373 static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data)
375 struct device __maybe_unused *bdev = bp->bus_dev;
376 int dfx_bus_tc = DFX_BUS_TC(bdev);
377 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
379 if (dfx_use_mmio)
380 dfx_writel(bp, offset, data);
381 else
382 dfx_outl(bp, offset, data);
386 static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data)
388 mb();
389 *data = readl(bp->base.mem + offset);
392 static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data)
394 *data = inl(bp->base.port + offset);
397 static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data)
399 struct device __maybe_unused *bdev = bp->bus_dev;
400 int dfx_bus_tc = DFX_BUS_TC(bdev);
401 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
403 if (dfx_use_mmio)
404 dfx_readl(bp, offset, data);
405 else
406 dfx_inl(bp, offset, data);
411 * ================
412 * = dfx_get_bars =
413 * ================
415 * Overview:
416 * Retrieves the address range used to access control and status
417 * registers.
419 * Returns:
420 * None
422 * Arguments:
423 * bdev - pointer to device information
424 * bar_start - pointer to store the start address
425 * bar_len - pointer to store the length of the area
427 * Assumptions:
428 * I am sure there are some.
430 * Side Effects:
431 * None
433 static void dfx_get_bars(struct device *bdev,
434 resource_size_t *bar_start, resource_size_t *bar_len)
436 int dfx_bus_pci = dev_is_pci(bdev);
437 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
438 int dfx_bus_tc = DFX_BUS_TC(bdev);
439 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
441 if (dfx_bus_pci) {
442 int num = dfx_use_mmio ? 0 : 1;
444 *bar_start = pci_resource_start(to_pci_dev(bdev), num);
445 *bar_len = pci_resource_len(to_pci_dev(bdev), num);
447 if (dfx_bus_eisa) {
448 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
449 resource_size_t bar;
451 if (dfx_use_mmio) {
452 bar = inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_2);
453 bar <<= 8;
454 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_1);
455 bar <<= 8;
456 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_0);
457 bar <<= 16;
458 *bar_start = bar;
459 bar = inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_2);
460 bar <<= 8;
461 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_1);
462 bar <<= 8;
463 bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_0);
464 bar <<= 16;
465 *bar_len = (bar | PI_MEM_ADD_MASK_M) + 1;
466 } else {
467 *bar_start = base_addr;
468 *bar_len = PI_ESIC_K_CSR_IO_LEN;
471 if (dfx_bus_tc) {
472 *bar_start = to_tc_dev(bdev)->resource.start +
473 PI_TC_K_CSR_OFFSET;
474 *bar_len = PI_TC_K_CSR_LEN;
478 static const struct net_device_ops dfx_netdev_ops = {
479 .ndo_open = dfx_open,
480 .ndo_stop = dfx_close,
481 .ndo_start_xmit = dfx_xmt_queue_pkt,
482 .ndo_get_stats = dfx_ctl_get_stats,
483 .ndo_set_rx_mode = dfx_ctl_set_multicast_list,
484 .ndo_set_mac_address = dfx_ctl_set_mac_address,
488 * ================
489 * = dfx_register =
490 * ================
492 * Overview:
493 * Initializes a supported FDDI controller
495 * Returns:
496 * Condition code
498 * Arguments:
499 * bdev - pointer to device information
501 * Functional Description:
503 * Return Codes:
504 * 0 - This device (fddi0, fddi1, etc) configured successfully
505 * -EBUSY - Failed to get resources, or dfx_driver_init failed.
507 * Assumptions:
508 * It compiles so it should work :-( (PCI cards do :-)
510 * Side Effects:
511 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
512 * initialized and the board resources are read and stored in
513 * the device structure.
515 static int dfx_register(struct device *bdev)
517 static int version_disp;
518 int dfx_bus_pci = dev_is_pci(bdev);
519 int dfx_bus_tc = DFX_BUS_TC(bdev);
520 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
521 const char *print_name = dev_name(bdev);
522 struct net_device *dev;
523 DFX_board_t *bp; /* board pointer */
524 resource_size_t bar_start = 0; /* pointer to port */
525 resource_size_t bar_len = 0; /* resource length */
526 int alloc_size; /* total buffer size used */
527 struct resource *region;
528 int err = 0;
530 if (!version_disp) { /* display version info if adapter is found */
531 version_disp = 1; /* set display flag to TRUE so that */
532 printk(version); /* we only display this string ONCE */
535 dev = alloc_fddidev(sizeof(*bp));
536 if (!dev) {
537 printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n",
538 print_name);
539 return -ENOMEM;
542 /* Enable PCI device. */
543 if (dfx_bus_pci && pci_enable_device(to_pci_dev(bdev))) {
544 printk(KERN_ERR "%s: Cannot enable PCI device, aborting\n",
545 print_name);
546 goto err_out;
549 SET_NETDEV_DEV(dev, bdev);
551 bp = netdev_priv(dev);
552 bp->bus_dev = bdev;
553 dev_set_drvdata(bdev, dev);
555 dfx_get_bars(bdev, &bar_start, &bar_len);
557 if (dfx_use_mmio)
558 region = request_mem_region(bar_start, bar_len, print_name);
559 else
560 region = request_region(bar_start, bar_len, print_name);
561 if (!region) {
562 printk(KERN_ERR "%s: Cannot reserve I/O resource "
563 "0x%lx @ 0x%lx, aborting\n",
564 print_name, (long)bar_len, (long)bar_start);
565 err = -EBUSY;
566 goto err_out_disable;
569 /* Set up I/O base address. */
570 if (dfx_use_mmio) {
571 bp->base.mem = ioremap_nocache(bar_start, bar_len);
572 if (!bp->base.mem) {
573 printk(KERN_ERR "%s: Cannot map MMIO\n", print_name);
574 err = -ENOMEM;
575 goto err_out_region;
577 } else {
578 bp->base.port = bar_start;
579 dev->base_addr = bar_start;
582 /* Initialize new device structure */
583 dev->netdev_ops = &dfx_netdev_ops;
585 if (dfx_bus_pci)
586 pci_set_master(to_pci_dev(bdev));
588 if (dfx_driver_init(dev, print_name, bar_start) != DFX_K_SUCCESS) {
589 err = -ENODEV;
590 goto err_out_unmap;
593 err = register_netdev(dev);
594 if (err)
595 goto err_out_kfree;
597 printk("%s: registered as %s\n", print_name, dev->name);
598 return 0;
600 err_out_kfree:
601 alloc_size = sizeof(PI_DESCR_BLOCK) +
602 PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
603 #ifndef DYNAMIC_BUFFERS
604 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
605 #endif
606 sizeof(PI_CONSUMER_BLOCK) +
607 (PI_ALIGN_K_DESC_BLK - 1);
608 if (bp->kmalloced)
609 dma_free_coherent(bdev, alloc_size,
610 bp->kmalloced, bp->kmalloced_dma);
612 err_out_unmap:
613 if (dfx_use_mmio)
614 iounmap(bp->base.mem);
616 err_out_region:
617 if (dfx_use_mmio)
618 release_mem_region(bar_start, bar_len);
619 else
620 release_region(bar_start, bar_len);
622 err_out_disable:
623 if (dfx_bus_pci)
624 pci_disable_device(to_pci_dev(bdev));
626 err_out:
627 free_netdev(dev);
628 return err;
633 * ================
634 * = dfx_bus_init =
635 * ================
637 * Overview:
638 * Initializes the bus-specific controller logic.
640 * Returns:
641 * None
643 * Arguments:
644 * dev - pointer to device information
646 * Functional Description:
647 * Determine and save adapter IRQ in device table,
648 * then perform bus-specific logic initialization.
650 * Return Codes:
651 * None
653 * Assumptions:
654 * bp->base has already been set with the proper
655 * base I/O address for this device.
657 * Side Effects:
658 * Interrupts are enabled at the adapter bus-specific logic.
659 * Note: Interrupts at the DMA engine (PDQ chip) are not
660 * enabled yet.
663 static void dfx_bus_init(struct net_device *dev)
665 DFX_board_t *bp = netdev_priv(dev);
666 struct device *bdev = bp->bus_dev;
667 int dfx_bus_pci = dev_is_pci(bdev);
668 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
669 int dfx_bus_tc = DFX_BUS_TC(bdev);
670 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
671 u8 val;
673 DBG_printk("In dfx_bus_init...\n");
675 /* Initialize a pointer back to the net_device struct */
676 bp->dev = dev;
678 /* Initialize adapter based on bus type */
680 if (dfx_bus_tc)
681 dev->irq = to_tc_dev(bdev)->interrupt;
682 if (dfx_bus_eisa) {
683 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
685 /* Get the interrupt level from the ESIC chip. */
686 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
687 val &= PI_CONFIG_STAT_0_M_IRQ;
688 val >>= PI_CONFIG_STAT_0_V_IRQ;
690 switch (val) {
691 case PI_CONFIG_STAT_0_IRQ_K_9:
692 dev->irq = 9;
693 break;
695 case PI_CONFIG_STAT_0_IRQ_K_10:
696 dev->irq = 10;
697 break;
699 case PI_CONFIG_STAT_0_IRQ_K_11:
700 dev->irq = 11;
701 break;
703 case PI_CONFIG_STAT_0_IRQ_K_15:
704 dev->irq = 15;
705 break;
709 * Enable memory decoding (MEMCS0) and/or port decoding
710 * (IOCS1/IOCS0) as appropriate in Function Control
711 * Register. One of the port chip selects seems to be
712 * used for the Burst Holdoff register, but this bit of
713 * documentation is missing and as yet it has not been
714 * determined which of the two. This is also the reason
715 * the size of the decoded port range is twice as large
716 * as one required by the PDQ.
719 /* Set the decode range of the board. */
720 val = ((bp->base.port >> 12) << PI_IO_CMP_V_SLOT);
721 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_1, val);
722 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_0, 0);
723 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_1, val);
724 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_0, 0);
725 val = PI_ESIC_K_CSR_IO_LEN - 1;
726 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_1, (val >> 8) & 0xff);
727 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_0, val & 0xff);
728 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_1, (val >> 8) & 0xff);
729 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_0, val & 0xff);
731 /* Enable the decoders. */
732 val = PI_FUNCTION_CNTRL_M_IOCS1 | PI_FUNCTION_CNTRL_M_IOCS0;
733 if (dfx_use_mmio)
734 val |= PI_FUNCTION_CNTRL_M_MEMCS0;
735 outb(base_addr + PI_ESIC_K_FUNCTION_CNTRL, val);
738 * Enable access to the rest of the module
739 * (including PDQ and packet memory).
741 val = PI_SLOT_CNTRL_M_ENB;
742 outb(base_addr + PI_ESIC_K_SLOT_CNTRL, val);
745 * Map PDQ registers into memory or port space. This is
746 * done with a bit in the Burst Holdoff register.
748 val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF);
749 if (dfx_use_mmio)
750 val |= PI_BURST_HOLDOFF_V_MEM_MAP;
751 else
752 val &= ~PI_BURST_HOLDOFF_V_MEM_MAP;
753 outb(base_addr + PI_DEFEA_K_BURST_HOLDOFF, val);
755 /* Enable interrupts at EISA bus interface chip (ESIC) */
756 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
757 val |= PI_CONFIG_STAT_0_M_INT_ENB;
758 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
760 if (dfx_bus_pci) {
761 struct pci_dev *pdev = to_pci_dev(bdev);
763 /* Get the interrupt level from the PCI Configuration Table */
765 dev->irq = pdev->irq;
767 /* Check Latency Timer and set if less than minimal */
769 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
770 if (val < PFI_K_LAT_TIMER_MIN) {
771 val = PFI_K_LAT_TIMER_DEF;
772 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
775 /* Enable interrupts at PCI bus interface chip (PFI) */
776 val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB;
777 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val);
782 * ==================
783 * = dfx_bus_uninit =
784 * ==================
786 * Overview:
787 * Uninitializes the bus-specific controller logic.
789 * Returns:
790 * None
792 * Arguments:
793 * dev - pointer to device information
795 * Functional Description:
796 * Perform bus-specific logic uninitialization.
798 * Return Codes:
799 * None
801 * Assumptions:
802 * bp->base has already been set with the proper
803 * base I/O address for this device.
805 * Side Effects:
806 * Interrupts are disabled at the adapter bus-specific logic.
809 static void dfx_bus_uninit(struct net_device *dev)
811 DFX_board_t *bp = netdev_priv(dev);
812 struct device *bdev = bp->bus_dev;
813 int dfx_bus_pci = dev_is_pci(bdev);
814 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
815 u8 val;
817 DBG_printk("In dfx_bus_uninit...\n");
819 /* Uninitialize adapter based on bus type */
821 if (dfx_bus_eisa) {
822 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
824 /* Disable interrupts at EISA bus interface chip (ESIC) */
825 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
826 val &= ~PI_CONFIG_STAT_0_M_INT_ENB;
827 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
829 if (dfx_bus_pci) {
830 /* Disable interrupts at PCI bus interface chip (PFI) */
831 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0);
837 * ========================
838 * = dfx_bus_config_check =
839 * ========================
841 * Overview:
842 * Checks the configuration (burst size, full-duplex, etc.) If any parameters
843 * are illegal, then this routine will set new defaults.
845 * Returns:
846 * None
848 * Arguments:
849 * bp - pointer to board information
851 * Functional Description:
852 * For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
853 * PDQ, and all FDDI PCI controllers, all values are legal.
855 * Return Codes:
856 * None
858 * Assumptions:
859 * dfx_adap_init has NOT been called yet so burst size and other items have
860 * not been set.
862 * Side Effects:
863 * None
866 static void dfx_bus_config_check(DFX_board_t *bp)
868 struct device __maybe_unused *bdev = bp->bus_dev;
869 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
870 int status; /* return code from adapter port control call */
871 u32 host_data; /* LW data returned from port control call */
873 DBG_printk("In dfx_bus_config_check...\n");
875 /* Configuration check only valid for EISA adapter */
877 if (dfx_bus_eisa) {
879 * First check if revision 2 EISA controller. Rev. 1 cards used
880 * PDQ revision B, so no workaround needed in this case. Rev. 3
881 * cards used PDQ revision E, so no workaround needed in this
882 * case, either. Only Rev. 2 cards used either Rev. D or E
883 * chips, so we must verify the chip revision on Rev. 2 cards.
885 if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) {
887 * Revision 2 FDDI EISA controller found,
888 * so let's check PDQ revision of adapter.
890 status = dfx_hw_port_ctrl_req(bp,
891 PI_PCTRL_M_SUB_CMD,
892 PI_SUB_CMD_K_PDQ_REV_GET,
894 &host_data);
895 if ((status != DFX_K_SUCCESS) || (host_data == 2))
898 * Either we couldn't determine the PDQ revision, or
899 * we determined that it is at revision D. In either case,
900 * we need to implement the workaround.
903 /* Ensure that the burst size is set to 8 longwords or less */
905 switch (bp->burst_size)
907 case PI_PDATA_B_DMA_BURST_SIZE_32:
908 case PI_PDATA_B_DMA_BURST_SIZE_16:
909 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
910 break;
912 default:
913 break;
916 /* Ensure that full-duplex mode is not enabled */
918 bp->full_duplex_enb = PI_SNMP_K_FALSE;
926 * ===================
927 * = dfx_driver_init =
928 * ===================
930 * Overview:
931 * Initializes remaining adapter board structure information
932 * and makes sure adapter is in a safe state prior to dfx_open().
934 * Returns:
935 * Condition code
937 * Arguments:
938 * dev - pointer to device information
939 * print_name - printable device name
941 * Functional Description:
942 * This function allocates additional resources such as the host memory
943 * blocks needed by the adapter (eg. descriptor and consumer blocks).
944 * Remaining bus initialization steps are also completed. The adapter
945 * is also reset so that it is in the DMA_UNAVAILABLE state. The OS
946 * must call dfx_open() to open the adapter and bring it on-line.
948 * Return Codes:
949 * DFX_K_SUCCESS - initialization succeeded
950 * DFX_K_FAILURE - initialization failed - could not allocate memory
951 * or read adapter MAC address
953 * Assumptions:
954 * Memory allocated from pci_alloc_consistent() call is physically
955 * contiguous, locked memory.
957 * Side Effects:
958 * Adapter is reset and should be in DMA_UNAVAILABLE state before
959 * returning from this routine.
962 static int dfx_driver_init(struct net_device *dev, const char *print_name,
963 resource_size_t bar_start)
965 DFX_board_t *bp = netdev_priv(dev);
966 struct device *bdev = bp->bus_dev;
967 int dfx_bus_pci = dev_is_pci(bdev);
968 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
969 int dfx_bus_tc = DFX_BUS_TC(bdev);
970 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
971 int alloc_size; /* total buffer size needed */
972 char *top_v, *curr_v; /* virtual addrs into memory block */
973 dma_addr_t top_p, curr_p; /* physical addrs into memory block */
974 u32 data; /* host data register value */
975 __le32 le32;
976 char *board_name = NULL;
978 DBG_printk("In dfx_driver_init...\n");
980 /* Initialize bus-specific hardware registers */
982 dfx_bus_init(dev);
985 * Initialize default values for configurable parameters
987 * Note: All of these parameters are ones that a user may
988 * want to customize. It'd be nice to break these
989 * out into Space.c or someplace else that's more
990 * accessible/understandable than this file.
993 bp->full_duplex_enb = PI_SNMP_K_FALSE;
994 bp->req_ttrt = 8 * 12500; /* 8ms in 80 nanosec units */
995 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_DEF;
996 bp->rcv_bufs_to_post = RCV_BUFS_DEF;
999 * Ensure that HW configuration is OK
1001 * Note: Depending on the hardware revision, we may need to modify
1002 * some of the configurable parameters to workaround hardware
1003 * limitations. We'll perform this configuration check AFTER
1004 * setting the parameters to their default values.
1007 dfx_bus_config_check(bp);
1009 /* Disable PDQ interrupts first */
1011 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1013 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1015 (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1017 /* Read the factory MAC address from the adapter then save it */
1019 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
1020 &data) != DFX_K_SUCCESS) {
1021 printk("%s: Could not read adapter factory MAC address!\n",
1022 print_name);
1023 return DFX_K_FAILURE;
1025 le32 = cpu_to_le32(data);
1026 memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32));
1028 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
1029 &data) != DFX_K_SUCCESS) {
1030 printk("%s: Could not read adapter factory MAC address!\n",
1031 print_name);
1032 return DFX_K_FAILURE;
1034 le32 = cpu_to_le32(data);
1035 memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16));
1038 * Set current address to factory address
1040 * Note: Node address override support is handled through
1041 * dfx_ctl_set_mac_address.
1044 memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1045 if (dfx_bus_tc)
1046 board_name = "DEFTA";
1047 if (dfx_bus_eisa)
1048 board_name = "DEFEA";
1049 if (dfx_bus_pci)
1050 board_name = "DEFPA";
1051 pr_info("%s: %s at %saddr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n",
1052 print_name, board_name, dfx_use_mmio ? "" : "I/O ",
1053 (long long)bar_start, dev->irq, dev->dev_addr);
1056 * Get memory for descriptor block, consumer block, and other buffers
1057 * that need to be DMA read or written to by the adapter.
1060 alloc_size = sizeof(PI_DESCR_BLOCK) +
1061 PI_CMD_REQ_K_SIZE_MAX +
1062 PI_CMD_RSP_K_SIZE_MAX +
1063 #ifndef DYNAMIC_BUFFERS
1064 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
1065 #endif
1066 sizeof(PI_CONSUMER_BLOCK) +
1067 (PI_ALIGN_K_DESC_BLK - 1);
1068 bp->kmalloced = top_v = dma_zalloc_coherent(bp->bus_dev, alloc_size,
1069 &bp->kmalloced_dma,
1070 GFP_ATOMIC);
1071 if (top_v == NULL)
1072 return DFX_K_FAILURE;
1074 top_p = bp->kmalloced_dma; /* get physical address of buffer */
1077 * To guarantee the 8K alignment required for the descriptor block, 8K - 1
1078 * plus the amount of memory needed was allocated. The physical address
1079 * is now 8K aligned. By carving up the memory in a specific order,
1080 * we'll guarantee the alignment requirements for all other structures.
1082 * Note: If the assumptions change regarding the non-paged, non-cached,
1083 * physically contiguous nature of the memory block or the address
1084 * alignments, then we'll need to implement a different algorithm
1085 * for allocating the needed memory.
1088 curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
1089 curr_v = top_v + (curr_p - top_p);
1091 /* Reserve space for descriptor block */
1093 bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
1094 bp->descr_block_phys = curr_p;
1095 curr_v += sizeof(PI_DESCR_BLOCK);
1096 curr_p += sizeof(PI_DESCR_BLOCK);
1098 /* Reserve space for command request buffer */
1100 bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
1101 bp->cmd_req_phys = curr_p;
1102 curr_v += PI_CMD_REQ_K_SIZE_MAX;
1103 curr_p += PI_CMD_REQ_K_SIZE_MAX;
1105 /* Reserve space for command response buffer */
1107 bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
1108 bp->cmd_rsp_phys = curr_p;
1109 curr_v += PI_CMD_RSP_K_SIZE_MAX;
1110 curr_p += PI_CMD_RSP_K_SIZE_MAX;
1112 /* Reserve space for the LLC host receive queue buffers */
1114 bp->rcv_block_virt = curr_v;
1115 bp->rcv_block_phys = curr_p;
1117 #ifndef DYNAMIC_BUFFERS
1118 curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1119 curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1120 #endif
1122 /* Reserve space for the consumer block */
1124 bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
1125 bp->cons_block_phys = curr_p;
1127 /* Display virtual and physical addresses if debug driver */
1129 DBG_printk("%s: Descriptor block virt = %0lX, phys = %0X\n",
1130 print_name,
1131 (long)bp->descr_block_virt, bp->descr_block_phys);
1132 DBG_printk("%s: Command Request buffer virt = %0lX, phys = %0X\n",
1133 print_name, (long)bp->cmd_req_virt, bp->cmd_req_phys);
1134 DBG_printk("%s: Command Response buffer virt = %0lX, phys = %0X\n",
1135 print_name, (long)bp->cmd_rsp_virt, bp->cmd_rsp_phys);
1136 DBG_printk("%s: Receive buffer block virt = %0lX, phys = %0X\n",
1137 print_name, (long)bp->rcv_block_virt, bp->rcv_block_phys);
1138 DBG_printk("%s: Consumer block virt = %0lX, phys = %0X\n",
1139 print_name, (long)bp->cons_block_virt, bp->cons_block_phys);
1141 return DFX_K_SUCCESS;
1146 * =================
1147 * = dfx_adap_init =
1148 * =================
1150 * Overview:
1151 * Brings the adapter to the link avail/link unavailable state.
1153 * Returns:
1154 * Condition code
1156 * Arguments:
1157 * bp - pointer to board information
1158 * get_buffers - non-zero if buffers to be allocated
1160 * Functional Description:
1161 * Issues the low-level firmware/hardware calls necessary to bring
1162 * the adapter up, or to properly reset and restore adapter during
1163 * run-time.
1165 * Return Codes:
1166 * DFX_K_SUCCESS - Adapter brought up successfully
1167 * DFX_K_FAILURE - Adapter initialization failed
1169 * Assumptions:
1170 * bp->reset_type should be set to a valid reset type value before
1171 * calling this routine.
1173 * Side Effects:
1174 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1175 * upon a successful return of this routine.
1178 static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
1180 DBG_printk("In dfx_adap_init...\n");
1182 /* Disable PDQ interrupts first */
1184 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1186 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1188 if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1190 printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
1191 return DFX_K_FAILURE;
1195 * When the PDQ is reset, some false Type 0 interrupts may be pending,
1196 * so we'll acknowledge all Type 0 interrupts now before continuing.
1199 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1202 * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1204 * Note: We only need to clear host copies of these registers. The PDQ reset
1205 * takes care of the on-board register values.
1208 bp->cmd_req_reg.lword = 0;
1209 bp->cmd_rsp_reg.lword = 0;
1210 bp->rcv_xmt_reg.lword = 0;
1212 /* Clear consumer block before going to DMA_AVAILABLE state */
1214 memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1216 /* Initialize the DMA Burst Size */
1218 if (dfx_hw_port_ctrl_req(bp,
1219 PI_PCTRL_M_SUB_CMD,
1220 PI_SUB_CMD_K_BURST_SIZE_SET,
1221 bp->burst_size,
1222 NULL) != DFX_K_SUCCESS)
1224 printk("%s: Could not set adapter burst size!\n", bp->dev->name);
1225 return DFX_K_FAILURE;
1229 * Set base address of Consumer Block
1231 * Assumption: 32-bit physical address of consumer block is 64 byte
1232 * aligned. That is, bits 0-5 of the address must be zero.
1235 if (dfx_hw_port_ctrl_req(bp,
1236 PI_PCTRL_M_CONS_BLOCK,
1237 bp->cons_block_phys,
1239 NULL) != DFX_K_SUCCESS)
1241 printk("%s: Could not set consumer block address!\n", bp->dev->name);
1242 return DFX_K_FAILURE;
1246 * Set the base address of Descriptor Block and bring adapter
1247 * to DMA_AVAILABLE state.
1249 * Note: We also set the literal and data swapping requirements
1250 * in this command.
1252 * Assumption: 32-bit physical address of descriptor block
1253 * is 8Kbyte aligned.
1255 if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT,
1256 (u32)(bp->descr_block_phys |
1257 PI_PDATA_A_INIT_M_BSWAP_INIT),
1258 0, NULL) != DFX_K_SUCCESS) {
1259 printk("%s: Could not set descriptor block address!\n",
1260 bp->dev->name);
1261 return DFX_K_FAILURE;
1264 /* Set transmit flush timeout value */
1266 bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1267 bp->cmd_req_virt->char_set.item[0].item_code = PI_ITEM_K_FLUSH_TIME;
1268 bp->cmd_req_virt->char_set.item[0].value = 3; /* 3 seconds */
1269 bp->cmd_req_virt->char_set.item[0].item_index = 0;
1270 bp->cmd_req_virt->char_set.item[1].item_code = PI_ITEM_K_EOL;
1271 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1273 printk("%s: DMA command request failed!\n", bp->dev->name);
1274 return DFX_K_FAILURE;
1277 /* Set the initial values for eFDXEnable and MACTReq MIB objects */
1279 bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1280 bp->cmd_req_virt->snmp_set.item[0].item_code = PI_ITEM_K_FDX_ENB_DIS;
1281 bp->cmd_req_virt->snmp_set.item[0].value = bp->full_duplex_enb;
1282 bp->cmd_req_virt->snmp_set.item[0].item_index = 0;
1283 bp->cmd_req_virt->snmp_set.item[1].item_code = PI_ITEM_K_MAC_T_REQ;
1284 bp->cmd_req_virt->snmp_set.item[1].value = bp->req_ttrt;
1285 bp->cmd_req_virt->snmp_set.item[1].item_index = 0;
1286 bp->cmd_req_virt->snmp_set.item[2].item_code = PI_ITEM_K_EOL;
1287 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1289 printk("%s: DMA command request failed!\n", bp->dev->name);
1290 return DFX_K_FAILURE;
1293 /* Initialize adapter CAM */
1295 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1297 printk("%s: Adapter CAM update failed!\n", bp->dev->name);
1298 return DFX_K_FAILURE;
1301 /* Initialize adapter filters */
1303 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1305 printk("%s: Adapter filters update failed!\n", bp->dev->name);
1306 return DFX_K_FAILURE;
1310 * Remove any existing dynamic buffers (i.e. if the adapter is being
1311 * reinitialized)
1314 if (get_buffers)
1315 dfx_rcv_flush(bp);
1317 /* Initialize receive descriptor block and produce buffers */
1319 if (dfx_rcv_init(bp, get_buffers))
1321 printk("%s: Receive buffer allocation failed\n", bp->dev->name);
1322 if (get_buffers)
1323 dfx_rcv_flush(bp);
1324 return DFX_K_FAILURE;
1327 /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1329 bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1330 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1332 printk("%s: Start command failed\n", bp->dev->name);
1333 if (get_buffers)
1334 dfx_rcv_flush(bp);
1335 return DFX_K_FAILURE;
1338 /* Initialization succeeded, reenable PDQ interrupts */
1340 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
1341 return DFX_K_SUCCESS;
1346 * ============
1347 * = dfx_open =
1348 * ============
1350 * Overview:
1351 * Opens the adapter
1353 * Returns:
1354 * Condition code
1356 * Arguments:
1357 * dev - pointer to device information
1359 * Functional Description:
1360 * This function brings the adapter to an operational state.
1362 * Return Codes:
1363 * 0 - Adapter was successfully opened
1364 * -EAGAIN - Could not register IRQ or adapter initialization failed
1366 * Assumptions:
1367 * This routine should only be called for a device that was
1368 * initialized successfully.
1370 * Side Effects:
1371 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1372 * if the open is successful.
1375 static int dfx_open(struct net_device *dev)
1377 DFX_board_t *bp = netdev_priv(dev);
1378 int ret;
1380 DBG_printk("In dfx_open...\n");
1382 /* Register IRQ - support shared interrupts by passing device ptr */
1384 ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name,
1385 dev);
1386 if (ret) {
1387 printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1388 return ret;
1392 * Set current address to factory MAC address
1394 * Note: We've already done this step in dfx_driver_init.
1395 * However, it's possible that a user has set a node
1396 * address override, then closed and reopened the
1397 * adapter. Unless we reset the device address field
1398 * now, we'll continue to use the existing modified
1399 * address.
1402 memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1404 /* Clear local unicast/multicast address tables and counts */
1406 memset(bp->uc_table, 0, sizeof(bp->uc_table));
1407 memset(bp->mc_table, 0, sizeof(bp->mc_table));
1408 bp->uc_count = 0;
1409 bp->mc_count = 0;
1411 /* Disable promiscuous filter settings */
1413 bp->ind_group_prom = PI_FSTATE_K_BLOCK;
1414 bp->group_prom = PI_FSTATE_K_BLOCK;
1416 spin_lock_init(&bp->lock);
1418 /* Reset and initialize adapter */
1420 bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST; /* skip self-test */
1421 if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
1423 printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1424 free_irq(dev->irq, dev);
1425 return -EAGAIN;
1428 /* Set device structure info */
1429 netif_start_queue(dev);
1430 return 0;
1435 * =============
1436 * = dfx_close =
1437 * =============
1439 * Overview:
1440 * Closes the device/module.
1442 * Returns:
1443 * Condition code
1445 * Arguments:
1446 * dev - pointer to device information
1448 * Functional Description:
1449 * This routine closes the adapter and brings it to a safe state.
1450 * The interrupt service routine is deregistered with the OS.
1451 * The adapter can be opened again with another call to dfx_open().
1453 * Return Codes:
1454 * Always return 0.
1456 * Assumptions:
1457 * No further requests for this adapter are made after this routine is
1458 * called. dfx_open() can be called to reset and reinitialize the
1459 * adapter.
1461 * Side Effects:
1462 * Adapter should be in DMA_UNAVAILABLE state upon completion of this
1463 * routine.
1466 static int dfx_close(struct net_device *dev)
1468 DFX_board_t *bp = netdev_priv(dev);
1470 DBG_printk("In dfx_close...\n");
1472 /* Disable PDQ interrupts first */
1474 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1476 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1478 (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1481 * Flush any pending transmit buffers
1483 * Note: It's important that we flush the transmit buffers
1484 * BEFORE we clear our copy of the Type 2 register.
1485 * Otherwise, we'll have no idea how many buffers
1486 * we need to free.
1489 dfx_xmt_flush(bp);
1492 * Clear Type 1 and Type 2 registers after adapter reset
1494 * Note: Even though we're closing the adapter, it's
1495 * possible that an interrupt will occur after
1496 * dfx_close is called. Without some assurance to
1497 * the contrary we want to make sure that we don't
1498 * process receive and transmit LLC frames and update
1499 * the Type 2 register with bad information.
1502 bp->cmd_req_reg.lword = 0;
1503 bp->cmd_rsp_reg.lword = 0;
1504 bp->rcv_xmt_reg.lword = 0;
1506 /* Clear consumer block for the same reason given above */
1508 memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1510 /* Release all dynamically allocate skb in the receive ring. */
1512 dfx_rcv_flush(bp);
1514 /* Clear device structure flags */
1516 netif_stop_queue(dev);
1518 /* Deregister (free) IRQ */
1520 free_irq(dev->irq, dev);
1522 return 0;
1527 * ======================
1528 * = dfx_int_pr_halt_id =
1529 * ======================
1531 * Overview:
1532 * Displays halt id's in string form.
1534 * Returns:
1535 * None
1537 * Arguments:
1538 * bp - pointer to board information
1540 * Functional Description:
1541 * Determine current halt id and display appropriate string.
1543 * Return Codes:
1544 * None
1546 * Assumptions:
1547 * None
1549 * Side Effects:
1550 * None
1553 static void dfx_int_pr_halt_id(DFX_board_t *bp)
1555 PI_UINT32 port_status; /* PDQ port status register value */
1556 PI_UINT32 halt_id; /* PDQ port status halt ID */
1558 /* Read the latest port status */
1560 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1562 /* Display halt state transition information */
1564 halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1565 switch (halt_id)
1567 case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1568 printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1569 break;
1571 case PI_HALT_ID_K_PARITY_ERROR:
1572 printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1573 break;
1575 case PI_HALT_ID_K_HOST_DIR_HALT:
1576 printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1577 break;
1579 case PI_HALT_ID_K_SW_FAULT:
1580 printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1581 break;
1583 case PI_HALT_ID_K_HW_FAULT:
1584 printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1585 break;
1587 case PI_HALT_ID_K_PC_TRACE:
1588 printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1589 break;
1591 case PI_HALT_ID_K_DMA_ERROR:
1592 printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1593 break;
1595 case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1596 printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1597 break;
1599 case PI_HALT_ID_K_BUS_EXCEPTION:
1600 printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1601 break;
1603 default:
1604 printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1605 break;
1611 * ==========================
1612 * = dfx_int_type_0_process =
1613 * ==========================
1615 * Overview:
1616 * Processes Type 0 interrupts.
1618 * Returns:
1619 * None
1621 * Arguments:
1622 * bp - pointer to board information
1624 * Functional Description:
1625 * Processes all enabled Type 0 interrupts. If the reason for the interrupt
1626 * is a serious fault on the adapter, then an error message is displayed
1627 * and the adapter is reset.
1629 * One tricky potential timing window is the rapid succession of "link avail"
1630 * "link unavail" state change interrupts. The acknowledgement of the Type 0
1631 * interrupt must be done before reading the state from the Port Status
1632 * register. This is true because a state change could occur after reading
1633 * the data, but before acknowledging the interrupt. If this state change
1634 * does happen, it would be lost because the driver is using the old state,
1635 * and it will never know about the new state because it subsequently
1636 * acknowledges the state change interrupt.
1638 * INCORRECT CORRECT
1639 * read type 0 int reasons read type 0 int reasons
1640 * read adapter state ack type 0 interrupts
1641 * ack type 0 interrupts read adapter state
1642 * ... process interrupt ... ... process interrupt ...
1644 * Return Codes:
1645 * None
1647 * Assumptions:
1648 * None
1650 * Side Effects:
1651 * An adapter reset may occur if the adapter has any Type 0 error interrupts
1652 * or if the port status indicates that the adapter is halted. The driver
1653 * is responsible for reinitializing the adapter with the current CAM
1654 * contents and adapter filter settings.
1657 static void dfx_int_type_0_process(DFX_board_t *bp)
1660 PI_UINT32 type_0_status; /* Host Interrupt Type 0 register */
1661 PI_UINT32 state; /* current adap state (from port status) */
1664 * Read host interrupt Type 0 register to determine which Type 0
1665 * interrupts are pending. Immediately write it back out to clear
1666 * those interrupts.
1669 dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1670 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1672 /* Check for Type 0 error interrupts */
1674 if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1675 PI_TYPE_0_STAT_M_PM_PAR_ERR |
1676 PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1678 /* Check for Non-Existent Memory error */
1680 if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1681 printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1683 /* Check for Packet Memory Parity error */
1685 if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1686 printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1688 /* Check for Host Bus Parity error */
1690 if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1691 printk("%s: Host Bus Parity Error\n", bp->dev->name);
1693 /* Reset adapter and bring it back on-line */
1695 bp->link_available = PI_K_FALSE; /* link is no longer available */
1696 bp->reset_type = 0; /* rerun on-board diagnostics */
1697 printk("%s: Resetting adapter...\n", bp->dev->name);
1698 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1700 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name);
1701 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1702 return;
1704 printk("%s: Adapter reset successful!\n", bp->dev->name);
1705 return;
1708 /* Check for transmit flush interrupt */
1710 if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1712 /* Flush any pending xmt's and acknowledge the flush interrupt */
1714 bp->link_available = PI_K_FALSE; /* link is no longer available */
1715 dfx_xmt_flush(bp); /* flush any outstanding packets */
1716 (void) dfx_hw_port_ctrl_req(bp,
1717 PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1720 NULL);
1723 /* Check for adapter state change */
1725 if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
1727 /* Get latest adapter state */
1729 state = dfx_hw_adap_state_rd(bp); /* get adapter state */
1730 if (state == PI_STATE_K_HALTED)
1733 * Adapter has transitioned to HALTED state, try to reset
1734 * adapter to bring it back on-line. If reset fails,
1735 * leave the adapter in the broken state.
1738 printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1739 dfx_int_pr_halt_id(bp); /* display halt id as string */
1741 /* Reset adapter and bring it back on-line */
1743 bp->link_available = PI_K_FALSE; /* link is no longer available */
1744 bp->reset_type = 0; /* rerun on-board diagnostics */
1745 printk("%s: Resetting adapter...\n", bp->dev->name);
1746 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1748 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name);
1749 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1750 return;
1752 printk("%s: Adapter reset successful!\n", bp->dev->name);
1754 else if (state == PI_STATE_K_LINK_AVAIL)
1756 bp->link_available = PI_K_TRUE; /* set link available flag */
1763 * ==================
1764 * = dfx_int_common =
1765 * ==================
1767 * Overview:
1768 * Interrupt service routine (ISR)
1770 * Returns:
1771 * None
1773 * Arguments:
1774 * bp - pointer to board information
1776 * Functional Description:
1777 * This is the ISR which processes incoming adapter interrupts.
1779 * Return Codes:
1780 * None
1782 * Assumptions:
1783 * This routine assumes PDQ interrupts have not been disabled.
1784 * When interrupts are disabled at the PDQ, the Port Status register
1785 * is automatically cleared. This routine uses the Port Status
1786 * register value to determine whether a Type 0 interrupt occurred,
1787 * so it's important that adapter interrupts are not normally
1788 * enabled/disabled at the PDQ.
1790 * It's vital that this routine is NOT reentered for the
1791 * same board and that the OS is not in another section of
1792 * code (eg. dfx_xmt_queue_pkt) for the same board on a
1793 * different thread.
1795 * Side Effects:
1796 * Pending interrupts are serviced. Depending on the type of
1797 * interrupt, acknowledging and clearing the interrupt at the
1798 * PDQ involves writing a register to clear the interrupt bit
1799 * or updating completion indices.
1802 static void dfx_int_common(struct net_device *dev)
1804 DFX_board_t *bp = netdev_priv(dev);
1805 PI_UINT32 port_status; /* Port Status register */
1807 /* Process xmt interrupts - frequent case, so always call this routine */
1809 if(dfx_xmt_done(bp)) /* free consumed xmt packets */
1810 netif_wake_queue(dev);
1812 /* Process rcv interrupts - frequent case, so always call this routine */
1814 dfx_rcv_queue_process(bp); /* service received LLC frames */
1817 * Transmit and receive producer and completion indices are updated on the
1818 * adapter by writing to the Type 2 Producer register. Since the frequent
1819 * case is that we'll be processing either LLC transmit or receive buffers,
1820 * we'll optimize I/O writes by doing a single register write here.
1823 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1825 /* Read PDQ Port Status register to find out which interrupts need processing */
1827 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1829 /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1831 if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1832 dfx_int_type_0_process(bp); /* process Type 0 interrupts */
1837 * =================
1838 * = dfx_interrupt =
1839 * =================
1841 * Overview:
1842 * Interrupt processing routine
1844 * Returns:
1845 * Whether a valid interrupt was seen.
1847 * Arguments:
1848 * irq - interrupt vector
1849 * dev_id - pointer to device information
1851 * Functional Description:
1852 * This routine calls the interrupt processing routine for this adapter. It
1853 * disables and reenables adapter interrupts, as appropriate. We can support
1854 * shared interrupts since the incoming dev_id pointer provides our device
1855 * structure context.
1857 * Return Codes:
1858 * IRQ_HANDLED - an IRQ was handled.
1859 * IRQ_NONE - no IRQ was handled.
1861 * Assumptions:
1862 * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1863 * on Intel-based systems) is done by the operating system outside this
1864 * routine.
1866 * System interrupts are enabled through this call.
1868 * Side Effects:
1869 * Interrupts are disabled, then reenabled at the adapter.
1872 static irqreturn_t dfx_interrupt(int irq, void *dev_id)
1874 struct net_device *dev = dev_id;
1875 DFX_board_t *bp = netdev_priv(dev);
1876 struct device *bdev = bp->bus_dev;
1877 int dfx_bus_pci = dev_is_pci(bdev);
1878 int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1879 int dfx_bus_tc = DFX_BUS_TC(bdev);
1881 /* Service adapter interrupts */
1883 if (dfx_bus_pci) {
1884 u32 status;
1886 dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
1887 if (!(status & PFI_STATUS_M_PDQ_INT))
1888 return IRQ_NONE;
1890 spin_lock(&bp->lock);
1892 /* Disable PDQ-PFI interrupts at PFI */
1893 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1894 PFI_MODE_M_DMA_ENB);
1896 /* Call interrupt service routine for this adapter */
1897 dfx_int_common(dev);
1899 /* Clear PDQ interrupt status bit and reenable interrupts */
1900 dfx_port_write_long(bp, PFI_K_REG_STATUS,
1901 PFI_STATUS_M_PDQ_INT);
1902 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1903 (PFI_MODE_M_PDQ_INT_ENB |
1904 PFI_MODE_M_DMA_ENB));
1906 spin_unlock(&bp->lock);
1908 if (dfx_bus_eisa) {
1909 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
1910 u8 status;
1912 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1913 if (!(status & PI_CONFIG_STAT_0_M_PEND))
1914 return IRQ_NONE;
1916 spin_lock(&bp->lock);
1918 /* Disable interrupts at the ESIC */
1919 status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
1920 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
1922 /* Call interrupt service routine for this adapter */
1923 dfx_int_common(dev);
1925 /* Reenable interrupts at the ESIC */
1926 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1927 status |= PI_CONFIG_STAT_0_M_INT_ENB;
1928 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
1930 spin_unlock(&bp->lock);
1932 if (dfx_bus_tc) {
1933 u32 status;
1935 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status);
1936 if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING |
1937 PI_PSTATUS_M_XMT_DATA_PENDING |
1938 PI_PSTATUS_M_SMT_HOST_PENDING |
1939 PI_PSTATUS_M_UNSOL_PENDING |
1940 PI_PSTATUS_M_CMD_RSP_PENDING |
1941 PI_PSTATUS_M_CMD_REQ_PENDING |
1942 PI_PSTATUS_M_TYPE_0_PENDING)))
1943 return IRQ_NONE;
1945 spin_lock(&bp->lock);
1947 /* Call interrupt service routine for this adapter */
1948 dfx_int_common(dev);
1950 spin_unlock(&bp->lock);
1953 return IRQ_HANDLED;
1958 * =====================
1959 * = dfx_ctl_get_stats =
1960 * =====================
1962 * Overview:
1963 * Get statistics for FDDI adapter
1965 * Returns:
1966 * Pointer to FDDI statistics structure
1968 * Arguments:
1969 * dev - pointer to device information
1971 * Functional Description:
1972 * Gets current MIB objects from adapter, then
1973 * returns FDDI statistics structure as defined
1974 * in if_fddi.h.
1976 * Note: Since the FDDI statistics structure is
1977 * still new and the device structure doesn't
1978 * have an FDDI-specific get statistics handler,
1979 * we'll return the FDDI statistics structure as
1980 * a pointer to an Ethernet statistics structure.
1981 * That way, at least the first part of the statistics
1982 * structure can be decoded properly, and it allows
1983 * "smart" applications to perform a second cast to
1984 * decode the FDDI-specific statistics.
1986 * We'll have to pay attention to this routine as the
1987 * device structure becomes more mature and LAN media
1988 * independent.
1990 * Return Codes:
1991 * None
1993 * Assumptions:
1994 * None
1996 * Side Effects:
1997 * None
2000 static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
2002 DFX_board_t *bp = netdev_priv(dev);
2004 /* Fill the bp->stats structure with driver-maintained counters */
2006 bp->stats.gen.rx_packets = bp->rcv_total_frames;
2007 bp->stats.gen.tx_packets = bp->xmt_total_frames;
2008 bp->stats.gen.rx_bytes = bp->rcv_total_bytes;
2009 bp->stats.gen.tx_bytes = bp->xmt_total_bytes;
2010 bp->stats.gen.rx_errors = bp->rcv_crc_errors +
2011 bp->rcv_frame_status_errors +
2012 bp->rcv_length_errors;
2013 bp->stats.gen.tx_errors = bp->xmt_length_errors;
2014 bp->stats.gen.rx_dropped = bp->rcv_discards;
2015 bp->stats.gen.tx_dropped = bp->xmt_discards;
2016 bp->stats.gen.multicast = bp->rcv_multicast_frames;
2017 bp->stats.gen.collisions = 0; /* always zero (0) for FDDI */
2019 /* Get FDDI SMT MIB objects */
2021 bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
2022 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2023 return (struct net_device_stats *)&bp->stats;
2025 /* Fill the bp->stats structure with the SMT MIB object values */
2027 memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
2028 bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
2029 bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
2030 bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
2031 memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
2032 bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
2033 bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
2034 bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
2035 bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
2036 bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
2037 bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
2038 bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
2039 bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
2040 bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
2041 bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
2042 bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
2043 bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
2044 bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
2045 bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
2046 bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
2047 bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
2048 bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
2049 bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
2050 bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
2051 bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
2052 bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
2053 bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
2054 bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
2055 bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
2056 memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
2057 memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
2058 memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
2059 memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
2060 bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
2061 bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
2062 bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
2063 memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
2064 bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
2065 bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
2066 bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
2067 bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
2068 bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
2069 bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
2070 bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
2071 bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
2072 bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
2073 bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
2074 bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
2075 bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
2076 bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
2077 bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
2078 bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
2079 bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
2080 memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
2081 bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
2082 bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
2083 bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
2084 bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
2085 bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
2086 bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
2087 bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
2088 bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
2089 bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
2090 bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
2091 memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
2092 memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
2093 bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
2094 bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
2095 bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
2096 bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
2097 bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
2098 bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
2099 bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
2100 bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
2101 bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
2102 bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
2103 bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
2104 bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
2105 bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
2106 bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
2107 bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
2108 bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
2109 bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
2110 bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
2111 bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
2112 bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
2113 bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
2114 bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
2115 bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
2116 bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
2117 bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
2118 bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
2120 /* Get FDDI counters */
2122 bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
2123 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2124 return (struct net_device_stats *)&bp->stats;
2126 /* Fill the bp->stats structure with the FDDI counter values */
2128 bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
2129 bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
2130 bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
2131 bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
2132 bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
2133 bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
2134 bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
2135 bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
2136 bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
2137 bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
2138 bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
2140 return (struct net_device_stats *)&bp->stats;
2145 * ==============================
2146 * = dfx_ctl_set_multicast_list =
2147 * ==============================
2149 * Overview:
2150 * Enable/Disable LLC frame promiscuous mode reception
2151 * on the adapter and/or update multicast address table.
2153 * Returns:
2154 * None
2156 * Arguments:
2157 * dev - pointer to device information
2159 * Functional Description:
2160 * This routine follows a fairly simple algorithm for setting the
2161 * adapter filters and CAM:
2163 * if IFF_PROMISC flag is set
2164 * enable LLC individual/group promiscuous mode
2165 * else
2166 * disable LLC individual/group promiscuous mode
2167 * if number of incoming multicast addresses >
2168 * (CAM max size - number of unicast addresses in CAM)
2169 * enable LLC group promiscuous mode
2170 * set driver-maintained multicast address count to zero
2171 * else
2172 * disable LLC group promiscuous mode
2173 * set driver-maintained multicast address count to incoming count
2174 * update adapter CAM
2175 * update adapter filters
2177 * Return Codes:
2178 * None
2180 * Assumptions:
2181 * Multicast addresses are presented in canonical (LSB) format.
2183 * Side Effects:
2184 * On-board adapter CAM and filters are updated.
2187 static void dfx_ctl_set_multicast_list(struct net_device *dev)
2189 DFX_board_t *bp = netdev_priv(dev);
2190 int i; /* used as index in for loop */
2191 struct netdev_hw_addr *ha;
2193 /* Enable LLC frame promiscuous mode, if necessary */
2195 if (dev->flags & IFF_PROMISC)
2196 bp->ind_group_prom = PI_FSTATE_K_PASS; /* Enable LLC ind/group prom mode */
2198 /* Else, update multicast address table */
2200 else
2202 bp->ind_group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC ind/group prom mode */
2204 * Check whether incoming multicast address count exceeds table size
2206 * Note: The adapters utilize an on-board 64 entry CAM for
2207 * supporting perfect filtering of multicast packets
2208 * and bridge functions when adding unicast addresses.
2209 * There is no hash function available. To support
2210 * additional multicast addresses, the all multicast
2211 * filter (LLC group promiscuous mode) must be enabled.
2213 * The firmware reserves two CAM entries for SMT-related
2214 * multicast addresses, which leaves 62 entries available.
2215 * The following code ensures that we're not being asked
2216 * to add more than 62 addresses to the CAM. If we are,
2217 * the driver will enable the all multicast filter.
2218 * Should the number of multicast addresses drop below
2219 * the high water mark, the filter will be disabled and
2220 * perfect filtering will be used.
2223 if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
2225 bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */
2226 bp->mc_count = 0; /* Don't add mc addrs to CAM */
2228 else
2230 bp->group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC group prom mode */
2231 bp->mc_count = netdev_mc_count(dev); /* Add mc addrs to CAM */
2234 /* Copy addresses to multicast address table, then update adapter CAM */
2236 i = 0;
2237 netdev_for_each_mc_addr(ha, dev)
2238 memcpy(&bp->mc_table[i++ * FDDI_K_ALEN],
2239 ha->addr, FDDI_K_ALEN);
2241 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2243 DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2245 else
2247 DBG_printk("%s: Multicast address table updated! Added %d addresses.\n", dev->name, bp->mc_count);
2251 /* Update adapter filters */
2253 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2255 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2257 else
2259 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2265 * ===========================
2266 * = dfx_ctl_set_mac_address =
2267 * ===========================
2269 * Overview:
2270 * Add node address override (unicast address) to adapter
2271 * CAM and update dev_addr field in device table.
2273 * Returns:
2274 * None
2276 * Arguments:
2277 * dev - pointer to device information
2278 * addr - pointer to sockaddr structure containing unicast address to add
2280 * Functional Description:
2281 * The adapter supports node address overrides by adding one or more
2282 * unicast addresses to the adapter CAM. This is similar to adding
2283 * multicast addresses. In this routine we'll update the driver and
2284 * device structures with the new address, then update the adapter CAM
2285 * to ensure that the adapter will copy and strip frames destined and
2286 * sourced by that address.
2288 * Return Codes:
2289 * Always returns zero.
2291 * Assumptions:
2292 * The address pointed to by addr->sa_data is a valid unicast
2293 * address and is presented in canonical (LSB) format.
2295 * Side Effects:
2296 * On-board adapter CAM is updated. On-board adapter filters
2297 * may be updated.
2300 static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2302 struct sockaddr *p_sockaddr = (struct sockaddr *)addr;
2303 DFX_board_t *bp = netdev_priv(dev);
2305 /* Copy unicast address to driver-maintained structs and update count */
2307 memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN); /* update device struct */
2308 memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN); /* update driver struct */
2309 bp->uc_count = 1;
2312 * Verify we're not exceeding the CAM size by adding unicast address
2314 * Note: It's possible that before entering this routine we've
2315 * already filled the CAM with 62 multicast addresses.
2316 * Since we need to place the node address override into
2317 * the CAM, we have to check to see that we're not
2318 * exceeding the CAM size. If we are, we have to enable
2319 * the LLC group (multicast) promiscuous mode filter as
2320 * in dfx_ctl_set_multicast_list.
2323 if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2325 bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */
2326 bp->mc_count = 0; /* Don't add mc addrs to CAM */
2328 /* Update adapter filters */
2330 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2332 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2334 else
2336 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2340 /* Update adapter CAM with new unicast address */
2342 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2344 DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2346 else
2348 DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2350 return 0; /* always return zero */
2355 * ======================
2356 * = dfx_ctl_update_cam =
2357 * ======================
2359 * Overview:
2360 * Procedure to update adapter CAM (Content Addressable Memory)
2361 * with desired unicast and multicast address entries.
2363 * Returns:
2364 * Condition code
2366 * Arguments:
2367 * bp - pointer to board information
2369 * Functional Description:
2370 * Updates adapter CAM with current contents of board structure
2371 * unicast and multicast address tables. Since there are only 62
2372 * free entries in CAM, this routine ensures that the command
2373 * request buffer is not overrun.
2375 * Return Codes:
2376 * DFX_K_SUCCESS - Request succeeded
2377 * DFX_K_FAILURE - Request failed
2379 * Assumptions:
2380 * All addresses being added (unicast and multicast) are in canonical
2381 * order.
2383 * Side Effects:
2384 * On-board adapter CAM is updated.
2387 static int dfx_ctl_update_cam(DFX_board_t *bp)
2389 int i; /* used as index */
2390 PI_LAN_ADDR *p_addr; /* pointer to CAM entry */
2393 * Fill in command request information
2395 * Note: Even though both the unicast and multicast address
2396 * table entries are stored as contiguous 6 byte entries,
2397 * the firmware address filter set command expects each
2398 * entry to be two longwords (8 bytes total). We must be
2399 * careful to only copy the six bytes of each unicast and
2400 * multicast table entry into each command entry. This
2401 * is also why we must first clear the entire command
2402 * request buffer.
2405 memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX); /* first clear buffer */
2406 bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2407 p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2409 /* Now add unicast addresses to command request buffer, if any */
2411 for (i=0; i < (int)bp->uc_count; i++)
2413 if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2415 memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2416 p_addr++; /* point to next command entry */
2420 /* Now add multicast addresses to command request buffer, if any */
2422 for (i=0; i < (int)bp->mc_count; i++)
2424 if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2426 memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2427 p_addr++; /* point to next command entry */
2431 /* Issue command to update adapter CAM, then return */
2433 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2434 return DFX_K_FAILURE;
2435 return DFX_K_SUCCESS;
2440 * ==========================
2441 * = dfx_ctl_update_filters =
2442 * ==========================
2444 * Overview:
2445 * Procedure to update adapter filters with desired
2446 * filter settings.
2448 * Returns:
2449 * Condition code
2451 * Arguments:
2452 * bp - pointer to board information
2454 * Functional Description:
2455 * Enables or disables filter using current filter settings.
2457 * Return Codes:
2458 * DFX_K_SUCCESS - Request succeeded.
2459 * DFX_K_FAILURE - Request failed.
2461 * Assumptions:
2462 * We must always pass up packets destined to the broadcast
2463 * address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2464 * broadcast filter enabled.
2466 * Side Effects:
2467 * On-board adapter filters are updated.
2470 static int dfx_ctl_update_filters(DFX_board_t *bp)
2472 int i = 0; /* used as index */
2474 /* Fill in command request information */
2476 bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2478 /* Initialize Broadcast filter - * ALWAYS ENABLED * */
2480 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_BROADCAST;
2481 bp->cmd_req_virt->filter_set.item[i++].value = PI_FSTATE_K_PASS;
2483 /* Initialize LLC Individual/Group Promiscuous filter */
2485 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_IND_GROUP_PROM;
2486 bp->cmd_req_virt->filter_set.item[i++].value = bp->ind_group_prom;
2488 /* Initialize LLC Group Promiscuous filter */
2490 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_GROUP_PROM;
2491 bp->cmd_req_virt->filter_set.item[i++].value = bp->group_prom;
2493 /* Terminate the item code list */
2495 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_EOL;
2497 /* Issue command to update adapter filters, then return */
2499 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2500 return DFX_K_FAILURE;
2501 return DFX_K_SUCCESS;
2506 * ======================
2507 * = dfx_hw_dma_cmd_req =
2508 * ======================
2510 * Overview:
2511 * Sends PDQ DMA command to adapter firmware
2513 * Returns:
2514 * Condition code
2516 * Arguments:
2517 * bp - pointer to board information
2519 * Functional Description:
2520 * The command request and response buffers are posted to the adapter in the manner
2521 * described in the PDQ Port Specification:
2523 * 1. Command Response Buffer is posted to adapter.
2524 * 2. Command Request Buffer is posted to adapter.
2525 * 3. Command Request consumer index is polled until it indicates that request
2526 * buffer has been DMA'd to adapter.
2527 * 4. Command Response consumer index is polled until it indicates that response
2528 * buffer has been DMA'd from adapter.
2530 * This ordering ensures that a response buffer is already available for the firmware
2531 * to use once it's done processing the request buffer.
2533 * Return Codes:
2534 * DFX_K_SUCCESS - DMA command succeeded
2535 * DFX_K_OUTSTATE - Adapter is NOT in proper state
2536 * DFX_K_HW_TIMEOUT - DMA command timed out
2538 * Assumptions:
2539 * Command request buffer has already been filled with desired DMA command.
2541 * Side Effects:
2542 * None
2545 static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2547 int status; /* adapter status */
2548 int timeout_cnt; /* used in for loops */
2550 /* Make sure the adapter is in a state that we can issue the DMA command in */
2552 status = dfx_hw_adap_state_rd(bp);
2553 if ((status == PI_STATE_K_RESET) ||
2554 (status == PI_STATE_K_HALTED) ||
2555 (status == PI_STATE_K_DMA_UNAVAIL) ||
2556 (status == PI_STATE_K_UPGRADE))
2557 return DFX_K_OUTSTATE;
2559 /* Put response buffer on the command response queue */
2561 bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2562 ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2563 bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2565 /* Bump (and wrap) the producer index and write out to register */
2567 bp->cmd_rsp_reg.index.prod += 1;
2568 bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2569 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2571 /* Put request buffer on the command request queue */
2573 bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2574 PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2575 bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2577 /* Bump (and wrap) the producer index and write out to register */
2579 bp->cmd_req_reg.index.prod += 1;
2580 bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2581 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2584 * Here we wait for the command request consumer index to be equal
2585 * to the producer, indicating that the adapter has DMAed the request.
2588 for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2590 if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2591 break;
2592 udelay(100); /* wait for 100 microseconds */
2594 if (timeout_cnt == 0)
2595 return DFX_K_HW_TIMEOUT;
2597 /* Bump (and wrap) the completion index and write out to register */
2599 bp->cmd_req_reg.index.comp += 1;
2600 bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2601 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2604 * Here we wait for the command response consumer index to be equal
2605 * to the producer, indicating that the adapter has DMAed the response.
2608 for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2610 if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2611 break;
2612 udelay(100); /* wait for 100 microseconds */
2614 if (timeout_cnt == 0)
2615 return DFX_K_HW_TIMEOUT;
2617 /* Bump (and wrap) the completion index and write out to register */
2619 bp->cmd_rsp_reg.index.comp += 1;
2620 bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2621 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2622 return DFX_K_SUCCESS;
2627 * ========================
2628 * = dfx_hw_port_ctrl_req =
2629 * ========================
2631 * Overview:
2632 * Sends PDQ port control command to adapter firmware
2634 * Returns:
2635 * Host data register value in host_data if ptr is not NULL
2637 * Arguments:
2638 * bp - pointer to board information
2639 * command - port control command
2640 * data_a - port data A register value
2641 * data_b - port data B register value
2642 * host_data - ptr to host data register value
2644 * Functional Description:
2645 * Send generic port control command to adapter by writing
2646 * to various PDQ port registers, then polling for completion.
2648 * Return Codes:
2649 * DFX_K_SUCCESS - port control command succeeded
2650 * DFX_K_HW_TIMEOUT - port control command timed out
2652 * Assumptions:
2653 * None
2655 * Side Effects:
2656 * None
2659 static int dfx_hw_port_ctrl_req(
2660 DFX_board_t *bp,
2661 PI_UINT32 command,
2662 PI_UINT32 data_a,
2663 PI_UINT32 data_b,
2664 PI_UINT32 *host_data
2668 PI_UINT32 port_cmd; /* Port Control command register value */
2669 int timeout_cnt; /* used in for loops */
2671 /* Set Command Error bit in command longword */
2673 port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2675 /* Issue port command to the adapter */
2677 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2678 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2679 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2681 /* Now wait for command to complete */
2683 if (command == PI_PCTRL_M_BLAST_FLASH)
2684 timeout_cnt = 600000; /* set command timeout count to 60 seconds */
2685 else
2686 timeout_cnt = 20000; /* set command timeout count to 2 seconds */
2688 for (; timeout_cnt > 0; timeout_cnt--)
2690 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2691 if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2692 break;
2693 udelay(100); /* wait for 100 microseconds */
2695 if (timeout_cnt == 0)
2696 return DFX_K_HW_TIMEOUT;
2699 * If the address of host_data is non-zero, assume caller has supplied a
2700 * non NULL pointer, and return the contents of the HOST_DATA register in
2701 * it.
2704 if (host_data != NULL)
2705 dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
2706 return DFX_K_SUCCESS;
2711 * =====================
2712 * = dfx_hw_adap_reset =
2713 * =====================
2715 * Overview:
2716 * Resets adapter
2718 * Returns:
2719 * None
2721 * Arguments:
2722 * bp - pointer to board information
2723 * type - type of reset to perform
2725 * Functional Description:
2726 * Issue soft reset to adapter by writing to PDQ Port Reset
2727 * register. Use incoming reset type to tell adapter what
2728 * kind of reset operation to perform.
2730 * Return Codes:
2731 * None
2733 * Assumptions:
2734 * This routine merely issues a soft reset to the adapter.
2735 * It is expected that after this routine returns, the caller
2736 * will appropriately poll the Port Status register for the
2737 * adapter to enter the proper state.
2739 * Side Effects:
2740 * Internal adapter registers are cleared.
2743 static void dfx_hw_adap_reset(
2744 DFX_board_t *bp,
2745 PI_UINT32 type
2749 /* Set Reset type and assert reset */
2751 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type); /* tell adapter type of reset */
2752 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2754 /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2756 udelay(20);
2758 /* Deassert reset */
2760 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2765 * ========================
2766 * = dfx_hw_adap_state_rd =
2767 * ========================
2769 * Overview:
2770 * Returns current adapter state
2772 * Returns:
2773 * Adapter state per PDQ Port Specification
2775 * Arguments:
2776 * bp - pointer to board information
2778 * Functional Description:
2779 * Reads PDQ Port Status register and returns adapter state.
2781 * Return Codes:
2782 * None
2784 * Assumptions:
2785 * None
2787 * Side Effects:
2788 * None
2791 static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2793 PI_UINT32 port_status; /* Port Status register value */
2795 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
2796 return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE;
2801 * =====================
2802 * = dfx_hw_dma_uninit =
2803 * =====================
2805 * Overview:
2806 * Brings adapter to DMA_UNAVAILABLE state
2808 * Returns:
2809 * Condition code
2811 * Arguments:
2812 * bp - pointer to board information
2813 * type - type of reset to perform
2815 * Functional Description:
2816 * Bring adapter to DMA_UNAVAILABLE state by performing the following:
2817 * 1. Set reset type bit in Port Data A Register then reset adapter.
2818 * 2. Check that adapter is in DMA_UNAVAILABLE state.
2820 * Return Codes:
2821 * DFX_K_SUCCESS - adapter is in DMA_UNAVAILABLE state
2822 * DFX_K_HW_TIMEOUT - adapter did not reset properly
2824 * Assumptions:
2825 * None
2827 * Side Effects:
2828 * Internal adapter registers are cleared.
2831 static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2833 int timeout_cnt; /* used in for loops */
2835 /* Set reset type bit and reset adapter */
2837 dfx_hw_adap_reset(bp, type);
2839 /* Now wait for adapter to enter DMA_UNAVAILABLE state */
2841 for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2843 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2844 break;
2845 udelay(100); /* wait for 100 microseconds */
2847 if (timeout_cnt == 0)
2848 return DFX_K_HW_TIMEOUT;
2849 return DFX_K_SUCCESS;
2853 * Align an sk_buff to a boundary power of 2
2856 #ifdef DYNAMIC_BUFFERS
2857 static void my_skb_align(struct sk_buff *skb, int n)
2859 unsigned long x = (unsigned long)skb->data;
2860 unsigned long v;
2862 v = ALIGN(x, n); /* Where we want to be */
2864 skb_reserve(skb, v - x);
2866 #endif
2869 * ================
2870 * = dfx_rcv_init =
2871 * ================
2873 * Overview:
2874 * Produces buffers to adapter LLC Host receive descriptor block
2876 * Returns:
2877 * None
2879 * Arguments:
2880 * bp - pointer to board information
2881 * get_buffers - non-zero if buffers to be allocated
2883 * Functional Description:
2884 * This routine can be called during dfx_adap_init() or during an adapter
2885 * reset. It initializes the descriptor block and produces all allocated
2886 * LLC Host queue receive buffers.
2888 * Return Codes:
2889 * Return 0 on success or -ENOMEM if buffer allocation failed (when using
2890 * dynamic buffer allocation). If the buffer allocation failed, the
2891 * already allocated buffers will not be released and the caller should do
2892 * this.
2894 * Assumptions:
2895 * The PDQ has been reset and the adapter and driver maintained Type 2
2896 * register indices are cleared.
2898 * Side Effects:
2899 * Receive buffers are posted to the adapter LLC queue and the adapter
2900 * is notified.
2903 static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
2905 int i, j; /* used in for loop */
2908 * Since each receive buffer is a single fragment of same length, initialize
2909 * first longword in each receive descriptor for entire LLC Host descriptor
2910 * block. Also initialize second longword in each receive descriptor with
2911 * physical address of receive buffer. We'll always allocate receive
2912 * buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2913 * block and produce new receive buffers by simply updating the receive
2914 * producer index.
2916 * Assumptions:
2917 * To support all shipping versions of PDQ, the receive buffer size
2918 * must be mod 128 in length and the physical address must be 128 byte
2919 * aligned. In other words, bits 0-6 of the length and address must
2920 * be zero for the following descriptor field entries to be correct on
2921 * all PDQ-based boards. We guaranteed both requirements during
2922 * driver initialization when we allocated memory for the receive buffers.
2925 if (get_buffers) {
2926 #ifdef DYNAMIC_BUFFERS
2927 for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
2928 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2930 struct sk_buff *newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE, GFP_NOIO);
2931 if (!newskb)
2932 return -ENOMEM;
2933 bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2934 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2936 * align to 128 bytes for compatibility with
2937 * the old EISA boards.
2940 my_skb_align(newskb, 128);
2941 bp->descr_block_virt->rcv_data[i + j].long_1 =
2942 (u32)dma_map_single(bp->bus_dev, newskb->data,
2943 NEW_SKB_SIZE,
2944 DMA_FROM_DEVICE);
2946 * p_rcv_buff_va is only used inside the
2947 * kernel so we put the skb pointer here.
2949 bp->p_rcv_buff_va[i+j] = (char *) newskb;
2951 #else
2952 for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
2953 for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2955 bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2956 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2957 bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
2958 bp->p_rcv_buff_va[i+j] = (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
2960 #endif
2963 /* Update receive producer and Type 2 register */
2965 bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
2966 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
2967 return 0;
2972 * =========================
2973 * = dfx_rcv_queue_process =
2974 * =========================
2976 * Overview:
2977 * Process received LLC frames.
2979 * Returns:
2980 * None
2982 * Arguments:
2983 * bp - pointer to board information
2985 * Functional Description:
2986 * Received LLC frames are processed until there are no more consumed frames.
2987 * Once all frames are processed, the receive buffers are returned to the
2988 * adapter. Note that this algorithm fixes the length of time that can be spent
2989 * in this routine, because there are a fixed number of receive buffers to
2990 * process and buffers are not produced until this routine exits and returns
2991 * to the ISR.
2993 * Return Codes:
2994 * None
2996 * Assumptions:
2997 * None
2999 * Side Effects:
3000 * None
3003 static void dfx_rcv_queue_process(
3004 DFX_board_t *bp
3008 PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */
3009 char *p_buff; /* ptr to start of packet receive buffer (FMC descriptor) */
3010 u32 descr, pkt_len; /* FMC descriptor field and packet length */
3011 struct sk_buff *skb; /* pointer to a sk_buff to hold incoming packet data */
3013 /* Service all consumed LLC receive frames */
3015 p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3016 while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
3018 /* Process any errors */
3020 int entry;
3022 entry = bp->rcv_xmt_reg.index.rcv_comp;
3023 #ifdef DYNAMIC_BUFFERS
3024 p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
3025 #else
3026 p_buff = bp->p_rcv_buff_va[entry];
3027 #endif
3028 memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
3030 if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
3032 if (descr & PI_FMC_DESCR_M_RCC_CRC)
3033 bp->rcv_crc_errors++;
3034 else
3035 bp->rcv_frame_status_errors++;
3037 else
3039 int rx_in_place = 0;
3041 /* The frame was received without errors - verify packet length */
3043 pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
3044 pkt_len -= 4; /* subtract 4 byte CRC */
3045 if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3046 bp->rcv_length_errors++;
3047 else{
3048 #ifdef DYNAMIC_BUFFERS
3049 if (pkt_len > SKBUFF_RX_COPYBREAK) {
3050 struct sk_buff *newskb;
3052 newskb = dev_alloc_skb(NEW_SKB_SIZE);
3053 if (newskb){
3054 rx_in_place = 1;
3056 my_skb_align(newskb, 128);
3057 skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
3058 dma_unmap_single(bp->bus_dev,
3059 bp->descr_block_virt->rcv_data[entry].long_1,
3060 NEW_SKB_SIZE,
3061 DMA_FROM_DEVICE);
3062 skb_reserve(skb, RCV_BUFF_K_PADDING);
3063 bp->p_rcv_buff_va[entry] = (char *)newskb;
3064 bp->descr_block_virt->rcv_data[entry].long_1 =
3065 (u32)dma_map_single(bp->bus_dev,
3066 newskb->data,
3067 NEW_SKB_SIZE,
3068 DMA_FROM_DEVICE);
3069 } else
3070 skb = NULL;
3071 } else
3072 #endif
3073 skb = dev_alloc_skb(pkt_len+3); /* alloc new buffer to pass up, add room for PRH */
3074 if (skb == NULL)
3076 printk("%s: Could not allocate receive buffer. Dropping packet.\n", bp->dev->name);
3077 bp->rcv_discards++;
3078 break;
3080 else {
3081 if (!rx_in_place) {
3082 /* Receive buffer allocated, pass receive packet up */
3084 skb_copy_to_linear_data(skb,
3085 p_buff + RCV_BUFF_K_PADDING,
3086 pkt_len + 3);
3089 skb_reserve(skb,3); /* adjust data field so that it points to FC byte */
3090 skb_put(skb, pkt_len); /* pass up packet length, NOT including CRC */
3091 skb->protocol = fddi_type_trans(skb, bp->dev);
3092 bp->rcv_total_bytes += skb->len;
3093 netif_rx(skb);
3095 /* Update the rcv counters */
3096 bp->rcv_total_frames++;
3097 if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
3098 bp->rcv_multicast_frames++;
3104 * Advance the producer (for recycling) and advance the completion
3105 * (for servicing received frames). Note that it is okay to
3106 * advance the producer without checking that it passes the
3107 * completion index because they are both advanced at the same
3108 * rate.
3111 bp->rcv_xmt_reg.index.rcv_prod += 1;
3112 bp->rcv_xmt_reg.index.rcv_comp += 1;
3118 * =====================
3119 * = dfx_xmt_queue_pkt =
3120 * =====================
3122 * Overview:
3123 * Queues packets for transmission
3125 * Returns:
3126 * Condition code
3128 * Arguments:
3129 * skb - pointer to sk_buff to queue for transmission
3130 * dev - pointer to device information
3132 * Functional Description:
3133 * Here we assume that an incoming skb transmit request
3134 * is contained in a single physically contiguous buffer
3135 * in which the virtual address of the start of packet
3136 * (skb->data) can be converted to a physical address
3137 * by using pci_map_single().
3139 * Since the adapter architecture requires a three byte
3140 * packet request header to prepend the start of packet,
3141 * we'll write the three byte field immediately prior to
3142 * the FC byte. This assumption is valid because we've
3143 * ensured that dev->hard_header_len includes three pad
3144 * bytes. By posting a single fragment to the adapter,
3145 * we'll reduce the number of descriptor fetches and
3146 * bus traffic needed to send the request.
3148 * Also, we can't free the skb until after it's been DMA'd
3149 * out by the adapter, so we'll queue it in the driver and
3150 * return it in dfx_xmt_done.
3152 * Return Codes:
3153 * 0 - driver queued packet, link is unavailable, or skbuff was bad
3154 * 1 - caller should requeue the sk_buff for later transmission
3156 * Assumptions:
3157 * First and foremost, we assume the incoming skb pointer
3158 * is NOT NULL and is pointing to a valid sk_buff structure.
3160 * The outgoing packet is complete, starting with the
3161 * frame control byte including the last byte of data,
3162 * but NOT including the 4 byte CRC. We'll let the
3163 * adapter hardware generate and append the CRC.
3165 * The entire packet is stored in one physically
3166 * contiguous buffer which is not cached and whose
3167 * 32-bit physical address can be determined.
3169 * It's vital that this routine is NOT reentered for the
3170 * same board and that the OS is not in another section of
3171 * code (eg. dfx_int_common) for the same board on a
3172 * different thread.
3174 * Side Effects:
3175 * None
3178 static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
3179 struct net_device *dev)
3181 DFX_board_t *bp = netdev_priv(dev);
3182 u8 prod; /* local transmit producer index */
3183 PI_XMT_DESCR *p_xmt_descr; /* ptr to transmit descriptor block entry */
3184 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3185 unsigned long flags;
3187 netif_stop_queue(dev);
3190 * Verify that incoming transmit request is OK
3192 * Note: The packet size check is consistent with other
3193 * Linux device drivers, although the correct packet
3194 * size should be verified before calling the
3195 * transmit routine.
3198 if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3200 printk("%s: Invalid packet length - %u bytes\n",
3201 dev->name, skb->len);
3202 bp->xmt_length_errors++; /* bump error counter */
3203 netif_wake_queue(dev);
3204 dev_kfree_skb(skb);
3205 return NETDEV_TX_OK; /* return "success" */
3208 * See if adapter link is available, if not, free buffer
3210 * Note: If the link isn't available, free buffer and return 0
3211 * rather than tell the upper layer to requeue the packet.
3212 * The methodology here is that by the time the link
3213 * becomes available, the packet to be sent will be
3214 * fairly stale. By simply dropping the packet, the
3215 * higher layer protocols will eventually time out
3216 * waiting for response packets which it won't receive.
3219 if (bp->link_available == PI_K_FALSE)
3221 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL) /* is link really available? */
3222 bp->link_available = PI_K_TRUE; /* if so, set flag and continue */
3223 else
3225 bp->xmt_discards++; /* bump error counter */
3226 dev_kfree_skb(skb); /* free sk_buff now */
3227 netif_wake_queue(dev);
3228 return NETDEV_TX_OK; /* return "success" */
3232 spin_lock_irqsave(&bp->lock, flags);
3234 /* Get the current producer and the next free xmt data descriptor */
3236 prod = bp->rcv_xmt_reg.index.xmt_prod;
3237 p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3240 * Get pointer to auxiliary queue entry to contain information
3241 * for this packet.
3243 * Note: The current xmt producer index will become the
3244 * current xmt completion index when we complete this
3245 * packet later on. So, we'll get the pointer to the
3246 * next auxiliary queue entry now before we bump the
3247 * producer index.
3250 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]); /* also bump producer index */
3252 /* Write the three PRH bytes immediately before the FC byte */
3254 skb_push(skb,3);
3255 skb->data[0] = DFX_PRH0_BYTE; /* these byte values are defined */
3256 skb->data[1] = DFX_PRH1_BYTE; /* in the Motorola FDDI MAC chip */
3257 skb->data[2] = DFX_PRH2_BYTE; /* specification */
3260 * Write the descriptor with buffer info and bump producer
3262 * Note: Since we need to start DMA from the packet request
3263 * header, we'll add 3 bytes to the DMA buffer length,
3264 * and we'll determine the physical address of the
3265 * buffer from the PRH, not skb->data.
3267 * Assumptions:
3268 * 1. Packet starts with the frame control (FC) byte
3269 * at skb->data.
3270 * 2. The 4-byte CRC is not appended to the buffer or
3271 * included in the length.
3272 * 3. Packet length (skb->len) is from FC to end of
3273 * data, inclusive.
3274 * 4. The packet length does not exceed the maximum
3275 * FDDI LLC frame length of 4491 bytes.
3276 * 5. The entire packet is contained in a physically
3277 * contiguous, non-cached, locked memory space
3278 * comprised of a single buffer pointed to by
3279 * skb->data.
3280 * 6. The physical address of the start of packet
3281 * can be determined from the virtual address
3282 * by using pci_map_single() and is only 32-bits
3283 * wide.
3286 p_xmt_descr->long_0 = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
3287 p_xmt_descr->long_1 = (u32)dma_map_single(bp->bus_dev, skb->data,
3288 skb->len, DMA_TO_DEVICE);
3291 * Verify that descriptor is actually available
3293 * Note: If descriptor isn't available, return 1 which tells
3294 * the upper layer to requeue the packet for later
3295 * transmission.
3297 * We need to ensure that the producer never reaches the
3298 * completion, except to indicate that the queue is empty.
3301 if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3303 skb_pull(skb,3);
3304 spin_unlock_irqrestore(&bp->lock, flags);
3305 return NETDEV_TX_BUSY; /* requeue packet for later */
3309 * Save info for this packet for xmt done indication routine
3311 * Normally, we'd save the producer index in the p_xmt_drv_descr
3312 * structure so that we'd have it handy when we complete this
3313 * packet later (in dfx_xmt_done). However, since the current
3314 * transmit architecture guarantees a single fragment for the
3315 * entire packet, we can simply bump the completion index by
3316 * one (1) for each completed packet.
3318 * Note: If this assumption changes and we're presented with
3319 * an inconsistent number of transmit fragments for packet
3320 * data, we'll need to modify this code to save the current
3321 * transmit producer index.
3324 p_xmt_drv_descr->p_skb = skb;
3326 /* Update Type 2 register */
3328 bp->rcv_xmt_reg.index.xmt_prod = prod;
3329 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3330 spin_unlock_irqrestore(&bp->lock, flags);
3331 netif_wake_queue(dev);
3332 return NETDEV_TX_OK; /* packet queued to adapter */
3337 * ================
3338 * = dfx_xmt_done =
3339 * ================
3341 * Overview:
3342 * Processes all frames that have been transmitted.
3344 * Returns:
3345 * None
3347 * Arguments:
3348 * bp - pointer to board information
3350 * Functional Description:
3351 * For all consumed transmit descriptors that have not
3352 * yet been completed, we'll free the skb we were holding
3353 * onto using dev_kfree_skb and bump the appropriate
3354 * counters.
3356 * Return Codes:
3357 * None
3359 * Assumptions:
3360 * The Type 2 register is not updated in this routine. It is
3361 * assumed that it will be updated in the ISR when dfx_xmt_done
3362 * returns.
3364 * Side Effects:
3365 * None
3368 static int dfx_xmt_done(DFX_board_t *bp)
3370 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3371 PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */
3372 u8 comp; /* local transmit completion index */
3373 int freed = 0; /* buffers freed */
3375 /* Service all consumed transmit frames */
3377 p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3378 while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3380 /* Get pointer to the transmit driver descriptor block information */
3382 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3384 /* Increment transmit counters */
3386 bp->xmt_total_frames++;
3387 bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3389 /* Return skb to operating system */
3390 comp = bp->rcv_xmt_reg.index.xmt_comp;
3391 dma_unmap_single(bp->bus_dev,
3392 bp->descr_block_virt->xmt_data[comp].long_1,
3393 p_xmt_drv_descr->p_skb->len,
3394 DMA_TO_DEVICE);
3395 dev_kfree_skb_irq(p_xmt_drv_descr->p_skb);
3398 * Move to start of next packet by updating completion index
3400 * Here we assume that a transmit packet request is always
3401 * serviced by posting one fragment. We can therefore
3402 * simplify the completion code by incrementing the
3403 * completion index by one. This code will need to be
3404 * modified if this assumption changes. See comments
3405 * in dfx_xmt_queue_pkt for more details.
3408 bp->rcv_xmt_reg.index.xmt_comp += 1;
3409 freed++;
3411 return freed;
3416 * =================
3417 * = dfx_rcv_flush =
3418 * =================
3420 * Overview:
3421 * Remove all skb's in the receive ring.
3423 * Returns:
3424 * None
3426 * Arguments:
3427 * bp - pointer to board information
3429 * Functional Description:
3430 * Free's all the dynamically allocated skb's that are
3431 * currently attached to the device receive ring. This
3432 * function is typically only used when the device is
3433 * initialized or reinitialized.
3435 * Return Codes:
3436 * None
3438 * Side Effects:
3439 * None
3441 #ifdef DYNAMIC_BUFFERS
3442 static void dfx_rcv_flush( DFX_board_t *bp )
3444 int i, j;
3446 for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3447 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3449 struct sk_buff *skb;
3450 skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
3451 if (skb)
3452 dev_kfree_skb(skb);
3453 bp->p_rcv_buff_va[i+j] = NULL;
3457 #endif /* DYNAMIC_BUFFERS */
3460 * =================
3461 * = dfx_xmt_flush =
3462 * =================
3464 * Overview:
3465 * Processes all frames whether they've been transmitted
3466 * or not.
3468 * Returns:
3469 * None
3471 * Arguments:
3472 * bp - pointer to board information
3474 * Functional Description:
3475 * For all produced transmit descriptors that have not
3476 * yet been completed, we'll free the skb we were holding
3477 * onto using dev_kfree_skb and bump the appropriate
3478 * counters. Of course, it's possible that some of
3479 * these transmit requests actually did go out, but we
3480 * won't make that distinction here. Finally, we'll
3481 * update the consumer index to match the producer.
3483 * Return Codes:
3484 * None
3486 * Assumptions:
3487 * This routine does NOT update the Type 2 register. It
3488 * is assumed that this routine is being called during a
3489 * transmit flush interrupt, or a shutdown or close routine.
3491 * Side Effects:
3492 * None
3495 static void dfx_xmt_flush( DFX_board_t *bp )
3497 u32 prod_cons; /* rcv/xmt consumer block longword */
3498 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3499 u8 comp; /* local transmit completion index */
3501 /* Flush all outstanding transmit frames */
3503 while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3505 /* Get pointer to the transmit driver descriptor block information */
3507 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3509 /* Return skb to operating system */
3510 comp = bp->rcv_xmt_reg.index.xmt_comp;
3511 dma_unmap_single(bp->bus_dev,
3512 bp->descr_block_virt->xmt_data[comp].long_1,
3513 p_xmt_drv_descr->p_skb->len,
3514 DMA_TO_DEVICE);
3515 dev_kfree_skb(p_xmt_drv_descr->p_skb);
3517 /* Increment transmit error counter */
3519 bp->xmt_discards++;
3522 * Move to start of next packet by updating completion index
3524 * Here we assume that a transmit packet request is always
3525 * serviced by posting one fragment. We can therefore
3526 * simplify the completion code by incrementing the
3527 * completion index by one. This code will need to be
3528 * modified if this assumption changes. See comments
3529 * in dfx_xmt_queue_pkt for more details.
3532 bp->rcv_xmt_reg.index.xmt_comp += 1;
3535 /* Update the transmit consumer index in the consumer block */
3537 prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3538 prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3539 bp->cons_block_virt->xmt_rcv_data = prod_cons;
3543 * ==================
3544 * = dfx_unregister =
3545 * ==================
3547 * Overview:
3548 * Shuts down an FDDI controller
3550 * Returns:
3551 * Condition code
3553 * Arguments:
3554 * bdev - pointer to device information
3556 * Functional Description:
3558 * Return Codes:
3559 * None
3561 * Assumptions:
3562 * It compiles so it should work :-( (PCI cards do :-)
3564 * Side Effects:
3565 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
3566 * freed.
3568 static void dfx_unregister(struct device *bdev)
3570 struct net_device *dev = dev_get_drvdata(bdev);
3571 DFX_board_t *bp = netdev_priv(dev);
3572 int dfx_bus_pci = dev_is_pci(bdev);
3573 int dfx_bus_tc = DFX_BUS_TC(bdev);
3574 int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
3575 resource_size_t bar_start = 0; /* pointer to port */
3576 resource_size_t bar_len = 0; /* resource length */
3577 int alloc_size; /* total buffer size used */
3579 unregister_netdev(dev);
3581 alloc_size = sizeof(PI_DESCR_BLOCK) +
3582 PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
3583 #ifndef DYNAMIC_BUFFERS
3584 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
3585 #endif
3586 sizeof(PI_CONSUMER_BLOCK) +
3587 (PI_ALIGN_K_DESC_BLK - 1);
3588 if (bp->kmalloced)
3589 dma_free_coherent(bdev, alloc_size,
3590 bp->kmalloced, bp->kmalloced_dma);
3592 dfx_bus_uninit(dev);
3594 dfx_get_bars(bdev, &bar_start, &bar_len);
3595 if (dfx_use_mmio) {
3596 iounmap(bp->base.mem);
3597 release_mem_region(bar_start, bar_len);
3598 } else
3599 release_region(bar_start, bar_len);
3601 if (dfx_bus_pci)
3602 pci_disable_device(to_pci_dev(bdev));
3604 free_netdev(dev);
3608 static int __maybe_unused dfx_dev_register(struct device *);
3609 static int __maybe_unused dfx_dev_unregister(struct device *);
3611 #ifdef CONFIG_PCI
3612 static int dfx_pci_register(struct pci_dev *, const struct pci_device_id *);
3613 static void dfx_pci_unregister(struct pci_dev *);
3615 static DEFINE_PCI_DEVICE_TABLE(dfx_pci_table) = {
3616 { PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) },
3619 MODULE_DEVICE_TABLE(pci, dfx_pci_table);
3621 static struct pci_driver dfx_pci_driver = {
3622 .name = "defxx",
3623 .id_table = dfx_pci_table,
3624 .probe = dfx_pci_register,
3625 .remove = dfx_pci_unregister,
3628 static int dfx_pci_register(struct pci_dev *pdev,
3629 const struct pci_device_id *ent)
3631 return dfx_register(&pdev->dev);
3634 static void dfx_pci_unregister(struct pci_dev *pdev)
3636 dfx_unregister(&pdev->dev);
3638 #endif /* CONFIG_PCI */
3640 #ifdef CONFIG_EISA
3641 static struct eisa_device_id dfx_eisa_table[] = {
3642 { "DEC3001", DEFEA_PROD_ID_1 },
3643 { "DEC3002", DEFEA_PROD_ID_2 },
3644 { "DEC3003", DEFEA_PROD_ID_3 },
3645 { "DEC3004", DEFEA_PROD_ID_4 },
3648 MODULE_DEVICE_TABLE(eisa, dfx_eisa_table);
3650 static struct eisa_driver dfx_eisa_driver = {
3651 .id_table = dfx_eisa_table,
3652 .driver = {
3653 .name = "defxx",
3654 .bus = &eisa_bus_type,
3655 .probe = dfx_dev_register,
3656 .remove = dfx_dev_unregister,
3659 #endif /* CONFIG_EISA */
3661 #ifdef CONFIG_TC
3662 static struct tc_device_id const dfx_tc_table[] = {
3663 { "DEC ", "PMAF-FA " },
3664 { "DEC ", "PMAF-FD " },
3665 { "DEC ", "PMAF-FS " },
3666 { "DEC ", "PMAF-FU " },
3669 MODULE_DEVICE_TABLE(tc, dfx_tc_table);
3671 static struct tc_driver dfx_tc_driver = {
3672 .id_table = dfx_tc_table,
3673 .driver = {
3674 .name = "defxx",
3675 .bus = &tc_bus_type,
3676 .probe = dfx_dev_register,
3677 .remove = dfx_dev_unregister,
3680 #endif /* CONFIG_TC */
3682 static int __maybe_unused dfx_dev_register(struct device *dev)
3684 int status;
3686 status = dfx_register(dev);
3687 if (!status)
3688 get_device(dev);
3689 return status;
3692 static int __maybe_unused dfx_dev_unregister(struct device *dev)
3694 put_device(dev);
3695 dfx_unregister(dev);
3696 return 0;
3700 static int dfx_init(void)
3702 int status;
3704 status = pci_register_driver(&dfx_pci_driver);
3705 if (!status)
3706 status = eisa_driver_register(&dfx_eisa_driver);
3707 if (!status)
3708 status = tc_register_driver(&dfx_tc_driver);
3709 return status;
3712 static void dfx_cleanup(void)
3714 tc_unregister_driver(&dfx_tc_driver);
3715 eisa_driver_unregister(&dfx_eisa_driver);
3716 pci_unregister_driver(&dfx_pci_driver);
3719 module_init(dfx_init);
3720 module_exit(dfx_cleanup);
3721 MODULE_AUTHOR("Lawrence V. Stefani");
3722 MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
3723 DRV_VERSION " " DRV_RELDATE);
3724 MODULE_LICENSE("GPL");