5 * Copyright Information:
6 * Copyright Digital Equipment Corporation 1996.
8 * This software may be used and distributed according to the terms of
9 * the GNU General Public License, incorporated herein by reference.
12 * A Linux device driver supporting the Digital Equipment Corporation
13 * FDDI TURBOchannel, EISA and PCI controller families. Supported
16 * DEC FDDIcontroller/TURBOchannel (DEFTA)
17 * DEC FDDIcontroller/EISA (DEFEA)
18 * DEC FDDIcontroller/PCI (DEFPA)
20 * The original author:
21 * LVS Lawrence V. Stefani <lstefani@yahoo.com>
24 * macro Maciej W. Rozycki <macro@linux-mips.org>
27 * I'd like to thank Patricia Cross for helping me get started with
28 * Linux, David Davies for a lot of help upgrading and configuring
29 * my development system and for answering many OS and driver
30 * development questions, and Alan Cox for recommendations and
31 * integration help on getting FDDI support into Linux. LVS
33 * Driver Architecture:
34 * The driver architecture is largely based on previous driver work
35 * for other operating systems. The upper edge interface and
36 * functions were largely taken from existing Linux device drivers
37 * such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
41 * The driver scans for supported EISA adapters by reading the
42 * SLOT ID register for each EISA slot and making a match
43 * against the expected value.
45 * Bus-Specific Initialization -
46 * This driver currently supports both EISA and PCI controller
47 * families. While the custom DMA chip and FDDI logic is similar
48 * or identical, the bus logic is very different. After
49 * initialization, the only bus-specific differences is in how the
50 * driver enables and disables interrupts. Other than that, the
51 * run-time critical code behaves the same on both families.
52 * It's important to note that both adapter families are configured
53 * to I/O map, rather than memory map, the adapter registers.
56 * In the driver open routine, the driver ISR (interrupt service
57 * routine) is registered and the adapter is brought to an
58 * operational state. In the driver close routine, the opposite
59 * occurs; the driver ISR is deregistered and the adapter is
60 * brought to a safe, but closed state. Users may use consecutive
61 * commands to bring the adapter up and down as in the following
68 * Apparently, there is no shutdown or halt routine support under
69 * Linux. This routine would be called during "reboot" or
70 * "shutdown" to allow the driver to place the adapter in a safe
71 * state before a warm reboot occurs. To be really safe, the user
72 * should close the adapter before shutdown (eg. ifconfig fddi0 down)
73 * to ensure that the adapter DMA engine is taken off-line. However,
74 * the current driver code anticipates this problem and always issues
75 * a soft reset of the adapter at the beginning of driver initialization.
76 * A future driver enhancement in this area may occur in 2.1.X where
77 * Alan indicated that a shutdown handler may be implemented.
79 * Interrupt Service Routine -
80 * The driver supports shared interrupts, so the ISR is registered for
81 * each board with the appropriate flag and the pointer to that board's
82 * device structure. This provides the context during interrupt
83 * processing to support shared interrupts and multiple boards.
85 * Interrupt enabling/disabling can occur at many levels. At the host
86 * end, you can disable system interrupts, or disable interrupts at the
87 * PIC (on Intel systems). Across the bus, both EISA and PCI adapters
88 * have a bus-logic chip interrupt enable/disable as well as a DMA
89 * controller interrupt enable/disable.
91 * The driver currently enables and disables adapter interrupts at the
92 * bus-logic chip and assumes that Linux will take care of clearing or
93 * acknowledging any host-based interrupt chips.
96 * Control functions are those used to support functions such as adding
97 * or deleting multicast addresses, enabling or disabling packet
98 * reception filters, or other custom/proprietary commands. Presently,
99 * the driver supports the "get statistics", "set multicast list", and
100 * "set mac address" functions defined by Linux. A list of possible
101 * enhancements include:
103 * - Custom ioctl interface for executing port interface commands
104 * - Custom ioctl interface for adding unicast addresses to
105 * adapter CAM (to support bridge functions).
106 * - Custom ioctl interface for supporting firmware upgrades.
108 * Hardware (port interface) Support Routines -
109 * The driver function names that start with "dfx_hw_" represent
110 * low-level port interface routines that are called frequently. They
111 * include issuing a DMA or port control command to the adapter,
112 * resetting the adapter, or reading the adapter state. Since the
113 * driver initialization and run-time code must make calls into the
114 * port interface, these routines were written to be as generic and
115 * usable as possible.
118 * The adapter DMA engine supports a 256 entry receive descriptor block
119 * of which up to 255 entries can be used at any given time. The
120 * architecture is a standard producer, consumer, completion model in
121 * which the driver "produces" receive buffers to the adapter, the
122 * adapter "consumes" the receive buffers by DMAing incoming packet data,
123 * and the driver "completes" the receive buffers by servicing the
124 * incoming packet, then "produces" a new buffer and starts the cycle
125 * again. Receive buffers can be fragmented in up to 16 fragments
126 * (descriptor entries). For simplicity, this driver posts
127 * single-fragment receive buffers of 4608 bytes, then allocates a
128 * sk_buff, copies the data, then reposts the buffer. To reduce CPU
129 * utilization, a better approach would be to pass up the receive
130 * buffer (no extra copy) then allocate and post a replacement buffer.
131 * This is a performance enhancement that should be looked into at
135 * Like the receive path, the adapter DMA engine supports a 256 entry
136 * transmit descriptor block of which up to 255 entries can be used at
137 * any given time. Transmit buffers can be fragmented in up to 255
138 * fragments (descriptor entries). This driver always posts one
139 * fragment per transmit packet request.
141 * The fragment contains the entire packet from FC to end of data.
142 * Before posting the buffer to the adapter, the driver sets a three-byte
143 * packet request header (PRH) which is required by the Motorola MAC chip
144 * used on the adapters. The PRH tells the MAC the type of token to
145 * receive/send, whether or not to generate and append the CRC, whether
146 * synchronous or asynchronous framing is used, etc. Since the PRH
147 * definition is not necessarily consistent across all FDDI chipsets,
148 * the driver, rather than the common FDDI packet handler routines,
151 * To reduce the amount of descriptor fetches needed per transmit request,
152 * the driver takes advantage of the fact that there are at least three
153 * bytes available before the skb->data field on the outgoing transmit
154 * request. This is guaranteed by having fddi_setup() in net_init.c set
155 * dev->hard_header_len to 24 bytes. 21 bytes accounts for the largest
156 * header in an 802.2 SNAP frame. The other 3 bytes are the extra "pad"
157 * bytes which we'll use to store the PRH.
159 * There's a subtle advantage to adding these pad bytes to the
160 * hard_header_len, it ensures that the data portion of the packet for
161 * an 802.2 SNAP frame is longword aligned. Other FDDI driver
162 * implementations may not need the extra padding and can start copying
163 * or DMAing directly from the FC byte which starts at skb->data. Should
164 * another driver implementation need ADDITIONAL padding, the net_init.c
165 * module should be updated and dev->hard_header_len should be increased.
166 * NOTE: To maintain the alignment on the data portion of the packet,
167 * dev->hard_header_len should always be evenly divisible by 4 and at
168 * least 24 bytes in size.
170 * Modification History:
171 * Date Name Description
172 * 16-Aug-96 LVS Created.
173 * 20-Aug-96 LVS Updated dfx_probe so that version information
174 * string is only displayed if 1 or more cards are
175 * found. Changed dfx_rcv_queue_process to copy
176 * 3 NULL bytes before FC to ensure that data is
177 * longword aligned in receive buffer.
178 * 09-Sep-96 LVS Updated dfx_ctl_set_multicast_list to enable
179 * LLC group promiscuous mode if multicast list
180 * is too large. LLC individual/group promiscuous
181 * mode is now disabled if IFF_PROMISC flag not set.
182 * dfx_xmt_queue_pkt no longer checks for NULL skb
183 * on Alan Cox recommendation. Added node address
185 * 12-Sep-96 LVS Reset current address to factory address during
186 * device open. Updated transmit path to post a
187 * single fragment which includes PRH->end of data.
188 * Mar 2000 AC Did various cleanups for 2.3.x
189 * Jun 2000 jgarzik PCI and resource alloc cleanups
190 * Jul 2000 tjeerd Much cleanup and some bug fixes
191 * Sep 2000 tjeerd Fix leak on unload, cosmetic code cleanup
192 * Feb 2001 Skb allocation fixes
193 * Feb 2001 davej PCI enable cleanups.
194 * 04 Aug 2003 macro Converted to the DMA API.
195 * 14 Aug 2004 macro Fix device names reported.
196 * 14 Jun 2005 macro Use irqreturn_t.
197 * 23 Oct 2006 macro Big-endian host support.
198 * 14 Dec 2006 macro TURBOchannel support.
202 #include <linux/bitops.h>
203 #include <linux/compiler.h>
204 #include <linux/delay.h>
205 #include <linux/dma-mapping.h>
206 #include <linux/eisa.h>
207 #include <linux/errno.h>
208 #include <linux/fddidevice.h>
209 #include <linux/interrupt.h>
210 #include <linux/ioport.h>
211 #include <linux/kernel.h>
212 #include <linux/module.h>
213 #include <linux/netdevice.h>
214 #include <linux/pci.h>
215 #include <linux/skbuff.h>
216 #include <linux/slab.h>
217 #include <linux/string.h>
218 #include <linux/tc.h>
220 #include <asm/byteorder.h>
225 /* Version information string should be updated prior to each new release! */
226 #define DRV_NAME "defxx"
227 #define DRV_VERSION "v1.10"
228 #define DRV_RELDATE "2006/12/14"
230 static char version
[] =
231 DRV_NAME
": " DRV_VERSION
" " DRV_RELDATE
232 " Lawrence V. Stefani and others\n";
234 #define DYNAMIC_BUFFERS 1
236 #define SKBUFF_RX_COPYBREAK 200
238 * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
239 * alignment for compatibility with old EISA boards.
241 #define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
244 #define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
246 #define DFX_BUS_EISA(dev) 0
250 #define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
252 #define DFX_BUS_TC(dev) 0
255 #ifdef CONFIG_DEFXX_MMIO
261 /* Define module-wide (static) routines */
263 static void dfx_bus_init(struct net_device
*dev
);
264 static void dfx_bus_uninit(struct net_device
*dev
);
265 static void dfx_bus_config_check(DFX_board_t
*bp
);
267 static int dfx_driver_init(struct net_device
*dev
,
268 const char *print_name
,
269 resource_size_t bar_start
);
270 static int dfx_adap_init(DFX_board_t
*bp
, int get_buffers
);
272 static int dfx_open(struct net_device
*dev
);
273 static int dfx_close(struct net_device
*dev
);
275 static void dfx_int_pr_halt_id(DFX_board_t
*bp
);
276 static void dfx_int_type_0_process(DFX_board_t
*bp
);
277 static void dfx_int_common(struct net_device
*dev
);
278 static irqreturn_t
dfx_interrupt(int irq
, void *dev_id
);
280 static struct net_device_stats
*dfx_ctl_get_stats(struct net_device
*dev
);
281 static void dfx_ctl_set_multicast_list(struct net_device
*dev
);
282 static int dfx_ctl_set_mac_address(struct net_device
*dev
, void *addr
);
283 static int dfx_ctl_update_cam(DFX_board_t
*bp
);
284 static int dfx_ctl_update_filters(DFX_board_t
*bp
);
286 static int dfx_hw_dma_cmd_req(DFX_board_t
*bp
);
287 static int dfx_hw_port_ctrl_req(DFX_board_t
*bp
, PI_UINT32 command
, PI_UINT32 data_a
, PI_UINT32 data_b
, PI_UINT32
*host_data
);
288 static void dfx_hw_adap_reset(DFX_board_t
*bp
, PI_UINT32 type
);
289 static int dfx_hw_adap_state_rd(DFX_board_t
*bp
);
290 static int dfx_hw_dma_uninit(DFX_board_t
*bp
, PI_UINT32 type
);
292 static int dfx_rcv_init(DFX_board_t
*bp
, int get_buffers
);
293 static void dfx_rcv_queue_process(DFX_board_t
*bp
);
294 #ifdef DYNAMIC_BUFFERS
295 static void dfx_rcv_flush(DFX_board_t
*bp
);
297 static inline void dfx_rcv_flush(DFX_board_t
*bp
) {}
300 static netdev_tx_t
dfx_xmt_queue_pkt(struct sk_buff
*skb
,
301 struct net_device
*dev
);
302 static int dfx_xmt_done(DFX_board_t
*bp
);
303 static void dfx_xmt_flush(DFX_board_t
*bp
);
305 /* Define module-wide (static) variables */
307 static struct pci_driver dfx_pci_driver
;
308 static struct eisa_driver dfx_eisa_driver
;
309 static struct tc_driver dfx_tc_driver
;
313 * =======================
314 * = dfx_port_write_long =
315 * = dfx_port_read_long =
316 * =======================
319 * Routines for reading and writing values from/to adapter
325 * bp - pointer to board information
326 * offset - register offset from base I/O address
327 * data - for dfx_port_write_long, this is a value to write;
328 * for dfx_port_read_long, this is a pointer to store
331 * Functional Description:
332 * These routines perform the correct operation to read or write
333 * the adapter register.
335 * EISA port block base addresses are based on the slot number in which the
336 * controller is installed. For example, if the EISA controller is installed
337 * in slot 4, the port block base address is 0x4000. If the controller is
338 * installed in slot 2, the port block base address is 0x2000, and so on.
339 * This port block can be used to access PDQ, ESIC, and DEFEA on-board
340 * registers using the register offsets defined in DEFXX.H.
342 * PCI port block base addresses are assigned by the PCI BIOS or system
343 * firmware. There is one 128 byte port block which can be accessed. It
344 * allows for I/O mapping of both PDQ and PFI registers using the register
345 * offsets defined in DEFXX.H.
351 * bp->base is a valid base I/O address for this adapter.
352 * offset is a valid register offset for this adapter.
355 * Rather than produce macros for these functions, these routines
356 * are defined using "inline" to ensure that the compiler will
357 * generate inline code and not waste a procedure call and return.
358 * This provides all the benefits of macros, but with the
359 * advantage of strict data type checking.
362 static inline void dfx_writel(DFX_board_t
*bp
, int offset
, u32 data
)
364 writel(data
, bp
->base
.mem
+ offset
);
368 static inline void dfx_outl(DFX_board_t
*bp
, int offset
, u32 data
)
370 outl(data
, bp
->base
.port
+ offset
);
373 static void dfx_port_write_long(DFX_board_t
*bp
, int offset
, u32 data
)
375 struct device __maybe_unused
*bdev
= bp
->bus_dev
;
376 int dfx_bus_tc
= DFX_BUS_TC(bdev
);
377 int dfx_use_mmio
= DFX_MMIO
|| dfx_bus_tc
;
380 dfx_writel(bp
, offset
, data
);
382 dfx_outl(bp
, offset
, data
);
386 static inline void dfx_readl(DFX_board_t
*bp
, int offset
, u32
*data
)
389 *data
= readl(bp
->base
.mem
+ offset
);
392 static inline void dfx_inl(DFX_board_t
*bp
, int offset
, u32
*data
)
394 *data
= inl(bp
->base
.port
+ offset
);
397 static void dfx_port_read_long(DFX_board_t
*bp
, int offset
, u32
*data
)
399 struct device __maybe_unused
*bdev
= bp
->bus_dev
;
400 int dfx_bus_tc
= DFX_BUS_TC(bdev
);
401 int dfx_use_mmio
= DFX_MMIO
|| dfx_bus_tc
;
404 dfx_readl(bp
, offset
, data
);
406 dfx_inl(bp
, offset
, data
);
416 * Retrieves the address range used to access control and status
423 * bdev - pointer to device information
424 * bar_start - pointer to store the start address
425 * bar_len - pointer to store the length of the area
428 * I am sure there are some.
433 static void dfx_get_bars(struct device
*bdev
,
434 resource_size_t
*bar_start
, resource_size_t
*bar_len
)
436 int dfx_bus_pci
= dev_is_pci(bdev
);
437 int dfx_bus_eisa
= DFX_BUS_EISA(bdev
);
438 int dfx_bus_tc
= DFX_BUS_TC(bdev
);
439 int dfx_use_mmio
= DFX_MMIO
|| dfx_bus_tc
;
442 int num
= dfx_use_mmio
? 0 : 1;
444 *bar_start
= pci_resource_start(to_pci_dev(bdev
), num
);
445 *bar_len
= pci_resource_len(to_pci_dev(bdev
), num
);
448 unsigned long base_addr
= to_eisa_device(bdev
)->base_addr
;
452 bar
= inb(base_addr
+ PI_ESIC_K_MEM_ADD_CMP_2
);
454 bar
|= inb(base_addr
+ PI_ESIC_K_MEM_ADD_CMP_1
);
456 bar
|= inb(base_addr
+ PI_ESIC_K_MEM_ADD_CMP_0
);
459 bar
= inb(base_addr
+ PI_ESIC_K_MEM_ADD_MASK_2
);
461 bar
|= inb(base_addr
+ PI_ESIC_K_MEM_ADD_MASK_1
);
463 bar
|= inb(base_addr
+ PI_ESIC_K_MEM_ADD_MASK_0
);
465 *bar_len
= (bar
| PI_MEM_ADD_MASK_M
) + 1;
467 *bar_start
= base_addr
;
468 *bar_len
= PI_ESIC_K_CSR_IO_LEN
;
472 *bar_start
= to_tc_dev(bdev
)->resource
.start
+
474 *bar_len
= PI_TC_K_CSR_LEN
;
478 static const struct net_device_ops dfx_netdev_ops
= {
479 .ndo_open
= dfx_open
,
480 .ndo_stop
= dfx_close
,
481 .ndo_start_xmit
= dfx_xmt_queue_pkt
,
482 .ndo_get_stats
= dfx_ctl_get_stats
,
483 .ndo_set_rx_mode
= dfx_ctl_set_multicast_list
,
484 .ndo_set_mac_address
= dfx_ctl_set_mac_address
,
493 * Initializes a supported FDDI controller
499 * bdev - pointer to device information
501 * Functional Description:
504 * 0 - This device (fddi0, fddi1, etc) configured successfully
505 * -EBUSY - Failed to get resources, or dfx_driver_init failed.
508 * It compiles so it should work :-( (PCI cards do :-)
511 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
512 * initialized and the board resources are read and stored in
513 * the device structure.
515 static int dfx_register(struct device
*bdev
)
517 static int version_disp
;
518 int dfx_bus_pci
= dev_is_pci(bdev
);
519 int dfx_bus_tc
= DFX_BUS_TC(bdev
);
520 int dfx_use_mmio
= DFX_MMIO
|| dfx_bus_tc
;
521 const char *print_name
= dev_name(bdev
);
522 struct net_device
*dev
;
523 DFX_board_t
*bp
; /* board pointer */
524 resource_size_t bar_start
= 0; /* pointer to port */
525 resource_size_t bar_len
= 0; /* resource length */
526 int alloc_size
; /* total buffer size used */
527 struct resource
*region
;
530 if (!version_disp
) { /* display version info if adapter is found */
531 version_disp
= 1; /* set display flag to TRUE so that */
532 printk(version
); /* we only display this string ONCE */
535 dev
= alloc_fddidev(sizeof(*bp
));
537 printk(KERN_ERR
"%s: Unable to allocate fddidev, aborting\n",
542 /* Enable PCI device. */
543 if (dfx_bus_pci
&& pci_enable_device(to_pci_dev(bdev
))) {
544 printk(KERN_ERR
"%s: Cannot enable PCI device, aborting\n",
549 SET_NETDEV_DEV(dev
, bdev
);
551 bp
= netdev_priv(dev
);
553 dev_set_drvdata(bdev
, dev
);
555 dfx_get_bars(bdev
, &bar_start
, &bar_len
);
558 region
= request_mem_region(bar_start
, bar_len
, print_name
);
560 region
= request_region(bar_start
, bar_len
, print_name
);
562 printk(KERN_ERR
"%s: Cannot reserve I/O resource "
563 "0x%lx @ 0x%lx, aborting\n",
564 print_name
, (long)bar_len
, (long)bar_start
);
566 goto err_out_disable
;
569 /* Set up I/O base address. */
571 bp
->base
.mem
= ioremap_nocache(bar_start
, bar_len
);
573 printk(KERN_ERR
"%s: Cannot map MMIO\n", print_name
);
578 bp
->base
.port
= bar_start
;
579 dev
->base_addr
= bar_start
;
582 /* Initialize new device structure */
583 dev
->netdev_ops
= &dfx_netdev_ops
;
586 pci_set_master(to_pci_dev(bdev
));
588 if (dfx_driver_init(dev
, print_name
, bar_start
) != DFX_K_SUCCESS
) {
593 err
= register_netdev(dev
);
597 printk("%s: registered as %s\n", print_name
, dev
->name
);
601 alloc_size
= sizeof(PI_DESCR_BLOCK
) +
602 PI_CMD_REQ_K_SIZE_MAX
+ PI_CMD_RSP_K_SIZE_MAX
+
603 #ifndef DYNAMIC_BUFFERS
604 (bp
->rcv_bufs_to_post
* PI_RCV_DATA_K_SIZE_MAX
) +
606 sizeof(PI_CONSUMER_BLOCK
) +
607 (PI_ALIGN_K_DESC_BLK
- 1);
609 dma_free_coherent(bdev
, alloc_size
,
610 bp
->kmalloced
, bp
->kmalloced_dma
);
614 iounmap(bp
->base
.mem
);
618 release_mem_region(bar_start
, bar_len
);
620 release_region(bar_start
, bar_len
);
624 pci_disable_device(to_pci_dev(bdev
));
638 * Initializes the bus-specific controller logic.
644 * dev - pointer to device information
646 * Functional Description:
647 * Determine and save adapter IRQ in device table,
648 * then perform bus-specific logic initialization.
654 * bp->base has already been set with the proper
655 * base I/O address for this device.
658 * Interrupts are enabled at the adapter bus-specific logic.
659 * Note: Interrupts at the DMA engine (PDQ chip) are not
663 static void dfx_bus_init(struct net_device
*dev
)
665 DFX_board_t
*bp
= netdev_priv(dev
);
666 struct device
*bdev
= bp
->bus_dev
;
667 int dfx_bus_pci
= dev_is_pci(bdev
);
668 int dfx_bus_eisa
= DFX_BUS_EISA(bdev
);
669 int dfx_bus_tc
= DFX_BUS_TC(bdev
);
670 int dfx_use_mmio
= DFX_MMIO
|| dfx_bus_tc
;
673 DBG_printk("In dfx_bus_init...\n");
675 /* Initialize a pointer back to the net_device struct */
678 /* Initialize adapter based on bus type */
681 dev
->irq
= to_tc_dev(bdev
)->interrupt
;
683 unsigned long base_addr
= to_eisa_device(bdev
)->base_addr
;
685 /* Get the interrupt level from the ESIC chip. */
686 val
= inb(base_addr
+ PI_ESIC_K_IO_CONFIG_STAT_0
);
687 val
&= PI_CONFIG_STAT_0_M_IRQ
;
688 val
>>= PI_CONFIG_STAT_0_V_IRQ
;
691 case PI_CONFIG_STAT_0_IRQ_K_9
:
695 case PI_CONFIG_STAT_0_IRQ_K_10
:
699 case PI_CONFIG_STAT_0_IRQ_K_11
:
703 case PI_CONFIG_STAT_0_IRQ_K_15
:
709 * Enable memory decoding (MEMCS0) and/or port decoding
710 * (IOCS1/IOCS0) as appropriate in Function Control
711 * Register. One of the port chip selects seems to be
712 * used for the Burst Holdoff register, but this bit of
713 * documentation is missing and as yet it has not been
714 * determined which of the two. This is also the reason
715 * the size of the decoded port range is twice as large
716 * as one required by the PDQ.
719 /* Set the decode range of the board. */
720 val
= ((bp
->base
.port
>> 12) << PI_IO_CMP_V_SLOT
);
721 outb(base_addr
+ PI_ESIC_K_IO_ADD_CMP_0_1
, val
);
722 outb(base_addr
+ PI_ESIC_K_IO_ADD_CMP_0_0
, 0);
723 outb(base_addr
+ PI_ESIC_K_IO_ADD_CMP_1_1
, val
);
724 outb(base_addr
+ PI_ESIC_K_IO_ADD_CMP_1_0
, 0);
725 val
= PI_ESIC_K_CSR_IO_LEN
- 1;
726 outb(base_addr
+ PI_ESIC_K_IO_ADD_MASK_0_1
, (val
>> 8) & 0xff);
727 outb(base_addr
+ PI_ESIC_K_IO_ADD_MASK_0_0
, val
& 0xff);
728 outb(base_addr
+ PI_ESIC_K_IO_ADD_MASK_1_1
, (val
>> 8) & 0xff);
729 outb(base_addr
+ PI_ESIC_K_IO_ADD_MASK_1_0
, val
& 0xff);
731 /* Enable the decoders. */
732 val
= PI_FUNCTION_CNTRL_M_IOCS1
| PI_FUNCTION_CNTRL_M_IOCS0
;
734 val
|= PI_FUNCTION_CNTRL_M_MEMCS0
;
735 outb(base_addr
+ PI_ESIC_K_FUNCTION_CNTRL
, val
);
738 * Enable access to the rest of the module
739 * (including PDQ and packet memory).
741 val
= PI_SLOT_CNTRL_M_ENB
;
742 outb(base_addr
+ PI_ESIC_K_SLOT_CNTRL
, val
);
745 * Map PDQ registers into memory or port space. This is
746 * done with a bit in the Burst Holdoff register.
748 val
= inb(base_addr
+ PI_DEFEA_K_BURST_HOLDOFF
);
750 val
|= PI_BURST_HOLDOFF_V_MEM_MAP
;
752 val
&= ~PI_BURST_HOLDOFF_V_MEM_MAP
;
753 outb(base_addr
+ PI_DEFEA_K_BURST_HOLDOFF
, val
);
755 /* Enable interrupts at EISA bus interface chip (ESIC) */
756 val
= inb(base_addr
+ PI_ESIC_K_IO_CONFIG_STAT_0
);
757 val
|= PI_CONFIG_STAT_0_M_INT_ENB
;
758 outb(base_addr
+ PI_ESIC_K_IO_CONFIG_STAT_0
, val
);
761 struct pci_dev
*pdev
= to_pci_dev(bdev
);
763 /* Get the interrupt level from the PCI Configuration Table */
765 dev
->irq
= pdev
->irq
;
767 /* Check Latency Timer and set if less than minimal */
769 pci_read_config_byte(pdev
, PCI_LATENCY_TIMER
, &val
);
770 if (val
< PFI_K_LAT_TIMER_MIN
) {
771 val
= PFI_K_LAT_TIMER_DEF
;
772 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, val
);
775 /* Enable interrupts at PCI bus interface chip (PFI) */
776 val
= PFI_MODE_M_PDQ_INT_ENB
| PFI_MODE_M_DMA_ENB
;
777 dfx_port_write_long(bp
, PFI_K_REG_MODE_CTRL
, val
);
787 * Uninitializes the bus-specific controller logic.
793 * dev - pointer to device information
795 * Functional Description:
796 * Perform bus-specific logic uninitialization.
802 * bp->base has already been set with the proper
803 * base I/O address for this device.
806 * Interrupts are disabled at the adapter bus-specific logic.
809 static void dfx_bus_uninit(struct net_device
*dev
)
811 DFX_board_t
*bp
= netdev_priv(dev
);
812 struct device
*bdev
= bp
->bus_dev
;
813 int dfx_bus_pci
= dev_is_pci(bdev
);
814 int dfx_bus_eisa
= DFX_BUS_EISA(bdev
);
817 DBG_printk("In dfx_bus_uninit...\n");
819 /* Uninitialize adapter based on bus type */
822 unsigned long base_addr
= to_eisa_device(bdev
)->base_addr
;
824 /* Disable interrupts at EISA bus interface chip (ESIC) */
825 val
= inb(base_addr
+ PI_ESIC_K_IO_CONFIG_STAT_0
);
826 val
&= ~PI_CONFIG_STAT_0_M_INT_ENB
;
827 outb(base_addr
+ PI_ESIC_K_IO_CONFIG_STAT_0
, val
);
830 /* Disable interrupts at PCI bus interface chip (PFI) */
831 dfx_port_write_long(bp
, PFI_K_REG_MODE_CTRL
, 0);
837 * ========================
838 * = dfx_bus_config_check =
839 * ========================
842 * Checks the configuration (burst size, full-duplex, etc.) If any parameters
843 * are illegal, then this routine will set new defaults.
849 * bp - pointer to board information
851 * Functional Description:
852 * For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
853 * PDQ, and all FDDI PCI controllers, all values are legal.
859 * dfx_adap_init has NOT been called yet so burst size and other items have
866 static void dfx_bus_config_check(DFX_board_t
*bp
)
868 struct device __maybe_unused
*bdev
= bp
->bus_dev
;
869 int dfx_bus_eisa
= DFX_BUS_EISA(bdev
);
870 int status
; /* return code from adapter port control call */
871 u32 host_data
; /* LW data returned from port control call */
873 DBG_printk("In dfx_bus_config_check...\n");
875 /* Configuration check only valid for EISA adapter */
879 * First check if revision 2 EISA controller. Rev. 1 cards used
880 * PDQ revision B, so no workaround needed in this case. Rev. 3
881 * cards used PDQ revision E, so no workaround needed in this
882 * case, either. Only Rev. 2 cards used either Rev. D or E
883 * chips, so we must verify the chip revision on Rev. 2 cards.
885 if (to_eisa_device(bdev
)->id
.driver_data
== DEFEA_PROD_ID_2
) {
887 * Revision 2 FDDI EISA controller found,
888 * so let's check PDQ revision of adapter.
890 status
= dfx_hw_port_ctrl_req(bp
,
892 PI_SUB_CMD_K_PDQ_REV_GET
,
895 if ((status
!= DFX_K_SUCCESS
) || (host_data
== 2))
898 * Either we couldn't determine the PDQ revision, or
899 * we determined that it is at revision D. In either case,
900 * we need to implement the workaround.
903 /* Ensure that the burst size is set to 8 longwords or less */
905 switch (bp
->burst_size
)
907 case PI_PDATA_B_DMA_BURST_SIZE_32
:
908 case PI_PDATA_B_DMA_BURST_SIZE_16
:
909 bp
->burst_size
= PI_PDATA_B_DMA_BURST_SIZE_8
;
916 /* Ensure that full-duplex mode is not enabled */
918 bp
->full_duplex_enb
= PI_SNMP_K_FALSE
;
926 * ===================
927 * = dfx_driver_init =
928 * ===================
931 * Initializes remaining adapter board structure information
932 * and makes sure adapter is in a safe state prior to dfx_open().
938 * dev - pointer to device information
939 * print_name - printable device name
941 * Functional Description:
942 * This function allocates additional resources such as the host memory
943 * blocks needed by the adapter (eg. descriptor and consumer blocks).
944 * Remaining bus initialization steps are also completed. The adapter
945 * is also reset so that it is in the DMA_UNAVAILABLE state. The OS
946 * must call dfx_open() to open the adapter and bring it on-line.
949 * DFX_K_SUCCESS - initialization succeeded
950 * DFX_K_FAILURE - initialization failed - could not allocate memory
951 * or read adapter MAC address
954 * Memory allocated from pci_alloc_consistent() call is physically
955 * contiguous, locked memory.
958 * Adapter is reset and should be in DMA_UNAVAILABLE state before
959 * returning from this routine.
962 static int dfx_driver_init(struct net_device
*dev
, const char *print_name
,
963 resource_size_t bar_start
)
965 DFX_board_t
*bp
= netdev_priv(dev
);
966 struct device
*bdev
= bp
->bus_dev
;
967 int dfx_bus_pci
= dev_is_pci(bdev
);
968 int dfx_bus_eisa
= DFX_BUS_EISA(bdev
);
969 int dfx_bus_tc
= DFX_BUS_TC(bdev
);
970 int dfx_use_mmio
= DFX_MMIO
|| dfx_bus_tc
;
971 int alloc_size
; /* total buffer size needed */
972 char *top_v
, *curr_v
; /* virtual addrs into memory block */
973 dma_addr_t top_p
, curr_p
; /* physical addrs into memory block */
974 u32 data
; /* host data register value */
976 char *board_name
= NULL
;
978 DBG_printk("In dfx_driver_init...\n");
980 /* Initialize bus-specific hardware registers */
985 * Initialize default values for configurable parameters
987 * Note: All of these parameters are ones that a user may
988 * want to customize. It'd be nice to break these
989 * out into Space.c or someplace else that's more
990 * accessible/understandable than this file.
993 bp
->full_duplex_enb
= PI_SNMP_K_FALSE
;
994 bp
->req_ttrt
= 8 * 12500; /* 8ms in 80 nanosec units */
995 bp
->burst_size
= PI_PDATA_B_DMA_BURST_SIZE_DEF
;
996 bp
->rcv_bufs_to_post
= RCV_BUFS_DEF
;
999 * Ensure that HW configuration is OK
1001 * Note: Depending on the hardware revision, we may need to modify
1002 * some of the configurable parameters to workaround hardware
1003 * limitations. We'll perform this configuration check AFTER
1004 * setting the parameters to their default values.
1007 dfx_bus_config_check(bp
);
1009 /* Disable PDQ interrupts first */
1011 dfx_port_write_long(bp
, PI_PDQ_K_REG_HOST_INT_ENB
, PI_HOST_INT_K_DISABLE_ALL_INTS
);
1013 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1015 (void) dfx_hw_dma_uninit(bp
, PI_PDATA_A_RESET_M_SKIP_ST
);
1017 /* Read the factory MAC address from the adapter then save it */
1019 if (dfx_hw_port_ctrl_req(bp
, PI_PCTRL_M_MLA
, PI_PDATA_A_MLA_K_LO
, 0,
1020 &data
) != DFX_K_SUCCESS
) {
1021 printk("%s: Could not read adapter factory MAC address!\n",
1023 return DFX_K_FAILURE
;
1025 le32
= cpu_to_le32(data
);
1026 memcpy(&bp
->factory_mac_addr
[0], &le32
, sizeof(u32
));
1028 if (dfx_hw_port_ctrl_req(bp
, PI_PCTRL_M_MLA
, PI_PDATA_A_MLA_K_HI
, 0,
1029 &data
) != DFX_K_SUCCESS
) {
1030 printk("%s: Could not read adapter factory MAC address!\n",
1032 return DFX_K_FAILURE
;
1034 le32
= cpu_to_le32(data
);
1035 memcpy(&bp
->factory_mac_addr
[4], &le32
, sizeof(u16
));
1038 * Set current address to factory address
1040 * Note: Node address override support is handled through
1041 * dfx_ctl_set_mac_address.
1044 memcpy(dev
->dev_addr
, bp
->factory_mac_addr
, FDDI_K_ALEN
);
1046 board_name
= "DEFTA";
1048 board_name
= "DEFEA";
1050 board_name
= "DEFPA";
1051 pr_info("%s: %s at %saddr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n",
1052 print_name
, board_name
, dfx_use_mmio
? "" : "I/O ",
1053 (long long)bar_start
, dev
->irq
, dev
->dev_addr
);
1056 * Get memory for descriptor block, consumer block, and other buffers
1057 * that need to be DMA read or written to by the adapter.
1060 alloc_size
= sizeof(PI_DESCR_BLOCK
) +
1061 PI_CMD_REQ_K_SIZE_MAX
+
1062 PI_CMD_RSP_K_SIZE_MAX
+
1063 #ifndef DYNAMIC_BUFFERS
1064 (bp
->rcv_bufs_to_post
* PI_RCV_DATA_K_SIZE_MAX
) +
1066 sizeof(PI_CONSUMER_BLOCK
) +
1067 (PI_ALIGN_K_DESC_BLK
- 1);
1068 bp
->kmalloced
= top_v
= dma_zalloc_coherent(bp
->bus_dev
, alloc_size
,
1072 return DFX_K_FAILURE
;
1074 top_p
= bp
->kmalloced_dma
; /* get physical address of buffer */
1077 * To guarantee the 8K alignment required for the descriptor block, 8K - 1
1078 * plus the amount of memory needed was allocated. The physical address
1079 * is now 8K aligned. By carving up the memory in a specific order,
1080 * we'll guarantee the alignment requirements for all other structures.
1082 * Note: If the assumptions change regarding the non-paged, non-cached,
1083 * physically contiguous nature of the memory block or the address
1084 * alignments, then we'll need to implement a different algorithm
1085 * for allocating the needed memory.
1088 curr_p
= ALIGN(top_p
, PI_ALIGN_K_DESC_BLK
);
1089 curr_v
= top_v
+ (curr_p
- top_p
);
1091 /* Reserve space for descriptor block */
1093 bp
->descr_block_virt
= (PI_DESCR_BLOCK
*) curr_v
;
1094 bp
->descr_block_phys
= curr_p
;
1095 curr_v
+= sizeof(PI_DESCR_BLOCK
);
1096 curr_p
+= sizeof(PI_DESCR_BLOCK
);
1098 /* Reserve space for command request buffer */
1100 bp
->cmd_req_virt
= (PI_DMA_CMD_REQ
*) curr_v
;
1101 bp
->cmd_req_phys
= curr_p
;
1102 curr_v
+= PI_CMD_REQ_K_SIZE_MAX
;
1103 curr_p
+= PI_CMD_REQ_K_SIZE_MAX
;
1105 /* Reserve space for command response buffer */
1107 bp
->cmd_rsp_virt
= (PI_DMA_CMD_RSP
*) curr_v
;
1108 bp
->cmd_rsp_phys
= curr_p
;
1109 curr_v
+= PI_CMD_RSP_K_SIZE_MAX
;
1110 curr_p
+= PI_CMD_RSP_K_SIZE_MAX
;
1112 /* Reserve space for the LLC host receive queue buffers */
1114 bp
->rcv_block_virt
= curr_v
;
1115 bp
->rcv_block_phys
= curr_p
;
1117 #ifndef DYNAMIC_BUFFERS
1118 curr_v
+= (bp
->rcv_bufs_to_post
* PI_RCV_DATA_K_SIZE_MAX
);
1119 curr_p
+= (bp
->rcv_bufs_to_post
* PI_RCV_DATA_K_SIZE_MAX
);
1122 /* Reserve space for the consumer block */
1124 bp
->cons_block_virt
= (PI_CONSUMER_BLOCK
*) curr_v
;
1125 bp
->cons_block_phys
= curr_p
;
1127 /* Display virtual and physical addresses if debug driver */
1129 DBG_printk("%s: Descriptor block virt = %0lX, phys = %0X\n",
1131 (long)bp
->descr_block_virt
, bp
->descr_block_phys
);
1132 DBG_printk("%s: Command Request buffer virt = %0lX, phys = %0X\n",
1133 print_name
, (long)bp
->cmd_req_virt
, bp
->cmd_req_phys
);
1134 DBG_printk("%s: Command Response buffer virt = %0lX, phys = %0X\n",
1135 print_name
, (long)bp
->cmd_rsp_virt
, bp
->cmd_rsp_phys
);
1136 DBG_printk("%s: Receive buffer block virt = %0lX, phys = %0X\n",
1137 print_name
, (long)bp
->rcv_block_virt
, bp
->rcv_block_phys
);
1138 DBG_printk("%s: Consumer block virt = %0lX, phys = %0X\n",
1139 print_name
, (long)bp
->cons_block_virt
, bp
->cons_block_phys
);
1141 return DFX_K_SUCCESS
;
1151 * Brings the adapter to the link avail/link unavailable state.
1157 * bp - pointer to board information
1158 * get_buffers - non-zero if buffers to be allocated
1160 * Functional Description:
1161 * Issues the low-level firmware/hardware calls necessary to bring
1162 * the adapter up, or to properly reset and restore adapter during
1166 * DFX_K_SUCCESS - Adapter brought up successfully
1167 * DFX_K_FAILURE - Adapter initialization failed
1170 * bp->reset_type should be set to a valid reset type value before
1171 * calling this routine.
1174 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1175 * upon a successful return of this routine.
1178 static int dfx_adap_init(DFX_board_t
*bp
, int get_buffers
)
1180 DBG_printk("In dfx_adap_init...\n");
1182 /* Disable PDQ interrupts first */
1184 dfx_port_write_long(bp
, PI_PDQ_K_REG_HOST_INT_ENB
, PI_HOST_INT_K_DISABLE_ALL_INTS
);
1186 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1188 if (dfx_hw_dma_uninit(bp
, bp
->reset_type
) != DFX_K_SUCCESS
)
1190 printk("%s: Could not uninitialize/reset adapter!\n", bp
->dev
->name
);
1191 return DFX_K_FAILURE
;
1195 * When the PDQ is reset, some false Type 0 interrupts may be pending,
1196 * so we'll acknowledge all Type 0 interrupts now before continuing.
1199 dfx_port_write_long(bp
, PI_PDQ_K_REG_TYPE_0_STATUS
, PI_HOST_INT_K_ACK_ALL_TYPE_0
);
1202 * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1204 * Note: We only need to clear host copies of these registers. The PDQ reset
1205 * takes care of the on-board register values.
1208 bp
->cmd_req_reg
.lword
= 0;
1209 bp
->cmd_rsp_reg
.lword
= 0;
1210 bp
->rcv_xmt_reg
.lword
= 0;
1212 /* Clear consumer block before going to DMA_AVAILABLE state */
1214 memset(bp
->cons_block_virt
, 0, sizeof(PI_CONSUMER_BLOCK
));
1216 /* Initialize the DMA Burst Size */
1218 if (dfx_hw_port_ctrl_req(bp
,
1220 PI_SUB_CMD_K_BURST_SIZE_SET
,
1222 NULL
) != DFX_K_SUCCESS
)
1224 printk("%s: Could not set adapter burst size!\n", bp
->dev
->name
);
1225 return DFX_K_FAILURE
;
1229 * Set base address of Consumer Block
1231 * Assumption: 32-bit physical address of consumer block is 64 byte
1232 * aligned. That is, bits 0-5 of the address must be zero.
1235 if (dfx_hw_port_ctrl_req(bp
,
1236 PI_PCTRL_M_CONS_BLOCK
,
1237 bp
->cons_block_phys
,
1239 NULL
) != DFX_K_SUCCESS
)
1241 printk("%s: Could not set consumer block address!\n", bp
->dev
->name
);
1242 return DFX_K_FAILURE
;
1246 * Set the base address of Descriptor Block and bring adapter
1247 * to DMA_AVAILABLE state.
1249 * Note: We also set the literal and data swapping requirements
1252 * Assumption: 32-bit physical address of descriptor block
1253 * is 8Kbyte aligned.
1255 if (dfx_hw_port_ctrl_req(bp
, PI_PCTRL_M_INIT
,
1256 (u32
)(bp
->descr_block_phys
|
1257 PI_PDATA_A_INIT_M_BSWAP_INIT
),
1258 0, NULL
) != DFX_K_SUCCESS
) {
1259 printk("%s: Could not set descriptor block address!\n",
1261 return DFX_K_FAILURE
;
1264 /* Set transmit flush timeout value */
1266 bp
->cmd_req_virt
->cmd_type
= PI_CMD_K_CHARS_SET
;
1267 bp
->cmd_req_virt
->char_set
.item
[0].item_code
= PI_ITEM_K_FLUSH_TIME
;
1268 bp
->cmd_req_virt
->char_set
.item
[0].value
= 3; /* 3 seconds */
1269 bp
->cmd_req_virt
->char_set
.item
[0].item_index
= 0;
1270 bp
->cmd_req_virt
->char_set
.item
[1].item_code
= PI_ITEM_K_EOL
;
1271 if (dfx_hw_dma_cmd_req(bp
) != DFX_K_SUCCESS
)
1273 printk("%s: DMA command request failed!\n", bp
->dev
->name
);
1274 return DFX_K_FAILURE
;
1277 /* Set the initial values for eFDXEnable and MACTReq MIB objects */
1279 bp
->cmd_req_virt
->cmd_type
= PI_CMD_K_SNMP_SET
;
1280 bp
->cmd_req_virt
->snmp_set
.item
[0].item_code
= PI_ITEM_K_FDX_ENB_DIS
;
1281 bp
->cmd_req_virt
->snmp_set
.item
[0].value
= bp
->full_duplex_enb
;
1282 bp
->cmd_req_virt
->snmp_set
.item
[0].item_index
= 0;
1283 bp
->cmd_req_virt
->snmp_set
.item
[1].item_code
= PI_ITEM_K_MAC_T_REQ
;
1284 bp
->cmd_req_virt
->snmp_set
.item
[1].value
= bp
->req_ttrt
;
1285 bp
->cmd_req_virt
->snmp_set
.item
[1].item_index
= 0;
1286 bp
->cmd_req_virt
->snmp_set
.item
[2].item_code
= PI_ITEM_K_EOL
;
1287 if (dfx_hw_dma_cmd_req(bp
) != DFX_K_SUCCESS
)
1289 printk("%s: DMA command request failed!\n", bp
->dev
->name
);
1290 return DFX_K_FAILURE
;
1293 /* Initialize adapter CAM */
1295 if (dfx_ctl_update_cam(bp
) != DFX_K_SUCCESS
)
1297 printk("%s: Adapter CAM update failed!\n", bp
->dev
->name
);
1298 return DFX_K_FAILURE
;
1301 /* Initialize adapter filters */
1303 if (dfx_ctl_update_filters(bp
) != DFX_K_SUCCESS
)
1305 printk("%s: Adapter filters update failed!\n", bp
->dev
->name
);
1306 return DFX_K_FAILURE
;
1310 * Remove any existing dynamic buffers (i.e. if the adapter is being
1317 /* Initialize receive descriptor block and produce buffers */
1319 if (dfx_rcv_init(bp
, get_buffers
))
1321 printk("%s: Receive buffer allocation failed\n", bp
->dev
->name
);
1324 return DFX_K_FAILURE
;
1327 /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1329 bp
->cmd_req_virt
->cmd_type
= PI_CMD_K_START
;
1330 if (dfx_hw_dma_cmd_req(bp
) != DFX_K_SUCCESS
)
1332 printk("%s: Start command failed\n", bp
->dev
->name
);
1335 return DFX_K_FAILURE
;
1338 /* Initialization succeeded, reenable PDQ interrupts */
1340 dfx_port_write_long(bp
, PI_PDQ_K_REG_HOST_INT_ENB
, PI_HOST_INT_K_ENABLE_DEF_INTS
);
1341 return DFX_K_SUCCESS
;
1357 * dev - pointer to device information
1359 * Functional Description:
1360 * This function brings the adapter to an operational state.
1363 * 0 - Adapter was successfully opened
1364 * -EAGAIN - Could not register IRQ or adapter initialization failed
1367 * This routine should only be called for a device that was
1368 * initialized successfully.
1371 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1372 * if the open is successful.
1375 static int dfx_open(struct net_device
*dev
)
1377 DFX_board_t
*bp
= netdev_priv(dev
);
1380 DBG_printk("In dfx_open...\n");
1382 /* Register IRQ - support shared interrupts by passing device ptr */
1384 ret
= request_irq(dev
->irq
, dfx_interrupt
, IRQF_SHARED
, dev
->name
,
1387 printk(KERN_ERR
"%s: Requested IRQ %d is busy\n", dev
->name
, dev
->irq
);
1392 * Set current address to factory MAC address
1394 * Note: We've already done this step in dfx_driver_init.
1395 * However, it's possible that a user has set a node
1396 * address override, then closed and reopened the
1397 * adapter. Unless we reset the device address field
1398 * now, we'll continue to use the existing modified
1402 memcpy(dev
->dev_addr
, bp
->factory_mac_addr
, FDDI_K_ALEN
);
1404 /* Clear local unicast/multicast address tables and counts */
1406 memset(bp
->uc_table
, 0, sizeof(bp
->uc_table
));
1407 memset(bp
->mc_table
, 0, sizeof(bp
->mc_table
));
1411 /* Disable promiscuous filter settings */
1413 bp
->ind_group_prom
= PI_FSTATE_K_BLOCK
;
1414 bp
->group_prom
= PI_FSTATE_K_BLOCK
;
1416 spin_lock_init(&bp
->lock
);
1418 /* Reset and initialize adapter */
1420 bp
->reset_type
= PI_PDATA_A_RESET_M_SKIP_ST
; /* skip self-test */
1421 if (dfx_adap_init(bp
, 1) != DFX_K_SUCCESS
)
1423 printk(KERN_ERR
"%s: Adapter open failed!\n", dev
->name
);
1424 free_irq(dev
->irq
, dev
);
1428 /* Set device structure info */
1429 netif_start_queue(dev
);
1440 * Closes the device/module.
1446 * dev - pointer to device information
1448 * Functional Description:
1449 * This routine closes the adapter and brings it to a safe state.
1450 * The interrupt service routine is deregistered with the OS.
1451 * The adapter can be opened again with another call to dfx_open().
1457 * No further requests for this adapter are made after this routine is
1458 * called. dfx_open() can be called to reset and reinitialize the
1462 * Adapter should be in DMA_UNAVAILABLE state upon completion of this
1466 static int dfx_close(struct net_device
*dev
)
1468 DFX_board_t
*bp
= netdev_priv(dev
);
1470 DBG_printk("In dfx_close...\n");
1472 /* Disable PDQ interrupts first */
1474 dfx_port_write_long(bp
, PI_PDQ_K_REG_HOST_INT_ENB
, PI_HOST_INT_K_DISABLE_ALL_INTS
);
1476 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1478 (void) dfx_hw_dma_uninit(bp
, PI_PDATA_A_RESET_M_SKIP_ST
);
1481 * Flush any pending transmit buffers
1483 * Note: It's important that we flush the transmit buffers
1484 * BEFORE we clear our copy of the Type 2 register.
1485 * Otherwise, we'll have no idea how many buffers
1492 * Clear Type 1 and Type 2 registers after adapter reset
1494 * Note: Even though we're closing the adapter, it's
1495 * possible that an interrupt will occur after
1496 * dfx_close is called. Without some assurance to
1497 * the contrary we want to make sure that we don't
1498 * process receive and transmit LLC frames and update
1499 * the Type 2 register with bad information.
1502 bp
->cmd_req_reg
.lword
= 0;
1503 bp
->cmd_rsp_reg
.lword
= 0;
1504 bp
->rcv_xmt_reg
.lword
= 0;
1506 /* Clear consumer block for the same reason given above */
1508 memset(bp
->cons_block_virt
, 0, sizeof(PI_CONSUMER_BLOCK
));
1510 /* Release all dynamically allocate skb in the receive ring. */
1514 /* Clear device structure flags */
1516 netif_stop_queue(dev
);
1518 /* Deregister (free) IRQ */
1520 free_irq(dev
->irq
, dev
);
1527 * ======================
1528 * = dfx_int_pr_halt_id =
1529 * ======================
1532 * Displays halt id's in string form.
1538 * bp - pointer to board information
1540 * Functional Description:
1541 * Determine current halt id and display appropriate string.
1553 static void dfx_int_pr_halt_id(DFX_board_t
*bp
)
1555 PI_UINT32 port_status
; /* PDQ port status register value */
1556 PI_UINT32 halt_id
; /* PDQ port status halt ID */
1558 /* Read the latest port status */
1560 dfx_port_read_long(bp
, PI_PDQ_K_REG_PORT_STATUS
, &port_status
);
1562 /* Display halt state transition information */
1564 halt_id
= (port_status
& PI_PSTATUS_M_HALT_ID
) >> PI_PSTATUS_V_HALT_ID
;
1567 case PI_HALT_ID_K_SELFTEST_TIMEOUT
:
1568 printk("%s: Halt ID: Selftest Timeout\n", bp
->dev
->name
);
1571 case PI_HALT_ID_K_PARITY_ERROR
:
1572 printk("%s: Halt ID: Host Bus Parity Error\n", bp
->dev
->name
);
1575 case PI_HALT_ID_K_HOST_DIR_HALT
:
1576 printk("%s: Halt ID: Host-Directed Halt\n", bp
->dev
->name
);
1579 case PI_HALT_ID_K_SW_FAULT
:
1580 printk("%s: Halt ID: Adapter Software Fault\n", bp
->dev
->name
);
1583 case PI_HALT_ID_K_HW_FAULT
:
1584 printk("%s: Halt ID: Adapter Hardware Fault\n", bp
->dev
->name
);
1587 case PI_HALT_ID_K_PC_TRACE
:
1588 printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp
->dev
->name
);
1591 case PI_HALT_ID_K_DMA_ERROR
:
1592 printk("%s: Halt ID: Adapter DMA Error\n", bp
->dev
->name
);
1595 case PI_HALT_ID_K_IMAGE_CRC_ERROR
:
1596 printk("%s: Halt ID: Firmware Image CRC Error\n", bp
->dev
->name
);
1599 case PI_HALT_ID_K_BUS_EXCEPTION
:
1600 printk("%s: Halt ID: 68000 Bus Exception\n", bp
->dev
->name
);
1604 printk("%s: Halt ID: Unknown (code = %X)\n", bp
->dev
->name
, halt_id
);
1611 * ==========================
1612 * = dfx_int_type_0_process =
1613 * ==========================
1616 * Processes Type 0 interrupts.
1622 * bp - pointer to board information
1624 * Functional Description:
1625 * Processes all enabled Type 0 interrupts. If the reason for the interrupt
1626 * is a serious fault on the adapter, then an error message is displayed
1627 * and the adapter is reset.
1629 * One tricky potential timing window is the rapid succession of "link avail"
1630 * "link unavail" state change interrupts. The acknowledgement of the Type 0
1631 * interrupt must be done before reading the state from the Port Status
1632 * register. This is true because a state change could occur after reading
1633 * the data, but before acknowledging the interrupt. If this state change
1634 * does happen, it would be lost because the driver is using the old state,
1635 * and it will never know about the new state because it subsequently
1636 * acknowledges the state change interrupt.
1639 * read type 0 int reasons read type 0 int reasons
1640 * read adapter state ack type 0 interrupts
1641 * ack type 0 interrupts read adapter state
1642 * ... process interrupt ... ... process interrupt ...
1651 * An adapter reset may occur if the adapter has any Type 0 error interrupts
1652 * or if the port status indicates that the adapter is halted. The driver
1653 * is responsible for reinitializing the adapter with the current CAM
1654 * contents and adapter filter settings.
1657 static void dfx_int_type_0_process(DFX_board_t
*bp
)
1660 PI_UINT32 type_0_status
; /* Host Interrupt Type 0 register */
1661 PI_UINT32 state
; /* current adap state (from port status) */
1664 * Read host interrupt Type 0 register to determine which Type 0
1665 * interrupts are pending. Immediately write it back out to clear
1669 dfx_port_read_long(bp
, PI_PDQ_K_REG_TYPE_0_STATUS
, &type_0_status
);
1670 dfx_port_write_long(bp
, PI_PDQ_K_REG_TYPE_0_STATUS
, type_0_status
);
1672 /* Check for Type 0 error interrupts */
1674 if (type_0_status
& (PI_TYPE_0_STAT_M_NXM
|
1675 PI_TYPE_0_STAT_M_PM_PAR_ERR
|
1676 PI_TYPE_0_STAT_M_BUS_PAR_ERR
))
1678 /* Check for Non-Existent Memory error */
1680 if (type_0_status
& PI_TYPE_0_STAT_M_NXM
)
1681 printk("%s: Non-Existent Memory Access Error\n", bp
->dev
->name
);
1683 /* Check for Packet Memory Parity error */
1685 if (type_0_status
& PI_TYPE_0_STAT_M_PM_PAR_ERR
)
1686 printk("%s: Packet Memory Parity Error\n", bp
->dev
->name
);
1688 /* Check for Host Bus Parity error */
1690 if (type_0_status
& PI_TYPE_0_STAT_M_BUS_PAR_ERR
)
1691 printk("%s: Host Bus Parity Error\n", bp
->dev
->name
);
1693 /* Reset adapter and bring it back on-line */
1695 bp
->link_available
= PI_K_FALSE
; /* link is no longer available */
1696 bp
->reset_type
= 0; /* rerun on-board diagnostics */
1697 printk("%s: Resetting adapter...\n", bp
->dev
->name
);
1698 if (dfx_adap_init(bp
, 0) != DFX_K_SUCCESS
)
1700 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp
->dev
->name
);
1701 dfx_port_write_long(bp
, PI_PDQ_K_REG_HOST_INT_ENB
, PI_HOST_INT_K_DISABLE_ALL_INTS
);
1704 printk("%s: Adapter reset successful!\n", bp
->dev
->name
);
1708 /* Check for transmit flush interrupt */
1710 if (type_0_status
& PI_TYPE_0_STAT_M_XMT_FLUSH
)
1712 /* Flush any pending xmt's and acknowledge the flush interrupt */
1714 bp
->link_available
= PI_K_FALSE
; /* link is no longer available */
1715 dfx_xmt_flush(bp
); /* flush any outstanding packets */
1716 (void) dfx_hw_port_ctrl_req(bp
,
1717 PI_PCTRL_M_XMT_DATA_FLUSH_DONE
,
1723 /* Check for adapter state change */
1725 if (type_0_status
& PI_TYPE_0_STAT_M_STATE_CHANGE
)
1727 /* Get latest adapter state */
1729 state
= dfx_hw_adap_state_rd(bp
); /* get adapter state */
1730 if (state
== PI_STATE_K_HALTED
)
1733 * Adapter has transitioned to HALTED state, try to reset
1734 * adapter to bring it back on-line. If reset fails,
1735 * leave the adapter in the broken state.
1738 printk("%s: Controller has transitioned to HALTED state!\n", bp
->dev
->name
);
1739 dfx_int_pr_halt_id(bp
); /* display halt id as string */
1741 /* Reset adapter and bring it back on-line */
1743 bp
->link_available
= PI_K_FALSE
; /* link is no longer available */
1744 bp
->reset_type
= 0; /* rerun on-board diagnostics */
1745 printk("%s: Resetting adapter...\n", bp
->dev
->name
);
1746 if (dfx_adap_init(bp
, 0) != DFX_K_SUCCESS
)
1748 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp
->dev
->name
);
1749 dfx_port_write_long(bp
, PI_PDQ_K_REG_HOST_INT_ENB
, PI_HOST_INT_K_DISABLE_ALL_INTS
);
1752 printk("%s: Adapter reset successful!\n", bp
->dev
->name
);
1754 else if (state
== PI_STATE_K_LINK_AVAIL
)
1756 bp
->link_available
= PI_K_TRUE
; /* set link available flag */
1763 * ==================
1764 * = dfx_int_common =
1765 * ==================
1768 * Interrupt service routine (ISR)
1774 * bp - pointer to board information
1776 * Functional Description:
1777 * This is the ISR which processes incoming adapter interrupts.
1783 * This routine assumes PDQ interrupts have not been disabled.
1784 * When interrupts are disabled at the PDQ, the Port Status register
1785 * is automatically cleared. This routine uses the Port Status
1786 * register value to determine whether a Type 0 interrupt occurred,
1787 * so it's important that adapter interrupts are not normally
1788 * enabled/disabled at the PDQ.
1790 * It's vital that this routine is NOT reentered for the
1791 * same board and that the OS is not in another section of
1792 * code (eg. dfx_xmt_queue_pkt) for the same board on a
1796 * Pending interrupts are serviced. Depending on the type of
1797 * interrupt, acknowledging and clearing the interrupt at the
1798 * PDQ involves writing a register to clear the interrupt bit
1799 * or updating completion indices.
1802 static void dfx_int_common(struct net_device
*dev
)
1804 DFX_board_t
*bp
= netdev_priv(dev
);
1805 PI_UINT32 port_status
; /* Port Status register */
1807 /* Process xmt interrupts - frequent case, so always call this routine */
1809 if(dfx_xmt_done(bp
)) /* free consumed xmt packets */
1810 netif_wake_queue(dev
);
1812 /* Process rcv interrupts - frequent case, so always call this routine */
1814 dfx_rcv_queue_process(bp
); /* service received LLC frames */
1817 * Transmit and receive producer and completion indices are updated on the
1818 * adapter by writing to the Type 2 Producer register. Since the frequent
1819 * case is that we'll be processing either LLC transmit or receive buffers,
1820 * we'll optimize I/O writes by doing a single register write here.
1823 dfx_port_write_long(bp
, PI_PDQ_K_REG_TYPE_2_PROD
, bp
->rcv_xmt_reg
.lword
);
1825 /* Read PDQ Port Status register to find out which interrupts need processing */
1827 dfx_port_read_long(bp
, PI_PDQ_K_REG_PORT_STATUS
, &port_status
);
1829 /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1831 if (port_status
& PI_PSTATUS_M_TYPE_0_PENDING
)
1832 dfx_int_type_0_process(bp
); /* process Type 0 interrupts */
1842 * Interrupt processing routine
1845 * Whether a valid interrupt was seen.
1848 * irq - interrupt vector
1849 * dev_id - pointer to device information
1851 * Functional Description:
1852 * This routine calls the interrupt processing routine for this adapter. It
1853 * disables and reenables adapter interrupts, as appropriate. We can support
1854 * shared interrupts since the incoming dev_id pointer provides our device
1855 * structure context.
1858 * IRQ_HANDLED - an IRQ was handled.
1859 * IRQ_NONE - no IRQ was handled.
1862 * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1863 * on Intel-based systems) is done by the operating system outside this
1866 * System interrupts are enabled through this call.
1869 * Interrupts are disabled, then reenabled at the adapter.
1872 static irqreturn_t
dfx_interrupt(int irq
, void *dev_id
)
1874 struct net_device
*dev
= dev_id
;
1875 DFX_board_t
*bp
= netdev_priv(dev
);
1876 struct device
*bdev
= bp
->bus_dev
;
1877 int dfx_bus_pci
= dev_is_pci(bdev
);
1878 int dfx_bus_eisa
= DFX_BUS_EISA(bdev
);
1879 int dfx_bus_tc
= DFX_BUS_TC(bdev
);
1881 /* Service adapter interrupts */
1886 dfx_port_read_long(bp
, PFI_K_REG_STATUS
, &status
);
1887 if (!(status
& PFI_STATUS_M_PDQ_INT
))
1890 spin_lock(&bp
->lock
);
1892 /* Disable PDQ-PFI interrupts at PFI */
1893 dfx_port_write_long(bp
, PFI_K_REG_MODE_CTRL
,
1894 PFI_MODE_M_DMA_ENB
);
1896 /* Call interrupt service routine for this adapter */
1897 dfx_int_common(dev
);
1899 /* Clear PDQ interrupt status bit and reenable interrupts */
1900 dfx_port_write_long(bp
, PFI_K_REG_STATUS
,
1901 PFI_STATUS_M_PDQ_INT
);
1902 dfx_port_write_long(bp
, PFI_K_REG_MODE_CTRL
,
1903 (PFI_MODE_M_PDQ_INT_ENB
|
1904 PFI_MODE_M_DMA_ENB
));
1906 spin_unlock(&bp
->lock
);
1909 unsigned long base_addr
= to_eisa_device(bdev
)->base_addr
;
1912 status
= inb(base_addr
+ PI_ESIC_K_IO_CONFIG_STAT_0
);
1913 if (!(status
& PI_CONFIG_STAT_0_M_PEND
))
1916 spin_lock(&bp
->lock
);
1918 /* Disable interrupts at the ESIC */
1919 status
&= ~PI_CONFIG_STAT_0_M_INT_ENB
;
1920 outb(base_addr
+ PI_ESIC_K_IO_CONFIG_STAT_0
, status
);
1922 /* Call interrupt service routine for this adapter */
1923 dfx_int_common(dev
);
1925 /* Reenable interrupts at the ESIC */
1926 status
= inb(base_addr
+ PI_ESIC_K_IO_CONFIG_STAT_0
);
1927 status
|= PI_CONFIG_STAT_0_M_INT_ENB
;
1928 outb(base_addr
+ PI_ESIC_K_IO_CONFIG_STAT_0
, status
);
1930 spin_unlock(&bp
->lock
);
1935 dfx_port_read_long(bp
, PI_PDQ_K_REG_PORT_STATUS
, &status
);
1936 if (!(status
& (PI_PSTATUS_M_RCV_DATA_PENDING
|
1937 PI_PSTATUS_M_XMT_DATA_PENDING
|
1938 PI_PSTATUS_M_SMT_HOST_PENDING
|
1939 PI_PSTATUS_M_UNSOL_PENDING
|
1940 PI_PSTATUS_M_CMD_RSP_PENDING
|
1941 PI_PSTATUS_M_CMD_REQ_PENDING
|
1942 PI_PSTATUS_M_TYPE_0_PENDING
)))
1945 spin_lock(&bp
->lock
);
1947 /* Call interrupt service routine for this adapter */
1948 dfx_int_common(dev
);
1950 spin_unlock(&bp
->lock
);
1958 * =====================
1959 * = dfx_ctl_get_stats =
1960 * =====================
1963 * Get statistics for FDDI adapter
1966 * Pointer to FDDI statistics structure
1969 * dev - pointer to device information
1971 * Functional Description:
1972 * Gets current MIB objects from adapter, then
1973 * returns FDDI statistics structure as defined
1976 * Note: Since the FDDI statistics structure is
1977 * still new and the device structure doesn't
1978 * have an FDDI-specific get statistics handler,
1979 * we'll return the FDDI statistics structure as
1980 * a pointer to an Ethernet statistics structure.
1981 * That way, at least the first part of the statistics
1982 * structure can be decoded properly, and it allows
1983 * "smart" applications to perform a second cast to
1984 * decode the FDDI-specific statistics.
1986 * We'll have to pay attention to this routine as the
1987 * device structure becomes more mature and LAN media
2000 static struct net_device_stats
*dfx_ctl_get_stats(struct net_device
*dev
)
2002 DFX_board_t
*bp
= netdev_priv(dev
);
2004 /* Fill the bp->stats structure with driver-maintained counters */
2006 bp
->stats
.gen
.rx_packets
= bp
->rcv_total_frames
;
2007 bp
->stats
.gen
.tx_packets
= bp
->xmt_total_frames
;
2008 bp
->stats
.gen
.rx_bytes
= bp
->rcv_total_bytes
;
2009 bp
->stats
.gen
.tx_bytes
= bp
->xmt_total_bytes
;
2010 bp
->stats
.gen
.rx_errors
= bp
->rcv_crc_errors
+
2011 bp
->rcv_frame_status_errors
+
2012 bp
->rcv_length_errors
;
2013 bp
->stats
.gen
.tx_errors
= bp
->xmt_length_errors
;
2014 bp
->stats
.gen
.rx_dropped
= bp
->rcv_discards
;
2015 bp
->stats
.gen
.tx_dropped
= bp
->xmt_discards
;
2016 bp
->stats
.gen
.multicast
= bp
->rcv_multicast_frames
;
2017 bp
->stats
.gen
.collisions
= 0; /* always zero (0) for FDDI */
2019 /* Get FDDI SMT MIB objects */
2021 bp
->cmd_req_virt
->cmd_type
= PI_CMD_K_SMT_MIB_GET
;
2022 if (dfx_hw_dma_cmd_req(bp
) != DFX_K_SUCCESS
)
2023 return (struct net_device_stats
*)&bp
->stats
;
2025 /* Fill the bp->stats structure with the SMT MIB object values */
2027 memcpy(bp
->stats
.smt_station_id
, &bp
->cmd_rsp_virt
->smt_mib_get
.smt_station_id
, sizeof(bp
->cmd_rsp_virt
->smt_mib_get
.smt_station_id
));
2028 bp
->stats
.smt_op_version_id
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_op_version_id
;
2029 bp
->stats
.smt_hi_version_id
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_hi_version_id
;
2030 bp
->stats
.smt_lo_version_id
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_lo_version_id
;
2031 memcpy(bp
->stats
.smt_user_data
, &bp
->cmd_rsp_virt
->smt_mib_get
.smt_user_data
, sizeof(bp
->cmd_rsp_virt
->smt_mib_get
.smt_user_data
));
2032 bp
->stats
.smt_mib_version_id
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_mib_version_id
;
2033 bp
->stats
.smt_mac_cts
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_mac_ct
;
2034 bp
->stats
.smt_non_master_cts
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_non_master_ct
;
2035 bp
->stats
.smt_master_cts
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_master_ct
;
2036 bp
->stats
.smt_available_paths
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_available_paths
;
2037 bp
->stats
.smt_config_capabilities
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_config_capabilities
;
2038 bp
->stats
.smt_config_policy
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_config_policy
;
2039 bp
->stats
.smt_connection_policy
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_connection_policy
;
2040 bp
->stats
.smt_t_notify
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_t_notify
;
2041 bp
->stats
.smt_stat_rpt_policy
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_stat_rpt_policy
;
2042 bp
->stats
.smt_trace_max_expiration
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_trace_max_expiration
;
2043 bp
->stats
.smt_bypass_present
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_bypass_present
;
2044 bp
->stats
.smt_ecm_state
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_ecm_state
;
2045 bp
->stats
.smt_cf_state
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_cf_state
;
2046 bp
->stats
.smt_remote_disconnect_flag
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_remote_disconnect_flag
;
2047 bp
->stats
.smt_station_status
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_station_status
;
2048 bp
->stats
.smt_peer_wrap_flag
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_peer_wrap_flag
;
2049 bp
->stats
.smt_time_stamp
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_msg_time_stamp
.ls
;
2050 bp
->stats
.smt_transition_time_stamp
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_transition_time_stamp
.ls
;
2051 bp
->stats
.mac_frame_status_functions
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_frame_status_functions
;
2052 bp
->stats
.mac_t_max_capability
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_t_max_capability
;
2053 bp
->stats
.mac_tvx_capability
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_tvx_capability
;
2054 bp
->stats
.mac_available_paths
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_available_paths
;
2055 bp
->stats
.mac_current_path
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_current_path
;
2056 memcpy(bp
->stats
.mac_upstream_nbr
, &bp
->cmd_rsp_virt
->smt_mib_get
.mac_upstream_nbr
, FDDI_K_ALEN
);
2057 memcpy(bp
->stats
.mac_downstream_nbr
, &bp
->cmd_rsp_virt
->smt_mib_get
.mac_downstream_nbr
, FDDI_K_ALEN
);
2058 memcpy(bp
->stats
.mac_old_upstream_nbr
, &bp
->cmd_rsp_virt
->smt_mib_get
.mac_old_upstream_nbr
, FDDI_K_ALEN
);
2059 memcpy(bp
->stats
.mac_old_downstream_nbr
, &bp
->cmd_rsp_virt
->smt_mib_get
.mac_old_downstream_nbr
, FDDI_K_ALEN
);
2060 bp
->stats
.mac_dup_address_test
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_dup_address_test
;
2061 bp
->stats
.mac_requested_paths
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_requested_paths
;
2062 bp
->stats
.mac_downstream_port_type
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_downstream_port_type
;
2063 memcpy(bp
->stats
.mac_smt_address
, &bp
->cmd_rsp_virt
->smt_mib_get
.mac_smt_address
, FDDI_K_ALEN
);
2064 bp
->stats
.mac_t_req
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_t_req
;
2065 bp
->stats
.mac_t_neg
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_t_neg
;
2066 bp
->stats
.mac_t_max
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_t_max
;
2067 bp
->stats
.mac_tvx_value
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_tvx_value
;
2068 bp
->stats
.mac_frame_error_threshold
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_frame_error_threshold
;
2069 bp
->stats
.mac_frame_error_ratio
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_frame_error_ratio
;
2070 bp
->stats
.mac_rmt_state
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_rmt_state
;
2071 bp
->stats
.mac_da_flag
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_da_flag
;
2072 bp
->stats
.mac_una_da_flag
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_unda_flag
;
2073 bp
->stats
.mac_frame_error_flag
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_frame_error_flag
;
2074 bp
->stats
.mac_ma_unitdata_available
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_ma_unitdata_available
;
2075 bp
->stats
.mac_hardware_present
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_hardware_present
;
2076 bp
->stats
.mac_ma_unitdata_enable
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_ma_unitdata_enable
;
2077 bp
->stats
.path_tvx_lower_bound
= bp
->cmd_rsp_virt
->smt_mib_get
.path_tvx_lower_bound
;
2078 bp
->stats
.path_t_max_lower_bound
= bp
->cmd_rsp_virt
->smt_mib_get
.path_t_max_lower_bound
;
2079 bp
->stats
.path_max_t_req
= bp
->cmd_rsp_virt
->smt_mib_get
.path_max_t_req
;
2080 memcpy(bp
->stats
.path_configuration
, &bp
->cmd_rsp_virt
->smt_mib_get
.path_configuration
, sizeof(bp
->cmd_rsp_virt
->smt_mib_get
.path_configuration
));
2081 bp
->stats
.port_my_type
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_my_type
[0];
2082 bp
->stats
.port_my_type
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_my_type
[1];
2083 bp
->stats
.port_neighbor_type
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_neighbor_type
[0];
2084 bp
->stats
.port_neighbor_type
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_neighbor_type
[1];
2085 bp
->stats
.port_connection_policies
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_connection_policies
[0];
2086 bp
->stats
.port_connection_policies
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_connection_policies
[1];
2087 bp
->stats
.port_mac_indicated
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_mac_indicated
[0];
2088 bp
->stats
.port_mac_indicated
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_mac_indicated
[1];
2089 bp
->stats
.port_current_path
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_current_path
[0];
2090 bp
->stats
.port_current_path
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_current_path
[1];
2091 memcpy(&bp
->stats
.port_requested_paths
[0*3], &bp
->cmd_rsp_virt
->smt_mib_get
.port_requested_paths
[0], 3);
2092 memcpy(&bp
->stats
.port_requested_paths
[1*3], &bp
->cmd_rsp_virt
->smt_mib_get
.port_requested_paths
[1], 3);
2093 bp
->stats
.port_mac_placement
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_mac_placement
[0];
2094 bp
->stats
.port_mac_placement
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_mac_placement
[1];
2095 bp
->stats
.port_available_paths
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_available_paths
[0];
2096 bp
->stats
.port_available_paths
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_available_paths
[1];
2097 bp
->stats
.port_pmd_class
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_pmd_class
[0];
2098 bp
->stats
.port_pmd_class
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_pmd_class
[1];
2099 bp
->stats
.port_connection_capabilities
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_connection_capabilities
[0];
2100 bp
->stats
.port_connection_capabilities
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_connection_capabilities
[1];
2101 bp
->stats
.port_bs_flag
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_bs_flag
[0];
2102 bp
->stats
.port_bs_flag
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_bs_flag
[1];
2103 bp
->stats
.port_ler_estimate
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_ler_estimate
[0];
2104 bp
->stats
.port_ler_estimate
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_ler_estimate
[1];
2105 bp
->stats
.port_ler_cutoff
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_ler_cutoff
[0];
2106 bp
->stats
.port_ler_cutoff
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_ler_cutoff
[1];
2107 bp
->stats
.port_ler_alarm
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_ler_alarm
[0];
2108 bp
->stats
.port_ler_alarm
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_ler_alarm
[1];
2109 bp
->stats
.port_connect_state
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_connect_state
[0];
2110 bp
->stats
.port_connect_state
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_connect_state
[1];
2111 bp
->stats
.port_pcm_state
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_pcm_state
[0];
2112 bp
->stats
.port_pcm_state
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_pcm_state
[1];
2113 bp
->stats
.port_pc_withhold
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_pc_withhold
[0];
2114 bp
->stats
.port_pc_withhold
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_pc_withhold
[1];
2115 bp
->stats
.port_ler_flag
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_ler_flag
[0];
2116 bp
->stats
.port_ler_flag
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_ler_flag
[1];
2117 bp
->stats
.port_hardware_present
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_hardware_present
[0];
2118 bp
->stats
.port_hardware_present
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_hardware_present
[1];
2120 /* Get FDDI counters */
2122 bp
->cmd_req_virt
->cmd_type
= PI_CMD_K_CNTRS_GET
;
2123 if (dfx_hw_dma_cmd_req(bp
) != DFX_K_SUCCESS
)
2124 return (struct net_device_stats
*)&bp
->stats
;
2126 /* Fill the bp->stats structure with the FDDI counter values */
2128 bp
->stats
.mac_frame_cts
= bp
->cmd_rsp_virt
->cntrs_get
.cntrs
.frame_cnt
.ls
;
2129 bp
->stats
.mac_copied_cts
= bp
->cmd_rsp_virt
->cntrs_get
.cntrs
.copied_cnt
.ls
;
2130 bp
->stats
.mac_transmit_cts
= bp
->cmd_rsp_virt
->cntrs_get
.cntrs
.transmit_cnt
.ls
;
2131 bp
->stats
.mac_error_cts
= bp
->cmd_rsp_virt
->cntrs_get
.cntrs
.error_cnt
.ls
;
2132 bp
->stats
.mac_lost_cts
= bp
->cmd_rsp_virt
->cntrs_get
.cntrs
.lost_cnt
.ls
;
2133 bp
->stats
.port_lct_fail_cts
[0] = bp
->cmd_rsp_virt
->cntrs_get
.cntrs
.lct_rejects
[0].ls
;
2134 bp
->stats
.port_lct_fail_cts
[1] = bp
->cmd_rsp_virt
->cntrs_get
.cntrs
.lct_rejects
[1].ls
;
2135 bp
->stats
.port_lem_reject_cts
[0] = bp
->cmd_rsp_virt
->cntrs_get
.cntrs
.lem_rejects
[0].ls
;
2136 bp
->stats
.port_lem_reject_cts
[1] = bp
->cmd_rsp_virt
->cntrs_get
.cntrs
.lem_rejects
[1].ls
;
2137 bp
->stats
.port_lem_cts
[0] = bp
->cmd_rsp_virt
->cntrs_get
.cntrs
.link_errors
[0].ls
;
2138 bp
->stats
.port_lem_cts
[1] = bp
->cmd_rsp_virt
->cntrs_get
.cntrs
.link_errors
[1].ls
;
2140 return (struct net_device_stats
*)&bp
->stats
;
2145 * ==============================
2146 * = dfx_ctl_set_multicast_list =
2147 * ==============================
2150 * Enable/Disable LLC frame promiscuous mode reception
2151 * on the adapter and/or update multicast address table.
2157 * dev - pointer to device information
2159 * Functional Description:
2160 * This routine follows a fairly simple algorithm for setting the
2161 * adapter filters and CAM:
2163 * if IFF_PROMISC flag is set
2164 * enable LLC individual/group promiscuous mode
2166 * disable LLC individual/group promiscuous mode
2167 * if number of incoming multicast addresses >
2168 * (CAM max size - number of unicast addresses in CAM)
2169 * enable LLC group promiscuous mode
2170 * set driver-maintained multicast address count to zero
2172 * disable LLC group promiscuous mode
2173 * set driver-maintained multicast address count to incoming count
2174 * update adapter CAM
2175 * update adapter filters
2181 * Multicast addresses are presented in canonical (LSB) format.
2184 * On-board adapter CAM and filters are updated.
2187 static void dfx_ctl_set_multicast_list(struct net_device
*dev
)
2189 DFX_board_t
*bp
= netdev_priv(dev
);
2190 int i
; /* used as index in for loop */
2191 struct netdev_hw_addr
*ha
;
2193 /* Enable LLC frame promiscuous mode, if necessary */
2195 if (dev
->flags
& IFF_PROMISC
)
2196 bp
->ind_group_prom
= PI_FSTATE_K_PASS
; /* Enable LLC ind/group prom mode */
2198 /* Else, update multicast address table */
2202 bp
->ind_group_prom
= PI_FSTATE_K_BLOCK
; /* Disable LLC ind/group prom mode */
2204 * Check whether incoming multicast address count exceeds table size
2206 * Note: The adapters utilize an on-board 64 entry CAM for
2207 * supporting perfect filtering of multicast packets
2208 * and bridge functions when adding unicast addresses.
2209 * There is no hash function available. To support
2210 * additional multicast addresses, the all multicast
2211 * filter (LLC group promiscuous mode) must be enabled.
2213 * The firmware reserves two CAM entries for SMT-related
2214 * multicast addresses, which leaves 62 entries available.
2215 * The following code ensures that we're not being asked
2216 * to add more than 62 addresses to the CAM. If we are,
2217 * the driver will enable the all multicast filter.
2218 * Should the number of multicast addresses drop below
2219 * the high water mark, the filter will be disabled and
2220 * perfect filtering will be used.
2223 if (netdev_mc_count(dev
) > (PI_CMD_ADDR_FILTER_K_SIZE
- bp
->uc_count
))
2225 bp
->group_prom
= PI_FSTATE_K_PASS
; /* Enable LLC group prom mode */
2226 bp
->mc_count
= 0; /* Don't add mc addrs to CAM */
2230 bp
->group_prom
= PI_FSTATE_K_BLOCK
; /* Disable LLC group prom mode */
2231 bp
->mc_count
= netdev_mc_count(dev
); /* Add mc addrs to CAM */
2234 /* Copy addresses to multicast address table, then update adapter CAM */
2237 netdev_for_each_mc_addr(ha
, dev
)
2238 memcpy(&bp
->mc_table
[i
++ * FDDI_K_ALEN
],
2239 ha
->addr
, FDDI_K_ALEN
);
2241 if (dfx_ctl_update_cam(bp
) != DFX_K_SUCCESS
)
2243 DBG_printk("%s: Could not update multicast address table!\n", dev
->name
);
2247 DBG_printk("%s: Multicast address table updated! Added %d addresses.\n", dev
->name
, bp
->mc_count
);
2251 /* Update adapter filters */
2253 if (dfx_ctl_update_filters(bp
) != DFX_K_SUCCESS
)
2255 DBG_printk("%s: Could not update adapter filters!\n", dev
->name
);
2259 DBG_printk("%s: Adapter filters updated!\n", dev
->name
);
2265 * ===========================
2266 * = dfx_ctl_set_mac_address =
2267 * ===========================
2270 * Add node address override (unicast address) to adapter
2271 * CAM and update dev_addr field in device table.
2277 * dev - pointer to device information
2278 * addr - pointer to sockaddr structure containing unicast address to add
2280 * Functional Description:
2281 * The adapter supports node address overrides by adding one or more
2282 * unicast addresses to the adapter CAM. This is similar to adding
2283 * multicast addresses. In this routine we'll update the driver and
2284 * device structures with the new address, then update the adapter CAM
2285 * to ensure that the adapter will copy and strip frames destined and
2286 * sourced by that address.
2289 * Always returns zero.
2292 * The address pointed to by addr->sa_data is a valid unicast
2293 * address and is presented in canonical (LSB) format.
2296 * On-board adapter CAM is updated. On-board adapter filters
2300 static int dfx_ctl_set_mac_address(struct net_device
*dev
, void *addr
)
2302 struct sockaddr
*p_sockaddr
= (struct sockaddr
*)addr
;
2303 DFX_board_t
*bp
= netdev_priv(dev
);
2305 /* Copy unicast address to driver-maintained structs and update count */
2307 memcpy(dev
->dev_addr
, p_sockaddr
->sa_data
, FDDI_K_ALEN
); /* update device struct */
2308 memcpy(&bp
->uc_table
[0], p_sockaddr
->sa_data
, FDDI_K_ALEN
); /* update driver struct */
2312 * Verify we're not exceeding the CAM size by adding unicast address
2314 * Note: It's possible that before entering this routine we've
2315 * already filled the CAM with 62 multicast addresses.
2316 * Since we need to place the node address override into
2317 * the CAM, we have to check to see that we're not
2318 * exceeding the CAM size. If we are, we have to enable
2319 * the LLC group (multicast) promiscuous mode filter as
2320 * in dfx_ctl_set_multicast_list.
2323 if ((bp
->uc_count
+ bp
->mc_count
) > PI_CMD_ADDR_FILTER_K_SIZE
)
2325 bp
->group_prom
= PI_FSTATE_K_PASS
; /* Enable LLC group prom mode */
2326 bp
->mc_count
= 0; /* Don't add mc addrs to CAM */
2328 /* Update adapter filters */
2330 if (dfx_ctl_update_filters(bp
) != DFX_K_SUCCESS
)
2332 DBG_printk("%s: Could not update adapter filters!\n", dev
->name
);
2336 DBG_printk("%s: Adapter filters updated!\n", dev
->name
);
2340 /* Update adapter CAM with new unicast address */
2342 if (dfx_ctl_update_cam(bp
) != DFX_K_SUCCESS
)
2344 DBG_printk("%s: Could not set new MAC address!\n", dev
->name
);
2348 DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev
->name
);
2350 return 0; /* always return zero */
2355 * ======================
2356 * = dfx_ctl_update_cam =
2357 * ======================
2360 * Procedure to update adapter CAM (Content Addressable Memory)
2361 * with desired unicast and multicast address entries.
2367 * bp - pointer to board information
2369 * Functional Description:
2370 * Updates adapter CAM with current contents of board structure
2371 * unicast and multicast address tables. Since there are only 62
2372 * free entries in CAM, this routine ensures that the command
2373 * request buffer is not overrun.
2376 * DFX_K_SUCCESS - Request succeeded
2377 * DFX_K_FAILURE - Request failed
2380 * All addresses being added (unicast and multicast) are in canonical
2384 * On-board adapter CAM is updated.
2387 static int dfx_ctl_update_cam(DFX_board_t
*bp
)
2389 int i
; /* used as index */
2390 PI_LAN_ADDR
*p_addr
; /* pointer to CAM entry */
2393 * Fill in command request information
2395 * Note: Even though both the unicast and multicast address
2396 * table entries are stored as contiguous 6 byte entries,
2397 * the firmware address filter set command expects each
2398 * entry to be two longwords (8 bytes total). We must be
2399 * careful to only copy the six bytes of each unicast and
2400 * multicast table entry into each command entry. This
2401 * is also why we must first clear the entire command
2405 memset(bp
->cmd_req_virt
, 0, PI_CMD_REQ_K_SIZE_MAX
); /* first clear buffer */
2406 bp
->cmd_req_virt
->cmd_type
= PI_CMD_K_ADDR_FILTER_SET
;
2407 p_addr
= &bp
->cmd_req_virt
->addr_filter_set
.entry
[0];
2409 /* Now add unicast addresses to command request buffer, if any */
2411 for (i
=0; i
< (int)bp
->uc_count
; i
++)
2413 if (i
< PI_CMD_ADDR_FILTER_K_SIZE
)
2415 memcpy(p_addr
, &bp
->uc_table
[i
*FDDI_K_ALEN
], FDDI_K_ALEN
);
2416 p_addr
++; /* point to next command entry */
2420 /* Now add multicast addresses to command request buffer, if any */
2422 for (i
=0; i
< (int)bp
->mc_count
; i
++)
2424 if ((i
+ bp
->uc_count
) < PI_CMD_ADDR_FILTER_K_SIZE
)
2426 memcpy(p_addr
, &bp
->mc_table
[i
*FDDI_K_ALEN
], FDDI_K_ALEN
);
2427 p_addr
++; /* point to next command entry */
2431 /* Issue command to update adapter CAM, then return */
2433 if (dfx_hw_dma_cmd_req(bp
) != DFX_K_SUCCESS
)
2434 return DFX_K_FAILURE
;
2435 return DFX_K_SUCCESS
;
2440 * ==========================
2441 * = dfx_ctl_update_filters =
2442 * ==========================
2445 * Procedure to update adapter filters with desired
2452 * bp - pointer to board information
2454 * Functional Description:
2455 * Enables or disables filter using current filter settings.
2458 * DFX_K_SUCCESS - Request succeeded.
2459 * DFX_K_FAILURE - Request failed.
2462 * We must always pass up packets destined to the broadcast
2463 * address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2464 * broadcast filter enabled.
2467 * On-board adapter filters are updated.
2470 static int dfx_ctl_update_filters(DFX_board_t
*bp
)
2472 int i
= 0; /* used as index */
2474 /* Fill in command request information */
2476 bp
->cmd_req_virt
->cmd_type
= PI_CMD_K_FILTERS_SET
;
2478 /* Initialize Broadcast filter - * ALWAYS ENABLED * */
2480 bp
->cmd_req_virt
->filter_set
.item
[i
].item_code
= PI_ITEM_K_BROADCAST
;
2481 bp
->cmd_req_virt
->filter_set
.item
[i
++].value
= PI_FSTATE_K_PASS
;
2483 /* Initialize LLC Individual/Group Promiscuous filter */
2485 bp
->cmd_req_virt
->filter_set
.item
[i
].item_code
= PI_ITEM_K_IND_GROUP_PROM
;
2486 bp
->cmd_req_virt
->filter_set
.item
[i
++].value
= bp
->ind_group_prom
;
2488 /* Initialize LLC Group Promiscuous filter */
2490 bp
->cmd_req_virt
->filter_set
.item
[i
].item_code
= PI_ITEM_K_GROUP_PROM
;
2491 bp
->cmd_req_virt
->filter_set
.item
[i
++].value
= bp
->group_prom
;
2493 /* Terminate the item code list */
2495 bp
->cmd_req_virt
->filter_set
.item
[i
].item_code
= PI_ITEM_K_EOL
;
2497 /* Issue command to update adapter filters, then return */
2499 if (dfx_hw_dma_cmd_req(bp
) != DFX_K_SUCCESS
)
2500 return DFX_K_FAILURE
;
2501 return DFX_K_SUCCESS
;
2506 * ======================
2507 * = dfx_hw_dma_cmd_req =
2508 * ======================
2511 * Sends PDQ DMA command to adapter firmware
2517 * bp - pointer to board information
2519 * Functional Description:
2520 * The command request and response buffers are posted to the adapter in the manner
2521 * described in the PDQ Port Specification:
2523 * 1. Command Response Buffer is posted to adapter.
2524 * 2. Command Request Buffer is posted to adapter.
2525 * 3. Command Request consumer index is polled until it indicates that request
2526 * buffer has been DMA'd to adapter.
2527 * 4. Command Response consumer index is polled until it indicates that response
2528 * buffer has been DMA'd from adapter.
2530 * This ordering ensures that a response buffer is already available for the firmware
2531 * to use once it's done processing the request buffer.
2534 * DFX_K_SUCCESS - DMA command succeeded
2535 * DFX_K_OUTSTATE - Adapter is NOT in proper state
2536 * DFX_K_HW_TIMEOUT - DMA command timed out
2539 * Command request buffer has already been filled with desired DMA command.
2545 static int dfx_hw_dma_cmd_req(DFX_board_t
*bp
)
2547 int status
; /* adapter status */
2548 int timeout_cnt
; /* used in for loops */
2550 /* Make sure the adapter is in a state that we can issue the DMA command in */
2552 status
= dfx_hw_adap_state_rd(bp
);
2553 if ((status
== PI_STATE_K_RESET
) ||
2554 (status
== PI_STATE_K_HALTED
) ||
2555 (status
== PI_STATE_K_DMA_UNAVAIL
) ||
2556 (status
== PI_STATE_K_UPGRADE
))
2557 return DFX_K_OUTSTATE
;
2559 /* Put response buffer on the command response queue */
2561 bp
->descr_block_virt
->cmd_rsp
[bp
->cmd_rsp_reg
.index
.prod
].long_0
= (u32
) (PI_RCV_DESCR_M_SOP
|
2562 ((PI_CMD_RSP_K_SIZE_MAX
/ PI_ALIGN_K_CMD_RSP_BUFF
) << PI_RCV_DESCR_V_SEG_LEN
));
2563 bp
->descr_block_virt
->cmd_rsp
[bp
->cmd_rsp_reg
.index
.prod
].long_1
= bp
->cmd_rsp_phys
;
2565 /* Bump (and wrap) the producer index and write out to register */
2567 bp
->cmd_rsp_reg
.index
.prod
+= 1;
2568 bp
->cmd_rsp_reg
.index
.prod
&= PI_CMD_RSP_K_NUM_ENTRIES
-1;
2569 dfx_port_write_long(bp
, PI_PDQ_K_REG_CMD_RSP_PROD
, bp
->cmd_rsp_reg
.lword
);
2571 /* Put request buffer on the command request queue */
2573 bp
->descr_block_virt
->cmd_req
[bp
->cmd_req_reg
.index
.prod
].long_0
= (u32
) (PI_XMT_DESCR_M_SOP
|
2574 PI_XMT_DESCR_M_EOP
| (PI_CMD_REQ_K_SIZE_MAX
<< PI_XMT_DESCR_V_SEG_LEN
));
2575 bp
->descr_block_virt
->cmd_req
[bp
->cmd_req_reg
.index
.prod
].long_1
= bp
->cmd_req_phys
;
2577 /* Bump (and wrap) the producer index and write out to register */
2579 bp
->cmd_req_reg
.index
.prod
+= 1;
2580 bp
->cmd_req_reg
.index
.prod
&= PI_CMD_REQ_K_NUM_ENTRIES
-1;
2581 dfx_port_write_long(bp
, PI_PDQ_K_REG_CMD_REQ_PROD
, bp
->cmd_req_reg
.lword
);
2584 * Here we wait for the command request consumer index to be equal
2585 * to the producer, indicating that the adapter has DMAed the request.
2588 for (timeout_cnt
= 20000; timeout_cnt
> 0; timeout_cnt
--)
2590 if (bp
->cmd_req_reg
.index
.prod
== (u8
)(bp
->cons_block_virt
->cmd_req
))
2592 udelay(100); /* wait for 100 microseconds */
2594 if (timeout_cnt
== 0)
2595 return DFX_K_HW_TIMEOUT
;
2597 /* Bump (and wrap) the completion index and write out to register */
2599 bp
->cmd_req_reg
.index
.comp
+= 1;
2600 bp
->cmd_req_reg
.index
.comp
&= PI_CMD_REQ_K_NUM_ENTRIES
-1;
2601 dfx_port_write_long(bp
, PI_PDQ_K_REG_CMD_REQ_PROD
, bp
->cmd_req_reg
.lword
);
2604 * Here we wait for the command response consumer index to be equal
2605 * to the producer, indicating that the adapter has DMAed the response.
2608 for (timeout_cnt
= 20000; timeout_cnt
> 0; timeout_cnt
--)
2610 if (bp
->cmd_rsp_reg
.index
.prod
== (u8
)(bp
->cons_block_virt
->cmd_rsp
))
2612 udelay(100); /* wait for 100 microseconds */
2614 if (timeout_cnt
== 0)
2615 return DFX_K_HW_TIMEOUT
;
2617 /* Bump (and wrap) the completion index and write out to register */
2619 bp
->cmd_rsp_reg
.index
.comp
+= 1;
2620 bp
->cmd_rsp_reg
.index
.comp
&= PI_CMD_RSP_K_NUM_ENTRIES
-1;
2621 dfx_port_write_long(bp
, PI_PDQ_K_REG_CMD_RSP_PROD
, bp
->cmd_rsp_reg
.lword
);
2622 return DFX_K_SUCCESS
;
2627 * ========================
2628 * = dfx_hw_port_ctrl_req =
2629 * ========================
2632 * Sends PDQ port control command to adapter firmware
2635 * Host data register value in host_data if ptr is not NULL
2638 * bp - pointer to board information
2639 * command - port control command
2640 * data_a - port data A register value
2641 * data_b - port data B register value
2642 * host_data - ptr to host data register value
2644 * Functional Description:
2645 * Send generic port control command to adapter by writing
2646 * to various PDQ port registers, then polling for completion.
2649 * DFX_K_SUCCESS - port control command succeeded
2650 * DFX_K_HW_TIMEOUT - port control command timed out
2659 static int dfx_hw_port_ctrl_req(
2664 PI_UINT32
*host_data
2668 PI_UINT32 port_cmd
; /* Port Control command register value */
2669 int timeout_cnt
; /* used in for loops */
2671 /* Set Command Error bit in command longword */
2673 port_cmd
= (PI_UINT32
) (command
| PI_PCTRL_M_CMD_ERROR
);
2675 /* Issue port command to the adapter */
2677 dfx_port_write_long(bp
, PI_PDQ_K_REG_PORT_DATA_A
, data_a
);
2678 dfx_port_write_long(bp
, PI_PDQ_K_REG_PORT_DATA_B
, data_b
);
2679 dfx_port_write_long(bp
, PI_PDQ_K_REG_PORT_CTRL
, port_cmd
);
2681 /* Now wait for command to complete */
2683 if (command
== PI_PCTRL_M_BLAST_FLASH
)
2684 timeout_cnt
= 600000; /* set command timeout count to 60 seconds */
2686 timeout_cnt
= 20000; /* set command timeout count to 2 seconds */
2688 for (; timeout_cnt
> 0; timeout_cnt
--)
2690 dfx_port_read_long(bp
, PI_PDQ_K_REG_PORT_CTRL
, &port_cmd
);
2691 if (!(port_cmd
& PI_PCTRL_M_CMD_ERROR
))
2693 udelay(100); /* wait for 100 microseconds */
2695 if (timeout_cnt
== 0)
2696 return DFX_K_HW_TIMEOUT
;
2699 * If the address of host_data is non-zero, assume caller has supplied a
2700 * non NULL pointer, and return the contents of the HOST_DATA register in
2704 if (host_data
!= NULL
)
2705 dfx_port_read_long(bp
, PI_PDQ_K_REG_HOST_DATA
, host_data
);
2706 return DFX_K_SUCCESS
;
2711 * =====================
2712 * = dfx_hw_adap_reset =
2713 * =====================
2722 * bp - pointer to board information
2723 * type - type of reset to perform
2725 * Functional Description:
2726 * Issue soft reset to adapter by writing to PDQ Port Reset
2727 * register. Use incoming reset type to tell adapter what
2728 * kind of reset operation to perform.
2734 * This routine merely issues a soft reset to the adapter.
2735 * It is expected that after this routine returns, the caller
2736 * will appropriately poll the Port Status register for the
2737 * adapter to enter the proper state.
2740 * Internal adapter registers are cleared.
2743 static void dfx_hw_adap_reset(
2749 /* Set Reset type and assert reset */
2751 dfx_port_write_long(bp
, PI_PDQ_K_REG_PORT_DATA_A
, type
); /* tell adapter type of reset */
2752 dfx_port_write_long(bp
, PI_PDQ_K_REG_PORT_RESET
, PI_RESET_M_ASSERT_RESET
);
2754 /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2758 /* Deassert reset */
2760 dfx_port_write_long(bp
, PI_PDQ_K_REG_PORT_RESET
, 0);
2765 * ========================
2766 * = dfx_hw_adap_state_rd =
2767 * ========================
2770 * Returns current adapter state
2773 * Adapter state per PDQ Port Specification
2776 * bp - pointer to board information
2778 * Functional Description:
2779 * Reads PDQ Port Status register and returns adapter state.
2791 static int dfx_hw_adap_state_rd(DFX_board_t
*bp
)
2793 PI_UINT32 port_status
; /* Port Status register value */
2795 dfx_port_read_long(bp
, PI_PDQ_K_REG_PORT_STATUS
, &port_status
);
2796 return (port_status
& PI_PSTATUS_M_STATE
) >> PI_PSTATUS_V_STATE
;
2801 * =====================
2802 * = dfx_hw_dma_uninit =
2803 * =====================
2806 * Brings adapter to DMA_UNAVAILABLE state
2812 * bp - pointer to board information
2813 * type - type of reset to perform
2815 * Functional Description:
2816 * Bring adapter to DMA_UNAVAILABLE state by performing the following:
2817 * 1. Set reset type bit in Port Data A Register then reset adapter.
2818 * 2. Check that adapter is in DMA_UNAVAILABLE state.
2821 * DFX_K_SUCCESS - adapter is in DMA_UNAVAILABLE state
2822 * DFX_K_HW_TIMEOUT - adapter did not reset properly
2828 * Internal adapter registers are cleared.
2831 static int dfx_hw_dma_uninit(DFX_board_t
*bp
, PI_UINT32 type
)
2833 int timeout_cnt
; /* used in for loops */
2835 /* Set reset type bit and reset adapter */
2837 dfx_hw_adap_reset(bp
, type
);
2839 /* Now wait for adapter to enter DMA_UNAVAILABLE state */
2841 for (timeout_cnt
= 100000; timeout_cnt
> 0; timeout_cnt
--)
2843 if (dfx_hw_adap_state_rd(bp
) == PI_STATE_K_DMA_UNAVAIL
)
2845 udelay(100); /* wait for 100 microseconds */
2847 if (timeout_cnt
== 0)
2848 return DFX_K_HW_TIMEOUT
;
2849 return DFX_K_SUCCESS
;
2853 * Align an sk_buff to a boundary power of 2
2856 #ifdef DYNAMIC_BUFFERS
2857 static void my_skb_align(struct sk_buff
*skb
, int n
)
2859 unsigned long x
= (unsigned long)skb
->data
;
2862 v
= ALIGN(x
, n
); /* Where we want to be */
2864 skb_reserve(skb
, v
- x
);
2874 * Produces buffers to adapter LLC Host receive descriptor block
2880 * bp - pointer to board information
2881 * get_buffers - non-zero if buffers to be allocated
2883 * Functional Description:
2884 * This routine can be called during dfx_adap_init() or during an adapter
2885 * reset. It initializes the descriptor block and produces all allocated
2886 * LLC Host queue receive buffers.
2889 * Return 0 on success or -ENOMEM if buffer allocation failed (when using
2890 * dynamic buffer allocation). If the buffer allocation failed, the
2891 * already allocated buffers will not be released and the caller should do
2895 * The PDQ has been reset and the adapter and driver maintained Type 2
2896 * register indices are cleared.
2899 * Receive buffers are posted to the adapter LLC queue and the adapter
2903 static int dfx_rcv_init(DFX_board_t
*bp
, int get_buffers
)
2905 int i
, j
; /* used in for loop */
2908 * Since each receive buffer is a single fragment of same length, initialize
2909 * first longword in each receive descriptor for entire LLC Host descriptor
2910 * block. Also initialize second longword in each receive descriptor with
2911 * physical address of receive buffer. We'll always allocate receive
2912 * buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2913 * block and produce new receive buffers by simply updating the receive
2917 * To support all shipping versions of PDQ, the receive buffer size
2918 * must be mod 128 in length and the physical address must be 128 byte
2919 * aligned. In other words, bits 0-6 of the length and address must
2920 * be zero for the following descriptor field entries to be correct on
2921 * all PDQ-based boards. We guaranteed both requirements during
2922 * driver initialization when we allocated memory for the receive buffers.
2926 #ifdef DYNAMIC_BUFFERS
2927 for (i
= 0; i
< (int)(bp
->rcv_bufs_to_post
); i
++)
2928 for (j
= 0; (i
+ j
) < (int)PI_RCV_DATA_K_NUM_ENTRIES
; j
+= bp
->rcv_bufs_to_post
)
2930 struct sk_buff
*newskb
= __netdev_alloc_skb(bp
->dev
, NEW_SKB_SIZE
, GFP_NOIO
);
2933 bp
->descr_block_virt
->rcv_data
[i
+j
].long_0
= (u32
) (PI_RCV_DESCR_M_SOP
|
2934 ((PI_RCV_DATA_K_SIZE_MAX
/ PI_ALIGN_K_RCV_DATA_BUFF
) << PI_RCV_DESCR_V_SEG_LEN
));
2936 * align to 128 bytes for compatibility with
2937 * the old EISA boards.
2940 my_skb_align(newskb
, 128);
2941 bp
->descr_block_virt
->rcv_data
[i
+ j
].long_1
=
2942 (u32
)dma_map_single(bp
->bus_dev
, newskb
->data
,
2946 * p_rcv_buff_va is only used inside the
2947 * kernel so we put the skb pointer here.
2949 bp
->p_rcv_buff_va
[i
+j
] = (char *) newskb
;
2952 for (i
=0; i
< (int)(bp
->rcv_bufs_to_post
); i
++)
2953 for (j
=0; (i
+ j
) < (int)PI_RCV_DATA_K_NUM_ENTRIES
; j
+= bp
->rcv_bufs_to_post
)
2955 bp
->descr_block_virt
->rcv_data
[i
+j
].long_0
= (u32
) (PI_RCV_DESCR_M_SOP
|
2956 ((PI_RCV_DATA_K_SIZE_MAX
/ PI_ALIGN_K_RCV_DATA_BUFF
) << PI_RCV_DESCR_V_SEG_LEN
));
2957 bp
->descr_block_virt
->rcv_data
[i
+j
].long_1
= (u32
) (bp
->rcv_block_phys
+ (i
* PI_RCV_DATA_K_SIZE_MAX
));
2958 bp
->p_rcv_buff_va
[i
+j
] = (bp
->rcv_block_virt
+ (i
* PI_RCV_DATA_K_SIZE_MAX
));
2963 /* Update receive producer and Type 2 register */
2965 bp
->rcv_xmt_reg
.index
.rcv_prod
= bp
->rcv_bufs_to_post
;
2966 dfx_port_write_long(bp
, PI_PDQ_K_REG_TYPE_2_PROD
, bp
->rcv_xmt_reg
.lword
);
2972 * =========================
2973 * = dfx_rcv_queue_process =
2974 * =========================
2977 * Process received LLC frames.
2983 * bp - pointer to board information
2985 * Functional Description:
2986 * Received LLC frames are processed until there are no more consumed frames.
2987 * Once all frames are processed, the receive buffers are returned to the
2988 * adapter. Note that this algorithm fixes the length of time that can be spent
2989 * in this routine, because there are a fixed number of receive buffers to
2990 * process and buffers are not produced until this routine exits and returns
3003 static void dfx_rcv_queue_process(
3008 PI_TYPE_2_CONSUMER
*p_type_2_cons
; /* ptr to rcv/xmt consumer block register */
3009 char *p_buff
; /* ptr to start of packet receive buffer (FMC descriptor) */
3010 u32 descr
, pkt_len
; /* FMC descriptor field and packet length */
3011 struct sk_buff
*skb
; /* pointer to a sk_buff to hold incoming packet data */
3013 /* Service all consumed LLC receive frames */
3015 p_type_2_cons
= (PI_TYPE_2_CONSUMER
*)(&bp
->cons_block_virt
->xmt_rcv_data
);
3016 while (bp
->rcv_xmt_reg
.index
.rcv_comp
!= p_type_2_cons
->index
.rcv_cons
)
3018 /* Process any errors */
3022 entry
= bp
->rcv_xmt_reg
.index
.rcv_comp
;
3023 #ifdef DYNAMIC_BUFFERS
3024 p_buff
= (char *) (((struct sk_buff
*)bp
->p_rcv_buff_va
[entry
])->data
);
3026 p_buff
= bp
->p_rcv_buff_va
[entry
];
3028 memcpy(&descr
, p_buff
+ RCV_BUFF_K_DESCR
, sizeof(u32
));
3030 if (descr
& PI_FMC_DESCR_M_RCC_FLUSH
)
3032 if (descr
& PI_FMC_DESCR_M_RCC_CRC
)
3033 bp
->rcv_crc_errors
++;
3035 bp
->rcv_frame_status_errors
++;
3039 int rx_in_place
= 0;
3041 /* The frame was received without errors - verify packet length */
3043 pkt_len
= (u32
)((descr
& PI_FMC_DESCR_M_LEN
) >> PI_FMC_DESCR_V_LEN
);
3044 pkt_len
-= 4; /* subtract 4 byte CRC */
3045 if (!IN_RANGE(pkt_len
, FDDI_K_LLC_ZLEN
, FDDI_K_LLC_LEN
))
3046 bp
->rcv_length_errors
++;
3048 #ifdef DYNAMIC_BUFFERS
3049 if (pkt_len
> SKBUFF_RX_COPYBREAK
) {
3050 struct sk_buff
*newskb
;
3052 newskb
= dev_alloc_skb(NEW_SKB_SIZE
);
3056 my_skb_align(newskb
, 128);
3057 skb
= (struct sk_buff
*)bp
->p_rcv_buff_va
[entry
];
3058 dma_unmap_single(bp
->bus_dev
,
3059 bp
->descr_block_virt
->rcv_data
[entry
].long_1
,
3062 skb_reserve(skb
, RCV_BUFF_K_PADDING
);
3063 bp
->p_rcv_buff_va
[entry
] = (char *)newskb
;
3064 bp
->descr_block_virt
->rcv_data
[entry
].long_1
=
3065 (u32
)dma_map_single(bp
->bus_dev
,
3073 skb
= dev_alloc_skb(pkt_len
+3); /* alloc new buffer to pass up, add room for PRH */
3076 printk("%s: Could not allocate receive buffer. Dropping packet.\n", bp
->dev
->name
);
3082 /* Receive buffer allocated, pass receive packet up */
3084 skb_copy_to_linear_data(skb
,
3085 p_buff
+ RCV_BUFF_K_PADDING
,
3089 skb_reserve(skb
,3); /* adjust data field so that it points to FC byte */
3090 skb_put(skb
, pkt_len
); /* pass up packet length, NOT including CRC */
3091 skb
->protocol
= fddi_type_trans(skb
, bp
->dev
);
3092 bp
->rcv_total_bytes
+= skb
->len
;
3095 /* Update the rcv counters */
3096 bp
->rcv_total_frames
++;
3097 if (*(p_buff
+ RCV_BUFF_K_DA
) & 0x01)
3098 bp
->rcv_multicast_frames
++;
3104 * Advance the producer (for recycling) and advance the completion
3105 * (for servicing received frames). Note that it is okay to
3106 * advance the producer without checking that it passes the
3107 * completion index because they are both advanced at the same
3111 bp
->rcv_xmt_reg
.index
.rcv_prod
+= 1;
3112 bp
->rcv_xmt_reg
.index
.rcv_comp
+= 1;
3118 * =====================
3119 * = dfx_xmt_queue_pkt =
3120 * =====================
3123 * Queues packets for transmission
3129 * skb - pointer to sk_buff to queue for transmission
3130 * dev - pointer to device information
3132 * Functional Description:
3133 * Here we assume that an incoming skb transmit request
3134 * is contained in a single physically contiguous buffer
3135 * in which the virtual address of the start of packet
3136 * (skb->data) can be converted to a physical address
3137 * by using pci_map_single().
3139 * Since the adapter architecture requires a three byte
3140 * packet request header to prepend the start of packet,
3141 * we'll write the three byte field immediately prior to
3142 * the FC byte. This assumption is valid because we've
3143 * ensured that dev->hard_header_len includes three pad
3144 * bytes. By posting a single fragment to the adapter,
3145 * we'll reduce the number of descriptor fetches and
3146 * bus traffic needed to send the request.
3148 * Also, we can't free the skb until after it's been DMA'd
3149 * out by the adapter, so we'll queue it in the driver and
3150 * return it in dfx_xmt_done.
3153 * 0 - driver queued packet, link is unavailable, or skbuff was bad
3154 * 1 - caller should requeue the sk_buff for later transmission
3157 * First and foremost, we assume the incoming skb pointer
3158 * is NOT NULL and is pointing to a valid sk_buff structure.
3160 * The outgoing packet is complete, starting with the
3161 * frame control byte including the last byte of data,
3162 * but NOT including the 4 byte CRC. We'll let the
3163 * adapter hardware generate and append the CRC.
3165 * The entire packet is stored in one physically
3166 * contiguous buffer which is not cached and whose
3167 * 32-bit physical address can be determined.
3169 * It's vital that this routine is NOT reentered for the
3170 * same board and that the OS is not in another section of
3171 * code (eg. dfx_int_common) for the same board on a
3178 static netdev_tx_t
dfx_xmt_queue_pkt(struct sk_buff
*skb
,
3179 struct net_device
*dev
)
3181 DFX_board_t
*bp
= netdev_priv(dev
);
3182 u8 prod
; /* local transmit producer index */
3183 PI_XMT_DESCR
*p_xmt_descr
; /* ptr to transmit descriptor block entry */
3184 XMT_DRIVER_DESCR
*p_xmt_drv_descr
; /* ptr to transmit driver descriptor */
3185 unsigned long flags
;
3187 netif_stop_queue(dev
);
3190 * Verify that incoming transmit request is OK
3192 * Note: The packet size check is consistent with other
3193 * Linux device drivers, although the correct packet
3194 * size should be verified before calling the
3198 if (!IN_RANGE(skb
->len
, FDDI_K_LLC_ZLEN
, FDDI_K_LLC_LEN
))
3200 printk("%s: Invalid packet length - %u bytes\n",
3201 dev
->name
, skb
->len
);
3202 bp
->xmt_length_errors
++; /* bump error counter */
3203 netif_wake_queue(dev
);
3205 return NETDEV_TX_OK
; /* return "success" */
3208 * See if adapter link is available, if not, free buffer
3210 * Note: If the link isn't available, free buffer and return 0
3211 * rather than tell the upper layer to requeue the packet.
3212 * The methodology here is that by the time the link
3213 * becomes available, the packet to be sent will be
3214 * fairly stale. By simply dropping the packet, the
3215 * higher layer protocols will eventually time out
3216 * waiting for response packets which it won't receive.
3219 if (bp
->link_available
== PI_K_FALSE
)
3221 if (dfx_hw_adap_state_rd(bp
) == PI_STATE_K_LINK_AVAIL
) /* is link really available? */
3222 bp
->link_available
= PI_K_TRUE
; /* if so, set flag and continue */
3225 bp
->xmt_discards
++; /* bump error counter */
3226 dev_kfree_skb(skb
); /* free sk_buff now */
3227 netif_wake_queue(dev
);
3228 return NETDEV_TX_OK
; /* return "success" */
3232 spin_lock_irqsave(&bp
->lock
, flags
);
3234 /* Get the current producer and the next free xmt data descriptor */
3236 prod
= bp
->rcv_xmt_reg
.index
.xmt_prod
;
3237 p_xmt_descr
= &(bp
->descr_block_virt
->xmt_data
[prod
]);
3240 * Get pointer to auxiliary queue entry to contain information
3243 * Note: The current xmt producer index will become the
3244 * current xmt completion index when we complete this
3245 * packet later on. So, we'll get the pointer to the
3246 * next auxiliary queue entry now before we bump the
3250 p_xmt_drv_descr
= &(bp
->xmt_drv_descr_blk
[prod
++]); /* also bump producer index */
3252 /* Write the three PRH bytes immediately before the FC byte */
3255 skb
->data
[0] = DFX_PRH0_BYTE
; /* these byte values are defined */
3256 skb
->data
[1] = DFX_PRH1_BYTE
; /* in the Motorola FDDI MAC chip */
3257 skb
->data
[2] = DFX_PRH2_BYTE
; /* specification */
3260 * Write the descriptor with buffer info and bump producer
3262 * Note: Since we need to start DMA from the packet request
3263 * header, we'll add 3 bytes to the DMA buffer length,
3264 * and we'll determine the physical address of the
3265 * buffer from the PRH, not skb->data.
3268 * 1. Packet starts with the frame control (FC) byte
3270 * 2. The 4-byte CRC is not appended to the buffer or
3271 * included in the length.
3272 * 3. Packet length (skb->len) is from FC to end of
3274 * 4. The packet length does not exceed the maximum
3275 * FDDI LLC frame length of 4491 bytes.
3276 * 5. The entire packet is contained in a physically
3277 * contiguous, non-cached, locked memory space
3278 * comprised of a single buffer pointed to by
3280 * 6. The physical address of the start of packet
3281 * can be determined from the virtual address
3282 * by using pci_map_single() and is only 32-bits
3286 p_xmt_descr
->long_0
= (u32
) (PI_XMT_DESCR_M_SOP
| PI_XMT_DESCR_M_EOP
| ((skb
->len
) << PI_XMT_DESCR_V_SEG_LEN
));
3287 p_xmt_descr
->long_1
= (u32
)dma_map_single(bp
->bus_dev
, skb
->data
,
3288 skb
->len
, DMA_TO_DEVICE
);
3291 * Verify that descriptor is actually available
3293 * Note: If descriptor isn't available, return 1 which tells
3294 * the upper layer to requeue the packet for later
3297 * We need to ensure that the producer never reaches the
3298 * completion, except to indicate that the queue is empty.
3301 if (prod
== bp
->rcv_xmt_reg
.index
.xmt_comp
)
3304 spin_unlock_irqrestore(&bp
->lock
, flags
);
3305 return NETDEV_TX_BUSY
; /* requeue packet for later */
3309 * Save info for this packet for xmt done indication routine
3311 * Normally, we'd save the producer index in the p_xmt_drv_descr
3312 * structure so that we'd have it handy when we complete this
3313 * packet later (in dfx_xmt_done). However, since the current
3314 * transmit architecture guarantees a single fragment for the
3315 * entire packet, we can simply bump the completion index by
3316 * one (1) for each completed packet.
3318 * Note: If this assumption changes and we're presented with
3319 * an inconsistent number of transmit fragments for packet
3320 * data, we'll need to modify this code to save the current
3321 * transmit producer index.
3324 p_xmt_drv_descr
->p_skb
= skb
;
3326 /* Update Type 2 register */
3328 bp
->rcv_xmt_reg
.index
.xmt_prod
= prod
;
3329 dfx_port_write_long(bp
, PI_PDQ_K_REG_TYPE_2_PROD
, bp
->rcv_xmt_reg
.lword
);
3330 spin_unlock_irqrestore(&bp
->lock
, flags
);
3331 netif_wake_queue(dev
);
3332 return NETDEV_TX_OK
; /* packet queued to adapter */
3342 * Processes all frames that have been transmitted.
3348 * bp - pointer to board information
3350 * Functional Description:
3351 * For all consumed transmit descriptors that have not
3352 * yet been completed, we'll free the skb we were holding
3353 * onto using dev_kfree_skb and bump the appropriate
3360 * The Type 2 register is not updated in this routine. It is
3361 * assumed that it will be updated in the ISR when dfx_xmt_done
3368 static int dfx_xmt_done(DFX_board_t
*bp
)
3370 XMT_DRIVER_DESCR
*p_xmt_drv_descr
; /* ptr to transmit driver descriptor */
3371 PI_TYPE_2_CONSUMER
*p_type_2_cons
; /* ptr to rcv/xmt consumer block register */
3372 u8 comp
; /* local transmit completion index */
3373 int freed
= 0; /* buffers freed */
3375 /* Service all consumed transmit frames */
3377 p_type_2_cons
= (PI_TYPE_2_CONSUMER
*)(&bp
->cons_block_virt
->xmt_rcv_data
);
3378 while (bp
->rcv_xmt_reg
.index
.xmt_comp
!= p_type_2_cons
->index
.xmt_cons
)
3380 /* Get pointer to the transmit driver descriptor block information */
3382 p_xmt_drv_descr
= &(bp
->xmt_drv_descr_blk
[bp
->rcv_xmt_reg
.index
.xmt_comp
]);
3384 /* Increment transmit counters */
3386 bp
->xmt_total_frames
++;
3387 bp
->xmt_total_bytes
+= p_xmt_drv_descr
->p_skb
->len
;
3389 /* Return skb to operating system */
3390 comp
= bp
->rcv_xmt_reg
.index
.xmt_comp
;
3391 dma_unmap_single(bp
->bus_dev
,
3392 bp
->descr_block_virt
->xmt_data
[comp
].long_1
,
3393 p_xmt_drv_descr
->p_skb
->len
,
3395 dev_kfree_skb_irq(p_xmt_drv_descr
->p_skb
);
3398 * Move to start of next packet by updating completion index
3400 * Here we assume that a transmit packet request is always
3401 * serviced by posting one fragment. We can therefore
3402 * simplify the completion code by incrementing the
3403 * completion index by one. This code will need to be
3404 * modified if this assumption changes. See comments
3405 * in dfx_xmt_queue_pkt for more details.
3408 bp
->rcv_xmt_reg
.index
.xmt_comp
+= 1;
3421 * Remove all skb's in the receive ring.
3427 * bp - pointer to board information
3429 * Functional Description:
3430 * Free's all the dynamically allocated skb's that are
3431 * currently attached to the device receive ring. This
3432 * function is typically only used when the device is
3433 * initialized or reinitialized.
3441 #ifdef DYNAMIC_BUFFERS
3442 static void dfx_rcv_flush( DFX_board_t
*bp
)
3446 for (i
= 0; i
< (int)(bp
->rcv_bufs_to_post
); i
++)
3447 for (j
= 0; (i
+ j
) < (int)PI_RCV_DATA_K_NUM_ENTRIES
; j
+= bp
->rcv_bufs_to_post
)
3449 struct sk_buff
*skb
;
3450 skb
= (struct sk_buff
*)bp
->p_rcv_buff_va
[i
+j
];
3453 bp
->p_rcv_buff_va
[i
+j
] = NULL
;
3457 #endif /* DYNAMIC_BUFFERS */
3465 * Processes all frames whether they've been transmitted
3472 * bp - pointer to board information
3474 * Functional Description:
3475 * For all produced transmit descriptors that have not
3476 * yet been completed, we'll free the skb we were holding
3477 * onto using dev_kfree_skb and bump the appropriate
3478 * counters. Of course, it's possible that some of
3479 * these transmit requests actually did go out, but we
3480 * won't make that distinction here. Finally, we'll
3481 * update the consumer index to match the producer.
3487 * This routine does NOT update the Type 2 register. It
3488 * is assumed that this routine is being called during a
3489 * transmit flush interrupt, or a shutdown or close routine.
3495 static void dfx_xmt_flush( DFX_board_t
*bp
)
3497 u32 prod_cons
; /* rcv/xmt consumer block longword */
3498 XMT_DRIVER_DESCR
*p_xmt_drv_descr
; /* ptr to transmit driver descriptor */
3499 u8 comp
; /* local transmit completion index */
3501 /* Flush all outstanding transmit frames */
3503 while (bp
->rcv_xmt_reg
.index
.xmt_comp
!= bp
->rcv_xmt_reg
.index
.xmt_prod
)
3505 /* Get pointer to the transmit driver descriptor block information */
3507 p_xmt_drv_descr
= &(bp
->xmt_drv_descr_blk
[bp
->rcv_xmt_reg
.index
.xmt_comp
]);
3509 /* Return skb to operating system */
3510 comp
= bp
->rcv_xmt_reg
.index
.xmt_comp
;
3511 dma_unmap_single(bp
->bus_dev
,
3512 bp
->descr_block_virt
->xmt_data
[comp
].long_1
,
3513 p_xmt_drv_descr
->p_skb
->len
,
3515 dev_kfree_skb(p_xmt_drv_descr
->p_skb
);
3517 /* Increment transmit error counter */
3522 * Move to start of next packet by updating completion index
3524 * Here we assume that a transmit packet request is always
3525 * serviced by posting one fragment. We can therefore
3526 * simplify the completion code by incrementing the
3527 * completion index by one. This code will need to be
3528 * modified if this assumption changes. See comments
3529 * in dfx_xmt_queue_pkt for more details.
3532 bp
->rcv_xmt_reg
.index
.xmt_comp
+= 1;
3535 /* Update the transmit consumer index in the consumer block */
3537 prod_cons
= (u32
)(bp
->cons_block_virt
->xmt_rcv_data
& ~PI_CONS_M_XMT_INDEX
);
3538 prod_cons
|= (u32
)(bp
->rcv_xmt_reg
.index
.xmt_prod
<< PI_CONS_V_XMT_INDEX
);
3539 bp
->cons_block_virt
->xmt_rcv_data
= prod_cons
;
3543 * ==================
3544 * = dfx_unregister =
3545 * ==================
3548 * Shuts down an FDDI controller
3554 * bdev - pointer to device information
3556 * Functional Description:
3562 * It compiles so it should work :-( (PCI cards do :-)
3565 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
3568 static void dfx_unregister(struct device
*bdev
)
3570 struct net_device
*dev
= dev_get_drvdata(bdev
);
3571 DFX_board_t
*bp
= netdev_priv(dev
);
3572 int dfx_bus_pci
= dev_is_pci(bdev
);
3573 int dfx_bus_tc
= DFX_BUS_TC(bdev
);
3574 int dfx_use_mmio
= DFX_MMIO
|| dfx_bus_tc
;
3575 resource_size_t bar_start
= 0; /* pointer to port */
3576 resource_size_t bar_len
= 0; /* resource length */
3577 int alloc_size
; /* total buffer size used */
3579 unregister_netdev(dev
);
3581 alloc_size
= sizeof(PI_DESCR_BLOCK
) +
3582 PI_CMD_REQ_K_SIZE_MAX
+ PI_CMD_RSP_K_SIZE_MAX
+
3583 #ifndef DYNAMIC_BUFFERS
3584 (bp
->rcv_bufs_to_post
* PI_RCV_DATA_K_SIZE_MAX
) +
3586 sizeof(PI_CONSUMER_BLOCK
) +
3587 (PI_ALIGN_K_DESC_BLK
- 1);
3589 dma_free_coherent(bdev
, alloc_size
,
3590 bp
->kmalloced
, bp
->kmalloced_dma
);
3592 dfx_bus_uninit(dev
);
3594 dfx_get_bars(bdev
, &bar_start
, &bar_len
);
3596 iounmap(bp
->base
.mem
);
3597 release_mem_region(bar_start
, bar_len
);
3599 release_region(bar_start
, bar_len
);
3602 pci_disable_device(to_pci_dev(bdev
));
3608 static int __maybe_unused
dfx_dev_register(struct device
*);
3609 static int __maybe_unused
dfx_dev_unregister(struct device
*);
3612 static int dfx_pci_register(struct pci_dev
*, const struct pci_device_id
*);
3613 static void dfx_pci_unregister(struct pci_dev
*);
3615 static DEFINE_PCI_DEVICE_TABLE(dfx_pci_table
) = {
3616 { PCI_DEVICE(PCI_VENDOR_ID_DEC
, PCI_DEVICE_ID_DEC_FDDI
) },
3619 MODULE_DEVICE_TABLE(pci
, dfx_pci_table
);
3621 static struct pci_driver dfx_pci_driver
= {
3623 .id_table
= dfx_pci_table
,
3624 .probe
= dfx_pci_register
,
3625 .remove
= dfx_pci_unregister
,
3628 static int dfx_pci_register(struct pci_dev
*pdev
,
3629 const struct pci_device_id
*ent
)
3631 return dfx_register(&pdev
->dev
);
3634 static void dfx_pci_unregister(struct pci_dev
*pdev
)
3636 dfx_unregister(&pdev
->dev
);
3638 #endif /* CONFIG_PCI */
3641 static struct eisa_device_id dfx_eisa_table
[] = {
3642 { "DEC3001", DEFEA_PROD_ID_1
},
3643 { "DEC3002", DEFEA_PROD_ID_2
},
3644 { "DEC3003", DEFEA_PROD_ID_3
},
3645 { "DEC3004", DEFEA_PROD_ID_4
},
3648 MODULE_DEVICE_TABLE(eisa
, dfx_eisa_table
);
3650 static struct eisa_driver dfx_eisa_driver
= {
3651 .id_table
= dfx_eisa_table
,
3654 .bus
= &eisa_bus_type
,
3655 .probe
= dfx_dev_register
,
3656 .remove
= dfx_dev_unregister
,
3659 #endif /* CONFIG_EISA */
3662 static struct tc_device_id
const dfx_tc_table
[] = {
3663 { "DEC ", "PMAF-FA " },
3664 { "DEC ", "PMAF-FD " },
3665 { "DEC ", "PMAF-FS " },
3666 { "DEC ", "PMAF-FU " },
3669 MODULE_DEVICE_TABLE(tc
, dfx_tc_table
);
3671 static struct tc_driver dfx_tc_driver
= {
3672 .id_table
= dfx_tc_table
,
3675 .bus
= &tc_bus_type
,
3676 .probe
= dfx_dev_register
,
3677 .remove
= dfx_dev_unregister
,
3680 #endif /* CONFIG_TC */
3682 static int __maybe_unused
dfx_dev_register(struct device
*dev
)
3686 status
= dfx_register(dev
);
3692 static int __maybe_unused
dfx_dev_unregister(struct device
*dev
)
3695 dfx_unregister(dev
);
3700 static int dfx_init(void)
3704 status
= pci_register_driver(&dfx_pci_driver
);
3706 status
= eisa_driver_register(&dfx_eisa_driver
);
3708 status
= tc_register_driver(&dfx_tc_driver
);
3712 static void dfx_cleanup(void)
3714 tc_unregister_driver(&dfx_tc_driver
);
3715 eisa_driver_unregister(&dfx_eisa_driver
);
3716 pci_unregister_driver(&dfx_pci_driver
);
3719 module_init(dfx_init
);
3720 module_exit(dfx_cleanup
);
3721 MODULE_AUTHOR("Lawrence V. Stefani");
3722 MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
3723 DRV_VERSION
" " DRV_RELDATE
);
3724 MODULE_LICENSE("GPL");