2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
31 #include "print-tree.h"
35 #include "free-space-cache.h"
40 #undef SCRAMBLE_DELAYED_REFS
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
57 CHUNK_ALLOC_NO_FORCE
= 0,
58 CHUNK_ALLOC_LIMITED
= 1,
59 CHUNK_ALLOC_FORCE
= 2,
63 * Control how reservations are dealt with.
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
74 RESERVE_ALLOC_NO_ACCOUNT
= 2,
77 static int update_block_group(struct btrfs_root
*root
,
78 u64 bytenr
, u64 num_bytes
, int alloc
);
79 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
80 struct btrfs_root
*root
,
81 u64 bytenr
, u64 num_bytes
, u64 parent
,
82 u64 root_objectid
, u64 owner_objectid
,
83 u64 owner_offset
, int refs_to_drop
,
84 struct btrfs_delayed_extent_op
*extra_op
,
86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
87 struct extent_buffer
*leaf
,
88 struct btrfs_extent_item
*ei
);
89 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
90 struct btrfs_root
*root
,
91 u64 parent
, u64 root_objectid
,
92 u64 flags
, u64 owner
, u64 offset
,
93 struct btrfs_key
*ins
, int ref_mod
);
94 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
95 struct btrfs_root
*root
,
96 u64 parent
, u64 root_objectid
,
97 u64 flags
, struct btrfs_disk_key
*key
,
98 int level
, struct btrfs_key
*ins
,
100 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
101 struct btrfs_root
*extent_root
, u64 flags
,
103 static int find_next_key(struct btrfs_path
*path
, int level
,
104 struct btrfs_key
*key
);
105 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
106 int dump_block_groups
);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
108 u64 num_bytes
, int reserve
,
110 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
112 int btrfs_pin_extent(struct btrfs_root
*root
,
113 u64 bytenr
, u64 num_bytes
, int reserved
);
116 block_group_cache_done(struct btrfs_block_group_cache
*cache
)
119 return cache
->cached
== BTRFS_CACHE_FINISHED
||
120 cache
->cached
== BTRFS_CACHE_ERROR
;
123 static int block_group_bits(struct btrfs_block_group_cache
*cache
, u64 bits
)
125 return (cache
->flags
& bits
) == bits
;
128 static void btrfs_get_block_group(struct btrfs_block_group_cache
*cache
)
130 atomic_inc(&cache
->count
);
133 void btrfs_put_block_group(struct btrfs_block_group_cache
*cache
)
135 if (atomic_dec_and_test(&cache
->count
)) {
136 WARN_ON(cache
->pinned
> 0);
137 WARN_ON(cache
->reserved
> 0);
138 kfree(cache
->free_space_ctl
);
144 * this adds the block group to the fs_info rb tree for the block group
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info
*info
,
148 struct btrfs_block_group_cache
*block_group
)
151 struct rb_node
*parent
= NULL
;
152 struct btrfs_block_group_cache
*cache
;
154 spin_lock(&info
->block_group_cache_lock
);
155 p
= &info
->block_group_cache_tree
.rb_node
;
159 cache
= rb_entry(parent
, struct btrfs_block_group_cache
,
161 if (block_group
->key
.objectid
< cache
->key
.objectid
) {
163 } else if (block_group
->key
.objectid
> cache
->key
.objectid
) {
166 spin_unlock(&info
->block_group_cache_lock
);
171 rb_link_node(&block_group
->cache_node
, parent
, p
);
172 rb_insert_color(&block_group
->cache_node
,
173 &info
->block_group_cache_tree
);
175 if (info
->first_logical_byte
> block_group
->key
.objectid
)
176 info
->first_logical_byte
= block_group
->key
.objectid
;
178 spin_unlock(&info
->block_group_cache_lock
);
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
187 static struct btrfs_block_group_cache
*
188 block_group_cache_tree_search(struct btrfs_fs_info
*info
, u64 bytenr
,
191 struct btrfs_block_group_cache
*cache
, *ret
= NULL
;
195 spin_lock(&info
->block_group_cache_lock
);
196 n
= info
->block_group_cache_tree
.rb_node
;
199 cache
= rb_entry(n
, struct btrfs_block_group_cache
,
201 end
= cache
->key
.objectid
+ cache
->key
.offset
- 1;
202 start
= cache
->key
.objectid
;
204 if (bytenr
< start
) {
205 if (!contains
&& (!ret
|| start
< ret
->key
.objectid
))
208 } else if (bytenr
> start
) {
209 if (contains
&& bytenr
<= end
) {
220 btrfs_get_block_group(ret
);
221 if (bytenr
== 0 && info
->first_logical_byte
> ret
->key
.objectid
)
222 info
->first_logical_byte
= ret
->key
.objectid
;
224 spin_unlock(&info
->block_group_cache_lock
);
229 static int add_excluded_extent(struct btrfs_root
*root
,
230 u64 start
, u64 num_bytes
)
232 u64 end
= start
+ num_bytes
- 1;
233 set_extent_bits(&root
->fs_info
->freed_extents
[0],
234 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
235 set_extent_bits(&root
->fs_info
->freed_extents
[1],
236 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
240 static void free_excluded_extents(struct btrfs_root
*root
,
241 struct btrfs_block_group_cache
*cache
)
245 start
= cache
->key
.objectid
;
246 end
= start
+ cache
->key
.offset
- 1;
248 clear_extent_bits(&root
->fs_info
->freed_extents
[0],
249 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
250 clear_extent_bits(&root
->fs_info
->freed_extents
[1],
251 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
254 static int exclude_super_stripes(struct btrfs_root
*root
,
255 struct btrfs_block_group_cache
*cache
)
262 if (cache
->key
.objectid
< BTRFS_SUPER_INFO_OFFSET
) {
263 stripe_len
= BTRFS_SUPER_INFO_OFFSET
- cache
->key
.objectid
;
264 cache
->bytes_super
+= stripe_len
;
265 ret
= add_excluded_extent(root
, cache
->key
.objectid
,
271 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
272 bytenr
= btrfs_sb_offset(i
);
273 ret
= btrfs_rmap_block(&root
->fs_info
->mapping_tree
,
274 cache
->key
.objectid
, bytenr
,
275 0, &logical
, &nr
, &stripe_len
);
282 if (logical
[nr
] > cache
->key
.objectid
+
286 if (logical
[nr
] + stripe_len
<= cache
->key
.objectid
)
290 if (start
< cache
->key
.objectid
) {
291 start
= cache
->key
.objectid
;
292 len
= (logical
[nr
] + stripe_len
) - start
;
294 len
= min_t(u64
, stripe_len
,
295 cache
->key
.objectid
+
296 cache
->key
.offset
- start
);
299 cache
->bytes_super
+= len
;
300 ret
= add_excluded_extent(root
, start
, len
);
312 static struct btrfs_caching_control
*
313 get_caching_control(struct btrfs_block_group_cache
*cache
)
315 struct btrfs_caching_control
*ctl
;
317 spin_lock(&cache
->lock
);
318 if (cache
->cached
!= BTRFS_CACHE_STARTED
) {
319 spin_unlock(&cache
->lock
);
323 /* We're loading it the fast way, so we don't have a caching_ctl. */
324 if (!cache
->caching_ctl
) {
325 spin_unlock(&cache
->lock
);
329 ctl
= cache
->caching_ctl
;
330 atomic_inc(&ctl
->count
);
331 spin_unlock(&cache
->lock
);
335 static void put_caching_control(struct btrfs_caching_control
*ctl
)
337 if (atomic_dec_and_test(&ctl
->count
))
342 * this is only called by cache_block_group, since we could have freed extents
343 * we need to check the pinned_extents for any extents that can't be used yet
344 * since their free space will be released as soon as the transaction commits.
346 static u64
add_new_free_space(struct btrfs_block_group_cache
*block_group
,
347 struct btrfs_fs_info
*info
, u64 start
, u64 end
)
349 u64 extent_start
, extent_end
, size
, total_added
= 0;
352 while (start
< end
) {
353 ret
= find_first_extent_bit(info
->pinned_extents
, start
,
354 &extent_start
, &extent_end
,
355 EXTENT_DIRTY
| EXTENT_UPTODATE
,
360 if (extent_start
<= start
) {
361 start
= extent_end
+ 1;
362 } else if (extent_start
> start
&& extent_start
< end
) {
363 size
= extent_start
- start
;
365 ret
= btrfs_add_free_space(block_group
, start
,
367 BUG_ON(ret
); /* -ENOMEM or logic error */
368 start
= extent_end
+ 1;
377 ret
= btrfs_add_free_space(block_group
, start
, size
);
378 BUG_ON(ret
); /* -ENOMEM or logic error */
384 static noinline
void caching_thread(struct btrfs_work
*work
)
386 struct btrfs_block_group_cache
*block_group
;
387 struct btrfs_fs_info
*fs_info
;
388 struct btrfs_caching_control
*caching_ctl
;
389 struct btrfs_root
*extent_root
;
390 struct btrfs_path
*path
;
391 struct extent_buffer
*leaf
;
392 struct btrfs_key key
;
398 caching_ctl
= container_of(work
, struct btrfs_caching_control
, work
);
399 block_group
= caching_ctl
->block_group
;
400 fs_info
= block_group
->fs_info
;
401 extent_root
= fs_info
->extent_root
;
403 path
= btrfs_alloc_path();
407 last
= max_t(u64
, block_group
->key
.objectid
, BTRFS_SUPER_INFO_OFFSET
);
410 * We don't want to deadlock with somebody trying to allocate a new
411 * extent for the extent root while also trying to search the extent
412 * root to add free space. So we skip locking and search the commit
413 * root, since its read-only
415 path
->skip_locking
= 1;
416 path
->search_commit_root
= 1;
421 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
423 mutex_lock(&caching_ctl
->mutex
);
424 /* need to make sure the commit_root doesn't disappear */
425 down_read(&fs_info
->commit_root_sem
);
428 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
432 leaf
= path
->nodes
[0];
433 nritems
= btrfs_header_nritems(leaf
);
436 if (btrfs_fs_closing(fs_info
) > 1) {
441 if (path
->slots
[0] < nritems
) {
442 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
444 ret
= find_next_key(path
, 0, &key
);
448 if (need_resched() ||
449 rwsem_is_contended(&fs_info
->commit_root_sem
)) {
450 caching_ctl
->progress
= last
;
451 btrfs_release_path(path
);
452 up_read(&fs_info
->commit_root_sem
);
453 mutex_unlock(&caching_ctl
->mutex
);
458 ret
= btrfs_next_leaf(extent_root
, path
);
463 leaf
= path
->nodes
[0];
464 nritems
= btrfs_header_nritems(leaf
);
468 if (key
.objectid
< last
) {
471 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
473 caching_ctl
->progress
= last
;
474 btrfs_release_path(path
);
478 if (key
.objectid
< block_group
->key
.objectid
) {
483 if (key
.objectid
>= block_group
->key
.objectid
+
484 block_group
->key
.offset
)
487 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
||
488 key
.type
== BTRFS_METADATA_ITEM_KEY
) {
489 total_found
+= add_new_free_space(block_group
,
492 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
493 last
= key
.objectid
+
494 fs_info
->tree_root
->leafsize
;
496 last
= key
.objectid
+ key
.offset
;
498 if (total_found
> (1024 * 1024 * 2)) {
500 wake_up(&caching_ctl
->wait
);
507 total_found
+= add_new_free_space(block_group
, fs_info
, last
,
508 block_group
->key
.objectid
+
509 block_group
->key
.offset
);
510 caching_ctl
->progress
= (u64
)-1;
512 spin_lock(&block_group
->lock
);
513 block_group
->caching_ctl
= NULL
;
514 block_group
->cached
= BTRFS_CACHE_FINISHED
;
515 spin_unlock(&block_group
->lock
);
518 btrfs_free_path(path
);
519 up_read(&fs_info
->commit_root_sem
);
521 free_excluded_extents(extent_root
, block_group
);
523 mutex_unlock(&caching_ctl
->mutex
);
526 spin_lock(&block_group
->lock
);
527 block_group
->caching_ctl
= NULL
;
528 block_group
->cached
= BTRFS_CACHE_ERROR
;
529 spin_unlock(&block_group
->lock
);
531 wake_up(&caching_ctl
->wait
);
533 put_caching_control(caching_ctl
);
534 btrfs_put_block_group(block_group
);
537 static int cache_block_group(struct btrfs_block_group_cache
*cache
,
541 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
542 struct btrfs_caching_control
*caching_ctl
;
545 caching_ctl
= kzalloc(sizeof(*caching_ctl
), GFP_NOFS
);
549 INIT_LIST_HEAD(&caching_ctl
->list
);
550 mutex_init(&caching_ctl
->mutex
);
551 init_waitqueue_head(&caching_ctl
->wait
);
552 caching_ctl
->block_group
= cache
;
553 caching_ctl
->progress
= cache
->key
.objectid
;
554 atomic_set(&caching_ctl
->count
, 1);
555 btrfs_init_work(&caching_ctl
->work
, btrfs_cache_helper
,
556 caching_thread
, NULL
, NULL
);
558 spin_lock(&cache
->lock
);
560 * This should be a rare occasion, but this could happen I think in the
561 * case where one thread starts to load the space cache info, and then
562 * some other thread starts a transaction commit which tries to do an
563 * allocation while the other thread is still loading the space cache
564 * info. The previous loop should have kept us from choosing this block
565 * group, but if we've moved to the state where we will wait on caching
566 * block groups we need to first check if we're doing a fast load here,
567 * so we can wait for it to finish, otherwise we could end up allocating
568 * from a block group who's cache gets evicted for one reason or
571 while (cache
->cached
== BTRFS_CACHE_FAST
) {
572 struct btrfs_caching_control
*ctl
;
574 ctl
= cache
->caching_ctl
;
575 atomic_inc(&ctl
->count
);
576 prepare_to_wait(&ctl
->wait
, &wait
, TASK_UNINTERRUPTIBLE
);
577 spin_unlock(&cache
->lock
);
581 finish_wait(&ctl
->wait
, &wait
);
582 put_caching_control(ctl
);
583 spin_lock(&cache
->lock
);
586 if (cache
->cached
!= BTRFS_CACHE_NO
) {
587 spin_unlock(&cache
->lock
);
591 WARN_ON(cache
->caching_ctl
);
592 cache
->caching_ctl
= caching_ctl
;
593 cache
->cached
= BTRFS_CACHE_FAST
;
594 spin_unlock(&cache
->lock
);
596 if (fs_info
->mount_opt
& BTRFS_MOUNT_SPACE_CACHE
) {
597 ret
= load_free_space_cache(fs_info
, cache
);
599 spin_lock(&cache
->lock
);
601 cache
->caching_ctl
= NULL
;
602 cache
->cached
= BTRFS_CACHE_FINISHED
;
603 cache
->last_byte_to_unpin
= (u64
)-1;
605 if (load_cache_only
) {
606 cache
->caching_ctl
= NULL
;
607 cache
->cached
= BTRFS_CACHE_NO
;
609 cache
->cached
= BTRFS_CACHE_STARTED
;
612 spin_unlock(&cache
->lock
);
613 wake_up(&caching_ctl
->wait
);
615 put_caching_control(caching_ctl
);
616 free_excluded_extents(fs_info
->extent_root
, cache
);
621 * We are not going to do the fast caching, set cached to the
622 * appropriate value and wakeup any waiters.
624 spin_lock(&cache
->lock
);
625 if (load_cache_only
) {
626 cache
->caching_ctl
= NULL
;
627 cache
->cached
= BTRFS_CACHE_NO
;
629 cache
->cached
= BTRFS_CACHE_STARTED
;
631 spin_unlock(&cache
->lock
);
632 wake_up(&caching_ctl
->wait
);
635 if (load_cache_only
) {
636 put_caching_control(caching_ctl
);
640 down_write(&fs_info
->commit_root_sem
);
641 atomic_inc(&caching_ctl
->count
);
642 list_add_tail(&caching_ctl
->list
, &fs_info
->caching_block_groups
);
643 up_write(&fs_info
->commit_root_sem
);
645 btrfs_get_block_group(cache
);
647 btrfs_queue_work(fs_info
->caching_workers
, &caching_ctl
->work
);
653 * return the block group that starts at or after bytenr
655 static struct btrfs_block_group_cache
*
656 btrfs_lookup_first_block_group(struct btrfs_fs_info
*info
, u64 bytenr
)
658 struct btrfs_block_group_cache
*cache
;
660 cache
= block_group_cache_tree_search(info
, bytenr
, 0);
666 * return the block group that contains the given bytenr
668 struct btrfs_block_group_cache
*btrfs_lookup_block_group(
669 struct btrfs_fs_info
*info
,
672 struct btrfs_block_group_cache
*cache
;
674 cache
= block_group_cache_tree_search(info
, bytenr
, 1);
679 static struct btrfs_space_info
*__find_space_info(struct btrfs_fs_info
*info
,
682 struct list_head
*head
= &info
->space_info
;
683 struct btrfs_space_info
*found
;
685 flags
&= BTRFS_BLOCK_GROUP_TYPE_MASK
;
688 list_for_each_entry_rcu(found
, head
, list
) {
689 if (found
->flags
& flags
) {
699 * after adding space to the filesystem, we need to clear the full flags
700 * on all the space infos.
702 void btrfs_clear_space_info_full(struct btrfs_fs_info
*info
)
704 struct list_head
*head
= &info
->space_info
;
705 struct btrfs_space_info
*found
;
708 list_for_each_entry_rcu(found
, head
, list
)
713 /* simple helper to search for an existing extent at a given offset */
714 int btrfs_lookup_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
717 struct btrfs_key key
;
718 struct btrfs_path
*path
;
720 path
= btrfs_alloc_path();
724 key
.objectid
= start
;
726 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
727 ret
= btrfs_search_slot(NULL
, root
->fs_info
->extent_root
, &key
, path
,
730 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
731 if (key
.objectid
== start
&&
732 key
.type
== BTRFS_METADATA_ITEM_KEY
)
735 btrfs_free_path(path
);
740 * helper function to lookup reference count and flags of a tree block.
742 * the head node for delayed ref is used to store the sum of all the
743 * reference count modifications queued up in the rbtree. the head
744 * node may also store the extent flags to set. This way you can check
745 * to see what the reference count and extent flags would be if all of
746 * the delayed refs are not processed.
748 int btrfs_lookup_extent_info(struct btrfs_trans_handle
*trans
,
749 struct btrfs_root
*root
, u64 bytenr
,
750 u64 offset
, int metadata
, u64
*refs
, u64
*flags
)
752 struct btrfs_delayed_ref_head
*head
;
753 struct btrfs_delayed_ref_root
*delayed_refs
;
754 struct btrfs_path
*path
;
755 struct btrfs_extent_item
*ei
;
756 struct extent_buffer
*leaf
;
757 struct btrfs_key key
;
764 * If we don't have skinny metadata, don't bother doing anything
767 if (metadata
&& !btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
)) {
768 offset
= root
->leafsize
;
772 path
= btrfs_alloc_path();
777 path
->skip_locking
= 1;
778 path
->search_commit_root
= 1;
782 key
.objectid
= bytenr
;
785 key
.type
= BTRFS_METADATA_ITEM_KEY
;
787 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
790 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
,
795 if (ret
> 0 && metadata
&& key
.type
== BTRFS_METADATA_ITEM_KEY
) {
796 if (path
->slots
[0]) {
798 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
800 if (key
.objectid
== bytenr
&&
801 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
802 key
.offset
== root
->leafsize
)
806 key
.objectid
= bytenr
;
807 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
808 key
.offset
= root
->leafsize
;
809 btrfs_release_path(path
);
815 leaf
= path
->nodes
[0];
816 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
817 if (item_size
>= sizeof(*ei
)) {
818 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
819 struct btrfs_extent_item
);
820 num_refs
= btrfs_extent_refs(leaf
, ei
);
821 extent_flags
= btrfs_extent_flags(leaf
, ei
);
823 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
824 struct btrfs_extent_item_v0
*ei0
;
825 BUG_ON(item_size
!= sizeof(*ei0
));
826 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
827 struct btrfs_extent_item_v0
);
828 num_refs
= btrfs_extent_refs_v0(leaf
, ei0
);
829 /* FIXME: this isn't correct for data */
830 extent_flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
835 BUG_ON(num_refs
== 0);
845 delayed_refs
= &trans
->transaction
->delayed_refs
;
846 spin_lock(&delayed_refs
->lock
);
847 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
849 if (!mutex_trylock(&head
->mutex
)) {
850 atomic_inc(&head
->node
.refs
);
851 spin_unlock(&delayed_refs
->lock
);
853 btrfs_release_path(path
);
856 * Mutex was contended, block until it's released and try
859 mutex_lock(&head
->mutex
);
860 mutex_unlock(&head
->mutex
);
861 btrfs_put_delayed_ref(&head
->node
);
864 spin_lock(&head
->lock
);
865 if (head
->extent_op
&& head
->extent_op
->update_flags
)
866 extent_flags
|= head
->extent_op
->flags_to_set
;
868 BUG_ON(num_refs
== 0);
870 num_refs
+= head
->node
.ref_mod
;
871 spin_unlock(&head
->lock
);
872 mutex_unlock(&head
->mutex
);
874 spin_unlock(&delayed_refs
->lock
);
876 WARN_ON(num_refs
== 0);
880 *flags
= extent_flags
;
882 btrfs_free_path(path
);
887 * Back reference rules. Back refs have three main goals:
889 * 1) differentiate between all holders of references to an extent so that
890 * when a reference is dropped we can make sure it was a valid reference
891 * before freeing the extent.
893 * 2) Provide enough information to quickly find the holders of an extent
894 * if we notice a given block is corrupted or bad.
896 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
897 * maintenance. This is actually the same as #2, but with a slightly
898 * different use case.
900 * There are two kinds of back refs. The implicit back refs is optimized
901 * for pointers in non-shared tree blocks. For a given pointer in a block,
902 * back refs of this kind provide information about the block's owner tree
903 * and the pointer's key. These information allow us to find the block by
904 * b-tree searching. The full back refs is for pointers in tree blocks not
905 * referenced by their owner trees. The location of tree block is recorded
906 * in the back refs. Actually the full back refs is generic, and can be
907 * used in all cases the implicit back refs is used. The major shortcoming
908 * of the full back refs is its overhead. Every time a tree block gets
909 * COWed, we have to update back refs entry for all pointers in it.
911 * For a newly allocated tree block, we use implicit back refs for
912 * pointers in it. This means most tree related operations only involve
913 * implicit back refs. For a tree block created in old transaction, the
914 * only way to drop a reference to it is COW it. So we can detect the
915 * event that tree block loses its owner tree's reference and do the
916 * back refs conversion.
918 * When a tree block is COW'd through a tree, there are four cases:
920 * The reference count of the block is one and the tree is the block's
921 * owner tree. Nothing to do in this case.
923 * The reference count of the block is one and the tree is not the
924 * block's owner tree. In this case, full back refs is used for pointers
925 * in the block. Remove these full back refs, add implicit back refs for
926 * every pointers in the new block.
928 * The reference count of the block is greater than one and the tree is
929 * the block's owner tree. In this case, implicit back refs is used for
930 * pointers in the block. Add full back refs for every pointers in the
931 * block, increase lower level extents' reference counts. The original
932 * implicit back refs are entailed to the new block.
934 * The reference count of the block is greater than one and the tree is
935 * not the block's owner tree. Add implicit back refs for every pointer in
936 * the new block, increase lower level extents' reference count.
938 * Back Reference Key composing:
940 * The key objectid corresponds to the first byte in the extent,
941 * The key type is used to differentiate between types of back refs.
942 * There are different meanings of the key offset for different types
945 * File extents can be referenced by:
947 * - multiple snapshots, subvolumes, or different generations in one subvol
948 * - different files inside a single subvolume
949 * - different offsets inside a file (bookend extents in file.c)
951 * The extent ref structure for the implicit back refs has fields for:
953 * - Objectid of the subvolume root
954 * - objectid of the file holding the reference
955 * - original offset in the file
956 * - how many bookend extents
958 * The key offset for the implicit back refs is hash of the first
961 * The extent ref structure for the full back refs has field for:
963 * - number of pointers in the tree leaf
965 * The key offset for the implicit back refs is the first byte of
968 * When a file extent is allocated, The implicit back refs is used.
969 * the fields are filled in:
971 * (root_key.objectid, inode objectid, offset in file, 1)
973 * When a file extent is removed file truncation, we find the
974 * corresponding implicit back refs and check the following fields:
976 * (btrfs_header_owner(leaf), inode objectid, offset in file)
978 * Btree extents can be referenced by:
980 * - Different subvolumes
982 * Both the implicit back refs and the full back refs for tree blocks
983 * only consist of key. The key offset for the implicit back refs is
984 * objectid of block's owner tree. The key offset for the full back refs
985 * is the first byte of parent block.
987 * When implicit back refs is used, information about the lowest key and
988 * level of the tree block are required. These information are stored in
989 * tree block info structure.
992 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
993 static int convert_extent_item_v0(struct btrfs_trans_handle
*trans
,
994 struct btrfs_root
*root
,
995 struct btrfs_path
*path
,
996 u64 owner
, u32 extra_size
)
998 struct btrfs_extent_item
*item
;
999 struct btrfs_extent_item_v0
*ei0
;
1000 struct btrfs_extent_ref_v0
*ref0
;
1001 struct btrfs_tree_block_info
*bi
;
1002 struct extent_buffer
*leaf
;
1003 struct btrfs_key key
;
1004 struct btrfs_key found_key
;
1005 u32 new_size
= sizeof(*item
);
1009 leaf
= path
->nodes
[0];
1010 BUG_ON(btrfs_item_size_nr(leaf
, path
->slots
[0]) != sizeof(*ei0
));
1012 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1013 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1014 struct btrfs_extent_item_v0
);
1015 refs
= btrfs_extent_refs_v0(leaf
, ei0
);
1017 if (owner
== (u64
)-1) {
1019 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1020 ret
= btrfs_next_leaf(root
, path
);
1023 BUG_ON(ret
> 0); /* Corruption */
1024 leaf
= path
->nodes
[0];
1026 btrfs_item_key_to_cpu(leaf
, &found_key
,
1028 BUG_ON(key
.objectid
!= found_key
.objectid
);
1029 if (found_key
.type
!= BTRFS_EXTENT_REF_V0_KEY
) {
1033 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1034 struct btrfs_extent_ref_v0
);
1035 owner
= btrfs_ref_objectid_v0(leaf
, ref0
);
1039 btrfs_release_path(path
);
1041 if (owner
< BTRFS_FIRST_FREE_OBJECTID
)
1042 new_size
+= sizeof(*bi
);
1044 new_size
-= sizeof(*ei0
);
1045 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
1046 new_size
+ extra_size
, 1);
1049 BUG_ON(ret
); /* Corruption */
1051 btrfs_extend_item(root
, path
, new_size
);
1053 leaf
= path
->nodes
[0];
1054 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1055 btrfs_set_extent_refs(leaf
, item
, refs
);
1056 /* FIXME: get real generation */
1057 btrfs_set_extent_generation(leaf
, item
, 0);
1058 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1059 btrfs_set_extent_flags(leaf
, item
,
1060 BTRFS_EXTENT_FLAG_TREE_BLOCK
|
1061 BTRFS_BLOCK_FLAG_FULL_BACKREF
);
1062 bi
= (struct btrfs_tree_block_info
*)(item
+ 1);
1063 /* FIXME: get first key of the block */
1064 memset_extent_buffer(leaf
, 0, (unsigned long)bi
, sizeof(*bi
));
1065 btrfs_set_tree_block_level(leaf
, bi
, (int)owner
);
1067 btrfs_set_extent_flags(leaf
, item
, BTRFS_EXTENT_FLAG_DATA
);
1069 btrfs_mark_buffer_dirty(leaf
);
1074 static u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
1076 u32 high_crc
= ~(u32
)0;
1077 u32 low_crc
= ~(u32
)0;
1080 lenum
= cpu_to_le64(root_objectid
);
1081 high_crc
= btrfs_crc32c(high_crc
, &lenum
, sizeof(lenum
));
1082 lenum
= cpu_to_le64(owner
);
1083 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
1084 lenum
= cpu_to_le64(offset
);
1085 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
1087 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
1090 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
1091 struct btrfs_extent_data_ref
*ref
)
1093 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
1094 btrfs_extent_data_ref_objectid(leaf
, ref
),
1095 btrfs_extent_data_ref_offset(leaf
, ref
));
1098 static int match_extent_data_ref(struct extent_buffer
*leaf
,
1099 struct btrfs_extent_data_ref
*ref
,
1100 u64 root_objectid
, u64 owner
, u64 offset
)
1102 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
1103 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
1104 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
1109 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
1110 struct btrfs_root
*root
,
1111 struct btrfs_path
*path
,
1112 u64 bytenr
, u64 parent
,
1114 u64 owner
, u64 offset
)
1116 struct btrfs_key key
;
1117 struct btrfs_extent_data_ref
*ref
;
1118 struct extent_buffer
*leaf
;
1124 key
.objectid
= bytenr
;
1126 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1127 key
.offset
= parent
;
1129 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1130 key
.offset
= hash_extent_data_ref(root_objectid
,
1135 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1144 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1145 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1146 btrfs_release_path(path
);
1147 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1158 leaf
= path
->nodes
[0];
1159 nritems
= btrfs_header_nritems(leaf
);
1161 if (path
->slots
[0] >= nritems
) {
1162 ret
= btrfs_next_leaf(root
, path
);
1168 leaf
= path
->nodes
[0];
1169 nritems
= btrfs_header_nritems(leaf
);
1173 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1174 if (key
.objectid
!= bytenr
||
1175 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
1178 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1179 struct btrfs_extent_data_ref
);
1181 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1184 btrfs_release_path(path
);
1196 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
1197 struct btrfs_root
*root
,
1198 struct btrfs_path
*path
,
1199 u64 bytenr
, u64 parent
,
1200 u64 root_objectid
, u64 owner
,
1201 u64 offset
, int refs_to_add
)
1203 struct btrfs_key key
;
1204 struct extent_buffer
*leaf
;
1209 key
.objectid
= bytenr
;
1211 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1212 key
.offset
= parent
;
1213 size
= sizeof(struct btrfs_shared_data_ref
);
1215 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1216 key
.offset
= hash_extent_data_ref(root_objectid
,
1218 size
= sizeof(struct btrfs_extent_data_ref
);
1221 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
1222 if (ret
&& ret
!= -EEXIST
)
1225 leaf
= path
->nodes
[0];
1227 struct btrfs_shared_data_ref
*ref
;
1228 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1229 struct btrfs_shared_data_ref
);
1231 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
1233 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
1234 num_refs
+= refs_to_add
;
1235 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
1238 struct btrfs_extent_data_ref
*ref
;
1239 while (ret
== -EEXIST
) {
1240 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1241 struct btrfs_extent_data_ref
);
1242 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1245 btrfs_release_path(path
);
1247 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1249 if (ret
&& ret
!= -EEXIST
)
1252 leaf
= path
->nodes
[0];
1254 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1255 struct btrfs_extent_data_ref
);
1257 btrfs_set_extent_data_ref_root(leaf
, ref
,
1259 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
1260 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
1261 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
1263 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
1264 num_refs
+= refs_to_add
;
1265 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
1268 btrfs_mark_buffer_dirty(leaf
);
1271 btrfs_release_path(path
);
1275 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
1276 struct btrfs_root
*root
,
1277 struct btrfs_path
*path
,
1278 int refs_to_drop
, int *last_ref
)
1280 struct btrfs_key key
;
1281 struct btrfs_extent_data_ref
*ref1
= NULL
;
1282 struct btrfs_shared_data_ref
*ref2
= NULL
;
1283 struct extent_buffer
*leaf
;
1287 leaf
= path
->nodes
[0];
1288 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1290 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1291 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1292 struct btrfs_extent_data_ref
);
1293 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1294 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1295 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1296 struct btrfs_shared_data_ref
);
1297 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1298 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1299 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1300 struct btrfs_extent_ref_v0
*ref0
;
1301 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1302 struct btrfs_extent_ref_v0
);
1303 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1309 BUG_ON(num_refs
< refs_to_drop
);
1310 num_refs
-= refs_to_drop
;
1312 if (num_refs
== 0) {
1313 ret
= btrfs_del_item(trans
, root
, path
);
1316 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
1317 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
1318 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
1319 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
1320 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1322 struct btrfs_extent_ref_v0
*ref0
;
1323 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1324 struct btrfs_extent_ref_v0
);
1325 btrfs_set_ref_count_v0(leaf
, ref0
, num_refs
);
1328 btrfs_mark_buffer_dirty(leaf
);
1333 static noinline u32
extent_data_ref_count(struct btrfs_root
*root
,
1334 struct btrfs_path
*path
,
1335 struct btrfs_extent_inline_ref
*iref
)
1337 struct btrfs_key key
;
1338 struct extent_buffer
*leaf
;
1339 struct btrfs_extent_data_ref
*ref1
;
1340 struct btrfs_shared_data_ref
*ref2
;
1343 leaf
= path
->nodes
[0];
1344 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1346 if (btrfs_extent_inline_ref_type(leaf
, iref
) ==
1347 BTRFS_EXTENT_DATA_REF_KEY
) {
1348 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1349 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1351 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1352 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1354 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1355 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1356 struct btrfs_extent_data_ref
);
1357 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1358 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1359 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1360 struct btrfs_shared_data_ref
);
1361 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1362 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1363 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1364 struct btrfs_extent_ref_v0
*ref0
;
1365 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1366 struct btrfs_extent_ref_v0
);
1367 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1375 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
1376 struct btrfs_root
*root
,
1377 struct btrfs_path
*path
,
1378 u64 bytenr
, u64 parent
,
1381 struct btrfs_key key
;
1384 key
.objectid
= bytenr
;
1386 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1387 key
.offset
= parent
;
1389 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1390 key
.offset
= root_objectid
;
1393 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1396 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1397 if (ret
== -ENOENT
&& parent
) {
1398 btrfs_release_path(path
);
1399 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1400 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1408 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
1409 struct btrfs_root
*root
,
1410 struct btrfs_path
*path
,
1411 u64 bytenr
, u64 parent
,
1414 struct btrfs_key key
;
1417 key
.objectid
= bytenr
;
1419 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1420 key
.offset
= parent
;
1422 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1423 key
.offset
= root_objectid
;
1426 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1427 btrfs_release_path(path
);
1431 static inline int extent_ref_type(u64 parent
, u64 owner
)
1434 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1436 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1438 type
= BTRFS_TREE_BLOCK_REF_KEY
;
1441 type
= BTRFS_SHARED_DATA_REF_KEY
;
1443 type
= BTRFS_EXTENT_DATA_REF_KEY
;
1448 static int find_next_key(struct btrfs_path
*path
, int level
,
1449 struct btrfs_key
*key
)
1452 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
1453 if (!path
->nodes
[level
])
1455 if (path
->slots
[level
] + 1 >=
1456 btrfs_header_nritems(path
->nodes
[level
]))
1459 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
1460 path
->slots
[level
] + 1);
1462 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1463 path
->slots
[level
] + 1);
1470 * look for inline back ref. if back ref is found, *ref_ret is set
1471 * to the address of inline back ref, and 0 is returned.
1473 * if back ref isn't found, *ref_ret is set to the address where it
1474 * should be inserted, and -ENOENT is returned.
1476 * if insert is true and there are too many inline back refs, the path
1477 * points to the extent item, and -EAGAIN is returned.
1479 * NOTE: inline back refs are ordered in the same way that back ref
1480 * items in the tree are ordered.
1482 static noinline_for_stack
1483 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1484 struct btrfs_root
*root
,
1485 struct btrfs_path
*path
,
1486 struct btrfs_extent_inline_ref
**ref_ret
,
1487 u64 bytenr
, u64 num_bytes
,
1488 u64 parent
, u64 root_objectid
,
1489 u64 owner
, u64 offset
, int insert
)
1491 struct btrfs_key key
;
1492 struct extent_buffer
*leaf
;
1493 struct btrfs_extent_item
*ei
;
1494 struct btrfs_extent_inline_ref
*iref
;
1504 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
1507 key
.objectid
= bytenr
;
1508 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1509 key
.offset
= num_bytes
;
1511 want
= extent_ref_type(parent
, owner
);
1513 extra_size
= btrfs_extent_inline_ref_size(want
);
1514 path
->keep_locks
= 1;
1519 * Owner is our parent level, so we can just add one to get the level
1520 * for the block we are interested in.
1522 if (skinny_metadata
&& owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1523 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1528 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
1535 * We may be a newly converted file system which still has the old fat
1536 * extent entries for metadata, so try and see if we have one of those.
1538 if (ret
> 0 && skinny_metadata
) {
1539 skinny_metadata
= false;
1540 if (path
->slots
[0]) {
1542 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1544 if (key
.objectid
== bytenr
&&
1545 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
1546 key
.offset
== num_bytes
)
1550 key
.objectid
= bytenr
;
1551 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1552 key
.offset
= num_bytes
;
1553 btrfs_release_path(path
);
1558 if (ret
&& !insert
) {
1561 } else if (WARN_ON(ret
)) {
1566 leaf
= path
->nodes
[0];
1567 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1568 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1569 if (item_size
< sizeof(*ei
)) {
1574 ret
= convert_extent_item_v0(trans
, root
, path
, owner
,
1580 leaf
= path
->nodes
[0];
1581 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1584 BUG_ON(item_size
< sizeof(*ei
));
1586 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1587 flags
= btrfs_extent_flags(leaf
, ei
);
1589 ptr
= (unsigned long)(ei
+ 1);
1590 end
= (unsigned long)ei
+ item_size
;
1592 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
&& !skinny_metadata
) {
1593 ptr
+= sizeof(struct btrfs_tree_block_info
);
1603 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1604 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1608 ptr
+= btrfs_extent_inline_ref_size(type
);
1612 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1613 struct btrfs_extent_data_ref
*dref
;
1614 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1615 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
1620 if (hash_extent_data_ref_item(leaf
, dref
) <
1621 hash_extent_data_ref(root_objectid
, owner
, offset
))
1625 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
1627 if (parent
== ref_offset
) {
1631 if (ref_offset
< parent
)
1634 if (root_objectid
== ref_offset
) {
1638 if (ref_offset
< root_objectid
)
1642 ptr
+= btrfs_extent_inline_ref_size(type
);
1644 if (err
== -ENOENT
&& insert
) {
1645 if (item_size
+ extra_size
>=
1646 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
1651 * To add new inline back ref, we have to make sure
1652 * there is no corresponding back ref item.
1653 * For simplicity, we just do not add new inline back
1654 * ref if there is any kind of item for this block
1656 if (find_next_key(path
, 0, &key
) == 0 &&
1657 key
.objectid
== bytenr
&&
1658 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
1663 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
1666 path
->keep_locks
= 0;
1667 btrfs_unlock_up_safe(path
, 1);
1673 * helper to add new inline back ref
1675 static noinline_for_stack
1676 void setup_inline_extent_backref(struct btrfs_root
*root
,
1677 struct btrfs_path
*path
,
1678 struct btrfs_extent_inline_ref
*iref
,
1679 u64 parent
, u64 root_objectid
,
1680 u64 owner
, u64 offset
, int refs_to_add
,
1681 struct btrfs_delayed_extent_op
*extent_op
)
1683 struct extent_buffer
*leaf
;
1684 struct btrfs_extent_item
*ei
;
1687 unsigned long item_offset
;
1692 leaf
= path
->nodes
[0];
1693 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1694 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1696 type
= extent_ref_type(parent
, owner
);
1697 size
= btrfs_extent_inline_ref_size(type
);
1699 btrfs_extend_item(root
, path
, size
);
1701 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1702 refs
= btrfs_extent_refs(leaf
, ei
);
1703 refs
+= refs_to_add
;
1704 btrfs_set_extent_refs(leaf
, ei
, refs
);
1706 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1708 ptr
= (unsigned long)ei
+ item_offset
;
1709 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1710 if (ptr
< end
- size
)
1711 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1714 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1715 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1716 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1717 struct btrfs_extent_data_ref
*dref
;
1718 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1719 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1720 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1721 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1722 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1723 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1724 struct btrfs_shared_data_ref
*sref
;
1725 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1726 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1727 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1728 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1729 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1731 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1733 btrfs_mark_buffer_dirty(leaf
);
1736 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1737 struct btrfs_root
*root
,
1738 struct btrfs_path
*path
,
1739 struct btrfs_extent_inline_ref
**ref_ret
,
1740 u64 bytenr
, u64 num_bytes
, u64 parent
,
1741 u64 root_objectid
, u64 owner
, u64 offset
)
1745 ret
= lookup_inline_extent_backref(trans
, root
, path
, ref_ret
,
1746 bytenr
, num_bytes
, parent
,
1747 root_objectid
, owner
, offset
, 0);
1751 btrfs_release_path(path
);
1754 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1755 ret
= lookup_tree_block_ref(trans
, root
, path
, bytenr
, parent
,
1758 ret
= lookup_extent_data_ref(trans
, root
, path
, bytenr
, parent
,
1759 root_objectid
, owner
, offset
);
1765 * helper to update/remove inline back ref
1767 static noinline_for_stack
1768 void update_inline_extent_backref(struct btrfs_root
*root
,
1769 struct btrfs_path
*path
,
1770 struct btrfs_extent_inline_ref
*iref
,
1772 struct btrfs_delayed_extent_op
*extent_op
,
1775 struct extent_buffer
*leaf
;
1776 struct btrfs_extent_item
*ei
;
1777 struct btrfs_extent_data_ref
*dref
= NULL
;
1778 struct btrfs_shared_data_ref
*sref
= NULL
;
1786 leaf
= path
->nodes
[0];
1787 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1788 refs
= btrfs_extent_refs(leaf
, ei
);
1789 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1790 refs
+= refs_to_mod
;
1791 btrfs_set_extent_refs(leaf
, ei
, refs
);
1793 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1795 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1797 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1798 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1799 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1800 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1801 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1802 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1805 BUG_ON(refs_to_mod
!= -1);
1808 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1809 refs
+= refs_to_mod
;
1812 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1813 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1815 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1818 size
= btrfs_extent_inline_ref_size(type
);
1819 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1820 ptr
= (unsigned long)iref
;
1821 end
= (unsigned long)ei
+ item_size
;
1822 if (ptr
+ size
< end
)
1823 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1826 btrfs_truncate_item(root
, path
, item_size
, 1);
1828 btrfs_mark_buffer_dirty(leaf
);
1831 static noinline_for_stack
1832 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1833 struct btrfs_root
*root
,
1834 struct btrfs_path
*path
,
1835 u64 bytenr
, u64 num_bytes
, u64 parent
,
1836 u64 root_objectid
, u64 owner
,
1837 u64 offset
, int refs_to_add
,
1838 struct btrfs_delayed_extent_op
*extent_op
)
1840 struct btrfs_extent_inline_ref
*iref
;
1843 ret
= lookup_inline_extent_backref(trans
, root
, path
, &iref
,
1844 bytenr
, num_bytes
, parent
,
1845 root_objectid
, owner
, offset
, 1);
1847 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
);
1848 update_inline_extent_backref(root
, path
, iref
,
1849 refs_to_add
, extent_op
, NULL
);
1850 } else if (ret
== -ENOENT
) {
1851 setup_inline_extent_backref(root
, path
, iref
, parent
,
1852 root_objectid
, owner
, offset
,
1853 refs_to_add
, extent_op
);
1859 static int insert_extent_backref(struct btrfs_trans_handle
*trans
,
1860 struct btrfs_root
*root
,
1861 struct btrfs_path
*path
,
1862 u64 bytenr
, u64 parent
, u64 root_objectid
,
1863 u64 owner
, u64 offset
, int refs_to_add
)
1866 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1867 BUG_ON(refs_to_add
!= 1);
1868 ret
= insert_tree_block_ref(trans
, root
, path
, bytenr
,
1869 parent
, root_objectid
);
1871 ret
= insert_extent_data_ref(trans
, root
, path
, bytenr
,
1872 parent
, root_objectid
,
1873 owner
, offset
, refs_to_add
);
1878 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
1879 struct btrfs_root
*root
,
1880 struct btrfs_path
*path
,
1881 struct btrfs_extent_inline_ref
*iref
,
1882 int refs_to_drop
, int is_data
, int *last_ref
)
1886 BUG_ON(!is_data
&& refs_to_drop
!= 1);
1888 update_inline_extent_backref(root
, path
, iref
,
1889 -refs_to_drop
, NULL
, last_ref
);
1890 } else if (is_data
) {
1891 ret
= remove_extent_data_ref(trans
, root
, path
, refs_to_drop
,
1895 ret
= btrfs_del_item(trans
, root
, path
);
1900 static int btrfs_issue_discard(struct block_device
*bdev
,
1903 return blkdev_issue_discard(bdev
, start
>> 9, len
>> 9, GFP_NOFS
, 0);
1906 static int btrfs_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
1907 u64 num_bytes
, u64
*actual_bytes
)
1910 u64 discarded_bytes
= 0;
1911 struct btrfs_bio
*bbio
= NULL
;
1914 /* Tell the block device(s) that the sectors can be discarded */
1915 ret
= btrfs_map_block(root
->fs_info
, REQ_DISCARD
,
1916 bytenr
, &num_bytes
, &bbio
, 0);
1917 /* Error condition is -ENOMEM */
1919 struct btrfs_bio_stripe
*stripe
= bbio
->stripes
;
1923 for (i
= 0; i
< bbio
->num_stripes
; i
++, stripe
++) {
1924 if (!stripe
->dev
->can_discard
)
1927 ret
= btrfs_issue_discard(stripe
->dev
->bdev
,
1931 discarded_bytes
+= stripe
->length
;
1932 else if (ret
!= -EOPNOTSUPP
)
1933 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1936 * Just in case we get back EOPNOTSUPP for some reason,
1937 * just ignore the return value so we don't screw up
1938 * people calling discard_extent.
1946 *actual_bytes
= discarded_bytes
;
1949 if (ret
== -EOPNOTSUPP
)
1954 /* Can return -ENOMEM */
1955 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1956 struct btrfs_root
*root
,
1957 u64 bytenr
, u64 num_bytes
, u64 parent
,
1958 u64 root_objectid
, u64 owner
, u64 offset
,
1962 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1964 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
&&
1965 root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
1967 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1968 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
1970 parent
, root_objectid
, (int)owner
,
1971 BTRFS_ADD_DELAYED_REF
, NULL
, no_quota
);
1973 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
1975 parent
, root_objectid
, owner
, offset
,
1976 BTRFS_ADD_DELAYED_REF
, NULL
, no_quota
);
1981 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1982 struct btrfs_root
*root
,
1983 u64 bytenr
, u64 num_bytes
,
1984 u64 parent
, u64 root_objectid
,
1985 u64 owner
, u64 offset
, int refs_to_add
,
1987 struct btrfs_delayed_extent_op
*extent_op
)
1989 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1990 struct btrfs_path
*path
;
1991 struct extent_buffer
*leaf
;
1992 struct btrfs_extent_item
*item
;
1993 struct btrfs_key key
;
1996 enum btrfs_qgroup_operation_type type
= BTRFS_QGROUP_OPER_ADD_EXCL
;
1998 path
= btrfs_alloc_path();
2002 if (!is_fstree(root_objectid
) || !root
->fs_info
->quota_enabled
)
2006 path
->leave_spinning
= 1;
2007 /* this will setup the path even if it fails to insert the back ref */
2008 ret
= insert_inline_extent_backref(trans
, fs_info
->extent_root
, path
,
2009 bytenr
, num_bytes
, parent
,
2010 root_objectid
, owner
, offset
,
2011 refs_to_add
, extent_op
);
2012 if ((ret
< 0 && ret
!= -EAGAIN
) || (!ret
&& no_quota
))
2015 * Ok we were able to insert an inline extent and it appears to be a new
2016 * reference, deal with the qgroup accounting.
2018 if (!ret
&& !no_quota
) {
2019 ASSERT(root
->fs_info
->quota_enabled
);
2020 leaf
= path
->nodes
[0];
2021 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2022 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2023 struct btrfs_extent_item
);
2024 if (btrfs_extent_refs(leaf
, item
) > (u64
)refs_to_add
)
2025 type
= BTRFS_QGROUP_OPER_ADD_SHARED
;
2026 btrfs_release_path(path
);
2028 ret
= btrfs_qgroup_record_ref(trans
, fs_info
, root_objectid
,
2029 bytenr
, num_bytes
, type
, 0);
2034 * Ok we had -EAGAIN which means we didn't have space to insert and
2035 * inline extent ref, so just update the reference count and add a
2038 leaf
= path
->nodes
[0];
2039 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2040 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2041 refs
= btrfs_extent_refs(leaf
, item
);
2043 type
= BTRFS_QGROUP_OPER_ADD_SHARED
;
2044 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
2046 __run_delayed_extent_op(extent_op
, leaf
, item
);
2048 btrfs_mark_buffer_dirty(leaf
);
2049 btrfs_release_path(path
);
2052 ret
= btrfs_qgroup_record_ref(trans
, fs_info
, root_objectid
,
2053 bytenr
, num_bytes
, type
, 0);
2059 path
->leave_spinning
= 1;
2060 /* now insert the actual backref */
2061 ret
= insert_extent_backref(trans
, root
->fs_info
->extent_root
,
2062 path
, bytenr
, parent
, root_objectid
,
2063 owner
, offset
, refs_to_add
);
2065 btrfs_abort_transaction(trans
, root
, ret
);
2067 btrfs_free_path(path
);
2071 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
2072 struct btrfs_root
*root
,
2073 struct btrfs_delayed_ref_node
*node
,
2074 struct btrfs_delayed_extent_op
*extent_op
,
2075 int insert_reserved
)
2078 struct btrfs_delayed_data_ref
*ref
;
2079 struct btrfs_key ins
;
2084 ins
.objectid
= node
->bytenr
;
2085 ins
.offset
= node
->num_bytes
;
2086 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2088 ref
= btrfs_delayed_node_to_data_ref(node
);
2089 trace_run_delayed_data_ref(node
, ref
, node
->action
);
2091 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2092 parent
= ref
->parent
;
2093 ref_root
= ref
->root
;
2095 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2097 flags
|= extent_op
->flags_to_set
;
2098 ret
= alloc_reserved_file_extent(trans
, root
,
2099 parent
, ref_root
, flags
,
2100 ref
->objectid
, ref
->offset
,
2101 &ins
, node
->ref_mod
);
2102 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2103 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
2104 node
->num_bytes
, parent
,
2105 ref_root
, ref
->objectid
,
2106 ref
->offset
, node
->ref_mod
,
2107 node
->no_quota
, extent_op
);
2108 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2109 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
2110 node
->num_bytes
, parent
,
2111 ref_root
, ref
->objectid
,
2112 ref
->offset
, node
->ref_mod
,
2113 extent_op
, node
->no_quota
);
2120 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
2121 struct extent_buffer
*leaf
,
2122 struct btrfs_extent_item
*ei
)
2124 u64 flags
= btrfs_extent_flags(leaf
, ei
);
2125 if (extent_op
->update_flags
) {
2126 flags
|= extent_op
->flags_to_set
;
2127 btrfs_set_extent_flags(leaf
, ei
, flags
);
2130 if (extent_op
->update_key
) {
2131 struct btrfs_tree_block_info
*bi
;
2132 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
2133 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
2134 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
2138 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
2139 struct btrfs_root
*root
,
2140 struct btrfs_delayed_ref_node
*node
,
2141 struct btrfs_delayed_extent_op
*extent_op
)
2143 struct btrfs_key key
;
2144 struct btrfs_path
*path
;
2145 struct btrfs_extent_item
*ei
;
2146 struct extent_buffer
*leaf
;
2150 int metadata
= !extent_op
->is_data
;
2155 if (metadata
&& !btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
))
2158 path
= btrfs_alloc_path();
2162 key
.objectid
= node
->bytenr
;
2165 key
.type
= BTRFS_METADATA_ITEM_KEY
;
2166 key
.offset
= extent_op
->level
;
2168 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2169 key
.offset
= node
->num_bytes
;
2174 path
->leave_spinning
= 1;
2175 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
, &key
,
2183 if (path
->slots
[0] > 0) {
2185 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
2187 if (key
.objectid
== node
->bytenr
&&
2188 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
2189 key
.offset
== node
->num_bytes
)
2193 btrfs_release_path(path
);
2196 key
.objectid
= node
->bytenr
;
2197 key
.offset
= node
->num_bytes
;
2198 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2207 leaf
= path
->nodes
[0];
2208 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2209 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2210 if (item_size
< sizeof(*ei
)) {
2211 ret
= convert_extent_item_v0(trans
, root
->fs_info
->extent_root
,
2217 leaf
= path
->nodes
[0];
2218 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2221 BUG_ON(item_size
< sizeof(*ei
));
2222 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2223 __run_delayed_extent_op(extent_op
, leaf
, ei
);
2225 btrfs_mark_buffer_dirty(leaf
);
2227 btrfs_free_path(path
);
2231 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
2232 struct btrfs_root
*root
,
2233 struct btrfs_delayed_ref_node
*node
,
2234 struct btrfs_delayed_extent_op
*extent_op
,
2235 int insert_reserved
)
2238 struct btrfs_delayed_tree_ref
*ref
;
2239 struct btrfs_key ins
;
2242 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
2245 ref
= btrfs_delayed_node_to_tree_ref(node
);
2246 trace_run_delayed_tree_ref(node
, ref
, node
->action
);
2248 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2249 parent
= ref
->parent
;
2250 ref_root
= ref
->root
;
2252 ins
.objectid
= node
->bytenr
;
2253 if (skinny_metadata
) {
2254 ins
.offset
= ref
->level
;
2255 ins
.type
= BTRFS_METADATA_ITEM_KEY
;
2257 ins
.offset
= node
->num_bytes
;
2258 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2261 BUG_ON(node
->ref_mod
!= 1);
2262 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2263 BUG_ON(!extent_op
|| !extent_op
->update_flags
);
2264 ret
= alloc_reserved_tree_block(trans
, root
,
2266 extent_op
->flags_to_set
,
2270 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2271 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
2272 node
->num_bytes
, parent
, ref_root
,
2273 ref
->level
, 0, 1, node
->no_quota
,
2275 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2276 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
2277 node
->num_bytes
, parent
, ref_root
,
2278 ref
->level
, 0, 1, extent_op
,
2286 /* helper function to actually process a single delayed ref entry */
2287 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
2288 struct btrfs_root
*root
,
2289 struct btrfs_delayed_ref_node
*node
,
2290 struct btrfs_delayed_extent_op
*extent_op
,
2291 int insert_reserved
)
2295 if (trans
->aborted
) {
2296 if (insert_reserved
)
2297 btrfs_pin_extent(root
, node
->bytenr
,
2298 node
->num_bytes
, 1);
2302 if (btrfs_delayed_ref_is_head(node
)) {
2303 struct btrfs_delayed_ref_head
*head
;
2305 * we've hit the end of the chain and we were supposed
2306 * to insert this extent into the tree. But, it got
2307 * deleted before we ever needed to insert it, so all
2308 * we have to do is clean up the accounting
2311 head
= btrfs_delayed_node_to_head(node
);
2312 trace_run_delayed_ref_head(node
, head
, node
->action
);
2314 if (insert_reserved
) {
2315 btrfs_pin_extent(root
, node
->bytenr
,
2316 node
->num_bytes
, 1);
2317 if (head
->is_data
) {
2318 ret
= btrfs_del_csums(trans
, root
,
2326 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
2327 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2328 ret
= run_delayed_tree_ref(trans
, root
, node
, extent_op
,
2330 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
2331 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2332 ret
= run_delayed_data_ref(trans
, root
, node
, extent_op
,
2339 static noinline
struct btrfs_delayed_ref_node
*
2340 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
2342 struct rb_node
*node
;
2343 struct btrfs_delayed_ref_node
*ref
, *last
= NULL
;;
2346 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2347 * this prevents ref count from going down to zero when
2348 * there still are pending delayed ref.
2350 node
= rb_first(&head
->ref_root
);
2352 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
2354 if (ref
->action
== BTRFS_ADD_DELAYED_REF
)
2356 else if (last
== NULL
)
2358 node
= rb_next(node
);
2364 * Returns 0 on success or if called with an already aborted transaction.
2365 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2367 static noinline
int __btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2368 struct btrfs_root
*root
,
2371 struct btrfs_delayed_ref_root
*delayed_refs
;
2372 struct btrfs_delayed_ref_node
*ref
;
2373 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
2374 struct btrfs_delayed_extent_op
*extent_op
;
2375 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2376 ktime_t start
= ktime_get();
2378 unsigned long count
= 0;
2379 unsigned long actual_count
= 0;
2380 int must_insert_reserved
= 0;
2382 delayed_refs
= &trans
->transaction
->delayed_refs
;
2388 spin_lock(&delayed_refs
->lock
);
2389 locked_ref
= btrfs_select_ref_head(trans
);
2391 spin_unlock(&delayed_refs
->lock
);
2395 /* grab the lock that says we are going to process
2396 * all the refs for this head */
2397 ret
= btrfs_delayed_ref_lock(trans
, locked_ref
);
2398 spin_unlock(&delayed_refs
->lock
);
2400 * we may have dropped the spin lock to get the head
2401 * mutex lock, and that might have given someone else
2402 * time to free the head. If that's true, it has been
2403 * removed from our list and we can move on.
2405 if (ret
== -EAGAIN
) {
2413 * We need to try and merge add/drops of the same ref since we
2414 * can run into issues with relocate dropping the implicit ref
2415 * and then it being added back again before the drop can
2416 * finish. If we merged anything we need to re-loop so we can
2419 spin_lock(&locked_ref
->lock
);
2420 btrfs_merge_delayed_refs(trans
, fs_info
, delayed_refs
,
2424 * locked_ref is the head node, so we have to go one
2425 * node back for any delayed ref updates
2427 ref
= select_delayed_ref(locked_ref
);
2429 if (ref
&& ref
->seq
&&
2430 btrfs_check_delayed_seq(fs_info
, delayed_refs
, ref
->seq
)) {
2431 spin_unlock(&locked_ref
->lock
);
2432 btrfs_delayed_ref_unlock(locked_ref
);
2433 spin_lock(&delayed_refs
->lock
);
2434 locked_ref
->processing
= 0;
2435 delayed_refs
->num_heads_ready
++;
2436 spin_unlock(&delayed_refs
->lock
);
2444 * record the must insert reserved flag before we
2445 * drop the spin lock.
2447 must_insert_reserved
= locked_ref
->must_insert_reserved
;
2448 locked_ref
->must_insert_reserved
= 0;
2450 extent_op
= locked_ref
->extent_op
;
2451 locked_ref
->extent_op
= NULL
;
2456 /* All delayed refs have been processed, Go ahead
2457 * and send the head node to run_one_delayed_ref,
2458 * so that any accounting fixes can happen
2460 ref
= &locked_ref
->node
;
2462 if (extent_op
&& must_insert_reserved
) {
2463 btrfs_free_delayed_extent_op(extent_op
);
2468 spin_unlock(&locked_ref
->lock
);
2469 ret
= run_delayed_extent_op(trans
, root
,
2471 btrfs_free_delayed_extent_op(extent_op
);
2475 * Need to reset must_insert_reserved if
2476 * there was an error so the abort stuff
2477 * can cleanup the reserved space
2480 if (must_insert_reserved
)
2481 locked_ref
->must_insert_reserved
= 1;
2482 locked_ref
->processing
= 0;
2483 btrfs_debug(fs_info
, "run_delayed_extent_op returned %d", ret
);
2484 btrfs_delayed_ref_unlock(locked_ref
);
2491 * Need to drop our head ref lock and re-aqcuire the
2492 * delayed ref lock and then re-check to make sure
2495 spin_unlock(&locked_ref
->lock
);
2496 spin_lock(&delayed_refs
->lock
);
2497 spin_lock(&locked_ref
->lock
);
2498 if (rb_first(&locked_ref
->ref_root
) ||
2499 locked_ref
->extent_op
) {
2500 spin_unlock(&locked_ref
->lock
);
2501 spin_unlock(&delayed_refs
->lock
);
2505 delayed_refs
->num_heads
--;
2506 rb_erase(&locked_ref
->href_node
,
2507 &delayed_refs
->href_root
);
2508 spin_unlock(&delayed_refs
->lock
);
2512 rb_erase(&ref
->rb_node
, &locked_ref
->ref_root
);
2514 atomic_dec(&delayed_refs
->num_entries
);
2516 if (!btrfs_delayed_ref_is_head(ref
)) {
2518 * when we play the delayed ref, also correct the
2521 switch (ref
->action
) {
2522 case BTRFS_ADD_DELAYED_REF
:
2523 case BTRFS_ADD_DELAYED_EXTENT
:
2524 locked_ref
->node
.ref_mod
-= ref
->ref_mod
;
2526 case BTRFS_DROP_DELAYED_REF
:
2527 locked_ref
->node
.ref_mod
+= ref
->ref_mod
;
2533 spin_unlock(&locked_ref
->lock
);
2535 ret
= run_one_delayed_ref(trans
, root
, ref
, extent_op
,
2536 must_insert_reserved
);
2538 btrfs_free_delayed_extent_op(extent_op
);
2540 locked_ref
->processing
= 0;
2541 btrfs_delayed_ref_unlock(locked_ref
);
2542 btrfs_put_delayed_ref(ref
);
2543 btrfs_debug(fs_info
, "run_one_delayed_ref returned %d", ret
);
2548 * If this node is a head, that means all the refs in this head
2549 * have been dealt with, and we will pick the next head to deal
2550 * with, so we must unlock the head and drop it from the cluster
2551 * list before we release it.
2553 if (btrfs_delayed_ref_is_head(ref
)) {
2554 btrfs_delayed_ref_unlock(locked_ref
);
2557 btrfs_put_delayed_ref(ref
);
2563 * We don't want to include ref heads since we can have empty ref heads
2564 * and those will drastically skew our runtime down since we just do
2565 * accounting, no actual extent tree updates.
2567 if (actual_count
> 0) {
2568 u64 runtime
= ktime_to_ns(ktime_sub(ktime_get(), start
));
2572 * We weigh the current average higher than our current runtime
2573 * to avoid large swings in the average.
2575 spin_lock(&delayed_refs
->lock
);
2576 avg
= fs_info
->avg_delayed_ref_runtime
* 3 + runtime
;
2577 avg
= div64_u64(avg
, 4);
2578 fs_info
->avg_delayed_ref_runtime
= avg
;
2579 spin_unlock(&delayed_refs
->lock
);
2584 #ifdef SCRAMBLE_DELAYED_REFS
2586 * Normally delayed refs get processed in ascending bytenr order. This
2587 * correlates in most cases to the order added. To expose dependencies on this
2588 * order, we start to process the tree in the middle instead of the beginning
2590 static u64
find_middle(struct rb_root
*root
)
2592 struct rb_node
*n
= root
->rb_node
;
2593 struct btrfs_delayed_ref_node
*entry
;
2596 u64 first
= 0, last
= 0;
2600 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2601 first
= entry
->bytenr
;
2605 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2606 last
= entry
->bytenr
;
2611 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2612 WARN_ON(!entry
->in_tree
);
2614 middle
= entry
->bytenr
;
2627 static inline u64
heads_to_leaves(struct btrfs_root
*root
, u64 heads
)
2631 num_bytes
= heads
* (sizeof(struct btrfs_extent_item
) +
2632 sizeof(struct btrfs_extent_inline_ref
));
2633 if (!btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
))
2634 num_bytes
+= heads
* sizeof(struct btrfs_tree_block_info
);
2637 * We don't ever fill up leaves all the way so multiply by 2 just to be
2638 * closer to what we're really going to want to ouse.
2640 return div64_u64(num_bytes
, BTRFS_LEAF_DATA_SIZE(root
));
2643 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle
*trans
,
2644 struct btrfs_root
*root
)
2646 struct btrfs_block_rsv
*global_rsv
;
2647 u64 num_heads
= trans
->transaction
->delayed_refs
.num_heads_ready
;
2651 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
2652 num_heads
= heads_to_leaves(root
, num_heads
);
2654 num_bytes
+= (num_heads
- 1) * root
->leafsize
;
2656 global_rsv
= &root
->fs_info
->global_block_rsv
;
2659 * If we can't allocate any more chunks lets make sure we have _lots_ of
2660 * wiggle room since running delayed refs can create more delayed refs.
2662 if (global_rsv
->space_info
->full
)
2665 spin_lock(&global_rsv
->lock
);
2666 if (global_rsv
->reserved
<= num_bytes
)
2668 spin_unlock(&global_rsv
->lock
);
2672 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle
*trans
,
2673 struct btrfs_root
*root
)
2675 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2677 atomic_read(&trans
->transaction
->delayed_refs
.num_entries
);
2682 avg_runtime
= fs_info
->avg_delayed_ref_runtime
;
2683 val
= num_entries
* avg_runtime
;
2684 if (num_entries
* avg_runtime
>= NSEC_PER_SEC
)
2686 if (val
>= NSEC_PER_SEC
/ 2)
2689 return btrfs_check_space_for_delayed_refs(trans
, root
);
2692 struct async_delayed_refs
{
2693 struct btrfs_root
*root
;
2697 struct completion wait
;
2698 struct btrfs_work work
;
2701 static void delayed_ref_async_start(struct btrfs_work
*work
)
2703 struct async_delayed_refs
*async
;
2704 struct btrfs_trans_handle
*trans
;
2707 async
= container_of(work
, struct async_delayed_refs
, work
);
2709 trans
= btrfs_join_transaction(async
->root
);
2710 if (IS_ERR(trans
)) {
2711 async
->error
= PTR_ERR(trans
);
2716 * trans->sync means that when we call end_transaciton, we won't
2717 * wait on delayed refs
2720 ret
= btrfs_run_delayed_refs(trans
, async
->root
, async
->count
);
2724 ret
= btrfs_end_transaction(trans
, async
->root
);
2725 if (ret
&& !async
->error
)
2729 complete(&async
->wait
);
2734 int btrfs_async_run_delayed_refs(struct btrfs_root
*root
,
2735 unsigned long count
, int wait
)
2737 struct async_delayed_refs
*async
;
2740 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
2744 async
->root
= root
->fs_info
->tree_root
;
2745 async
->count
= count
;
2751 init_completion(&async
->wait
);
2753 btrfs_init_work(&async
->work
, btrfs_extent_refs_helper
,
2754 delayed_ref_async_start
, NULL
, NULL
);
2756 btrfs_queue_work(root
->fs_info
->extent_workers
, &async
->work
);
2759 wait_for_completion(&async
->wait
);
2768 * this starts processing the delayed reference count updates and
2769 * extent insertions we have queued up so far. count can be
2770 * 0, which means to process everything in the tree at the start
2771 * of the run (but not newly added entries), or it can be some target
2772 * number you'd like to process.
2774 * Returns 0 on success or if called with an aborted transaction
2775 * Returns <0 on error and aborts the transaction
2777 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2778 struct btrfs_root
*root
, unsigned long count
)
2780 struct rb_node
*node
;
2781 struct btrfs_delayed_ref_root
*delayed_refs
;
2782 struct btrfs_delayed_ref_head
*head
;
2784 int run_all
= count
== (unsigned long)-1;
2787 /* We'll clean this up in btrfs_cleanup_transaction */
2791 if (root
== root
->fs_info
->extent_root
)
2792 root
= root
->fs_info
->tree_root
;
2794 delayed_refs
= &trans
->transaction
->delayed_refs
;
2796 count
= atomic_read(&delayed_refs
->num_entries
) * 2;
2801 #ifdef SCRAMBLE_DELAYED_REFS
2802 delayed_refs
->run_delayed_start
= find_middle(&delayed_refs
->root
);
2804 ret
= __btrfs_run_delayed_refs(trans
, root
, count
);
2806 btrfs_abort_transaction(trans
, root
, ret
);
2811 if (!list_empty(&trans
->new_bgs
))
2812 btrfs_create_pending_block_groups(trans
, root
);
2814 spin_lock(&delayed_refs
->lock
);
2815 node
= rb_first(&delayed_refs
->href_root
);
2817 spin_unlock(&delayed_refs
->lock
);
2820 count
= (unsigned long)-1;
2823 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
2825 if (btrfs_delayed_ref_is_head(&head
->node
)) {
2826 struct btrfs_delayed_ref_node
*ref
;
2829 atomic_inc(&ref
->refs
);
2831 spin_unlock(&delayed_refs
->lock
);
2833 * Mutex was contended, block until it's
2834 * released and try again
2836 mutex_lock(&head
->mutex
);
2837 mutex_unlock(&head
->mutex
);
2839 btrfs_put_delayed_ref(ref
);
2845 node
= rb_next(node
);
2847 spin_unlock(&delayed_refs
->lock
);
2852 ret
= btrfs_delayed_qgroup_accounting(trans
, root
->fs_info
);
2855 assert_qgroups_uptodate(trans
);
2859 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
2860 struct btrfs_root
*root
,
2861 u64 bytenr
, u64 num_bytes
, u64 flags
,
2862 int level
, int is_data
)
2864 struct btrfs_delayed_extent_op
*extent_op
;
2867 extent_op
= btrfs_alloc_delayed_extent_op();
2871 extent_op
->flags_to_set
= flags
;
2872 extent_op
->update_flags
= 1;
2873 extent_op
->update_key
= 0;
2874 extent_op
->is_data
= is_data
? 1 : 0;
2875 extent_op
->level
= level
;
2877 ret
= btrfs_add_delayed_extent_op(root
->fs_info
, trans
, bytenr
,
2878 num_bytes
, extent_op
);
2880 btrfs_free_delayed_extent_op(extent_op
);
2884 static noinline
int check_delayed_ref(struct btrfs_trans_handle
*trans
,
2885 struct btrfs_root
*root
,
2886 struct btrfs_path
*path
,
2887 u64 objectid
, u64 offset
, u64 bytenr
)
2889 struct btrfs_delayed_ref_head
*head
;
2890 struct btrfs_delayed_ref_node
*ref
;
2891 struct btrfs_delayed_data_ref
*data_ref
;
2892 struct btrfs_delayed_ref_root
*delayed_refs
;
2893 struct rb_node
*node
;
2896 delayed_refs
= &trans
->transaction
->delayed_refs
;
2897 spin_lock(&delayed_refs
->lock
);
2898 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
2900 spin_unlock(&delayed_refs
->lock
);
2904 if (!mutex_trylock(&head
->mutex
)) {
2905 atomic_inc(&head
->node
.refs
);
2906 spin_unlock(&delayed_refs
->lock
);
2908 btrfs_release_path(path
);
2911 * Mutex was contended, block until it's released and let
2914 mutex_lock(&head
->mutex
);
2915 mutex_unlock(&head
->mutex
);
2916 btrfs_put_delayed_ref(&head
->node
);
2919 spin_unlock(&delayed_refs
->lock
);
2921 spin_lock(&head
->lock
);
2922 node
= rb_first(&head
->ref_root
);
2924 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2925 node
= rb_next(node
);
2927 /* If it's a shared ref we know a cross reference exists */
2928 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
) {
2933 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
2936 * If our ref doesn't match the one we're currently looking at
2937 * then we have a cross reference.
2939 if (data_ref
->root
!= root
->root_key
.objectid
||
2940 data_ref
->objectid
!= objectid
||
2941 data_ref
->offset
!= offset
) {
2946 spin_unlock(&head
->lock
);
2947 mutex_unlock(&head
->mutex
);
2951 static noinline
int check_committed_ref(struct btrfs_trans_handle
*trans
,
2952 struct btrfs_root
*root
,
2953 struct btrfs_path
*path
,
2954 u64 objectid
, u64 offset
, u64 bytenr
)
2956 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2957 struct extent_buffer
*leaf
;
2958 struct btrfs_extent_data_ref
*ref
;
2959 struct btrfs_extent_inline_ref
*iref
;
2960 struct btrfs_extent_item
*ei
;
2961 struct btrfs_key key
;
2965 key
.objectid
= bytenr
;
2966 key
.offset
= (u64
)-1;
2967 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2969 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
2972 BUG_ON(ret
== 0); /* Corruption */
2975 if (path
->slots
[0] == 0)
2979 leaf
= path
->nodes
[0];
2980 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2982 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
2986 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2987 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2988 if (item_size
< sizeof(*ei
)) {
2989 WARN_ON(item_size
!= sizeof(struct btrfs_extent_item_v0
));
2993 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2995 if (item_size
!= sizeof(*ei
) +
2996 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
2999 if (btrfs_extent_generation(leaf
, ei
) <=
3000 btrfs_root_last_snapshot(&root
->root_item
))
3003 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
3004 if (btrfs_extent_inline_ref_type(leaf
, iref
) !=
3005 BTRFS_EXTENT_DATA_REF_KEY
)
3008 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
3009 if (btrfs_extent_refs(leaf
, ei
) !=
3010 btrfs_extent_data_ref_count(leaf
, ref
) ||
3011 btrfs_extent_data_ref_root(leaf
, ref
) !=
3012 root
->root_key
.objectid
||
3013 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
3014 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
3022 int btrfs_cross_ref_exist(struct btrfs_trans_handle
*trans
,
3023 struct btrfs_root
*root
,
3024 u64 objectid
, u64 offset
, u64 bytenr
)
3026 struct btrfs_path
*path
;
3030 path
= btrfs_alloc_path();
3035 ret
= check_committed_ref(trans
, root
, path
, objectid
,
3037 if (ret
&& ret
!= -ENOENT
)
3040 ret2
= check_delayed_ref(trans
, root
, path
, objectid
,
3042 } while (ret2
== -EAGAIN
);
3044 if (ret2
&& ret2
!= -ENOENT
) {
3049 if (ret
!= -ENOENT
|| ret2
!= -ENOENT
)
3052 btrfs_free_path(path
);
3053 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
3058 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
3059 struct btrfs_root
*root
,
3060 struct extent_buffer
*buf
,
3061 int full_backref
, int inc
, int no_quota
)
3068 struct btrfs_key key
;
3069 struct btrfs_file_extent_item
*fi
;
3073 int (*process_func
)(struct btrfs_trans_handle
*, struct btrfs_root
*,
3074 u64
, u64
, u64
, u64
, u64
, u64
, int);
3076 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3077 if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT
, &root
->state
)))
3080 ref_root
= btrfs_header_owner(buf
);
3081 nritems
= btrfs_header_nritems(buf
);
3082 level
= btrfs_header_level(buf
);
3084 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) && level
== 0)
3088 process_func
= btrfs_inc_extent_ref
;
3090 process_func
= btrfs_free_extent
;
3093 parent
= buf
->start
;
3097 for (i
= 0; i
< nritems
; i
++) {
3099 btrfs_item_key_to_cpu(buf
, &key
, i
);
3100 if (btrfs_key_type(&key
) != BTRFS_EXTENT_DATA_KEY
)
3102 fi
= btrfs_item_ptr(buf
, i
,
3103 struct btrfs_file_extent_item
);
3104 if (btrfs_file_extent_type(buf
, fi
) ==
3105 BTRFS_FILE_EXTENT_INLINE
)
3107 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
3111 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
3112 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
3113 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
3114 parent
, ref_root
, key
.objectid
,
3115 key
.offset
, no_quota
);
3119 bytenr
= btrfs_node_blockptr(buf
, i
);
3120 num_bytes
= btrfs_level_size(root
, level
- 1);
3121 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
3122 parent
, ref_root
, level
- 1, 0,
3133 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3134 struct extent_buffer
*buf
, int full_backref
, int no_quota
)
3136 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1, no_quota
);
3139 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3140 struct extent_buffer
*buf
, int full_backref
, int no_quota
)
3142 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0, no_quota
);
3145 static int write_one_cache_group(struct btrfs_trans_handle
*trans
,
3146 struct btrfs_root
*root
,
3147 struct btrfs_path
*path
,
3148 struct btrfs_block_group_cache
*cache
)
3151 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
3153 struct extent_buffer
*leaf
;
3155 ret
= btrfs_search_slot(trans
, extent_root
, &cache
->key
, path
, 0, 1);
3158 BUG_ON(ret
); /* Corruption */
3160 leaf
= path
->nodes
[0];
3161 bi
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3162 write_extent_buffer(leaf
, &cache
->item
, bi
, sizeof(cache
->item
));
3163 btrfs_mark_buffer_dirty(leaf
);
3164 btrfs_release_path(path
);
3167 btrfs_abort_transaction(trans
, root
, ret
);
3174 static struct btrfs_block_group_cache
*
3175 next_block_group(struct btrfs_root
*root
,
3176 struct btrfs_block_group_cache
*cache
)
3178 struct rb_node
*node
;
3179 spin_lock(&root
->fs_info
->block_group_cache_lock
);
3180 node
= rb_next(&cache
->cache_node
);
3181 btrfs_put_block_group(cache
);
3183 cache
= rb_entry(node
, struct btrfs_block_group_cache
,
3185 btrfs_get_block_group(cache
);
3188 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
3192 static int cache_save_setup(struct btrfs_block_group_cache
*block_group
,
3193 struct btrfs_trans_handle
*trans
,
3194 struct btrfs_path
*path
)
3196 struct btrfs_root
*root
= block_group
->fs_info
->tree_root
;
3197 struct inode
*inode
= NULL
;
3199 int dcs
= BTRFS_DC_ERROR
;
3205 * If this block group is smaller than 100 megs don't bother caching the
3208 if (block_group
->key
.offset
< (100 * 1024 * 1024)) {
3209 spin_lock(&block_group
->lock
);
3210 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
3211 spin_unlock(&block_group
->lock
);
3216 inode
= lookup_free_space_inode(root
, block_group
, path
);
3217 if (IS_ERR(inode
) && PTR_ERR(inode
) != -ENOENT
) {
3218 ret
= PTR_ERR(inode
);
3219 btrfs_release_path(path
);
3223 if (IS_ERR(inode
)) {
3227 if (block_group
->ro
)
3230 ret
= create_free_space_inode(root
, trans
, block_group
, path
);
3236 /* We've already setup this transaction, go ahead and exit */
3237 if (block_group
->cache_generation
== trans
->transid
&&
3238 i_size_read(inode
)) {
3239 dcs
= BTRFS_DC_SETUP
;
3244 * We want to set the generation to 0, that way if anything goes wrong
3245 * from here on out we know not to trust this cache when we load up next
3248 BTRFS_I(inode
)->generation
= 0;
3249 ret
= btrfs_update_inode(trans
, root
, inode
);
3252 if (i_size_read(inode
) > 0) {
3253 ret
= btrfs_check_trunc_cache_free_space(root
,
3254 &root
->fs_info
->global_block_rsv
);
3258 ret
= btrfs_truncate_free_space_cache(root
, trans
, inode
);
3263 spin_lock(&block_group
->lock
);
3264 if (block_group
->cached
!= BTRFS_CACHE_FINISHED
||
3265 !btrfs_test_opt(root
, SPACE_CACHE
) ||
3266 block_group
->delalloc_bytes
) {
3268 * don't bother trying to write stuff out _if_
3269 * a) we're not cached,
3270 * b) we're with nospace_cache mount option.
3272 dcs
= BTRFS_DC_WRITTEN
;
3273 spin_unlock(&block_group
->lock
);
3276 spin_unlock(&block_group
->lock
);
3279 * Try to preallocate enough space based on how big the block group is.
3280 * Keep in mind this has to include any pinned space which could end up
3281 * taking up quite a bit since it's not folded into the other space
3284 num_pages
= (int)div64_u64(block_group
->key
.offset
, 256 * 1024 * 1024);
3289 num_pages
*= PAGE_CACHE_SIZE
;
3291 ret
= btrfs_check_data_free_space(inode
, num_pages
);
3295 ret
= btrfs_prealloc_file_range_trans(inode
, trans
, 0, 0, num_pages
,
3296 num_pages
, num_pages
,
3299 dcs
= BTRFS_DC_SETUP
;
3300 btrfs_free_reserved_data_space(inode
, num_pages
);
3305 btrfs_release_path(path
);
3307 spin_lock(&block_group
->lock
);
3308 if (!ret
&& dcs
== BTRFS_DC_SETUP
)
3309 block_group
->cache_generation
= trans
->transid
;
3310 block_group
->disk_cache_state
= dcs
;
3311 spin_unlock(&block_group
->lock
);
3316 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle
*trans
,
3317 struct btrfs_root
*root
)
3319 struct btrfs_block_group_cache
*cache
;
3321 struct btrfs_path
*path
;
3324 path
= btrfs_alloc_path();
3330 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
3332 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
)
3334 cache
= next_block_group(root
, cache
);
3342 err
= cache_save_setup(cache
, trans
, path
);
3343 last
= cache
->key
.objectid
+ cache
->key
.offset
;
3344 btrfs_put_block_group(cache
);
3349 err
= btrfs_run_delayed_refs(trans
, root
,
3351 if (err
) /* File system offline */
3355 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
3357 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
) {
3358 btrfs_put_block_group(cache
);
3364 cache
= next_block_group(root
, cache
);
3373 if (cache
->disk_cache_state
== BTRFS_DC_SETUP
)
3374 cache
->disk_cache_state
= BTRFS_DC_NEED_WRITE
;
3376 last
= cache
->key
.objectid
+ cache
->key
.offset
;
3378 err
= write_one_cache_group(trans
, root
, path
, cache
);
3379 btrfs_put_block_group(cache
);
3380 if (err
) /* File system offline */
3386 * I don't think this is needed since we're just marking our
3387 * preallocated extent as written, but just in case it can't
3391 err
= btrfs_run_delayed_refs(trans
, root
,
3393 if (err
) /* File system offline */
3397 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
3400 * Really this shouldn't happen, but it could if we
3401 * couldn't write the entire preallocated extent and
3402 * splitting the extent resulted in a new block.
3405 btrfs_put_block_group(cache
);
3408 if (cache
->disk_cache_state
== BTRFS_DC_NEED_WRITE
)
3410 cache
= next_block_group(root
, cache
);
3419 err
= btrfs_write_out_cache(root
, trans
, cache
, path
);
3422 * If we didn't have an error then the cache state is still
3423 * NEED_WRITE, so we can set it to WRITTEN.
3425 if (!err
&& cache
->disk_cache_state
== BTRFS_DC_NEED_WRITE
)
3426 cache
->disk_cache_state
= BTRFS_DC_WRITTEN
;
3427 last
= cache
->key
.objectid
+ cache
->key
.offset
;
3428 btrfs_put_block_group(cache
);
3432 btrfs_free_path(path
);
3436 int btrfs_extent_readonly(struct btrfs_root
*root
, u64 bytenr
)
3438 struct btrfs_block_group_cache
*block_group
;
3441 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
3442 if (!block_group
|| block_group
->ro
)
3445 btrfs_put_block_group(block_group
);
3449 static const char *alloc_name(u64 flags
)
3452 case BTRFS_BLOCK_GROUP_METADATA
|BTRFS_BLOCK_GROUP_DATA
:
3454 case BTRFS_BLOCK_GROUP_METADATA
:
3456 case BTRFS_BLOCK_GROUP_DATA
:
3458 case BTRFS_BLOCK_GROUP_SYSTEM
:
3462 return "invalid-combination";
3466 static int update_space_info(struct btrfs_fs_info
*info
, u64 flags
,
3467 u64 total_bytes
, u64 bytes_used
,
3468 struct btrfs_space_info
**space_info
)
3470 struct btrfs_space_info
*found
;
3475 if (flags
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3476 BTRFS_BLOCK_GROUP_RAID10
))
3481 found
= __find_space_info(info
, flags
);
3483 spin_lock(&found
->lock
);
3484 found
->total_bytes
+= total_bytes
;
3485 found
->disk_total
+= total_bytes
* factor
;
3486 found
->bytes_used
+= bytes_used
;
3487 found
->disk_used
+= bytes_used
* factor
;
3489 spin_unlock(&found
->lock
);
3490 *space_info
= found
;
3493 found
= kzalloc(sizeof(*found
), GFP_NOFS
);
3497 ret
= percpu_counter_init(&found
->total_bytes_pinned
, 0);
3503 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
3504 INIT_LIST_HEAD(&found
->block_groups
[i
]);
3505 init_rwsem(&found
->groups_sem
);
3506 spin_lock_init(&found
->lock
);
3507 found
->flags
= flags
& BTRFS_BLOCK_GROUP_TYPE_MASK
;
3508 found
->total_bytes
= total_bytes
;
3509 found
->disk_total
= total_bytes
* factor
;
3510 found
->bytes_used
= bytes_used
;
3511 found
->disk_used
= bytes_used
* factor
;
3512 found
->bytes_pinned
= 0;
3513 found
->bytes_reserved
= 0;
3514 found
->bytes_readonly
= 0;
3515 found
->bytes_may_use
= 0;
3517 found
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
3518 found
->chunk_alloc
= 0;
3520 init_waitqueue_head(&found
->wait
);
3522 ret
= kobject_init_and_add(&found
->kobj
, &space_info_ktype
,
3523 info
->space_info_kobj
, "%s",
3524 alloc_name(found
->flags
));
3530 *space_info
= found
;
3531 list_add_rcu(&found
->list
, &info
->space_info
);
3532 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3533 info
->data_sinfo
= found
;
3538 static void set_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
3540 u64 extra_flags
= chunk_to_extended(flags
) &
3541 BTRFS_EXTENDED_PROFILE_MASK
;
3543 write_seqlock(&fs_info
->profiles_lock
);
3544 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3545 fs_info
->avail_data_alloc_bits
|= extra_flags
;
3546 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
3547 fs_info
->avail_metadata_alloc_bits
|= extra_flags
;
3548 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
3549 fs_info
->avail_system_alloc_bits
|= extra_flags
;
3550 write_sequnlock(&fs_info
->profiles_lock
);
3554 * returns target flags in extended format or 0 if restripe for this
3555 * chunk_type is not in progress
3557 * should be called with either volume_mutex or balance_lock held
3559 static u64
get_restripe_target(struct btrfs_fs_info
*fs_info
, u64 flags
)
3561 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3567 if (flags
& BTRFS_BLOCK_GROUP_DATA
&&
3568 bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3569 target
= BTRFS_BLOCK_GROUP_DATA
| bctl
->data
.target
;
3570 } else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
&&
3571 bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3572 target
= BTRFS_BLOCK_GROUP_SYSTEM
| bctl
->sys
.target
;
3573 } else if (flags
& BTRFS_BLOCK_GROUP_METADATA
&&
3574 bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3575 target
= BTRFS_BLOCK_GROUP_METADATA
| bctl
->meta
.target
;
3582 * @flags: available profiles in extended format (see ctree.h)
3584 * Returns reduced profile in chunk format. If profile changing is in
3585 * progress (either running or paused) picks the target profile (if it's
3586 * already available), otherwise falls back to plain reducing.
3588 static u64
btrfs_reduce_alloc_profile(struct btrfs_root
*root
, u64 flags
)
3591 * we add in the count of missing devices because we want
3592 * to make sure that any RAID levels on a degraded FS
3593 * continue to be honored.
3595 u64 num_devices
= root
->fs_info
->fs_devices
->rw_devices
+
3596 root
->fs_info
->fs_devices
->missing_devices
;
3601 * see if restripe for this chunk_type is in progress, if so
3602 * try to reduce to the target profile
3604 spin_lock(&root
->fs_info
->balance_lock
);
3605 target
= get_restripe_target(root
->fs_info
, flags
);
3607 /* pick target profile only if it's already available */
3608 if ((flags
& target
) & BTRFS_EXTENDED_PROFILE_MASK
) {
3609 spin_unlock(&root
->fs_info
->balance_lock
);
3610 return extended_to_chunk(target
);
3613 spin_unlock(&root
->fs_info
->balance_lock
);
3615 /* First, mask out the RAID levels which aren't possible */
3616 if (num_devices
== 1)
3617 flags
&= ~(BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID0
|
3618 BTRFS_BLOCK_GROUP_RAID5
);
3619 if (num_devices
< 3)
3620 flags
&= ~BTRFS_BLOCK_GROUP_RAID6
;
3621 if (num_devices
< 4)
3622 flags
&= ~BTRFS_BLOCK_GROUP_RAID10
;
3624 tmp
= flags
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID0
|
3625 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID5
|
3626 BTRFS_BLOCK_GROUP_RAID6
| BTRFS_BLOCK_GROUP_RAID10
);
3629 if (tmp
& BTRFS_BLOCK_GROUP_RAID6
)
3630 tmp
= BTRFS_BLOCK_GROUP_RAID6
;
3631 else if (tmp
& BTRFS_BLOCK_GROUP_RAID5
)
3632 tmp
= BTRFS_BLOCK_GROUP_RAID5
;
3633 else if (tmp
& BTRFS_BLOCK_GROUP_RAID10
)
3634 tmp
= BTRFS_BLOCK_GROUP_RAID10
;
3635 else if (tmp
& BTRFS_BLOCK_GROUP_RAID1
)
3636 tmp
= BTRFS_BLOCK_GROUP_RAID1
;
3637 else if (tmp
& BTRFS_BLOCK_GROUP_RAID0
)
3638 tmp
= BTRFS_BLOCK_GROUP_RAID0
;
3640 return extended_to_chunk(flags
| tmp
);
3643 static u64
get_alloc_profile(struct btrfs_root
*root
, u64 orig_flags
)
3650 seq
= read_seqbegin(&root
->fs_info
->profiles_lock
);
3652 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3653 flags
|= root
->fs_info
->avail_data_alloc_bits
;
3654 else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
3655 flags
|= root
->fs_info
->avail_system_alloc_bits
;
3656 else if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
3657 flags
|= root
->fs_info
->avail_metadata_alloc_bits
;
3658 } while (read_seqretry(&root
->fs_info
->profiles_lock
, seq
));
3660 return btrfs_reduce_alloc_profile(root
, flags
);
3663 u64
btrfs_get_alloc_profile(struct btrfs_root
*root
, int data
)
3669 flags
= BTRFS_BLOCK_GROUP_DATA
;
3670 else if (root
== root
->fs_info
->chunk_root
)
3671 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
3673 flags
= BTRFS_BLOCK_GROUP_METADATA
;
3675 ret
= get_alloc_profile(root
, flags
);
3680 * This will check the space that the inode allocates from to make sure we have
3681 * enough space for bytes.
3683 int btrfs_check_data_free_space(struct inode
*inode
, u64 bytes
)
3685 struct btrfs_space_info
*data_sinfo
;
3686 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3687 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3689 int ret
= 0, committed
= 0, alloc_chunk
= 1;
3691 /* make sure bytes are sectorsize aligned */
3692 bytes
= ALIGN(bytes
, root
->sectorsize
);
3694 if (btrfs_is_free_space_inode(inode
)) {
3696 ASSERT(current
->journal_info
);
3699 data_sinfo
= fs_info
->data_sinfo
;
3704 /* make sure we have enough space to handle the data first */
3705 spin_lock(&data_sinfo
->lock
);
3706 used
= data_sinfo
->bytes_used
+ data_sinfo
->bytes_reserved
+
3707 data_sinfo
->bytes_pinned
+ data_sinfo
->bytes_readonly
+
3708 data_sinfo
->bytes_may_use
;
3710 if (used
+ bytes
> data_sinfo
->total_bytes
) {
3711 struct btrfs_trans_handle
*trans
;
3714 * if we don't have enough free bytes in this space then we need
3715 * to alloc a new chunk.
3717 if (!data_sinfo
->full
&& alloc_chunk
) {
3720 data_sinfo
->force_alloc
= CHUNK_ALLOC_FORCE
;
3721 spin_unlock(&data_sinfo
->lock
);
3723 alloc_target
= btrfs_get_alloc_profile(root
, 1);
3725 * It is ugly that we don't call nolock join
3726 * transaction for the free space inode case here.
3727 * But it is safe because we only do the data space
3728 * reservation for the free space cache in the
3729 * transaction context, the common join transaction
3730 * just increase the counter of the current transaction
3731 * handler, doesn't try to acquire the trans_lock of
3734 trans
= btrfs_join_transaction(root
);
3736 return PTR_ERR(trans
);
3738 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
3740 CHUNK_ALLOC_NO_FORCE
);
3741 btrfs_end_transaction(trans
, root
);
3750 data_sinfo
= fs_info
->data_sinfo
;
3756 * If we don't have enough pinned space to deal with this
3757 * allocation don't bother committing the transaction.
3759 if (percpu_counter_compare(&data_sinfo
->total_bytes_pinned
,
3762 spin_unlock(&data_sinfo
->lock
);
3764 /* commit the current transaction and try again */
3767 !atomic_read(&root
->fs_info
->open_ioctl_trans
)) {
3770 trans
= btrfs_join_transaction(root
);
3772 return PTR_ERR(trans
);
3773 ret
= btrfs_commit_transaction(trans
, root
);
3779 trace_btrfs_space_reservation(root
->fs_info
,
3780 "space_info:enospc",
3781 data_sinfo
->flags
, bytes
, 1);
3784 data_sinfo
->bytes_may_use
+= bytes
;
3785 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
3786 data_sinfo
->flags
, bytes
, 1);
3787 spin_unlock(&data_sinfo
->lock
);
3793 * Called if we need to clear a data reservation for this inode.
3795 void btrfs_free_reserved_data_space(struct inode
*inode
, u64 bytes
)
3797 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3798 struct btrfs_space_info
*data_sinfo
;
3800 /* make sure bytes are sectorsize aligned */
3801 bytes
= ALIGN(bytes
, root
->sectorsize
);
3803 data_sinfo
= root
->fs_info
->data_sinfo
;
3804 spin_lock(&data_sinfo
->lock
);
3805 WARN_ON(data_sinfo
->bytes_may_use
< bytes
);
3806 data_sinfo
->bytes_may_use
-= bytes
;
3807 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
3808 data_sinfo
->flags
, bytes
, 0);
3809 spin_unlock(&data_sinfo
->lock
);
3812 static void force_metadata_allocation(struct btrfs_fs_info
*info
)
3814 struct list_head
*head
= &info
->space_info
;
3815 struct btrfs_space_info
*found
;
3818 list_for_each_entry_rcu(found
, head
, list
) {
3819 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
3820 found
->force_alloc
= CHUNK_ALLOC_FORCE
;
3825 static inline u64
calc_global_rsv_need_space(struct btrfs_block_rsv
*global
)
3827 return (global
->size
<< 1);
3830 static int should_alloc_chunk(struct btrfs_root
*root
,
3831 struct btrfs_space_info
*sinfo
, int force
)
3833 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
3834 u64 num_bytes
= sinfo
->total_bytes
- sinfo
->bytes_readonly
;
3835 u64 num_allocated
= sinfo
->bytes_used
+ sinfo
->bytes_reserved
;
3838 if (force
== CHUNK_ALLOC_FORCE
)
3842 * We need to take into account the global rsv because for all intents
3843 * and purposes it's used space. Don't worry about locking the
3844 * global_rsv, it doesn't change except when the transaction commits.
3846 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
3847 num_allocated
+= calc_global_rsv_need_space(global_rsv
);
3850 * in limited mode, we want to have some free space up to
3851 * about 1% of the FS size.
3853 if (force
== CHUNK_ALLOC_LIMITED
) {
3854 thresh
= btrfs_super_total_bytes(root
->fs_info
->super_copy
);
3855 thresh
= max_t(u64
, 64 * 1024 * 1024,
3856 div_factor_fine(thresh
, 1));
3858 if (num_bytes
- num_allocated
< thresh
)
3862 if (num_allocated
+ 2 * 1024 * 1024 < div_factor(num_bytes
, 8))
3867 static u64
get_system_chunk_thresh(struct btrfs_root
*root
, u64 type
)
3871 if (type
& (BTRFS_BLOCK_GROUP_RAID10
|
3872 BTRFS_BLOCK_GROUP_RAID0
|
3873 BTRFS_BLOCK_GROUP_RAID5
|
3874 BTRFS_BLOCK_GROUP_RAID6
))
3875 num_dev
= root
->fs_info
->fs_devices
->rw_devices
;
3876 else if (type
& BTRFS_BLOCK_GROUP_RAID1
)
3879 num_dev
= 1; /* DUP or single */
3881 /* metadata for updaing devices and chunk tree */
3882 return btrfs_calc_trans_metadata_size(root
, num_dev
+ 1);
3885 static void check_system_chunk(struct btrfs_trans_handle
*trans
,
3886 struct btrfs_root
*root
, u64 type
)
3888 struct btrfs_space_info
*info
;
3892 info
= __find_space_info(root
->fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
3893 spin_lock(&info
->lock
);
3894 left
= info
->total_bytes
- info
->bytes_used
- info
->bytes_pinned
-
3895 info
->bytes_reserved
- info
->bytes_readonly
;
3896 spin_unlock(&info
->lock
);
3898 thresh
= get_system_chunk_thresh(root
, type
);
3899 if (left
< thresh
&& btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
3900 btrfs_info(root
->fs_info
, "left=%llu, need=%llu, flags=%llu",
3901 left
, thresh
, type
);
3902 dump_space_info(info
, 0, 0);
3905 if (left
< thresh
) {
3908 flags
= btrfs_get_alloc_profile(root
->fs_info
->chunk_root
, 0);
3909 btrfs_alloc_chunk(trans
, root
, flags
);
3913 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
3914 struct btrfs_root
*extent_root
, u64 flags
, int force
)
3916 struct btrfs_space_info
*space_info
;
3917 struct btrfs_fs_info
*fs_info
= extent_root
->fs_info
;
3918 int wait_for_alloc
= 0;
3921 /* Don't re-enter if we're already allocating a chunk */
3922 if (trans
->allocating_chunk
)
3925 space_info
= __find_space_info(extent_root
->fs_info
, flags
);
3927 ret
= update_space_info(extent_root
->fs_info
, flags
,
3929 BUG_ON(ret
); /* -ENOMEM */
3931 BUG_ON(!space_info
); /* Logic error */
3934 spin_lock(&space_info
->lock
);
3935 if (force
< space_info
->force_alloc
)
3936 force
= space_info
->force_alloc
;
3937 if (space_info
->full
) {
3938 if (should_alloc_chunk(extent_root
, space_info
, force
))
3942 spin_unlock(&space_info
->lock
);
3946 if (!should_alloc_chunk(extent_root
, space_info
, force
)) {
3947 spin_unlock(&space_info
->lock
);
3949 } else if (space_info
->chunk_alloc
) {
3952 space_info
->chunk_alloc
= 1;
3955 spin_unlock(&space_info
->lock
);
3957 mutex_lock(&fs_info
->chunk_mutex
);
3960 * The chunk_mutex is held throughout the entirety of a chunk
3961 * allocation, so once we've acquired the chunk_mutex we know that the
3962 * other guy is done and we need to recheck and see if we should
3965 if (wait_for_alloc
) {
3966 mutex_unlock(&fs_info
->chunk_mutex
);
3971 trans
->allocating_chunk
= true;
3974 * If we have mixed data/metadata chunks we want to make sure we keep
3975 * allocating mixed chunks instead of individual chunks.
3977 if (btrfs_mixed_space_info(space_info
))
3978 flags
|= (BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
);
3981 * if we're doing a data chunk, go ahead and make sure that
3982 * we keep a reasonable number of metadata chunks allocated in the
3985 if (flags
& BTRFS_BLOCK_GROUP_DATA
&& fs_info
->metadata_ratio
) {
3986 fs_info
->data_chunk_allocations
++;
3987 if (!(fs_info
->data_chunk_allocations
%
3988 fs_info
->metadata_ratio
))
3989 force_metadata_allocation(fs_info
);
3993 * Check if we have enough space in SYSTEM chunk because we may need
3994 * to update devices.
3996 check_system_chunk(trans
, extent_root
, flags
);
3998 ret
= btrfs_alloc_chunk(trans
, extent_root
, flags
);
3999 trans
->allocating_chunk
= false;
4001 spin_lock(&space_info
->lock
);
4002 if (ret
< 0 && ret
!= -ENOSPC
)
4005 space_info
->full
= 1;
4009 space_info
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
4011 space_info
->chunk_alloc
= 0;
4012 spin_unlock(&space_info
->lock
);
4013 mutex_unlock(&fs_info
->chunk_mutex
);
4017 static int can_overcommit(struct btrfs_root
*root
,
4018 struct btrfs_space_info
*space_info
, u64 bytes
,
4019 enum btrfs_reserve_flush_enum flush
)
4021 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
4022 u64 profile
= btrfs_get_alloc_profile(root
, 0);
4027 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4028 space_info
->bytes_pinned
+ space_info
->bytes_readonly
;
4031 * We only want to allow over committing if we have lots of actual space
4032 * free, but if we don't have enough space to handle the global reserve
4033 * space then we could end up having a real enospc problem when trying
4034 * to allocate a chunk or some other such important allocation.
4036 spin_lock(&global_rsv
->lock
);
4037 space_size
= calc_global_rsv_need_space(global_rsv
);
4038 spin_unlock(&global_rsv
->lock
);
4039 if (used
+ space_size
>= space_info
->total_bytes
)
4042 used
+= space_info
->bytes_may_use
;
4044 spin_lock(&root
->fs_info
->free_chunk_lock
);
4045 avail
= root
->fs_info
->free_chunk_space
;
4046 spin_unlock(&root
->fs_info
->free_chunk_lock
);
4049 * If we have dup, raid1 or raid10 then only half of the free
4050 * space is actually useable. For raid56, the space info used
4051 * doesn't include the parity drive, so we don't have to
4054 if (profile
& (BTRFS_BLOCK_GROUP_DUP
|
4055 BTRFS_BLOCK_GROUP_RAID1
|
4056 BTRFS_BLOCK_GROUP_RAID10
))
4060 * If we aren't flushing all things, let us overcommit up to
4061 * 1/2th of the space. If we can flush, don't let us overcommit
4062 * too much, let it overcommit up to 1/8 of the space.
4064 if (flush
== BTRFS_RESERVE_FLUSH_ALL
)
4069 if (used
+ bytes
< space_info
->total_bytes
+ avail
)
4074 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root
*root
,
4075 unsigned long nr_pages
, int nr_items
)
4077 struct super_block
*sb
= root
->fs_info
->sb
;
4079 if (down_read_trylock(&sb
->s_umount
)) {
4080 writeback_inodes_sb_nr(sb
, nr_pages
, WB_REASON_FS_FREE_SPACE
);
4081 up_read(&sb
->s_umount
);
4084 * We needn't worry the filesystem going from r/w to r/o though
4085 * we don't acquire ->s_umount mutex, because the filesystem
4086 * should guarantee the delalloc inodes list be empty after
4087 * the filesystem is readonly(all dirty pages are written to
4090 btrfs_start_delalloc_roots(root
->fs_info
, 0, nr_items
);
4091 if (!current
->journal_info
)
4092 btrfs_wait_ordered_roots(root
->fs_info
, nr_items
);
4096 static inline int calc_reclaim_items_nr(struct btrfs_root
*root
, u64 to_reclaim
)
4101 bytes
= btrfs_calc_trans_metadata_size(root
, 1);
4102 nr
= (int)div64_u64(to_reclaim
, bytes
);
4108 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4111 * shrink metadata reservation for delalloc
4113 static void shrink_delalloc(struct btrfs_root
*root
, u64 to_reclaim
, u64 orig
,
4116 struct btrfs_block_rsv
*block_rsv
;
4117 struct btrfs_space_info
*space_info
;
4118 struct btrfs_trans_handle
*trans
;
4122 unsigned long nr_pages
;
4125 enum btrfs_reserve_flush_enum flush
;
4127 /* Calc the number of the pages we need flush for space reservation */
4128 items
= calc_reclaim_items_nr(root
, to_reclaim
);
4129 to_reclaim
= items
* EXTENT_SIZE_PER_ITEM
;
4131 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4132 block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
4133 space_info
= block_rsv
->space_info
;
4135 delalloc_bytes
= percpu_counter_sum_positive(
4136 &root
->fs_info
->delalloc_bytes
);
4137 if (delalloc_bytes
== 0) {
4141 btrfs_wait_ordered_roots(root
->fs_info
, items
);
4146 while (delalloc_bytes
&& loops
< 3) {
4147 max_reclaim
= min(delalloc_bytes
, to_reclaim
);
4148 nr_pages
= max_reclaim
>> PAGE_CACHE_SHIFT
;
4149 btrfs_writeback_inodes_sb_nr(root
, nr_pages
, items
);
4151 * We need to wait for the async pages to actually start before
4154 max_reclaim
= atomic_read(&root
->fs_info
->async_delalloc_pages
);
4158 if (max_reclaim
<= nr_pages
)
4161 max_reclaim
-= nr_pages
;
4163 wait_event(root
->fs_info
->async_submit_wait
,
4164 atomic_read(&root
->fs_info
->async_delalloc_pages
) <=
4168 flush
= BTRFS_RESERVE_FLUSH_ALL
;
4170 flush
= BTRFS_RESERVE_NO_FLUSH
;
4171 spin_lock(&space_info
->lock
);
4172 if (can_overcommit(root
, space_info
, orig
, flush
)) {
4173 spin_unlock(&space_info
->lock
);
4176 spin_unlock(&space_info
->lock
);
4179 if (wait_ordered
&& !trans
) {
4180 btrfs_wait_ordered_roots(root
->fs_info
, items
);
4182 time_left
= schedule_timeout_killable(1);
4186 delalloc_bytes
= percpu_counter_sum_positive(
4187 &root
->fs_info
->delalloc_bytes
);
4192 * maybe_commit_transaction - possibly commit the transaction if its ok to
4193 * @root - the root we're allocating for
4194 * @bytes - the number of bytes we want to reserve
4195 * @force - force the commit
4197 * This will check to make sure that committing the transaction will actually
4198 * get us somewhere and then commit the transaction if it does. Otherwise it
4199 * will return -ENOSPC.
4201 static int may_commit_transaction(struct btrfs_root
*root
,
4202 struct btrfs_space_info
*space_info
,
4203 u64 bytes
, int force
)
4205 struct btrfs_block_rsv
*delayed_rsv
= &root
->fs_info
->delayed_block_rsv
;
4206 struct btrfs_trans_handle
*trans
;
4208 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4215 /* See if there is enough pinned space to make this reservation */
4216 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4221 * See if there is some space in the delayed insertion reservation for
4224 if (space_info
!= delayed_rsv
->space_info
)
4227 spin_lock(&delayed_rsv
->lock
);
4228 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4229 bytes
- delayed_rsv
->size
) >= 0) {
4230 spin_unlock(&delayed_rsv
->lock
);
4233 spin_unlock(&delayed_rsv
->lock
);
4236 trans
= btrfs_join_transaction(root
);
4240 return btrfs_commit_transaction(trans
, root
);
4244 FLUSH_DELAYED_ITEMS_NR
= 1,
4245 FLUSH_DELAYED_ITEMS
= 2,
4247 FLUSH_DELALLOC_WAIT
= 4,
4252 static int flush_space(struct btrfs_root
*root
,
4253 struct btrfs_space_info
*space_info
, u64 num_bytes
,
4254 u64 orig_bytes
, int state
)
4256 struct btrfs_trans_handle
*trans
;
4261 case FLUSH_DELAYED_ITEMS_NR
:
4262 case FLUSH_DELAYED_ITEMS
:
4263 if (state
== FLUSH_DELAYED_ITEMS_NR
)
4264 nr
= calc_reclaim_items_nr(root
, num_bytes
) * 2;
4268 trans
= btrfs_join_transaction(root
);
4269 if (IS_ERR(trans
)) {
4270 ret
= PTR_ERR(trans
);
4273 ret
= btrfs_run_delayed_items_nr(trans
, root
, nr
);
4274 btrfs_end_transaction(trans
, root
);
4276 case FLUSH_DELALLOC
:
4277 case FLUSH_DELALLOC_WAIT
:
4278 shrink_delalloc(root
, num_bytes
* 2, orig_bytes
,
4279 state
== FLUSH_DELALLOC_WAIT
);
4282 trans
= btrfs_join_transaction(root
);
4283 if (IS_ERR(trans
)) {
4284 ret
= PTR_ERR(trans
);
4287 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
4288 btrfs_get_alloc_profile(root
, 0),
4289 CHUNK_ALLOC_NO_FORCE
);
4290 btrfs_end_transaction(trans
, root
);
4295 ret
= may_commit_transaction(root
, space_info
, orig_bytes
, 0);
4306 btrfs_calc_reclaim_metadata_size(struct btrfs_root
*root
,
4307 struct btrfs_space_info
*space_info
)
4313 to_reclaim
= min_t(u64
, num_online_cpus() * 1024 * 1024,
4315 spin_lock(&space_info
->lock
);
4316 if (can_overcommit(root
, space_info
, to_reclaim
,
4317 BTRFS_RESERVE_FLUSH_ALL
)) {
4322 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4323 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
4324 space_info
->bytes_may_use
;
4325 if (can_overcommit(root
, space_info
, 1024 * 1024,
4326 BTRFS_RESERVE_FLUSH_ALL
))
4327 expected
= div_factor_fine(space_info
->total_bytes
, 95);
4329 expected
= div_factor_fine(space_info
->total_bytes
, 90);
4331 if (used
> expected
)
4332 to_reclaim
= used
- expected
;
4335 to_reclaim
= min(to_reclaim
, space_info
->bytes_may_use
+
4336 space_info
->bytes_reserved
);
4338 spin_unlock(&space_info
->lock
);
4343 static inline int need_do_async_reclaim(struct btrfs_space_info
*space_info
,
4344 struct btrfs_fs_info
*fs_info
, u64 used
)
4346 return (used
>= div_factor_fine(space_info
->total_bytes
, 98) &&
4347 !btrfs_fs_closing(fs_info
) &&
4348 !test_bit(BTRFS_FS_STATE_REMOUNTING
, &fs_info
->fs_state
));
4351 static int btrfs_need_do_async_reclaim(struct btrfs_space_info
*space_info
,
4352 struct btrfs_fs_info
*fs_info
,
4357 spin_lock(&space_info
->lock
);
4359 * We run out of space and have not got any free space via flush_space,
4360 * so don't bother doing async reclaim.
4362 if (flush_state
> COMMIT_TRANS
&& space_info
->full
) {
4363 spin_unlock(&space_info
->lock
);
4367 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4368 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
4369 space_info
->bytes_may_use
;
4370 if (need_do_async_reclaim(space_info
, fs_info
, used
)) {
4371 spin_unlock(&space_info
->lock
);
4374 spin_unlock(&space_info
->lock
);
4379 static void btrfs_async_reclaim_metadata_space(struct work_struct
*work
)
4381 struct btrfs_fs_info
*fs_info
;
4382 struct btrfs_space_info
*space_info
;
4386 fs_info
= container_of(work
, struct btrfs_fs_info
, async_reclaim_work
);
4387 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
4389 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
->fs_root
,
4394 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
4396 flush_space(fs_info
->fs_root
, space_info
, to_reclaim
,
4397 to_reclaim
, flush_state
);
4399 if (!btrfs_need_do_async_reclaim(space_info
, fs_info
,
4402 } while (flush_state
<= COMMIT_TRANS
);
4404 if (btrfs_need_do_async_reclaim(space_info
, fs_info
, flush_state
))
4405 queue_work(system_unbound_wq
, work
);
4408 void btrfs_init_async_reclaim_work(struct work_struct
*work
)
4410 INIT_WORK(work
, btrfs_async_reclaim_metadata_space
);
4414 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4415 * @root - the root we're allocating for
4416 * @block_rsv - the block_rsv we're allocating for
4417 * @orig_bytes - the number of bytes we want
4418 * @flush - whether or not we can flush to make our reservation
4420 * This will reserve orgi_bytes number of bytes from the space info associated
4421 * with the block_rsv. If there is not enough space it will make an attempt to
4422 * flush out space to make room. It will do this by flushing delalloc if
4423 * possible or committing the transaction. If flush is 0 then no attempts to
4424 * regain reservations will be made and this will fail if there is not enough
4427 static int reserve_metadata_bytes(struct btrfs_root
*root
,
4428 struct btrfs_block_rsv
*block_rsv
,
4430 enum btrfs_reserve_flush_enum flush
)
4432 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
4434 u64 num_bytes
= orig_bytes
;
4435 int flush_state
= FLUSH_DELAYED_ITEMS_NR
;
4437 bool flushing
= false;
4441 spin_lock(&space_info
->lock
);
4443 * We only want to wait if somebody other than us is flushing and we
4444 * are actually allowed to flush all things.
4446 while (flush
== BTRFS_RESERVE_FLUSH_ALL
&& !flushing
&&
4447 space_info
->flush
) {
4448 spin_unlock(&space_info
->lock
);
4450 * If we have a trans handle we can't wait because the flusher
4451 * may have to commit the transaction, which would mean we would
4452 * deadlock since we are waiting for the flusher to finish, but
4453 * hold the current transaction open.
4455 if (current
->journal_info
)
4457 ret
= wait_event_killable(space_info
->wait
, !space_info
->flush
);
4458 /* Must have been killed, return */
4462 spin_lock(&space_info
->lock
);
4466 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4467 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
4468 space_info
->bytes_may_use
;
4471 * The idea here is that we've not already over-reserved the block group
4472 * then we can go ahead and save our reservation first and then start
4473 * flushing if we need to. Otherwise if we've already overcommitted
4474 * lets start flushing stuff first and then come back and try to make
4477 if (used
<= space_info
->total_bytes
) {
4478 if (used
+ orig_bytes
<= space_info
->total_bytes
) {
4479 space_info
->bytes_may_use
+= orig_bytes
;
4480 trace_btrfs_space_reservation(root
->fs_info
,
4481 "space_info", space_info
->flags
, orig_bytes
, 1);
4485 * Ok set num_bytes to orig_bytes since we aren't
4486 * overocmmitted, this way we only try and reclaim what
4489 num_bytes
= orig_bytes
;
4493 * Ok we're over committed, set num_bytes to the overcommitted
4494 * amount plus the amount of bytes that we need for this
4497 num_bytes
= used
- space_info
->total_bytes
+
4501 if (ret
&& can_overcommit(root
, space_info
, orig_bytes
, flush
)) {
4502 space_info
->bytes_may_use
+= orig_bytes
;
4503 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
4504 space_info
->flags
, orig_bytes
,
4510 * Couldn't make our reservation, save our place so while we're trying
4511 * to reclaim space we can actually use it instead of somebody else
4512 * stealing it from us.
4514 * We make the other tasks wait for the flush only when we can flush
4517 if (ret
&& flush
!= BTRFS_RESERVE_NO_FLUSH
) {
4519 space_info
->flush
= 1;
4520 } else if (!ret
&& space_info
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
4523 * We will do the space reservation dance during log replay,
4524 * which means we won't have fs_info->fs_root set, so don't do
4525 * the async reclaim as we will panic.
4527 if (!root
->fs_info
->log_root_recovering
&&
4528 need_do_async_reclaim(space_info
, root
->fs_info
, used
) &&
4529 !work_busy(&root
->fs_info
->async_reclaim_work
))
4530 queue_work(system_unbound_wq
,
4531 &root
->fs_info
->async_reclaim_work
);
4533 spin_unlock(&space_info
->lock
);
4535 if (!ret
|| flush
== BTRFS_RESERVE_NO_FLUSH
)
4538 ret
= flush_space(root
, space_info
, num_bytes
, orig_bytes
,
4543 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4544 * would happen. So skip delalloc flush.
4546 if (flush
== BTRFS_RESERVE_FLUSH_LIMIT
&&
4547 (flush_state
== FLUSH_DELALLOC
||
4548 flush_state
== FLUSH_DELALLOC_WAIT
))
4549 flush_state
= ALLOC_CHUNK
;
4553 else if (flush
== BTRFS_RESERVE_FLUSH_LIMIT
&&
4554 flush_state
< COMMIT_TRANS
)
4556 else if (flush
== BTRFS_RESERVE_FLUSH_ALL
&&
4557 flush_state
<= COMMIT_TRANS
)
4561 if (ret
== -ENOSPC
&&
4562 unlikely(root
->orphan_cleanup_state
== ORPHAN_CLEANUP_STARTED
)) {
4563 struct btrfs_block_rsv
*global_rsv
=
4564 &root
->fs_info
->global_block_rsv
;
4566 if (block_rsv
!= global_rsv
&&
4567 !block_rsv_use_bytes(global_rsv
, orig_bytes
))
4571 trace_btrfs_space_reservation(root
->fs_info
,
4572 "space_info:enospc",
4573 space_info
->flags
, orig_bytes
, 1);
4575 spin_lock(&space_info
->lock
);
4576 space_info
->flush
= 0;
4577 wake_up_all(&space_info
->wait
);
4578 spin_unlock(&space_info
->lock
);
4583 static struct btrfs_block_rsv
*get_block_rsv(
4584 const struct btrfs_trans_handle
*trans
,
4585 const struct btrfs_root
*root
)
4587 struct btrfs_block_rsv
*block_rsv
= NULL
;
4589 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4590 block_rsv
= trans
->block_rsv
;
4592 if (root
== root
->fs_info
->csum_root
&& trans
->adding_csums
)
4593 block_rsv
= trans
->block_rsv
;
4595 if (root
== root
->fs_info
->uuid_root
)
4596 block_rsv
= trans
->block_rsv
;
4599 block_rsv
= root
->block_rsv
;
4602 block_rsv
= &root
->fs_info
->empty_block_rsv
;
4607 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
4611 spin_lock(&block_rsv
->lock
);
4612 if (block_rsv
->reserved
>= num_bytes
) {
4613 block_rsv
->reserved
-= num_bytes
;
4614 if (block_rsv
->reserved
< block_rsv
->size
)
4615 block_rsv
->full
= 0;
4618 spin_unlock(&block_rsv
->lock
);
4622 static void block_rsv_add_bytes(struct btrfs_block_rsv
*block_rsv
,
4623 u64 num_bytes
, int update_size
)
4625 spin_lock(&block_rsv
->lock
);
4626 block_rsv
->reserved
+= num_bytes
;
4628 block_rsv
->size
+= num_bytes
;
4629 else if (block_rsv
->reserved
>= block_rsv
->size
)
4630 block_rsv
->full
= 1;
4631 spin_unlock(&block_rsv
->lock
);
4634 int btrfs_cond_migrate_bytes(struct btrfs_fs_info
*fs_info
,
4635 struct btrfs_block_rsv
*dest
, u64 num_bytes
,
4638 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
4641 if (global_rsv
->space_info
!= dest
->space_info
)
4644 spin_lock(&global_rsv
->lock
);
4645 min_bytes
= div_factor(global_rsv
->size
, min_factor
);
4646 if (global_rsv
->reserved
< min_bytes
+ num_bytes
) {
4647 spin_unlock(&global_rsv
->lock
);
4650 global_rsv
->reserved
-= num_bytes
;
4651 if (global_rsv
->reserved
< global_rsv
->size
)
4652 global_rsv
->full
= 0;
4653 spin_unlock(&global_rsv
->lock
);
4655 block_rsv_add_bytes(dest
, num_bytes
, 1);
4659 static void block_rsv_release_bytes(struct btrfs_fs_info
*fs_info
,
4660 struct btrfs_block_rsv
*block_rsv
,
4661 struct btrfs_block_rsv
*dest
, u64 num_bytes
)
4663 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
4665 spin_lock(&block_rsv
->lock
);
4666 if (num_bytes
== (u64
)-1)
4667 num_bytes
= block_rsv
->size
;
4668 block_rsv
->size
-= num_bytes
;
4669 if (block_rsv
->reserved
>= block_rsv
->size
) {
4670 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
4671 block_rsv
->reserved
= block_rsv
->size
;
4672 block_rsv
->full
= 1;
4676 spin_unlock(&block_rsv
->lock
);
4678 if (num_bytes
> 0) {
4680 spin_lock(&dest
->lock
);
4684 bytes_to_add
= dest
->size
- dest
->reserved
;
4685 bytes_to_add
= min(num_bytes
, bytes_to_add
);
4686 dest
->reserved
+= bytes_to_add
;
4687 if (dest
->reserved
>= dest
->size
)
4689 num_bytes
-= bytes_to_add
;
4691 spin_unlock(&dest
->lock
);
4694 spin_lock(&space_info
->lock
);
4695 space_info
->bytes_may_use
-= num_bytes
;
4696 trace_btrfs_space_reservation(fs_info
, "space_info",
4697 space_info
->flags
, num_bytes
, 0);
4698 spin_unlock(&space_info
->lock
);
4703 static int block_rsv_migrate_bytes(struct btrfs_block_rsv
*src
,
4704 struct btrfs_block_rsv
*dst
, u64 num_bytes
)
4708 ret
= block_rsv_use_bytes(src
, num_bytes
);
4712 block_rsv_add_bytes(dst
, num_bytes
, 1);
4716 void btrfs_init_block_rsv(struct btrfs_block_rsv
*rsv
, unsigned short type
)
4718 memset(rsv
, 0, sizeof(*rsv
));
4719 spin_lock_init(&rsv
->lock
);
4723 struct btrfs_block_rsv
*btrfs_alloc_block_rsv(struct btrfs_root
*root
,
4724 unsigned short type
)
4726 struct btrfs_block_rsv
*block_rsv
;
4727 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4729 block_rsv
= kmalloc(sizeof(*block_rsv
), GFP_NOFS
);
4733 btrfs_init_block_rsv(block_rsv
, type
);
4734 block_rsv
->space_info
= __find_space_info(fs_info
,
4735 BTRFS_BLOCK_GROUP_METADATA
);
4739 void btrfs_free_block_rsv(struct btrfs_root
*root
,
4740 struct btrfs_block_rsv
*rsv
)
4744 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
4748 int btrfs_block_rsv_add(struct btrfs_root
*root
,
4749 struct btrfs_block_rsv
*block_rsv
, u64 num_bytes
,
4750 enum btrfs_reserve_flush_enum flush
)
4757 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
4759 block_rsv_add_bytes(block_rsv
, num_bytes
, 1);
4766 int btrfs_block_rsv_check(struct btrfs_root
*root
,
4767 struct btrfs_block_rsv
*block_rsv
, int min_factor
)
4775 spin_lock(&block_rsv
->lock
);
4776 num_bytes
= div_factor(block_rsv
->size
, min_factor
);
4777 if (block_rsv
->reserved
>= num_bytes
)
4779 spin_unlock(&block_rsv
->lock
);
4784 int btrfs_block_rsv_refill(struct btrfs_root
*root
,
4785 struct btrfs_block_rsv
*block_rsv
, u64 min_reserved
,
4786 enum btrfs_reserve_flush_enum flush
)
4794 spin_lock(&block_rsv
->lock
);
4795 num_bytes
= min_reserved
;
4796 if (block_rsv
->reserved
>= num_bytes
)
4799 num_bytes
-= block_rsv
->reserved
;
4800 spin_unlock(&block_rsv
->lock
);
4805 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
4807 block_rsv_add_bytes(block_rsv
, num_bytes
, 0);
4814 int btrfs_block_rsv_migrate(struct btrfs_block_rsv
*src_rsv
,
4815 struct btrfs_block_rsv
*dst_rsv
,
4818 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
4821 void btrfs_block_rsv_release(struct btrfs_root
*root
,
4822 struct btrfs_block_rsv
*block_rsv
,
4825 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
4826 if (global_rsv
== block_rsv
||
4827 block_rsv
->space_info
!= global_rsv
->space_info
)
4829 block_rsv_release_bytes(root
->fs_info
, block_rsv
, global_rsv
,
4834 * helper to calculate size of global block reservation.
4835 * the desired value is sum of space used by extent tree,
4836 * checksum tree and root tree
4838 static u64
calc_global_metadata_size(struct btrfs_fs_info
*fs_info
)
4840 struct btrfs_space_info
*sinfo
;
4844 int csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
4846 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_DATA
);
4847 spin_lock(&sinfo
->lock
);
4848 data_used
= sinfo
->bytes_used
;
4849 spin_unlock(&sinfo
->lock
);
4851 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
4852 spin_lock(&sinfo
->lock
);
4853 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_DATA
)
4855 meta_used
= sinfo
->bytes_used
;
4856 spin_unlock(&sinfo
->lock
);
4858 num_bytes
= (data_used
>> fs_info
->sb
->s_blocksize_bits
) *
4860 num_bytes
+= div64_u64(data_used
+ meta_used
, 50);
4862 if (num_bytes
* 3 > meta_used
)
4863 num_bytes
= div64_u64(meta_used
, 3);
4865 return ALIGN(num_bytes
, fs_info
->extent_root
->leafsize
<< 10);
4868 static void update_global_block_rsv(struct btrfs_fs_info
*fs_info
)
4870 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
4871 struct btrfs_space_info
*sinfo
= block_rsv
->space_info
;
4874 num_bytes
= calc_global_metadata_size(fs_info
);
4876 spin_lock(&sinfo
->lock
);
4877 spin_lock(&block_rsv
->lock
);
4879 block_rsv
->size
= min_t(u64
, num_bytes
, 512 * 1024 * 1024);
4881 num_bytes
= sinfo
->bytes_used
+ sinfo
->bytes_pinned
+
4882 sinfo
->bytes_reserved
+ sinfo
->bytes_readonly
+
4883 sinfo
->bytes_may_use
;
4885 if (sinfo
->total_bytes
> num_bytes
) {
4886 num_bytes
= sinfo
->total_bytes
- num_bytes
;
4887 block_rsv
->reserved
+= num_bytes
;
4888 sinfo
->bytes_may_use
+= num_bytes
;
4889 trace_btrfs_space_reservation(fs_info
, "space_info",
4890 sinfo
->flags
, num_bytes
, 1);
4893 if (block_rsv
->reserved
>= block_rsv
->size
) {
4894 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
4895 sinfo
->bytes_may_use
-= num_bytes
;
4896 trace_btrfs_space_reservation(fs_info
, "space_info",
4897 sinfo
->flags
, num_bytes
, 0);
4898 block_rsv
->reserved
= block_rsv
->size
;
4899 block_rsv
->full
= 1;
4902 spin_unlock(&block_rsv
->lock
);
4903 spin_unlock(&sinfo
->lock
);
4906 static void init_global_block_rsv(struct btrfs_fs_info
*fs_info
)
4908 struct btrfs_space_info
*space_info
;
4910 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
4911 fs_info
->chunk_block_rsv
.space_info
= space_info
;
4913 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
4914 fs_info
->global_block_rsv
.space_info
= space_info
;
4915 fs_info
->delalloc_block_rsv
.space_info
= space_info
;
4916 fs_info
->trans_block_rsv
.space_info
= space_info
;
4917 fs_info
->empty_block_rsv
.space_info
= space_info
;
4918 fs_info
->delayed_block_rsv
.space_info
= space_info
;
4920 fs_info
->extent_root
->block_rsv
= &fs_info
->global_block_rsv
;
4921 fs_info
->csum_root
->block_rsv
= &fs_info
->global_block_rsv
;
4922 fs_info
->dev_root
->block_rsv
= &fs_info
->global_block_rsv
;
4923 fs_info
->tree_root
->block_rsv
= &fs_info
->global_block_rsv
;
4924 if (fs_info
->quota_root
)
4925 fs_info
->quota_root
->block_rsv
= &fs_info
->global_block_rsv
;
4926 fs_info
->chunk_root
->block_rsv
= &fs_info
->chunk_block_rsv
;
4928 update_global_block_rsv(fs_info
);
4931 static void release_global_block_rsv(struct btrfs_fs_info
*fs_info
)
4933 block_rsv_release_bytes(fs_info
, &fs_info
->global_block_rsv
, NULL
,
4935 WARN_ON(fs_info
->delalloc_block_rsv
.size
> 0);
4936 WARN_ON(fs_info
->delalloc_block_rsv
.reserved
> 0);
4937 WARN_ON(fs_info
->trans_block_rsv
.size
> 0);
4938 WARN_ON(fs_info
->trans_block_rsv
.reserved
> 0);
4939 WARN_ON(fs_info
->chunk_block_rsv
.size
> 0);
4940 WARN_ON(fs_info
->chunk_block_rsv
.reserved
> 0);
4941 WARN_ON(fs_info
->delayed_block_rsv
.size
> 0);
4942 WARN_ON(fs_info
->delayed_block_rsv
.reserved
> 0);
4945 void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
,
4946 struct btrfs_root
*root
)
4948 if (!trans
->block_rsv
)
4951 if (!trans
->bytes_reserved
)
4954 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
4955 trans
->transid
, trans
->bytes_reserved
, 0);
4956 btrfs_block_rsv_release(root
, trans
->block_rsv
, trans
->bytes_reserved
);
4957 trans
->bytes_reserved
= 0;
4960 /* Can only return 0 or -ENOSPC */
4961 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle
*trans
,
4962 struct inode
*inode
)
4964 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4965 struct btrfs_block_rsv
*src_rsv
= get_block_rsv(trans
, root
);
4966 struct btrfs_block_rsv
*dst_rsv
= root
->orphan_block_rsv
;
4969 * We need to hold space in order to delete our orphan item once we've
4970 * added it, so this takes the reservation so we can release it later
4971 * when we are truly done with the orphan item.
4973 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
4974 trace_btrfs_space_reservation(root
->fs_info
, "orphan",
4975 btrfs_ino(inode
), num_bytes
, 1);
4976 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
4979 void btrfs_orphan_release_metadata(struct inode
*inode
)
4981 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4982 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
4983 trace_btrfs_space_reservation(root
->fs_info
, "orphan",
4984 btrfs_ino(inode
), num_bytes
, 0);
4985 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
, num_bytes
);
4989 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4990 * root: the root of the parent directory
4991 * rsv: block reservation
4992 * items: the number of items that we need do reservation
4993 * qgroup_reserved: used to return the reserved size in qgroup
4995 * This function is used to reserve the space for snapshot/subvolume
4996 * creation and deletion. Those operations are different with the
4997 * common file/directory operations, they change two fs/file trees
4998 * and root tree, the number of items that the qgroup reserves is
4999 * different with the free space reservation. So we can not use
5000 * the space reseravtion mechanism in start_transaction().
5002 int btrfs_subvolume_reserve_metadata(struct btrfs_root
*root
,
5003 struct btrfs_block_rsv
*rsv
,
5005 u64
*qgroup_reserved
,
5006 bool use_global_rsv
)
5010 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
5012 if (root
->fs_info
->quota_enabled
) {
5013 /* One for parent inode, two for dir entries */
5014 num_bytes
= 3 * root
->leafsize
;
5015 ret
= btrfs_qgroup_reserve(root
, num_bytes
);
5022 *qgroup_reserved
= num_bytes
;
5024 num_bytes
= btrfs_calc_trans_metadata_size(root
, items
);
5025 rsv
->space_info
= __find_space_info(root
->fs_info
,
5026 BTRFS_BLOCK_GROUP_METADATA
);
5027 ret
= btrfs_block_rsv_add(root
, rsv
, num_bytes
,
5028 BTRFS_RESERVE_FLUSH_ALL
);
5030 if (ret
== -ENOSPC
&& use_global_rsv
)
5031 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
, num_bytes
);
5034 if (*qgroup_reserved
)
5035 btrfs_qgroup_free(root
, *qgroup_reserved
);
5041 void btrfs_subvolume_release_metadata(struct btrfs_root
*root
,
5042 struct btrfs_block_rsv
*rsv
,
5043 u64 qgroup_reserved
)
5045 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
5046 if (qgroup_reserved
)
5047 btrfs_qgroup_free(root
, qgroup_reserved
);
5051 * drop_outstanding_extent - drop an outstanding extent
5052 * @inode: the inode we're dropping the extent for
5054 * This is called when we are freeing up an outstanding extent, either called
5055 * after an error or after an extent is written. This will return the number of
5056 * reserved extents that need to be freed. This must be called with
5057 * BTRFS_I(inode)->lock held.
5059 static unsigned drop_outstanding_extent(struct inode
*inode
)
5061 unsigned drop_inode_space
= 0;
5062 unsigned dropped_extents
= 0;
5064 BUG_ON(!BTRFS_I(inode
)->outstanding_extents
);
5065 BTRFS_I(inode
)->outstanding_extents
--;
5067 if (BTRFS_I(inode
)->outstanding_extents
== 0 &&
5068 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
5069 &BTRFS_I(inode
)->runtime_flags
))
5070 drop_inode_space
= 1;
5073 * If we have more or the same amount of outsanding extents than we have
5074 * reserved then we need to leave the reserved extents count alone.
5076 if (BTRFS_I(inode
)->outstanding_extents
>=
5077 BTRFS_I(inode
)->reserved_extents
)
5078 return drop_inode_space
;
5080 dropped_extents
= BTRFS_I(inode
)->reserved_extents
-
5081 BTRFS_I(inode
)->outstanding_extents
;
5082 BTRFS_I(inode
)->reserved_extents
-= dropped_extents
;
5083 return dropped_extents
+ drop_inode_space
;
5087 * calc_csum_metadata_size - return the amount of metada space that must be
5088 * reserved/free'd for the given bytes.
5089 * @inode: the inode we're manipulating
5090 * @num_bytes: the number of bytes in question
5091 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5093 * This adjusts the number of csum_bytes in the inode and then returns the
5094 * correct amount of metadata that must either be reserved or freed. We
5095 * calculate how many checksums we can fit into one leaf and then divide the
5096 * number of bytes that will need to be checksumed by this value to figure out
5097 * how many checksums will be required. If we are adding bytes then the number
5098 * may go up and we will return the number of additional bytes that must be
5099 * reserved. If it is going down we will return the number of bytes that must
5102 * This must be called with BTRFS_I(inode)->lock held.
5104 static u64
calc_csum_metadata_size(struct inode
*inode
, u64 num_bytes
,
5107 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5109 int num_csums_per_leaf
;
5113 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
&&
5114 BTRFS_I(inode
)->csum_bytes
== 0)
5117 old_csums
= (int)div64_u64(BTRFS_I(inode
)->csum_bytes
, root
->sectorsize
);
5119 BTRFS_I(inode
)->csum_bytes
+= num_bytes
;
5121 BTRFS_I(inode
)->csum_bytes
-= num_bytes
;
5122 csum_size
= BTRFS_LEAF_DATA_SIZE(root
) - sizeof(struct btrfs_item
);
5123 num_csums_per_leaf
= (int)div64_u64(csum_size
,
5124 sizeof(struct btrfs_csum_item
) +
5125 sizeof(struct btrfs_disk_key
));
5126 num_csums
= (int)div64_u64(BTRFS_I(inode
)->csum_bytes
, root
->sectorsize
);
5127 num_csums
= num_csums
+ num_csums_per_leaf
- 1;
5128 num_csums
= num_csums
/ num_csums_per_leaf
;
5130 old_csums
= old_csums
+ num_csums_per_leaf
- 1;
5131 old_csums
= old_csums
/ num_csums_per_leaf
;
5133 /* No change, no need to reserve more */
5134 if (old_csums
== num_csums
)
5138 return btrfs_calc_trans_metadata_size(root
,
5139 num_csums
- old_csums
);
5141 return btrfs_calc_trans_metadata_size(root
, old_csums
- num_csums
);
5144 int btrfs_delalloc_reserve_metadata(struct inode
*inode
, u64 num_bytes
)
5146 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5147 struct btrfs_block_rsv
*block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5150 unsigned nr_extents
= 0;
5151 int extra_reserve
= 0;
5152 enum btrfs_reserve_flush_enum flush
= BTRFS_RESERVE_FLUSH_ALL
;
5154 bool delalloc_lock
= true;
5158 /* If we are a free space inode we need to not flush since we will be in
5159 * the middle of a transaction commit. We also don't need the delalloc
5160 * mutex since we won't race with anybody. We need this mostly to make
5161 * lockdep shut its filthy mouth.
5163 if (btrfs_is_free_space_inode(inode
)) {
5164 flush
= BTRFS_RESERVE_NO_FLUSH
;
5165 delalloc_lock
= false;
5168 if (flush
!= BTRFS_RESERVE_NO_FLUSH
&&
5169 btrfs_transaction_in_commit(root
->fs_info
))
5170 schedule_timeout(1);
5173 mutex_lock(&BTRFS_I(inode
)->delalloc_mutex
);
5175 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
5177 spin_lock(&BTRFS_I(inode
)->lock
);
5178 BTRFS_I(inode
)->outstanding_extents
++;
5180 if (BTRFS_I(inode
)->outstanding_extents
>
5181 BTRFS_I(inode
)->reserved_extents
)
5182 nr_extents
= BTRFS_I(inode
)->outstanding_extents
-
5183 BTRFS_I(inode
)->reserved_extents
;
5186 * Add an item to reserve for updating the inode when we complete the
5189 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
5190 &BTRFS_I(inode
)->runtime_flags
)) {
5195 to_reserve
= btrfs_calc_trans_metadata_size(root
, nr_extents
);
5196 to_reserve
+= calc_csum_metadata_size(inode
, num_bytes
, 1);
5197 csum_bytes
= BTRFS_I(inode
)->csum_bytes
;
5198 spin_unlock(&BTRFS_I(inode
)->lock
);
5200 if (root
->fs_info
->quota_enabled
) {
5201 ret
= btrfs_qgroup_reserve(root
, num_bytes
+
5202 nr_extents
* root
->leafsize
);
5207 ret
= reserve_metadata_bytes(root
, block_rsv
, to_reserve
, flush
);
5208 if (unlikely(ret
)) {
5209 if (root
->fs_info
->quota_enabled
)
5210 btrfs_qgroup_free(root
, num_bytes
+
5211 nr_extents
* root
->leafsize
);
5215 spin_lock(&BTRFS_I(inode
)->lock
);
5216 if (extra_reserve
) {
5217 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
5218 &BTRFS_I(inode
)->runtime_flags
);
5221 BTRFS_I(inode
)->reserved_extents
+= nr_extents
;
5222 spin_unlock(&BTRFS_I(inode
)->lock
);
5225 mutex_unlock(&BTRFS_I(inode
)->delalloc_mutex
);
5228 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
5229 btrfs_ino(inode
), to_reserve
, 1);
5230 block_rsv_add_bytes(block_rsv
, to_reserve
, 1);
5235 spin_lock(&BTRFS_I(inode
)->lock
);
5236 dropped
= drop_outstanding_extent(inode
);
5238 * If the inodes csum_bytes is the same as the original
5239 * csum_bytes then we know we haven't raced with any free()ers
5240 * so we can just reduce our inodes csum bytes and carry on.
5242 if (BTRFS_I(inode
)->csum_bytes
== csum_bytes
) {
5243 calc_csum_metadata_size(inode
, num_bytes
, 0);
5245 u64 orig_csum_bytes
= BTRFS_I(inode
)->csum_bytes
;
5249 * This is tricky, but first we need to figure out how much we
5250 * free'd from any free-ers that occured during this
5251 * reservation, so we reset ->csum_bytes to the csum_bytes
5252 * before we dropped our lock, and then call the free for the
5253 * number of bytes that were freed while we were trying our
5256 bytes
= csum_bytes
- BTRFS_I(inode
)->csum_bytes
;
5257 BTRFS_I(inode
)->csum_bytes
= csum_bytes
;
5258 to_free
= calc_csum_metadata_size(inode
, bytes
, 0);
5262 * Now we need to see how much we would have freed had we not
5263 * been making this reservation and our ->csum_bytes were not
5264 * artificially inflated.
5266 BTRFS_I(inode
)->csum_bytes
= csum_bytes
- num_bytes
;
5267 bytes
= csum_bytes
- orig_csum_bytes
;
5268 bytes
= calc_csum_metadata_size(inode
, bytes
, 0);
5271 * Now reset ->csum_bytes to what it should be. If bytes is
5272 * more than to_free then we would have free'd more space had we
5273 * not had an artificially high ->csum_bytes, so we need to free
5274 * the remainder. If bytes is the same or less then we don't
5275 * need to do anything, the other free-ers did the correct
5278 BTRFS_I(inode
)->csum_bytes
= orig_csum_bytes
- num_bytes
;
5279 if (bytes
> to_free
)
5280 to_free
= bytes
- to_free
;
5284 spin_unlock(&BTRFS_I(inode
)->lock
);
5286 to_free
+= btrfs_calc_trans_metadata_size(root
, dropped
);
5289 btrfs_block_rsv_release(root
, block_rsv
, to_free
);
5290 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
5291 btrfs_ino(inode
), to_free
, 0);
5294 mutex_unlock(&BTRFS_I(inode
)->delalloc_mutex
);
5299 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5300 * @inode: the inode to release the reservation for
5301 * @num_bytes: the number of bytes we're releasing
5303 * This will release the metadata reservation for an inode. This can be called
5304 * once we complete IO for a given set of bytes to release their metadata
5307 void btrfs_delalloc_release_metadata(struct inode
*inode
, u64 num_bytes
)
5309 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5313 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
5314 spin_lock(&BTRFS_I(inode
)->lock
);
5315 dropped
= drop_outstanding_extent(inode
);
5318 to_free
= calc_csum_metadata_size(inode
, num_bytes
, 0);
5319 spin_unlock(&BTRFS_I(inode
)->lock
);
5321 to_free
+= btrfs_calc_trans_metadata_size(root
, dropped
);
5323 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
5324 btrfs_ino(inode
), to_free
, 0);
5325 if (root
->fs_info
->quota_enabled
) {
5326 btrfs_qgroup_free(root
, num_bytes
+
5327 dropped
* root
->leafsize
);
5330 btrfs_block_rsv_release(root
, &root
->fs_info
->delalloc_block_rsv
,
5335 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5336 * @inode: inode we're writing to
5337 * @num_bytes: the number of bytes we want to allocate
5339 * This will do the following things
5341 * o reserve space in the data space info for num_bytes
5342 * o reserve space in the metadata space info based on number of outstanding
5343 * extents and how much csums will be needed
5344 * o add to the inodes ->delalloc_bytes
5345 * o add it to the fs_info's delalloc inodes list.
5347 * This will return 0 for success and -ENOSPC if there is no space left.
5349 int btrfs_delalloc_reserve_space(struct inode
*inode
, u64 num_bytes
)
5353 ret
= btrfs_check_data_free_space(inode
, num_bytes
);
5357 ret
= btrfs_delalloc_reserve_metadata(inode
, num_bytes
);
5359 btrfs_free_reserved_data_space(inode
, num_bytes
);
5367 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5368 * @inode: inode we're releasing space for
5369 * @num_bytes: the number of bytes we want to free up
5371 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5372 * called in the case that we don't need the metadata AND data reservations
5373 * anymore. So if there is an error or we insert an inline extent.
5375 * This function will release the metadata space that was not used and will
5376 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5377 * list if there are no delalloc bytes left.
5379 void btrfs_delalloc_release_space(struct inode
*inode
, u64 num_bytes
)
5381 btrfs_delalloc_release_metadata(inode
, num_bytes
);
5382 btrfs_free_reserved_data_space(inode
, num_bytes
);
5385 static int update_block_group(struct btrfs_root
*root
,
5386 u64 bytenr
, u64 num_bytes
, int alloc
)
5388 struct btrfs_block_group_cache
*cache
= NULL
;
5389 struct btrfs_fs_info
*info
= root
->fs_info
;
5390 u64 total
= num_bytes
;
5395 /* block accounting for super block */
5396 spin_lock(&info
->delalloc_root_lock
);
5397 old_val
= btrfs_super_bytes_used(info
->super_copy
);
5399 old_val
+= num_bytes
;
5401 old_val
-= num_bytes
;
5402 btrfs_set_super_bytes_used(info
->super_copy
, old_val
);
5403 spin_unlock(&info
->delalloc_root_lock
);
5406 cache
= btrfs_lookup_block_group(info
, bytenr
);
5409 if (cache
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
5410 BTRFS_BLOCK_GROUP_RAID1
|
5411 BTRFS_BLOCK_GROUP_RAID10
))
5416 * If this block group has free space cache written out, we
5417 * need to make sure to load it if we are removing space. This
5418 * is because we need the unpinning stage to actually add the
5419 * space back to the block group, otherwise we will leak space.
5421 if (!alloc
&& cache
->cached
== BTRFS_CACHE_NO
)
5422 cache_block_group(cache
, 1);
5424 byte_in_group
= bytenr
- cache
->key
.objectid
;
5425 WARN_ON(byte_in_group
> cache
->key
.offset
);
5427 spin_lock(&cache
->space_info
->lock
);
5428 spin_lock(&cache
->lock
);
5430 if (btrfs_test_opt(root
, SPACE_CACHE
) &&
5431 cache
->disk_cache_state
< BTRFS_DC_CLEAR
)
5432 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
5435 old_val
= btrfs_block_group_used(&cache
->item
);
5436 num_bytes
= min(total
, cache
->key
.offset
- byte_in_group
);
5438 old_val
+= num_bytes
;
5439 btrfs_set_block_group_used(&cache
->item
, old_val
);
5440 cache
->reserved
-= num_bytes
;
5441 cache
->space_info
->bytes_reserved
-= num_bytes
;
5442 cache
->space_info
->bytes_used
+= num_bytes
;
5443 cache
->space_info
->disk_used
+= num_bytes
* factor
;
5444 spin_unlock(&cache
->lock
);
5445 spin_unlock(&cache
->space_info
->lock
);
5447 old_val
-= num_bytes
;
5448 btrfs_set_block_group_used(&cache
->item
, old_val
);
5449 cache
->pinned
+= num_bytes
;
5450 cache
->space_info
->bytes_pinned
+= num_bytes
;
5451 cache
->space_info
->bytes_used
-= num_bytes
;
5452 cache
->space_info
->disk_used
-= num_bytes
* factor
;
5453 spin_unlock(&cache
->lock
);
5454 spin_unlock(&cache
->space_info
->lock
);
5456 set_extent_dirty(info
->pinned_extents
,
5457 bytenr
, bytenr
+ num_bytes
- 1,
5458 GFP_NOFS
| __GFP_NOFAIL
);
5460 btrfs_put_block_group(cache
);
5462 bytenr
+= num_bytes
;
5467 static u64
first_logical_byte(struct btrfs_root
*root
, u64 search_start
)
5469 struct btrfs_block_group_cache
*cache
;
5472 spin_lock(&root
->fs_info
->block_group_cache_lock
);
5473 bytenr
= root
->fs_info
->first_logical_byte
;
5474 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
5476 if (bytenr
< (u64
)-1)
5479 cache
= btrfs_lookup_first_block_group(root
->fs_info
, search_start
);
5483 bytenr
= cache
->key
.objectid
;
5484 btrfs_put_block_group(cache
);
5489 static int pin_down_extent(struct btrfs_root
*root
,
5490 struct btrfs_block_group_cache
*cache
,
5491 u64 bytenr
, u64 num_bytes
, int reserved
)
5493 spin_lock(&cache
->space_info
->lock
);
5494 spin_lock(&cache
->lock
);
5495 cache
->pinned
+= num_bytes
;
5496 cache
->space_info
->bytes_pinned
+= num_bytes
;
5498 cache
->reserved
-= num_bytes
;
5499 cache
->space_info
->bytes_reserved
-= num_bytes
;
5501 spin_unlock(&cache
->lock
);
5502 spin_unlock(&cache
->space_info
->lock
);
5504 set_extent_dirty(root
->fs_info
->pinned_extents
, bytenr
,
5505 bytenr
+ num_bytes
- 1, GFP_NOFS
| __GFP_NOFAIL
);
5507 trace_btrfs_reserved_extent_free(root
, bytenr
, num_bytes
);
5512 * this function must be called within transaction
5514 int btrfs_pin_extent(struct btrfs_root
*root
,
5515 u64 bytenr
, u64 num_bytes
, int reserved
)
5517 struct btrfs_block_group_cache
*cache
;
5519 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
5520 BUG_ON(!cache
); /* Logic error */
5522 pin_down_extent(root
, cache
, bytenr
, num_bytes
, reserved
);
5524 btrfs_put_block_group(cache
);
5529 * this function must be called within transaction
5531 int btrfs_pin_extent_for_log_replay(struct btrfs_root
*root
,
5532 u64 bytenr
, u64 num_bytes
)
5534 struct btrfs_block_group_cache
*cache
;
5537 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
5542 * pull in the free space cache (if any) so that our pin
5543 * removes the free space from the cache. We have load_only set
5544 * to one because the slow code to read in the free extents does check
5545 * the pinned extents.
5547 cache_block_group(cache
, 1);
5549 pin_down_extent(root
, cache
, bytenr
, num_bytes
, 0);
5551 /* remove us from the free space cache (if we're there at all) */
5552 ret
= btrfs_remove_free_space(cache
, bytenr
, num_bytes
);
5553 btrfs_put_block_group(cache
);
5557 static int __exclude_logged_extent(struct btrfs_root
*root
, u64 start
, u64 num_bytes
)
5560 struct btrfs_block_group_cache
*block_group
;
5561 struct btrfs_caching_control
*caching_ctl
;
5563 block_group
= btrfs_lookup_block_group(root
->fs_info
, start
);
5567 cache_block_group(block_group
, 0);
5568 caching_ctl
= get_caching_control(block_group
);
5572 BUG_ON(!block_group_cache_done(block_group
));
5573 ret
= btrfs_remove_free_space(block_group
, start
, num_bytes
);
5575 mutex_lock(&caching_ctl
->mutex
);
5577 if (start
>= caching_ctl
->progress
) {
5578 ret
= add_excluded_extent(root
, start
, num_bytes
);
5579 } else if (start
+ num_bytes
<= caching_ctl
->progress
) {
5580 ret
= btrfs_remove_free_space(block_group
,
5583 num_bytes
= caching_ctl
->progress
- start
;
5584 ret
= btrfs_remove_free_space(block_group
,
5589 num_bytes
= (start
+ num_bytes
) -
5590 caching_ctl
->progress
;
5591 start
= caching_ctl
->progress
;
5592 ret
= add_excluded_extent(root
, start
, num_bytes
);
5595 mutex_unlock(&caching_ctl
->mutex
);
5596 put_caching_control(caching_ctl
);
5598 btrfs_put_block_group(block_group
);
5602 int btrfs_exclude_logged_extents(struct btrfs_root
*log
,
5603 struct extent_buffer
*eb
)
5605 struct btrfs_file_extent_item
*item
;
5606 struct btrfs_key key
;
5610 if (!btrfs_fs_incompat(log
->fs_info
, MIXED_GROUPS
))
5613 for (i
= 0; i
< btrfs_header_nritems(eb
); i
++) {
5614 btrfs_item_key_to_cpu(eb
, &key
, i
);
5615 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5617 item
= btrfs_item_ptr(eb
, i
, struct btrfs_file_extent_item
);
5618 found_type
= btrfs_file_extent_type(eb
, item
);
5619 if (found_type
== BTRFS_FILE_EXTENT_INLINE
)
5621 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
5623 key
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
5624 key
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
5625 __exclude_logged_extent(log
, key
.objectid
, key
.offset
);
5632 * btrfs_update_reserved_bytes - update the block_group and space info counters
5633 * @cache: The cache we are manipulating
5634 * @num_bytes: The number of bytes in question
5635 * @reserve: One of the reservation enums
5636 * @delalloc: The blocks are allocated for the delalloc write
5638 * This is called by the allocator when it reserves space, or by somebody who is
5639 * freeing space that was never actually used on disk. For example if you
5640 * reserve some space for a new leaf in transaction A and before transaction A
5641 * commits you free that leaf, you call this with reserve set to 0 in order to
5642 * clear the reservation.
5644 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5645 * ENOSPC accounting. For data we handle the reservation through clearing the
5646 * delalloc bits in the io_tree. We have to do this since we could end up
5647 * allocating less disk space for the amount of data we have reserved in the
5648 * case of compression.
5650 * If this is a reservation and the block group has become read only we cannot
5651 * make the reservation and return -EAGAIN, otherwise this function always
5654 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
5655 u64 num_bytes
, int reserve
, int delalloc
)
5657 struct btrfs_space_info
*space_info
= cache
->space_info
;
5660 spin_lock(&space_info
->lock
);
5661 spin_lock(&cache
->lock
);
5662 if (reserve
!= RESERVE_FREE
) {
5666 cache
->reserved
+= num_bytes
;
5667 space_info
->bytes_reserved
+= num_bytes
;
5668 if (reserve
== RESERVE_ALLOC
) {
5669 trace_btrfs_space_reservation(cache
->fs_info
,
5670 "space_info", space_info
->flags
,
5672 space_info
->bytes_may_use
-= num_bytes
;
5676 cache
->delalloc_bytes
+= num_bytes
;
5680 space_info
->bytes_readonly
+= num_bytes
;
5681 cache
->reserved
-= num_bytes
;
5682 space_info
->bytes_reserved
-= num_bytes
;
5685 cache
->delalloc_bytes
-= num_bytes
;
5687 spin_unlock(&cache
->lock
);
5688 spin_unlock(&space_info
->lock
);
5692 void btrfs_prepare_extent_commit(struct btrfs_trans_handle
*trans
,
5693 struct btrfs_root
*root
)
5695 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5696 struct btrfs_caching_control
*next
;
5697 struct btrfs_caching_control
*caching_ctl
;
5698 struct btrfs_block_group_cache
*cache
;
5700 down_write(&fs_info
->commit_root_sem
);
5702 list_for_each_entry_safe(caching_ctl
, next
,
5703 &fs_info
->caching_block_groups
, list
) {
5704 cache
= caching_ctl
->block_group
;
5705 if (block_group_cache_done(cache
)) {
5706 cache
->last_byte_to_unpin
= (u64
)-1;
5707 list_del_init(&caching_ctl
->list
);
5708 put_caching_control(caching_ctl
);
5710 cache
->last_byte_to_unpin
= caching_ctl
->progress
;
5714 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
5715 fs_info
->pinned_extents
= &fs_info
->freed_extents
[1];
5717 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
5719 up_write(&fs_info
->commit_root_sem
);
5721 update_global_block_rsv(fs_info
);
5724 static int unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
,
5725 const bool return_free_space
)
5727 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5728 struct btrfs_block_group_cache
*cache
= NULL
;
5729 struct btrfs_space_info
*space_info
;
5730 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5734 while (start
<= end
) {
5737 start
>= cache
->key
.objectid
+ cache
->key
.offset
) {
5739 btrfs_put_block_group(cache
);
5740 cache
= btrfs_lookup_block_group(fs_info
, start
);
5741 BUG_ON(!cache
); /* Logic error */
5744 len
= cache
->key
.objectid
+ cache
->key
.offset
- start
;
5745 len
= min(len
, end
+ 1 - start
);
5747 if (start
< cache
->last_byte_to_unpin
) {
5748 len
= min(len
, cache
->last_byte_to_unpin
- start
);
5749 if (return_free_space
)
5750 btrfs_add_free_space(cache
, start
, len
);
5754 space_info
= cache
->space_info
;
5756 spin_lock(&space_info
->lock
);
5757 spin_lock(&cache
->lock
);
5758 cache
->pinned
-= len
;
5759 space_info
->bytes_pinned
-= len
;
5760 percpu_counter_add(&space_info
->total_bytes_pinned
, -len
);
5762 space_info
->bytes_readonly
+= len
;
5765 spin_unlock(&cache
->lock
);
5766 if (!readonly
&& global_rsv
->space_info
== space_info
) {
5767 spin_lock(&global_rsv
->lock
);
5768 if (!global_rsv
->full
) {
5769 len
= min(len
, global_rsv
->size
-
5770 global_rsv
->reserved
);
5771 global_rsv
->reserved
+= len
;
5772 space_info
->bytes_may_use
+= len
;
5773 if (global_rsv
->reserved
>= global_rsv
->size
)
5774 global_rsv
->full
= 1;
5776 spin_unlock(&global_rsv
->lock
);
5778 spin_unlock(&space_info
->lock
);
5782 btrfs_put_block_group(cache
);
5786 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
,
5787 struct btrfs_root
*root
)
5789 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5790 struct extent_io_tree
*unpin
;
5798 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
5799 unpin
= &fs_info
->freed_extents
[1];
5801 unpin
= &fs_info
->freed_extents
[0];
5804 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
5805 EXTENT_DIRTY
, NULL
);
5809 if (btrfs_test_opt(root
, DISCARD
))
5810 ret
= btrfs_discard_extent(root
, start
,
5811 end
+ 1 - start
, NULL
);
5813 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
5814 unpin_extent_range(root
, start
, end
, true);
5821 static void add_pinned_bytes(struct btrfs_fs_info
*fs_info
, u64 num_bytes
,
5822 u64 owner
, u64 root_objectid
)
5824 struct btrfs_space_info
*space_info
;
5827 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
5828 if (root_objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
5829 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
5831 flags
= BTRFS_BLOCK_GROUP_METADATA
;
5833 flags
= BTRFS_BLOCK_GROUP_DATA
;
5836 space_info
= __find_space_info(fs_info
, flags
);
5837 BUG_ON(!space_info
); /* Logic bug */
5838 percpu_counter_add(&space_info
->total_bytes_pinned
, num_bytes
);
5842 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
5843 struct btrfs_root
*root
,
5844 u64 bytenr
, u64 num_bytes
, u64 parent
,
5845 u64 root_objectid
, u64 owner_objectid
,
5846 u64 owner_offset
, int refs_to_drop
,
5847 struct btrfs_delayed_extent_op
*extent_op
,
5850 struct btrfs_key key
;
5851 struct btrfs_path
*path
;
5852 struct btrfs_fs_info
*info
= root
->fs_info
;
5853 struct btrfs_root
*extent_root
= info
->extent_root
;
5854 struct extent_buffer
*leaf
;
5855 struct btrfs_extent_item
*ei
;
5856 struct btrfs_extent_inline_ref
*iref
;
5859 int extent_slot
= 0;
5860 int found_extent
= 0;
5865 enum btrfs_qgroup_operation_type type
= BTRFS_QGROUP_OPER_SUB_EXCL
;
5866 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
5869 if (!info
->quota_enabled
|| !is_fstree(root_objectid
))
5872 path
= btrfs_alloc_path();
5877 path
->leave_spinning
= 1;
5879 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
5880 BUG_ON(!is_data
&& refs_to_drop
!= 1);
5883 skinny_metadata
= 0;
5885 ret
= lookup_extent_backref(trans
, extent_root
, path
, &iref
,
5886 bytenr
, num_bytes
, parent
,
5887 root_objectid
, owner_objectid
,
5890 extent_slot
= path
->slots
[0];
5891 while (extent_slot
>= 0) {
5892 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
5894 if (key
.objectid
!= bytenr
)
5896 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
5897 key
.offset
== num_bytes
) {
5901 if (key
.type
== BTRFS_METADATA_ITEM_KEY
&&
5902 key
.offset
== owner_objectid
) {
5906 if (path
->slots
[0] - extent_slot
> 5)
5910 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5911 item_size
= btrfs_item_size_nr(path
->nodes
[0], extent_slot
);
5912 if (found_extent
&& item_size
< sizeof(*ei
))
5915 if (!found_extent
) {
5917 ret
= remove_extent_backref(trans
, extent_root
, path
,
5919 is_data
, &last_ref
);
5921 btrfs_abort_transaction(trans
, extent_root
, ret
);
5924 btrfs_release_path(path
);
5925 path
->leave_spinning
= 1;
5927 key
.objectid
= bytenr
;
5928 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
5929 key
.offset
= num_bytes
;
5931 if (!is_data
&& skinny_metadata
) {
5932 key
.type
= BTRFS_METADATA_ITEM_KEY
;
5933 key
.offset
= owner_objectid
;
5936 ret
= btrfs_search_slot(trans
, extent_root
,
5938 if (ret
> 0 && skinny_metadata
&& path
->slots
[0]) {
5940 * Couldn't find our skinny metadata item,
5941 * see if we have ye olde extent item.
5944 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
5946 if (key
.objectid
== bytenr
&&
5947 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
5948 key
.offset
== num_bytes
)
5952 if (ret
> 0 && skinny_metadata
) {
5953 skinny_metadata
= false;
5954 key
.objectid
= bytenr
;
5955 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
5956 key
.offset
= num_bytes
;
5957 btrfs_release_path(path
);
5958 ret
= btrfs_search_slot(trans
, extent_root
,
5963 btrfs_err(info
, "umm, got %d back from search, was looking for %llu",
5966 btrfs_print_leaf(extent_root
,
5970 btrfs_abort_transaction(trans
, extent_root
, ret
);
5973 extent_slot
= path
->slots
[0];
5975 } else if (WARN_ON(ret
== -ENOENT
)) {
5976 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
5978 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5979 bytenr
, parent
, root_objectid
, owner_objectid
,
5981 btrfs_abort_transaction(trans
, extent_root
, ret
);
5984 btrfs_abort_transaction(trans
, extent_root
, ret
);
5988 leaf
= path
->nodes
[0];
5989 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
5990 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5991 if (item_size
< sizeof(*ei
)) {
5992 BUG_ON(found_extent
|| extent_slot
!= path
->slots
[0]);
5993 ret
= convert_extent_item_v0(trans
, extent_root
, path
,
5996 btrfs_abort_transaction(trans
, extent_root
, ret
);
6000 btrfs_release_path(path
);
6001 path
->leave_spinning
= 1;
6003 key
.objectid
= bytenr
;
6004 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6005 key
.offset
= num_bytes
;
6007 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
,
6010 btrfs_err(info
, "umm, got %d back from search, was looking for %llu",
6012 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
6015 btrfs_abort_transaction(trans
, extent_root
, ret
);
6019 extent_slot
= path
->slots
[0];
6020 leaf
= path
->nodes
[0];
6021 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
6024 BUG_ON(item_size
< sizeof(*ei
));
6025 ei
= btrfs_item_ptr(leaf
, extent_slot
,
6026 struct btrfs_extent_item
);
6027 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
6028 key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
6029 struct btrfs_tree_block_info
*bi
;
6030 BUG_ON(item_size
< sizeof(*ei
) + sizeof(*bi
));
6031 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
6032 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
6035 refs
= btrfs_extent_refs(leaf
, ei
);
6036 if (refs
< refs_to_drop
) {
6037 btrfs_err(info
, "trying to drop %d refs but we only have %Lu "
6038 "for bytenr %Lu", refs_to_drop
, refs
, bytenr
);
6040 btrfs_abort_transaction(trans
, extent_root
, ret
);
6043 refs
-= refs_to_drop
;
6046 type
= BTRFS_QGROUP_OPER_SUB_SHARED
;
6048 __run_delayed_extent_op(extent_op
, leaf
, ei
);
6050 * In the case of inline back ref, reference count will
6051 * be updated by remove_extent_backref
6054 BUG_ON(!found_extent
);
6056 btrfs_set_extent_refs(leaf
, ei
, refs
);
6057 btrfs_mark_buffer_dirty(leaf
);
6060 ret
= remove_extent_backref(trans
, extent_root
, path
,
6062 is_data
, &last_ref
);
6064 btrfs_abort_transaction(trans
, extent_root
, ret
);
6068 add_pinned_bytes(root
->fs_info
, -num_bytes
, owner_objectid
,
6072 BUG_ON(is_data
&& refs_to_drop
!=
6073 extent_data_ref_count(root
, path
, iref
));
6075 BUG_ON(path
->slots
[0] != extent_slot
);
6077 BUG_ON(path
->slots
[0] != extent_slot
+ 1);
6078 path
->slots
[0] = extent_slot
;
6084 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
6087 btrfs_abort_transaction(trans
, extent_root
, ret
);
6090 btrfs_release_path(path
);
6093 ret
= btrfs_del_csums(trans
, root
, bytenr
, num_bytes
);
6095 btrfs_abort_transaction(trans
, extent_root
, ret
);
6100 ret
= update_block_group(root
, bytenr
, num_bytes
, 0);
6102 btrfs_abort_transaction(trans
, extent_root
, ret
);
6106 btrfs_release_path(path
);
6108 /* Deal with the quota accounting */
6109 if (!ret
&& last_ref
&& !no_quota
) {
6112 if (owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
&&
6113 type
== BTRFS_QGROUP_OPER_SUB_SHARED
)
6116 ret
= btrfs_qgroup_record_ref(trans
, info
, root_objectid
,
6117 bytenr
, num_bytes
, type
,
6121 btrfs_free_path(path
);
6126 * when we free an block, it is possible (and likely) that we free the last
6127 * delayed ref for that extent as well. This searches the delayed ref tree for
6128 * a given extent, and if there are no other delayed refs to be processed, it
6129 * removes it from the tree.
6131 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
6132 struct btrfs_root
*root
, u64 bytenr
)
6134 struct btrfs_delayed_ref_head
*head
;
6135 struct btrfs_delayed_ref_root
*delayed_refs
;
6138 delayed_refs
= &trans
->transaction
->delayed_refs
;
6139 spin_lock(&delayed_refs
->lock
);
6140 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
6142 goto out_delayed_unlock
;
6144 spin_lock(&head
->lock
);
6145 if (rb_first(&head
->ref_root
))
6148 if (head
->extent_op
) {
6149 if (!head
->must_insert_reserved
)
6151 btrfs_free_delayed_extent_op(head
->extent_op
);
6152 head
->extent_op
= NULL
;
6156 * waiting for the lock here would deadlock. If someone else has it
6157 * locked they are already in the process of dropping it anyway
6159 if (!mutex_trylock(&head
->mutex
))
6163 * at this point we have a head with no other entries. Go
6164 * ahead and process it.
6166 head
->node
.in_tree
= 0;
6167 rb_erase(&head
->href_node
, &delayed_refs
->href_root
);
6169 atomic_dec(&delayed_refs
->num_entries
);
6172 * we don't take a ref on the node because we're removing it from the
6173 * tree, so we just steal the ref the tree was holding.
6175 delayed_refs
->num_heads
--;
6176 if (head
->processing
== 0)
6177 delayed_refs
->num_heads_ready
--;
6178 head
->processing
= 0;
6179 spin_unlock(&head
->lock
);
6180 spin_unlock(&delayed_refs
->lock
);
6182 BUG_ON(head
->extent_op
);
6183 if (head
->must_insert_reserved
)
6186 mutex_unlock(&head
->mutex
);
6187 btrfs_put_delayed_ref(&head
->node
);
6190 spin_unlock(&head
->lock
);
6193 spin_unlock(&delayed_refs
->lock
);
6197 void btrfs_free_tree_block(struct btrfs_trans_handle
*trans
,
6198 struct btrfs_root
*root
,
6199 struct extent_buffer
*buf
,
6200 u64 parent
, int last_ref
)
6202 struct btrfs_block_group_cache
*cache
= NULL
;
6206 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
6207 ret
= btrfs_add_delayed_tree_ref(root
->fs_info
, trans
,
6208 buf
->start
, buf
->len
,
6209 parent
, root
->root_key
.objectid
,
6210 btrfs_header_level(buf
),
6211 BTRFS_DROP_DELAYED_REF
, NULL
, 0);
6212 BUG_ON(ret
); /* -ENOMEM */
6218 cache
= btrfs_lookup_block_group(root
->fs_info
, buf
->start
);
6220 if (btrfs_header_generation(buf
) == trans
->transid
) {
6221 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
6222 ret
= check_ref_cleanup(trans
, root
, buf
->start
);
6227 if (btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
6228 pin_down_extent(root
, cache
, buf
->start
, buf
->len
, 1);
6232 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
));
6234 btrfs_add_free_space(cache
, buf
->start
, buf
->len
);
6235 btrfs_update_reserved_bytes(cache
, buf
->len
, RESERVE_FREE
, 0);
6236 trace_btrfs_reserved_extent_free(root
, buf
->start
, buf
->len
);
6241 add_pinned_bytes(root
->fs_info
, buf
->len
,
6242 btrfs_header_level(buf
),
6243 root
->root_key
.objectid
);
6246 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6249 clear_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
);
6250 btrfs_put_block_group(cache
);
6253 /* Can return -ENOMEM */
6254 int btrfs_free_extent(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
6255 u64 bytenr
, u64 num_bytes
, u64 parent
, u64 root_objectid
,
6256 u64 owner
, u64 offset
, int no_quota
)
6259 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6261 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6262 if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT
, &root
->state
)))
6265 add_pinned_bytes(root
->fs_info
, num_bytes
, owner
, root_objectid
);
6268 * tree log blocks never actually go into the extent allocation
6269 * tree, just update pinning info and exit early.
6271 if (root_objectid
== BTRFS_TREE_LOG_OBJECTID
) {
6272 WARN_ON(owner
>= BTRFS_FIRST_FREE_OBJECTID
);
6273 /* unlocks the pinned mutex */
6274 btrfs_pin_extent(root
, bytenr
, num_bytes
, 1);
6276 } else if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
6277 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
6279 parent
, root_objectid
, (int)owner
,
6280 BTRFS_DROP_DELAYED_REF
, NULL
, no_quota
);
6282 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
6284 parent
, root_objectid
, owner
,
6285 offset
, BTRFS_DROP_DELAYED_REF
,
6291 static u64
stripe_align(struct btrfs_root
*root
,
6292 struct btrfs_block_group_cache
*cache
,
6293 u64 val
, u64 num_bytes
)
6295 u64 ret
= ALIGN(val
, root
->stripesize
);
6300 * when we wait for progress in the block group caching, its because
6301 * our allocation attempt failed at least once. So, we must sleep
6302 * and let some progress happen before we try again.
6304 * This function will sleep at least once waiting for new free space to
6305 * show up, and then it will check the block group free space numbers
6306 * for our min num_bytes. Another option is to have it go ahead
6307 * and look in the rbtree for a free extent of a given size, but this
6310 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6311 * any of the information in this block group.
6313 static noinline
void
6314 wait_block_group_cache_progress(struct btrfs_block_group_cache
*cache
,
6317 struct btrfs_caching_control
*caching_ctl
;
6319 caching_ctl
= get_caching_control(cache
);
6323 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
) ||
6324 (cache
->free_space_ctl
->free_space
>= num_bytes
));
6326 put_caching_control(caching_ctl
);
6330 wait_block_group_cache_done(struct btrfs_block_group_cache
*cache
)
6332 struct btrfs_caching_control
*caching_ctl
;
6335 caching_ctl
= get_caching_control(cache
);
6337 return (cache
->cached
== BTRFS_CACHE_ERROR
) ? -EIO
: 0;
6339 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
));
6340 if (cache
->cached
== BTRFS_CACHE_ERROR
)
6342 put_caching_control(caching_ctl
);
6346 int __get_raid_index(u64 flags
)
6348 if (flags
& BTRFS_BLOCK_GROUP_RAID10
)
6349 return BTRFS_RAID_RAID10
;
6350 else if (flags
& BTRFS_BLOCK_GROUP_RAID1
)
6351 return BTRFS_RAID_RAID1
;
6352 else if (flags
& BTRFS_BLOCK_GROUP_DUP
)
6353 return BTRFS_RAID_DUP
;
6354 else if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
6355 return BTRFS_RAID_RAID0
;
6356 else if (flags
& BTRFS_BLOCK_GROUP_RAID5
)
6357 return BTRFS_RAID_RAID5
;
6358 else if (flags
& BTRFS_BLOCK_GROUP_RAID6
)
6359 return BTRFS_RAID_RAID6
;
6361 return BTRFS_RAID_SINGLE
; /* BTRFS_BLOCK_GROUP_SINGLE */
6364 int get_block_group_index(struct btrfs_block_group_cache
*cache
)
6366 return __get_raid_index(cache
->flags
);
6369 static const char *btrfs_raid_type_names
[BTRFS_NR_RAID_TYPES
] = {
6370 [BTRFS_RAID_RAID10
] = "raid10",
6371 [BTRFS_RAID_RAID1
] = "raid1",
6372 [BTRFS_RAID_DUP
] = "dup",
6373 [BTRFS_RAID_RAID0
] = "raid0",
6374 [BTRFS_RAID_SINGLE
] = "single",
6375 [BTRFS_RAID_RAID5
] = "raid5",
6376 [BTRFS_RAID_RAID6
] = "raid6",
6379 static const char *get_raid_name(enum btrfs_raid_types type
)
6381 if (type
>= BTRFS_NR_RAID_TYPES
)
6384 return btrfs_raid_type_names
[type
];
6387 enum btrfs_loop_type
{
6388 LOOP_CACHING_NOWAIT
= 0,
6389 LOOP_CACHING_WAIT
= 1,
6390 LOOP_ALLOC_CHUNK
= 2,
6391 LOOP_NO_EMPTY_SIZE
= 3,
6395 btrfs_lock_block_group(struct btrfs_block_group_cache
*cache
,
6399 down_read(&cache
->data_rwsem
);
6403 btrfs_grab_block_group(struct btrfs_block_group_cache
*cache
,
6406 btrfs_get_block_group(cache
);
6408 down_read(&cache
->data_rwsem
);
6411 static struct btrfs_block_group_cache
*
6412 btrfs_lock_cluster(struct btrfs_block_group_cache
*block_group
,
6413 struct btrfs_free_cluster
*cluster
,
6416 struct btrfs_block_group_cache
*used_bg
;
6417 bool locked
= false;
6419 spin_lock(&cluster
->refill_lock
);
6421 if (used_bg
== cluster
->block_group
)
6424 up_read(&used_bg
->data_rwsem
);
6425 btrfs_put_block_group(used_bg
);
6428 used_bg
= cluster
->block_group
;
6432 if (used_bg
== block_group
)
6435 btrfs_get_block_group(used_bg
);
6440 if (down_read_trylock(&used_bg
->data_rwsem
))
6443 spin_unlock(&cluster
->refill_lock
);
6444 down_read(&used_bg
->data_rwsem
);
6450 btrfs_release_block_group(struct btrfs_block_group_cache
*cache
,
6454 up_read(&cache
->data_rwsem
);
6455 btrfs_put_block_group(cache
);
6459 * walks the btree of allocated extents and find a hole of a given size.
6460 * The key ins is changed to record the hole:
6461 * ins->objectid == start position
6462 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6463 * ins->offset == the size of the hole.
6464 * Any available blocks before search_start are skipped.
6466 * If there is no suitable free space, we will record the max size of
6467 * the free space extent currently.
6469 static noinline
int find_free_extent(struct btrfs_root
*orig_root
,
6470 u64 num_bytes
, u64 empty_size
,
6471 u64 hint_byte
, struct btrfs_key
*ins
,
6472 u64 flags
, int delalloc
)
6475 struct btrfs_root
*root
= orig_root
->fs_info
->extent_root
;
6476 struct btrfs_free_cluster
*last_ptr
= NULL
;
6477 struct btrfs_block_group_cache
*block_group
= NULL
;
6478 u64 search_start
= 0;
6479 u64 max_extent_size
= 0;
6480 int empty_cluster
= 2 * 1024 * 1024;
6481 struct btrfs_space_info
*space_info
;
6483 int index
= __get_raid_index(flags
);
6484 int alloc_type
= (flags
& BTRFS_BLOCK_GROUP_DATA
) ?
6485 RESERVE_ALLOC_NO_ACCOUNT
: RESERVE_ALLOC
;
6486 bool failed_cluster_refill
= false;
6487 bool failed_alloc
= false;
6488 bool use_cluster
= true;
6489 bool have_caching_bg
= false;
6491 WARN_ON(num_bytes
< root
->sectorsize
);
6492 btrfs_set_key_type(ins
, BTRFS_EXTENT_ITEM_KEY
);
6496 trace_find_free_extent(orig_root
, num_bytes
, empty_size
, flags
);
6498 space_info
= __find_space_info(root
->fs_info
, flags
);
6500 btrfs_err(root
->fs_info
, "No space info for %llu", flags
);
6505 * If the space info is for both data and metadata it means we have a
6506 * small filesystem and we can't use the clustering stuff.
6508 if (btrfs_mixed_space_info(space_info
))
6509 use_cluster
= false;
6511 if (flags
& BTRFS_BLOCK_GROUP_METADATA
&& use_cluster
) {
6512 last_ptr
= &root
->fs_info
->meta_alloc_cluster
;
6513 if (!btrfs_test_opt(root
, SSD
))
6514 empty_cluster
= 64 * 1024;
6517 if ((flags
& BTRFS_BLOCK_GROUP_DATA
) && use_cluster
&&
6518 btrfs_test_opt(root
, SSD
)) {
6519 last_ptr
= &root
->fs_info
->data_alloc_cluster
;
6523 spin_lock(&last_ptr
->lock
);
6524 if (last_ptr
->block_group
)
6525 hint_byte
= last_ptr
->window_start
;
6526 spin_unlock(&last_ptr
->lock
);
6529 search_start
= max(search_start
, first_logical_byte(root
, 0));
6530 search_start
= max(search_start
, hint_byte
);
6535 if (search_start
== hint_byte
) {
6536 block_group
= btrfs_lookup_block_group(root
->fs_info
,
6539 * we don't want to use the block group if it doesn't match our
6540 * allocation bits, or if its not cached.
6542 * However if we are re-searching with an ideal block group
6543 * picked out then we don't care that the block group is cached.
6545 if (block_group
&& block_group_bits(block_group
, flags
) &&
6546 block_group
->cached
!= BTRFS_CACHE_NO
) {
6547 down_read(&space_info
->groups_sem
);
6548 if (list_empty(&block_group
->list
) ||
6551 * someone is removing this block group,
6552 * we can't jump into the have_block_group
6553 * target because our list pointers are not
6556 btrfs_put_block_group(block_group
);
6557 up_read(&space_info
->groups_sem
);
6559 index
= get_block_group_index(block_group
);
6560 btrfs_lock_block_group(block_group
, delalloc
);
6561 goto have_block_group
;
6563 } else if (block_group
) {
6564 btrfs_put_block_group(block_group
);
6568 have_caching_bg
= false;
6569 down_read(&space_info
->groups_sem
);
6570 list_for_each_entry(block_group
, &space_info
->block_groups
[index
],
6575 btrfs_grab_block_group(block_group
, delalloc
);
6576 search_start
= block_group
->key
.objectid
;
6579 * this can happen if we end up cycling through all the
6580 * raid types, but we want to make sure we only allocate
6581 * for the proper type.
6583 if (!block_group_bits(block_group
, flags
)) {
6584 u64 extra
= BTRFS_BLOCK_GROUP_DUP
|
6585 BTRFS_BLOCK_GROUP_RAID1
|
6586 BTRFS_BLOCK_GROUP_RAID5
|
6587 BTRFS_BLOCK_GROUP_RAID6
|
6588 BTRFS_BLOCK_GROUP_RAID10
;
6591 * if they asked for extra copies and this block group
6592 * doesn't provide them, bail. This does allow us to
6593 * fill raid0 from raid1.
6595 if ((flags
& extra
) && !(block_group
->flags
& extra
))
6600 cached
= block_group_cache_done(block_group
);
6601 if (unlikely(!cached
)) {
6602 ret
= cache_block_group(block_group
, 0);
6607 if (unlikely(block_group
->cached
== BTRFS_CACHE_ERROR
))
6609 if (unlikely(block_group
->ro
))
6613 * Ok we want to try and use the cluster allocator, so
6617 struct btrfs_block_group_cache
*used_block_group
;
6618 unsigned long aligned_cluster
;
6620 * the refill lock keeps out other
6621 * people trying to start a new cluster
6623 used_block_group
= btrfs_lock_cluster(block_group
,
6626 if (!used_block_group
)
6627 goto refill_cluster
;
6629 if (used_block_group
!= block_group
&&
6630 (used_block_group
->ro
||
6631 !block_group_bits(used_block_group
, flags
)))
6632 goto release_cluster
;
6634 offset
= btrfs_alloc_from_cluster(used_block_group
,
6637 used_block_group
->key
.objectid
,
6640 /* we have a block, we're done */
6641 spin_unlock(&last_ptr
->refill_lock
);
6642 trace_btrfs_reserve_extent_cluster(root
,
6644 search_start
, num_bytes
);
6645 if (used_block_group
!= block_group
) {
6646 btrfs_release_block_group(block_group
,
6648 block_group
= used_block_group
;
6653 WARN_ON(last_ptr
->block_group
!= used_block_group
);
6655 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6656 * set up a new clusters, so lets just skip it
6657 * and let the allocator find whatever block
6658 * it can find. If we reach this point, we
6659 * will have tried the cluster allocator
6660 * plenty of times and not have found
6661 * anything, so we are likely way too
6662 * fragmented for the clustering stuff to find
6665 * However, if the cluster is taken from the
6666 * current block group, release the cluster
6667 * first, so that we stand a better chance of
6668 * succeeding in the unclustered
6670 if (loop
>= LOOP_NO_EMPTY_SIZE
&&
6671 used_block_group
!= block_group
) {
6672 spin_unlock(&last_ptr
->refill_lock
);
6673 btrfs_release_block_group(used_block_group
,
6675 goto unclustered_alloc
;
6679 * this cluster didn't work out, free it and
6682 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
6684 if (used_block_group
!= block_group
)
6685 btrfs_release_block_group(used_block_group
,
6688 if (loop
>= LOOP_NO_EMPTY_SIZE
) {
6689 spin_unlock(&last_ptr
->refill_lock
);
6690 goto unclustered_alloc
;
6693 aligned_cluster
= max_t(unsigned long,
6694 empty_cluster
+ empty_size
,
6695 block_group
->full_stripe_len
);
6697 /* allocate a cluster in this block group */
6698 ret
= btrfs_find_space_cluster(root
, block_group
,
6699 last_ptr
, search_start
,
6704 * now pull our allocation out of this
6707 offset
= btrfs_alloc_from_cluster(block_group
,
6713 /* we found one, proceed */
6714 spin_unlock(&last_ptr
->refill_lock
);
6715 trace_btrfs_reserve_extent_cluster(root
,
6716 block_group
, search_start
,
6720 } else if (!cached
&& loop
> LOOP_CACHING_NOWAIT
6721 && !failed_cluster_refill
) {
6722 spin_unlock(&last_ptr
->refill_lock
);
6724 failed_cluster_refill
= true;
6725 wait_block_group_cache_progress(block_group
,
6726 num_bytes
+ empty_cluster
+ empty_size
);
6727 goto have_block_group
;
6731 * at this point we either didn't find a cluster
6732 * or we weren't able to allocate a block from our
6733 * cluster. Free the cluster we've been trying
6734 * to use, and go to the next block group
6736 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
6737 spin_unlock(&last_ptr
->refill_lock
);
6742 spin_lock(&block_group
->free_space_ctl
->tree_lock
);
6744 block_group
->free_space_ctl
->free_space
<
6745 num_bytes
+ empty_cluster
+ empty_size
) {
6746 if (block_group
->free_space_ctl
->free_space
>
6749 block_group
->free_space_ctl
->free_space
;
6750 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
6753 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
6755 offset
= btrfs_find_space_for_alloc(block_group
, search_start
,
6756 num_bytes
, empty_size
,
6759 * If we didn't find a chunk, and we haven't failed on this
6760 * block group before, and this block group is in the middle of
6761 * caching and we are ok with waiting, then go ahead and wait
6762 * for progress to be made, and set failed_alloc to true.
6764 * If failed_alloc is true then we've already waited on this
6765 * block group once and should move on to the next block group.
6767 if (!offset
&& !failed_alloc
&& !cached
&&
6768 loop
> LOOP_CACHING_NOWAIT
) {
6769 wait_block_group_cache_progress(block_group
,
6770 num_bytes
+ empty_size
);
6771 failed_alloc
= true;
6772 goto have_block_group
;
6773 } else if (!offset
) {
6775 have_caching_bg
= true;
6779 search_start
= stripe_align(root
, block_group
,
6782 /* move on to the next group */
6783 if (search_start
+ num_bytes
>
6784 block_group
->key
.objectid
+ block_group
->key
.offset
) {
6785 btrfs_add_free_space(block_group
, offset
, num_bytes
);
6789 if (offset
< search_start
)
6790 btrfs_add_free_space(block_group
, offset
,
6791 search_start
- offset
);
6792 BUG_ON(offset
> search_start
);
6794 ret
= btrfs_update_reserved_bytes(block_group
, num_bytes
,
6795 alloc_type
, delalloc
);
6796 if (ret
== -EAGAIN
) {
6797 btrfs_add_free_space(block_group
, offset
, num_bytes
);
6801 /* we are all good, lets return */
6802 ins
->objectid
= search_start
;
6803 ins
->offset
= num_bytes
;
6805 trace_btrfs_reserve_extent(orig_root
, block_group
,
6806 search_start
, num_bytes
);
6807 btrfs_release_block_group(block_group
, delalloc
);
6810 failed_cluster_refill
= false;
6811 failed_alloc
= false;
6812 BUG_ON(index
!= get_block_group_index(block_group
));
6813 btrfs_release_block_group(block_group
, delalloc
);
6815 up_read(&space_info
->groups_sem
);
6817 if (!ins
->objectid
&& loop
>= LOOP_CACHING_WAIT
&& have_caching_bg
)
6820 if (!ins
->objectid
&& ++index
< BTRFS_NR_RAID_TYPES
)
6824 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6825 * caching kthreads as we move along
6826 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6827 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6828 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6831 if (!ins
->objectid
&& loop
< LOOP_NO_EMPTY_SIZE
) {
6834 if (loop
== LOOP_ALLOC_CHUNK
) {
6835 struct btrfs_trans_handle
*trans
;
6838 trans
= current
->journal_info
;
6842 trans
= btrfs_join_transaction(root
);
6844 if (IS_ERR(trans
)) {
6845 ret
= PTR_ERR(trans
);
6849 ret
= do_chunk_alloc(trans
, root
, flags
,
6852 * Do not bail out on ENOSPC since we
6853 * can do more things.
6855 if (ret
< 0 && ret
!= -ENOSPC
)
6856 btrfs_abort_transaction(trans
,
6861 btrfs_end_transaction(trans
, root
);
6866 if (loop
== LOOP_NO_EMPTY_SIZE
) {
6872 } else if (!ins
->objectid
) {
6874 } else if (ins
->objectid
) {
6879 ins
->offset
= max_extent_size
;
6883 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
6884 int dump_block_groups
)
6886 struct btrfs_block_group_cache
*cache
;
6889 spin_lock(&info
->lock
);
6890 printk(KERN_INFO
"BTRFS: space_info %llu has %llu free, is %sfull\n",
6892 info
->total_bytes
- info
->bytes_used
- info
->bytes_pinned
-
6893 info
->bytes_reserved
- info
->bytes_readonly
,
6894 (info
->full
) ? "" : "not ");
6895 printk(KERN_INFO
"BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6896 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6897 info
->total_bytes
, info
->bytes_used
, info
->bytes_pinned
,
6898 info
->bytes_reserved
, info
->bytes_may_use
,
6899 info
->bytes_readonly
);
6900 spin_unlock(&info
->lock
);
6902 if (!dump_block_groups
)
6905 down_read(&info
->groups_sem
);
6907 list_for_each_entry(cache
, &info
->block_groups
[index
], list
) {
6908 spin_lock(&cache
->lock
);
6909 printk(KERN_INFO
"BTRFS: "
6910 "block group %llu has %llu bytes, "
6911 "%llu used %llu pinned %llu reserved %s\n",
6912 cache
->key
.objectid
, cache
->key
.offset
,
6913 btrfs_block_group_used(&cache
->item
), cache
->pinned
,
6914 cache
->reserved
, cache
->ro
? "[readonly]" : "");
6915 btrfs_dump_free_space(cache
, bytes
);
6916 spin_unlock(&cache
->lock
);
6918 if (++index
< BTRFS_NR_RAID_TYPES
)
6920 up_read(&info
->groups_sem
);
6923 int btrfs_reserve_extent(struct btrfs_root
*root
,
6924 u64 num_bytes
, u64 min_alloc_size
,
6925 u64 empty_size
, u64 hint_byte
,
6926 struct btrfs_key
*ins
, int is_data
, int delalloc
)
6928 bool final_tried
= false;
6932 flags
= btrfs_get_alloc_profile(root
, is_data
);
6934 WARN_ON(num_bytes
< root
->sectorsize
);
6935 ret
= find_free_extent(root
, num_bytes
, empty_size
, hint_byte
, ins
,
6938 if (ret
== -ENOSPC
) {
6939 if (!final_tried
&& ins
->offset
) {
6940 num_bytes
= min(num_bytes
>> 1, ins
->offset
);
6941 num_bytes
= round_down(num_bytes
, root
->sectorsize
);
6942 num_bytes
= max(num_bytes
, min_alloc_size
);
6943 if (num_bytes
== min_alloc_size
)
6946 } else if (btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
6947 struct btrfs_space_info
*sinfo
;
6949 sinfo
= __find_space_info(root
->fs_info
, flags
);
6950 btrfs_err(root
->fs_info
, "allocation failed flags %llu, wanted %llu",
6953 dump_space_info(sinfo
, num_bytes
, 1);
6960 static int __btrfs_free_reserved_extent(struct btrfs_root
*root
,
6962 int pin
, int delalloc
)
6964 struct btrfs_block_group_cache
*cache
;
6967 cache
= btrfs_lookup_block_group(root
->fs_info
, start
);
6969 btrfs_err(root
->fs_info
, "Unable to find block group for %llu",
6975 pin_down_extent(root
, cache
, start
, len
, 1);
6977 if (btrfs_test_opt(root
, DISCARD
))
6978 ret
= btrfs_discard_extent(root
, start
, len
, NULL
);
6979 btrfs_add_free_space(cache
, start
, len
);
6980 btrfs_update_reserved_bytes(cache
, len
, RESERVE_FREE
, delalloc
);
6982 btrfs_put_block_group(cache
);
6984 trace_btrfs_reserved_extent_free(root
, start
, len
);
6989 int btrfs_free_reserved_extent(struct btrfs_root
*root
,
6990 u64 start
, u64 len
, int delalloc
)
6992 return __btrfs_free_reserved_extent(root
, start
, len
, 0, delalloc
);
6995 int btrfs_free_and_pin_reserved_extent(struct btrfs_root
*root
,
6998 return __btrfs_free_reserved_extent(root
, start
, len
, 1, 0);
7001 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
7002 struct btrfs_root
*root
,
7003 u64 parent
, u64 root_objectid
,
7004 u64 flags
, u64 owner
, u64 offset
,
7005 struct btrfs_key
*ins
, int ref_mod
)
7008 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7009 struct btrfs_extent_item
*extent_item
;
7010 struct btrfs_extent_inline_ref
*iref
;
7011 struct btrfs_path
*path
;
7012 struct extent_buffer
*leaf
;
7017 type
= BTRFS_SHARED_DATA_REF_KEY
;
7019 type
= BTRFS_EXTENT_DATA_REF_KEY
;
7021 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
7023 path
= btrfs_alloc_path();
7027 path
->leave_spinning
= 1;
7028 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
7031 btrfs_free_path(path
);
7035 leaf
= path
->nodes
[0];
7036 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
7037 struct btrfs_extent_item
);
7038 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
7039 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
7040 btrfs_set_extent_flags(leaf
, extent_item
,
7041 flags
| BTRFS_EXTENT_FLAG_DATA
);
7043 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
7044 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
7046 struct btrfs_shared_data_ref
*ref
;
7047 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
7048 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
7049 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
7051 struct btrfs_extent_data_ref
*ref
;
7052 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
7053 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
7054 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
7055 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
7056 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
7059 btrfs_mark_buffer_dirty(path
->nodes
[0]);
7060 btrfs_free_path(path
);
7062 /* Always set parent to 0 here since its exclusive anyway. */
7063 ret
= btrfs_qgroup_record_ref(trans
, fs_info
, root_objectid
,
7064 ins
->objectid
, ins
->offset
,
7065 BTRFS_QGROUP_OPER_ADD_EXCL
, 0);
7069 ret
= update_block_group(root
, ins
->objectid
, ins
->offset
, 1);
7070 if (ret
) { /* -ENOENT, logic error */
7071 btrfs_err(fs_info
, "update block group failed for %llu %llu",
7072 ins
->objectid
, ins
->offset
);
7075 trace_btrfs_reserved_extent_alloc(root
, ins
->objectid
, ins
->offset
);
7079 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
7080 struct btrfs_root
*root
,
7081 u64 parent
, u64 root_objectid
,
7082 u64 flags
, struct btrfs_disk_key
*key
,
7083 int level
, struct btrfs_key
*ins
,
7087 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7088 struct btrfs_extent_item
*extent_item
;
7089 struct btrfs_tree_block_info
*block_info
;
7090 struct btrfs_extent_inline_ref
*iref
;
7091 struct btrfs_path
*path
;
7092 struct extent_buffer
*leaf
;
7093 u32 size
= sizeof(*extent_item
) + sizeof(*iref
);
7094 u64 num_bytes
= ins
->offset
;
7095 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
7098 if (!skinny_metadata
)
7099 size
+= sizeof(*block_info
);
7101 path
= btrfs_alloc_path();
7103 btrfs_free_and_pin_reserved_extent(root
, ins
->objectid
,
7108 path
->leave_spinning
= 1;
7109 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
7112 btrfs_free_and_pin_reserved_extent(root
, ins
->objectid
,
7114 btrfs_free_path(path
);
7118 leaf
= path
->nodes
[0];
7119 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
7120 struct btrfs_extent_item
);
7121 btrfs_set_extent_refs(leaf
, extent_item
, 1);
7122 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
7123 btrfs_set_extent_flags(leaf
, extent_item
,
7124 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
7126 if (skinny_metadata
) {
7127 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
7128 num_bytes
= root
->leafsize
;
7130 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
7131 btrfs_set_tree_block_key(leaf
, block_info
, key
);
7132 btrfs_set_tree_block_level(leaf
, block_info
, level
);
7133 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
7137 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
7138 btrfs_set_extent_inline_ref_type(leaf
, iref
,
7139 BTRFS_SHARED_BLOCK_REF_KEY
);
7140 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
7142 btrfs_set_extent_inline_ref_type(leaf
, iref
,
7143 BTRFS_TREE_BLOCK_REF_KEY
);
7144 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
7147 btrfs_mark_buffer_dirty(leaf
);
7148 btrfs_free_path(path
);
7151 ret
= btrfs_qgroup_record_ref(trans
, fs_info
, root_objectid
,
7152 ins
->objectid
, num_bytes
,
7153 BTRFS_QGROUP_OPER_ADD_EXCL
, 0);
7158 ret
= update_block_group(root
, ins
->objectid
, root
->leafsize
, 1);
7159 if (ret
) { /* -ENOENT, logic error */
7160 btrfs_err(fs_info
, "update block group failed for %llu %llu",
7161 ins
->objectid
, ins
->offset
);
7165 trace_btrfs_reserved_extent_alloc(root
, ins
->objectid
, root
->leafsize
);
7169 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
7170 struct btrfs_root
*root
,
7171 u64 root_objectid
, u64 owner
,
7172 u64 offset
, struct btrfs_key
*ins
)
7176 BUG_ON(root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
7178 ret
= btrfs_add_delayed_data_ref(root
->fs_info
, trans
, ins
->objectid
,
7180 root_objectid
, owner
, offset
,
7181 BTRFS_ADD_DELAYED_EXTENT
, NULL
, 0);
7186 * this is used by the tree logging recovery code. It records that
7187 * an extent has been allocated and makes sure to clear the free
7188 * space cache bits as well
7190 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
7191 struct btrfs_root
*root
,
7192 u64 root_objectid
, u64 owner
, u64 offset
,
7193 struct btrfs_key
*ins
)
7196 struct btrfs_block_group_cache
*block_group
;
7199 * Mixed block groups will exclude before processing the log so we only
7200 * need to do the exlude dance if this fs isn't mixed.
7202 if (!btrfs_fs_incompat(root
->fs_info
, MIXED_GROUPS
)) {
7203 ret
= __exclude_logged_extent(root
, ins
->objectid
, ins
->offset
);
7208 block_group
= btrfs_lookup_block_group(root
->fs_info
, ins
->objectid
);
7212 ret
= btrfs_update_reserved_bytes(block_group
, ins
->offset
,
7213 RESERVE_ALLOC_NO_ACCOUNT
, 0);
7214 BUG_ON(ret
); /* logic error */
7215 ret
= alloc_reserved_file_extent(trans
, root
, 0, root_objectid
,
7216 0, owner
, offset
, ins
, 1);
7217 btrfs_put_block_group(block_group
);
7221 static struct extent_buffer
*
7222 btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
7223 u64 bytenr
, u32 blocksize
, int level
)
7225 struct extent_buffer
*buf
;
7227 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
7229 return ERR_PTR(-ENOMEM
);
7230 btrfs_set_header_generation(buf
, trans
->transid
);
7231 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, buf
, level
);
7232 btrfs_tree_lock(buf
);
7233 clean_tree_block(trans
, root
, buf
);
7234 clear_bit(EXTENT_BUFFER_STALE
, &buf
->bflags
);
7236 btrfs_set_lock_blocking(buf
);
7237 btrfs_set_buffer_uptodate(buf
);
7239 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
7241 * we allow two log transactions at a time, use different
7242 * EXENT bit to differentiate dirty pages.
7244 if (root
->log_transid
% 2 == 0)
7245 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
7246 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
7248 set_extent_new(&root
->dirty_log_pages
, buf
->start
,
7249 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
7251 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
7252 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
7254 trans
->blocks_used
++;
7255 /* this returns a buffer locked for blocking */
7259 static struct btrfs_block_rsv
*
7260 use_block_rsv(struct btrfs_trans_handle
*trans
,
7261 struct btrfs_root
*root
, u32 blocksize
)
7263 struct btrfs_block_rsv
*block_rsv
;
7264 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
7266 bool global_updated
= false;
7268 block_rsv
= get_block_rsv(trans
, root
);
7270 if (unlikely(block_rsv
->size
== 0))
7273 ret
= block_rsv_use_bytes(block_rsv
, blocksize
);
7277 if (block_rsv
->failfast
)
7278 return ERR_PTR(ret
);
7280 if (block_rsv
->type
== BTRFS_BLOCK_RSV_GLOBAL
&& !global_updated
) {
7281 global_updated
= true;
7282 update_global_block_rsv(root
->fs_info
);
7286 if (btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
7287 static DEFINE_RATELIMIT_STATE(_rs
,
7288 DEFAULT_RATELIMIT_INTERVAL
* 10,
7289 /*DEFAULT_RATELIMIT_BURST*/ 1);
7290 if (__ratelimit(&_rs
))
7292 "BTRFS: block rsv returned %d\n", ret
);
7295 ret
= reserve_metadata_bytes(root
, block_rsv
, blocksize
,
7296 BTRFS_RESERVE_NO_FLUSH
);
7300 * If we couldn't reserve metadata bytes try and use some from
7301 * the global reserve if its space type is the same as the global
7304 if (block_rsv
->type
!= BTRFS_BLOCK_RSV_GLOBAL
&&
7305 block_rsv
->space_info
== global_rsv
->space_info
) {
7306 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
7310 return ERR_PTR(ret
);
7313 static void unuse_block_rsv(struct btrfs_fs_info
*fs_info
,
7314 struct btrfs_block_rsv
*block_rsv
, u32 blocksize
)
7316 block_rsv_add_bytes(block_rsv
, blocksize
, 0);
7317 block_rsv_release_bytes(fs_info
, block_rsv
, NULL
, 0);
7321 * finds a free extent and does all the dirty work required for allocation
7322 * returns the key for the extent through ins, and a tree buffer for
7323 * the first block of the extent through buf.
7325 * returns the tree buffer or NULL.
7327 struct extent_buffer
*btrfs_alloc_free_block(struct btrfs_trans_handle
*trans
,
7328 struct btrfs_root
*root
, u32 blocksize
,
7329 u64 parent
, u64 root_objectid
,
7330 struct btrfs_disk_key
*key
, int level
,
7331 u64 hint
, u64 empty_size
)
7333 struct btrfs_key ins
;
7334 struct btrfs_block_rsv
*block_rsv
;
7335 struct extent_buffer
*buf
;
7338 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
7341 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
7342 if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT
, &root
->state
))) {
7343 buf
= btrfs_init_new_buffer(trans
, root
, root
->alloc_bytenr
,
7346 root
->alloc_bytenr
+= blocksize
;
7350 block_rsv
= use_block_rsv(trans
, root
, blocksize
);
7351 if (IS_ERR(block_rsv
))
7352 return ERR_CAST(block_rsv
);
7354 ret
= btrfs_reserve_extent(root
, blocksize
, blocksize
,
7355 empty_size
, hint
, &ins
, 0, 0);
7357 unuse_block_rsv(root
->fs_info
, block_rsv
, blocksize
);
7358 return ERR_PTR(ret
);
7361 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
,
7363 BUG_ON(IS_ERR(buf
)); /* -ENOMEM */
7365 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
7367 parent
= ins
.objectid
;
7368 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
7372 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
7373 struct btrfs_delayed_extent_op
*extent_op
;
7374 extent_op
= btrfs_alloc_delayed_extent_op();
7375 BUG_ON(!extent_op
); /* -ENOMEM */
7377 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
7379 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
7380 extent_op
->flags_to_set
= flags
;
7381 if (skinny_metadata
)
7382 extent_op
->update_key
= 0;
7384 extent_op
->update_key
= 1;
7385 extent_op
->update_flags
= 1;
7386 extent_op
->is_data
= 0;
7387 extent_op
->level
= level
;
7389 ret
= btrfs_add_delayed_tree_ref(root
->fs_info
, trans
,
7391 ins
.offset
, parent
, root_objectid
,
7392 level
, BTRFS_ADD_DELAYED_EXTENT
,
7394 BUG_ON(ret
); /* -ENOMEM */
7399 struct walk_control
{
7400 u64 refs
[BTRFS_MAX_LEVEL
];
7401 u64 flags
[BTRFS_MAX_LEVEL
];
7402 struct btrfs_key update_progress
;
7413 #define DROP_REFERENCE 1
7414 #define UPDATE_BACKREF 2
7416 static noinline
void reada_walk_down(struct btrfs_trans_handle
*trans
,
7417 struct btrfs_root
*root
,
7418 struct walk_control
*wc
,
7419 struct btrfs_path
*path
)
7427 struct btrfs_key key
;
7428 struct extent_buffer
*eb
;
7433 if (path
->slots
[wc
->level
] < wc
->reada_slot
) {
7434 wc
->reada_count
= wc
->reada_count
* 2 / 3;
7435 wc
->reada_count
= max(wc
->reada_count
, 2);
7437 wc
->reada_count
= wc
->reada_count
* 3 / 2;
7438 wc
->reada_count
= min_t(int, wc
->reada_count
,
7439 BTRFS_NODEPTRS_PER_BLOCK(root
));
7442 eb
= path
->nodes
[wc
->level
];
7443 nritems
= btrfs_header_nritems(eb
);
7444 blocksize
= btrfs_level_size(root
, wc
->level
- 1);
7446 for (slot
= path
->slots
[wc
->level
]; slot
< nritems
; slot
++) {
7447 if (nread
>= wc
->reada_count
)
7451 bytenr
= btrfs_node_blockptr(eb
, slot
);
7452 generation
= btrfs_node_ptr_generation(eb
, slot
);
7454 if (slot
== path
->slots
[wc
->level
])
7457 if (wc
->stage
== UPDATE_BACKREF
&&
7458 generation
<= root
->root_key
.offset
)
7461 /* We don't lock the tree block, it's OK to be racy here */
7462 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
,
7463 wc
->level
- 1, 1, &refs
,
7465 /* We don't care about errors in readahead. */
7470 if (wc
->stage
== DROP_REFERENCE
) {
7474 if (wc
->level
== 1 &&
7475 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
7477 if (!wc
->update_ref
||
7478 generation
<= root
->root_key
.offset
)
7480 btrfs_node_key_to_cpu(eb
, &key
, slot
);
7481 ret
= btrfs_comp_cpu_keys(&key
,
7482 &wc
->update_progress
);
7486 if (wc
->level
== 1 &&
7487 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
7491 ret
= readahead_tree_block(root
, bytenr
, blocksize
,
7497 wc
->reada_slot
= slot
;
7501 * helper to process tree block while walking down the tree.
7503 * when wc->stage == UPDATE_BACKREF, this function updates
7504 * back refs for pointers in the block.
7506 * NOTE: return value 1 means we should stop walking down.
7508 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
7509 struct btrfs_root
*root
,
7510 struct btrfs_path
*path
,
7511 struct walk_control
*wc
, int lookup_info
)
7513 int level
= wc
->level
;
7514 struct extent_buffer
*eb
= path
->nodes
[level
];
7515 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
7518 if (wc
->stage
== UPDATE_BACKREF
&&
7519 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
7523 * when reference count of tree block is 1, it won't increase
7524 * again. once full backref flag is set, we never clear it.
7527 ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
7528 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
)))) {
7529 BUG_ON(!path
->locks
[level
]);
7530 ret
= btrfs_lookup_extent_info(trans
, root
,
7531 eb
->start
, level
, 1,
7534 BUG_ON(ret
== -ENOMEM
);
7537 BUG_ON(wc
->refs
[level
] == 0);
7540 if (wc
->stage
== DROP_REFERENCE
) {
7541 if (wc
->refs
[level
] > 1)
7544 if (path
->locks
[level
] && !wc
->keep_locks
) {
7545 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
7546 path
->locks
[level
] = 0;
7551 /* wc->stage == UPDATE_BACKREF */
7552 if (!(wc
->flags
[level
] & flag
)) {
7553 BUG_ON(!path
->locks
[level
]);
7554 ret
= btrfs_inc_ref(trans
, root
, eb
, 1, wc
->for_reloc
);
7555 BUG_ON(ret
); /* -ENOMEM */
7556 ret
= btrfs_dec_ref(trans
, root
, eb
, 0, wc
->for_reloc
);
7557 BUG_ON(ret
); /* -ENOMEM */
7558 ret
= btrfs_set_disk_extent_flags(trans
, root
, eb
->start
,
7560 btrfs_header_level(eb
), 0);
7561 BUG_ON(ret
); /* -ENOMEM */
7562 wc
->flags
[level
] |= flag
;
7566 * the block is shared by multiple trees, so it's not good to
7567 * keep the tree lock
7569 if (path
->locks
[level
] && level
> 0) {
7570 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
7571 path
->locks
[level
] = 0;
7577 * helper to process tree block pointer.
7579 * when wc->stage == DROP_REFERENCE, this function checks
7580 * reference count of the block pointed to. if the block
7581 * is shared and we need update back refs for the subtree
7582 * rooted at the block, this function changes wc->stage to
7583 * UPDATE_BACKREF. if the block is shared and there is no
7584 * need to update back, this function drops the reference
7587 * NOTE: return value 1 means we should stop walking down.
7589 static noinline
int do_walk_down(struct btrfs_trans_handle
*trans
,
7590 struct btrfs_root
*root
,
7591 struct btrfs_path
*path
,
7592 struct walk_control
*wc
, int *lookup_info
)
7598 struct btrfs_key key
;
7599 struct extent_buffer
*next
;
7600 int level
= wc
->level
;
7604 generation
= btrfs_node_ptr_generation(path
->nodes
[level
],
7605 path
->slots
[level
]);
7607 * if the lower level block was created before the snapshot
7608 * was created, we know there is no need to update back refs
7611 if (wc
->stage
== UPDATE_BACKREF
&&
7612 generation
<= root
->root_key
.offset
) {
7617 bytenr
= btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]);
7618 blocksize
= btrfs_level_size(root
, level
- 1);
7620 next
= btrfs_find_tree_block(root
, bytenr
, blocksize
);
7622 next
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
7625 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, next
,
7629 btrfs_tree_lock(next
);
7630 btrfs_set_lock_blocking(next
);
7632 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, level
- 1, 1,
7633 &wc
->refs
[level
- 1],
7634 &wc
->flags
[level
- 1]);
7636 btrfs_tree_unlock(next
);
7640 if (unlikely(wc
->refs
[level
- 1] == 0)) {
7641 btrfs_err(root
->fs_info
, "Missing references.");
7646 if (wc
->stage
== DROP_REFERENCE
) {
7647 if (wc
->refs
[level
- 1] > 1) {
7649 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
7652 if (!wc
->update_ref
||
7653 generation
<= root
->root_key
.offset
)
7656 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
7657 path
->slots
[level
]);
7658 ret
= btrfs_comp_cpu_keys(&key
, &wc
->update_progress
);
7662 wc
->stage
= UPDATE_BACKREF
;
7663 wc
->shared_level
= level
- 1;
7667 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
7671 if (!btrfs_buffer_uptodate(next
, generation
, 0)) {
7672 btrfs_tree_unlock(next
);
7673 free_extent_buffer(next
);
7679 if (reada
&& level
== 1)
7680 reada_walk_down(trans
, root
, wc
, path
);
7681 next
= read_tree_block(root
, bytenr
, blocksize
, generation
);
7682 if (!next
|| !extent_buffer_uptodate(next
)) {
7683 free_extent_buffer(next
);
7686 btrfs_tree_lock(next
);
7687 btrfs_set_lock_blocking(next
);
7691 BUG_ON(level
!= btrfs_header_level(next
));
7692 path
->nodes
[level
] = next
;
7693 path
->slots
[level
] = 0;
7694 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
7700 wc
->refs
[level
- 1] = 0;
7701 wc
->flags
[level
- 1] = 0;
7702 if (wc
->stage
== DROP_REFERENCE
) {
7703 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
7704 parent
= path
->nodes
[level
]->start
;
7706 BUG_ON(root
->root_key
.objectid
!=
7707 btrfs_header_owner(path
->nodes
[level
]));
7711 ret
= btrfs_free_extent(trans
, root
, bytenr
, blocksize
, parent
,
7712 root
->root_key
.objectid
, level
- 1, 0, 0);
7713 BUG_ON(ret
); /* -ENOMEM */
7715 btrfs_tree_unlock(next
);
7716 free_extent_buffer(next
);
7722 * helper to process tree block while walking up the tree.
7724 * when wc->stage == DROP_REFERENCE, this function drops
7725 * reference count on the block.
7727 * when wc->stage == UPDATE_BACKREF, this function changes
7728 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7729 * to UPDATE_BACKREF previously while processing the block.
7731 * NOTE: return value 1 means we should stop walking up.
7733 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
7734 struct btrfs_root
*root
,
7735 struct btrfs_path
*path
,
7736 struct walk_control
*wc
)
7739 int level
= wc
->level
;
7740 struct extent_buffer
*eb
= path
->nodes
[level
];
7743 if (wc
->stage
== UPDATE_BACKREF
) {
7744 BUG_ON(wc
->shared_level
< level
);
7745 if (level
< wc
->shared_level
)
7748 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
7752 wc
->stage
= DROP_REFERENCE
;
7753 wc
->shared_level
= -1;
7754 path
->slots
[level
] = 0;
7757 * check reference count again if the block isn't locked.
7758 * we should start walking down the tree again if reference
7761 if (!path
->locks
[level
]) {
7763 btrfs_tree_lock(eb
);
7764 btrfs_set_lock_blocking(eb
);
7765 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
7767 ret
= btrfs_lookup_extent_info(trans
, root
,
7768 eb
->start
, level
, 1,
7772 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
7773 path
->locks
[level
] = 0;
7776 BUG_ON(wc
->refs
[level
] == 0);
7777 if (wc
->refs
[level
] == 1) {
7778 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
7779 path
->locks
[level
] = 0;
7785 /* wc->stage == DROP_REFERENCE */
7786 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
7788 if (wc
->refs
[level
] == 1) {
7790 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
7791 ret
= btrfs_dec_ref(trans
, root
, eb
, 1,
7794 ret
= btrfs_dec_ref(trans
, root
, eb
, 0,
7796 BUG_ON(ret
); /* -ENOMEM */
7798 /* make block locked assertion in clean_tree_block happy */
7799 if (!path
->locks
[level
] &&
7800 btrfs_header_generation(eb
) == trans
->transid
) {
7801 btrfs_tree_lock(eb
);
7802 btrfs_set_lock_blocking(eb
);
7803 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
7805 clean_tree_block(trans
, root
, eb
);
7808 if (eb
== root
->node
) {
7809 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
7812 BUG_ON(root
->root_key
.objectid
!=
7813 btrfs_header_owner(eb
));
7815 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
7816 parent
= path
->nodes
[level
+ 1]->start
;
7818 BUG_ON(root
->root_key
.objectid
!=
7819 btrfs_header_owner(path
->nodes
[level
+ 1]));
7822 btrfs_free_tree_block(trans
, root
, eb
, parent
, wc
->refs
[level
] == 1);
7824 wc
->refs
[level
] = 0;
7825 wc
->flags
[level
] = 0;
7829 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
7830 struct btrfs_root
*root
,
7831 struct btrfs_path
*path
,
7832 struct walk_control
*wc
)
7834 int level
= wc
->level
;
7835 int lookup_info
= 1;
7838 while (level
>= 0) {
7839 ret
= walk_down_proc(trans
, root
, path
, wc
, lookup_info
);
7846 if (path
->slots
[level
] >=
7847 btrfs_header_nritems(path
->nodes
[level
]))
7850 ret
= do_walk_down(trans
, root
, path
, wc
, &lookup_info
);
7852 path
->slots
[level
]++;
7861 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
7862 struct btrfs_root
*root
,
7863 struct btrfs_path
*path
,
7864 struct walk_control
*wc
, int max_level
)
7866 int level
= wc
->level
;
7869 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
7870 while (level
< max_level
&& path
->nodes
[level
]) {
7872 if (path
->slots
[level
] + 1 <
7873 btrfs_header_nritems(path
->nodes
[level
])) {
7874 path
->slots
[level
]++;
7877 ret
= walk_up_proc(trans
, root
, path
, wc
);
7881 if (path
->locks
[level
]) {
7882 btrfs_tree_unlock_rw(path
->nodes
[level
],
7883 path
->locks
[level
]);
7884 path
->locks
[level
] = 0;
7886 free_extent_buffer(path
->nodes
[level
]);
7887 path
->nodes
[level
] = NULL
;
7895 * drop a subvolume tree.
7897 * this function traverses the tree freeing any blocks that only
7898 * referenced by the tree.
7900 * when a shared tree block is found. this function decreases its
7901 * reference count by one. if update_ref is true, this function
7902 * also make sure backrefs for the shared block and all lower level
7903 * blocks are properly updated.
7905 * If called with for_reloc == 0, may exit early with -EAGAIN
7907 int btrfs_drop_snapshot(struct btrfs_root
*root
,
7908 struct btrfs_block_rsv
*block_rsv
, int update_ref
,
7911 struct btrfs_path
*path
;
7912 struct btrfs_trans_handle
*trans
;
7913 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
7914 struct btrfs_root_item
*root_item
= &root
->root_item
;
7915 struct walk_control
*wc
;
7916 struct btrfs_key key
;
7920 bool root_dropped
= false;
7922 path
= btrfs_alloc_path();
7928 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
7930 btrfs_free_path(path
);
7935 trans
= btrfs_start_transaction(tree_root
, 0);
7936 if (IS_ERR(trans
)) {
7937 err
= PTR_ERR(trans
);
7942 trans
->block_rsv
= block_rsv
;
7944 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
7945 level
= btrfs_header_level(root
->node
);
7946 path
->nodes
[level
] = btrfs_lock_root_node(root
);
7947 btrfs_set_lock_blocking(path
->nodes
[level
]);
7948 path
->slots
[level
] = 0;
7949 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
7950 memset(&wc
->update_progress
, 0,
7951 sizeof(wc
->update_progress
));
7953 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
7954 memcpy(&wc
->update_progress
, &key
,
7955 sizeof(wc
->update_progress
));
7957 level
= root_item
->drop_level
;
7959 path
->lowest_level
= level
;
7960 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
7961 path
->lowest_level
= 0;
7969 * unlock our path, this is safe because only this
7970 * function is allowed to delete this snapshot
7972 btrfs_unlock_up_safe(path
, 0);
7974 level
= btrfs_header_level(root
->node
);
7976 btrfs_tree_lock(path
->nodes
[level
]);
7977 btrfs_set_lock_blocking(path
->nodes
[level
]);
7978 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
7980 ret
= btrfs_lookup_extent_info(trans
, root
,
7981 path
->nodes
[level
]->start
,
7982 level
, 1, &wc
->refs
[level
],
7988 BUG_ON(wc
->refs
[level
] == 0);
7990 if (level
== root_item
->drop_level
)
7993 btrfs_tree_unlock(path
->nodes
[level
]);
7994 path
->locks
[level
] = 0;
7995 WARN_ON(wc
->refs
[level
] != 1);
8001 wc
->shared_level
= -1;
8002 wc
->stage
= DROP_REFERENCE
;
8003 wc
->update_ref
= update_ref
;
8005 wc
->for_reloc
= for_reloc
;
8006 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
8010 ret
= walk_down_tree(trans
, root
, path
, wc
);
8016 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
8023 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
8027 if (wc
->stage
== DROP_REFERENCE
) {
8029 btrfs_node_key(path
->nodes
[level
],
8030 &root_item
->drop_progress
,
8031 path
->slots
[level
]);
8032 root_item
->drop_level
= level
;
8035 BUG_ON(wc
->level
== 0);
8036 if (btrfs_should_end_transaction(trans
, tree_root
) ||
8037 (!for_reloc
&& btrfs_need_cleaner_sleep(root
))) {
8038 ret
= btrfs_update_root(trans
, tree_root
,
8042 btrfs_abort_transaction(trans
, tree_root
, ret
);
8047 btrfs_end_transaction_throttle(trans
, tree_root
);
8048 if (!for_reloc
&& btrfs_need_cleaner_sleep(root
)) {
8049 pr_debug("BTRFS: drop snapshot early exit\n");
8054 trans
= btrfs_start_transaction(tree_root
, 0);
8055 if (IS_ERR(trans
)) {
8056 err
= PTR_ERR(trans
);
8060 trans
->block_rsv
= block_rsv
;
8063 btrfs_release_path(path
);
8067 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
8069 btrfs_abort_transaction(trans
, tree_root
, ret
);
8073 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
8074 ret
= btrfs_find_root(tree_root
, &root
->root_key
, path
,
8077 btrfs_abort_transaction(trans
, tree_root
, ret
);
8080 } else if (ret
> 0) {
8081 /* if we fail to delete the orphan item this time
8082 * around, it'll get picked up the next time.
8084 * The most common failure here is just -ENOENT.
8086 btrfs_del_orphan_item(trans
, tree_root
,
8087 root
->root_key
.objectid
);
8091 if (test_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
)) {
8092 btrfs_drop_and_free_fs_root(tree_root
->fs_info
, root
);
8094 free_extent_buffer(root
->node
);
8095 free_extent_buffer(root
->commit_root
);
8096 btrfs_put_fs_root(root
);
8098 root_dropped
= true;
8100 btrfs_end_transaction_throttle(trans
, tree_root
);
8103 btrfs_free_path(path
);
8106 * So if we need to stop dropping the snapshot for whatever reason we
8107 * need to make sure to add it back to the dead root list so that we
8108 * keep trying to do the work later. This also cleans up roots if we
8109 * don't have it in the radix (like when we recover after a power fail
8110 * or unmount) so we don't leak memory.
8112 if (!for_reloc
&& root_dropped
== false)
8113 btrfs_add_dead_root(root
);
8114 if (err
&& err
!= -EAGAIN
)
8115 btrfs_std_error(root
->fs_info
, err
);
8120 * drop subtree rooted at tree block 'node'.
8122 * NOTE: this function will unlock and release tree block 'node'
8123 * only used by relocation code
8125 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
8126 struct btrfs_root
*root
,
8127 struct extent_buffer
*node
,
8128 struct extent_buffer
*parent
)
8130 struct btrfs_path
*path
;
8131 struct walk_control
*wc
;
8137 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
8139 path
= btrfs_alloc_path();
8143 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
8145 btrfs_free_path(path
);
8149 btrfs_assert_tree_locked(parent
);
8150 parent_level
= btrfs_header_level(parent
);
8151 extent_buffer_get(parent
);
8152 path
->nodes
[parent_level
] = parent
;
8153 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
8155 btrfs_assert_tree_locked(node
);
8156 level
= btrfs_header_level(node
);
8157 path
->nodes
[level
] = node
;
8158 path
->slots
[level
] = 0;
8159 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8161 wc
->refs
[parent_level
] = 1;
8162 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
8164 wc
->shared_level
= -1;
8165 wc
->stage
= DROP_REFERENCE
;
8169 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
8172 wret
= walk_down_tree(trans
, root
, path
, wc
);
8178 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
8186 btrfs_free_path(path
);
8190 static u64
update_block_group_flags(struct btrfs_root
*root
, u64 flags
)
8196 * if restripe for this chunk_type is on pick target profile and
8197 * return, otherwise do the usual balance
8199 stripped
= get_restripe_target(root
->fs_info
, flags
);
8201 return extended_to_chunk(stripped
);
8204 * we add in the count of missing devices because we want
8205 * to make sure that any RAID levels on a degraded FS
8206 * continue to be honored.
8208 num_devices
= root
->fs_info
->fs_devices
->rw_devices
+
8209 root
->fs_info
->fs_devices
->missing_devices
;
8211 stripped
= BTRFS_BLOCK_GROUP_RAID0
|
8212 BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
|
8213 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
;
8215 if (num_devices
== 1) {
8216 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
8217 stripped
= flags
& ~stripped
;
8219 /* turn raid0 into single device chunks */
8220 if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
8223 /* turn mirroring into duplication */
8224 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
8225 BTRFS_BLOCK_GROUP_RAID10
))
8226 return stripped
| BTRFS_BLOCK_GROUP_DUP
;
8228 /* they already had raid on here, just return */
8229 if (flags
& stripped
)
8232 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
8233 stripped
= flags
& ~stripped
;
8235 /* switch duplicated blocks with raid1 */
8236 if (flags
& BTRFS_BLOCK_GROUP_DUP
)
8237 return stripped
| BTRFS_BLOCK_GROUP_RAID1
;
8239 /* this is drive concat, leave it alone */
8245 static int set_block_group_ro(struct btrfs_block_group_cache
*cache
, int force
)
8247 struct btrfs_space_info
*sinfo
= cache
->space_info
;
8249 u64 min_allocable_bytes
;
8254 * We need some metadata space and system metadata space for
8255 * allocating chunks in some corner cases until we force to set
8256 * it to be readonly.
8259 (BTRFS_BLOCK_GROUP_SYSTEM
| BTRFS_BLOCK_GROUP_METADATA
)) &&
8261 min_allocable_bytes
= 1 * 1024 * 1024;
8263 min_allocable_bytes
= 0;
8265 spin_lock(&sinfo
->lock
);
8266 spin_lock(&cache
->lock
);
8273 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
8274 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
8276 if (sinfo
->bytes_used
+ sinfo
->bytes_reserved
+ sinfo
->bytes_pinned
+
8277 sinfo
->bytes_may_use
+ sinfo
->bytes_readonly
+ num_bytes
+
8278 min_allocable_bytes
<= sinfo
->total_bytes
) {
8279 sinfo
->bytes_readonly
+= num_bytes
;
8284 spin_unlock(&cache
->lock
);
8285 spin_unlock(&sinfo
->lock
);
8289 int btrfs_set_block_group_ro(struct btrfs_root
*root
,
8290 struct btrfs_block_group_cache
*cache
)
8293 struct btrfs_trans_handle
*trans
;
8299 trans
= btrfs_join_transaction(root
);
8301 return PTR_ERR(trans
);
8303 alloc_flags
= update_block_group_flags(root
, cache
->flags
);
8304 if (alloc_flags
!= cache
->flags
) {
8305 ret
= do_chunk_alloc(trans
, root
, alloc_flags
,
8311 ret
= set_block_group_ro(cache
, 0);
8314 alloc_flags
= get_alloc_profile(root
, cache
->space_info
->flags
);
8315 ret
= do_chunk_alloc(trans
, root
, alloc_flags
,
8319 ret
= set_block_group_ro(cache
, 0);
8321 btrfs_end_transaction(trans
, root
);
8325 int btrfs_force_chunk_alloc(struct btrfs_trans_handle
*trans
,
8326 struct btrfs_root
*root
, u64 type
)
8328 u64 alloc_flags
= get_alloc_profile(root
, type
);
8329 return do_chunk_alloc(trans
, root
, alloc_flags
,
8334 * helper to account the unused space of all the readonly block group in the
8335 * list. takes mirrors into account.
8337 static u64
__btrfs_get_ro_block_group_free_space(struct list_head
*groups_list
)
8339 struct btrfs_block_group_cache
*block_group
;
8343 list_for_each_entry(block_group
, groups_list
, list
) {
8344 spin_lock(&block_group
->lock
);
8346 if (!block_group
->ro
) {
8347 spin_unlock(&block_group
->lock
);
8351 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_RAID1
|
8352 BTRFS_BLOCK_GROUP_RAID10
|
8353 BTRFS_BLOCK_GROUP_DUP
))
8358 free_bytes
+= (block_group
->key
.offset
-
8359 btrfs_block_group_used(&block_group
->item
)) *
8362 spin_unlock(&block_group
->lock
);
8369 * helper to account the unused space of all the readonly block group in the
8370 * space_info. takes mirrors into account.
8372 u64
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info
*sinfo
)
8377 spin_lock(&sinfo
->lock
);
8379 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
8380 if (!list_empty(&sinfo
->block_groups
[i
]))
8381 free_bytes
+= __btrfs_get_ro_block_group_free_space(
8382 &sinfo
->block_groups
[i
]);
8384 spin_unlock(&sinfo
->lock
);
8389 void btrfs_set_block_group_rw(struct btrfs_root
*root
,
8390 struct btrfs_block_group_cache
*cache
)
8392 struct btrfs_space_info
*sinfo
= cache
->space_info
;
8397 spin_lock(&sinfo
->lock
);
8398 spin_lock(&cache
->lock
);
8399 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
8400 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
8401 sinfo
->bytes_readonly
-= num_bytes
;
8403 spin_unlock(&cache
->lock
);
8404 spin_unlock(&sinfo
->lock
);
8408 * checks to see if its even possible to relocate this block group.
8410 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8411 * ok to go ahead and try.
8413 int btrfs_can_relocate(struct btrfs_root
*root
, u64 bytenr
)
8415 struct btrfs_block_group_cache
*block_group
;
8416 struct btrfs_space_info
*space_info
;
8417 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
8418 struct btrfs_device
*device
;
8419 struct btrfs_trans_handle
*trans
;
8428 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
8430 /* odd, couldn't find the block group, leave it alone */
8434 min_free
= btrfs_block_group_used(&block_group
->item
);
8436 /* no bytes used, we're good */
8440 space_info
= block_group
->space_info
;
8441 spin_lock(&space_info
->lock
);
8443 full
= space_info
->full
;
8446 * if this is the last block group we have in this space, we can't
8447 * relocate it unless we're able to allocate a new chunk below.
8449 * Otherwise, we need to make sure we have room in the space to handle
8450 * all of the extents from this block group. If we can, we're good
8452 if ((space_info
->total_bytes
!= block_group
->key
.offset
) &&
8453 (space_info
->bytes_used
+ space_info
->bytes_reserved
+
8454 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
8455 min_free
< space_info
->total_bytes
)) {
8456 spin_unlock(&space_info
->lock
);
8459 spin_unlock(&space_info
->lock
);
8462 * ok we don't have enough space, but maybe we have free space on our
8463 * devices to allocate new chunks for relocation, so loop through our
8464 * alloc devices and guess if we have enough space. if this block
8465 * group is going to be restriped, run checks against the target
8466 * profile instead of the current one.
8478 target
= get_restripe_target(root
->fs_info
, block_group
->flags
);
8480 index
= __get_raid_index(extended_to_chunk(target
));
8483 * this is just a balance, so if we were marked as full
8484 * we know there is no space for a new chunk
8489 index
= get_block_group_index(block_group
);
8492 if (index
== BTRFS_RAID_RAID10
) {
8496 } else if (index
== BTRFS_RAID_RAID1
) {
8498 } else if (index
== BTRFS_RAID_DUP
) {
8501 } else if (index
== BTRFS_RAID_RAID0
) {
8502 dev_min
= fs_devices
->rw_devices
;
8503 do_div(min_free
, dev_min
);
8506 /* We need to do this so that we can look at pending chunks */
8507 trans
= btrfs_join_transaction(root
);
8508 if (IS_ERR(trans
)) {
8509 ret
= PTR_ERR(trans
);
8513 mutex_lock(&root
->fs_info
->chunk_mutex
);
8514 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
8518 * check to make sure we can actually find a chunk with enough
8519 * space to fit our block group in.
8521 if (device
->total_bytes
> device
->bytes_used
+ min_free
&&
8522 !device
->is_tgtdev_for_dev_replace
) {
8523 ret
= find_free_dev_extent(trans
, device
, min_free
,
8528 if (dev_nr
>= dev_min
)
8534 mutex_unlock(&root
->fs_info
->chunk_mutex
);
8535 btrfs_end_transaction(trans
, root
);
8537 btrfs_put_block_group(block_group
);
8541 static int find_first_block_group(struct btrfs_root
*root
,
8542 struct btrfs_path
*path
, struct btrfs_key
*key
)
8545 struct btrfs_key found_key
;
8546 struct extent_buffer
*leaf
;
8549 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
8554 slot
= path
->slots
[0];
8555 leaf
= path
->nodes
[0];
8556 if (slot
>= btrfs_header_nritems(leaf
)) {
8557 ret
= btrfs_next_leaf(root
, path
);
8564 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
8566 if (found_key
.objectid
>= key
->objectid
&&
8567 found_key
.type
== BTRFS_BLOCK_GROUP_ITEM_KEY
) {
8577 void btrfs_put_block_group_cache(struct btrfs_fs_info
*info
)
8579 struct btrfs_block_group_cache
*block_group
;
8583 struct inode
*inode
;
8585 block_group
= btrfs_lookup_first_block_group(info
, last
);
8586 while (block_group
) {
8587 spin_lock(&block_group
->lock
);
8588 if (block_group
->iref
)
8590 spin_unlock(&block_group
->lock
);
8591 block_group
= next_block_group(info
->tree_root
,
8601 inode
= block_group
->inode
;
8602 block_group
->iref
= 0;
8603 block_group
->inode
= NULL
;
8604 spin_unlock(&block_group
->lock
);
8606 last
= block_group
->key
.objectid
+ block_group
->key
.offset
;
8607 btrfs_put_block_group(block_group
);
8611 int btrfs_free_block_groups(struct btrfs_fs_info
*info
)
8613 struct btrfs_block_group_cache
*block_group
;
8614 struct btrfs_space_info
*space_info
;
8615 struct btrfs_caching_control
*caching_ctl
;
8618 down_write(&info
->commit_root_sem
);
8619 while (!list_empty(&info
->caching_block_groups
)) {
8620 caching_ctl
= list_entry(info
->caching_block_groups
.next
,
8621 struct btrfs_caching_control
, list
);
8622 list_del(&caching_ctl
->list
);
8623 put_caching_control(caching_ctl
);
8625 up_write(&info
->commit_root_sem
);
8627 spin_lock(&info
->block_group_cache_lock
);
8628 while ((n
= rb_last(&info
->block_group_cache_tree
)) != NULL
) {
8629 block_group
= rb_entry(n
, struct btrfs_block_group_cache
,
8631 rb_erase(&block_group
->cache_node
,
8632 &info
->block_group_cache_tree
);
8633 spin_unlock(&info
->block_group_cache_lock
);
8635 down_write(&block_group
->space_info
->groups_sem
);
8636 list_del(&block_group
->list
);
8637 up_write(&block_group
->space_info
->groups_sem
);
8639 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
8640 wait_block_group_cache_done(block_group
);
8643 * We haven't cached this block group, which means we could
8644 * possibly have excluded extents on this block group.
8646 if (block_group
->cached
== BTRFS_CACHE_NO
||
8647 block_group
->cached
== BTRFS_CACHE_ERROR
)
8648 free_excluded_extents(info
->extent_root
, block_group
);
8650 btrfs_remove_free_space_cache(block_group
);
8651 btrfs_put_block_group(block_group
);
8653 spin_lock(&info
->block_group_cache_lock
);
8655 spin_unlock(&info
->block_group_cache_lock
);
8657 /* now that all the block groups are freed, go through and
8658 * free all the space_info structs. This is only called during
8659 * the final stages of unmount, and so we know nobody is
8660 * using them. We call synchronize_rcu() once before we start,
8661 * just to be on the safe side.
8665 release_global_block_rsv(info
);
8667 while (!list_empty(&info
->space_info
)) {
8670 space_info
= list_entry(info
->space_info
.next
,
8671 struct btrfs_space_info
,
8673 if (btrfs_test_opt(info
->tree_root
, ENOSPC_DEBUG
)) {
8674 if (WARN_ON(space_info
->bytes_pinned
> 0 ||
8675 space_info
->bytes_reserved
> 0 ||
8676 space_info
->bytes_may_use
> 0)) {
8677 dump_space_info(space_info
, 0, 0);
8680 list_del(&space_info
->list
);
8681 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
8682 struct kobject
*kobj
;
8683 kobj
= space_info
->block_group_kobjs
[i
];
8684 space_info
->block_group_kobjs
[i
] = NULL
;
8690 kobject_del(&space_info
->kobj
);
8691 kobject_put(&space_info
->kobj
);
8696 static void __link_block_group(struct btrfs_space_info
*space_info
,
8697 struct btrfs_block_group_cache
*cache
)
8699 int index
= get_block_group_index(cache
);
8702 down_write(&space_info
->groups_sem
);
8703 if (list_empty(&space_info
->block_groups
[index
]))
8705 list_add_tail(&cache
->list
, &space_info
->block_groups
[index
]);
8706 up_write(&space_info
->groups_sem
);
8709 struct raid_kobject
*rkobj
;
8712 rkobj
= kzalloc(sizeof(*rkobj
), GFP_NOFS
);
8715 rkobj
->raid_type
= index
;
8716 kobject_init(&rkobj
->kobj
, &btrfs_raid_ktype
);
8717 ret
= kobject_add(&rkobj
->kobj
, &space_info
->kobj
,
8718 "%s", get_raid_name(index
));
8720 kobject_put(&rkobj
->kobj
);
8723 space_info
->block_group_kobjs
[index
] = &rkobj
->kobj
;
8728 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8731 static struct btrfs_block_group_cache
*
8732 btrfs_create_block_group_cache(struct btrfs_root
*root
, u64 start
, u64 size
)
8734 struct btrfs_block_group_cache
*cache
;
8736 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
8740 cache
->free_space_ctl
= kzalloc(sizeof(*cache
->free_space_ctl
),
8742 if (!cache
->free_space_ctl
) {
8747 cache
->key
.objectid
= start
;
8748 cache
->key
.offset
= size
;
8749 cache
->key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
8751 cache
->sectorsize
= root
->sectorsize
;
8752 cache
->fs_info
= root
->fs_info
;
8753 cache
->full_stripe_len
= btrfs_full_stripe_len(root
,
8754 &root
->fs_info
->mapping_tree
,
8756 atomic_set(&cache
->count
, 1);
8757 spin_lock_init(&cache
->lock
);
8758 init_rwsem(&cache
->data_rwsem
);
8759 INIT_LIST_HEAD(&cache
->list
);
8760 INIT_LIST_HEAD(&cache
->cluster_list
);
8761 INIT_LIST_HEAD(&cache
->new_bg_list
);
8762 btrfs_init_free_space_ctl(cache
);
8767 int btrfs_read_block_groups(struct btrfs_root
*root
)
8769 struct btrfs_path
*path
;
8771 struct btrfs_block_group_cache
*cache
;
8772 struct btrfs_fs_info
*info
= root
->fs_info
;
8773 struct btrfs_space_info
*space_info
;
8774 struct btrfs_key key
;
8775 struct btrfs_key found_key
;
8776 struct extent_buffer
*leaf
;
8780 root
= info
->extent_root
;
8783 btrfs_set_key_type(&key
, BTRFS_BLOCK_GROUP_ITEM_KEY
);
8784 path
= btrfs_alloc_path();
8789 cache_gen
= btrfs_super_cache_generation(root
->fs_info
->super_copy
);
8790 if (btrfs_test_opt(root
, SPACE_CACHE
) &&
8791 btrfs_super_generation(root
->fs_info
->super_copy
) != cache_gen
)
8793 if (btrfs_test_opt(root
, CLEAR_CACHE
))
8797 ret
= find_first_block_group(root
, path
, &key
);
8803 leaf
= path
->nodes
[0];
8804 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
8806 cache
= btrfs_create_block_group_cache(root
, found_key
.objectid
,
8815 * When we mount with old space cache, we need to
8816 * set BTRFS_DC_CLEAR and set dirty flag.
8818 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8819 * truncate the old free space cache inode and
8821 * b) Setting 'dirty flag' makes sure that we flush
8822 * the new space cache info onto disk.
8824 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
8825 if (btrfs_test_opt(root
, SPACE_CACHE
))
8829 read_extent_buffer(leaf
, &cache
->item
,
8830 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
8831 sizeof(cache
->item
));
8832 cache
->flags
= btrfs_block_group_flags(&cache
->item
);
8834 key
.objectid
= found_key
.objectid
+ found_key
.offset
;
8835 btrfs_release_path(path
);
8838 * We need to exclude the super stripes now so that the space
8839 * info has super bytes accounted for, otherwise we'll think
8840 * we have more space than we actually do.
8842 ret
= exclude_super_stripes(root
, cache
);
8845 * We may have excluded something, so call this just in
8848 free_excluded_extents(root
, cache
);
8849 btrfs_put_block_group(cache
);
8854 * check for two cases, either we are full, and therefore
8855 * don't need to bother with the caching work since we won't
8856 * find any space, or we are empty, and we can just add all
8857 * the space in and be done with it. This saves us _alot_ of
8858 * time, particularly in the full case.
8860 if (found_key
.offset
== btrfs_block_group_used(&cache
->item
)) {
8861 cache
->last_byte_to_unpin
= (u64
)-1;
8862 cache
->cached
= BTRFS_CACHE_FINISHED
;
8863 free_excluded_extents(root
, cache
);
8864 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
8865 cache
->last_byte_to_unpin
= (u64
)-1;
8866 cache
->cached
= BTRFS_CACHE_FINISHED
;
8867 add_new_free_space(cache
, root
->fs_info
,
8869 found_key
.objectid
+
8871 free_excluded_extents(root
, cache
);
8874 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
8876 btrfs_remove_free_space_cache(cache
);
8877 btrfs_put_block_group(cache
);
8881 ret
= update_space_info(info
, cache
->flags
, found_key
.offset
,
8882 btrfs_block_group_used(&cache
->item
),
8885 btrfs_remove_free_space_cache(cache
);
8886 spin_lock(&info
->block_group_cache_lock
);
8887 rb_erase(&cache
->cache_node
,
8888 &info
->block_group_cache_tree
);
8889 spin_unlock(&info
->block_group_cache_lock
);
8890 btrfs_put_block_group(cache
);
8894 cache
->space_info
= space_info
;
8895 spin_lock(&cache
->space_info
->lock
);
8896 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
8897 spin_unlock(&cache
->space_info
->lock
);
8899 __link_block_group(space_info
, cache
);
8901 set_avail_alloc_bits(root
->fs_info
, cache
->flags
);
8902 if (btrfs_chunk_readonly(root
, cache
->key
.objectid
))
8903 set_block_group_ro(cache
, 1);
8906 list_for_each_entry_rcu(space_info
, &root
->fs_info
->space_info
, list
) {
8907 if (!(get_alloc_profile(root
, space_info
->flags
) &
8908 (BTRFS_BLOCK_GROUP_RAID10
|
8909 BTRFS_BLOCK_GROUP_RAID1
|
8910 BTRFS_BLOCK_GROUP_RAID5
|
8911 BTRFS_BLOCK_GROUP_RAID6
|
8912 BTRFS_BLOCK_GROUP_DUP
)))
8915 * avoid allocating from un-mirrored block group if there are
8916 * mirrored block groups.
8918 list_for_each_entry(cache
,
8919 &space_info
->block_groups
[BTRFS_RAID_RAID0
],
8921 set_block_group_ro(cache
, 1);
8922 list_for_each_entry(cache
,
8923 &space_info
->block_groups
[BTRFS_RAID_SINGLE
],
8925 set_block_group_ro(cache
, 1);
8928 init_global_block_rsv(info
);
8931 btrfs_free_path(path
);
8935 void btrfs_create_pending_block_groups(struct btrfs_trans_handle
*trans
,
8936 struct btrfs_root
*root
)
8938 struct btrfs_block_group_cache
*block_group
, *tmp
;
8939 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
8940 struct btrfs_block_group_item item
;
8941 struct btrfs_key key
;
8944 list_for_each_entry_safe(block_group
, tmp
, &trans
->new_bgs
,
8946 list_del_init(&block_group
->new_bg_list
);
8951 spin_lock(&block_group
->lock
);
8952 memcpy(&item
, &block_group
->item
, sizeof(item
));
8953 memcpy(&key
, &block_group
->key
, sizeof(key
));
8954 spin_unlock(&block_group
->lock
);
8956 ret
= btrfs_insert_item(trans
, extent_root
, &key
, &item
,
8959 btrfs_abort_transaction(trans
, extent_root
, ret
);
8960 ret
= btrfs_finish_chunk_alloc(trans
, extent_root
,
8961 key
.objectid
, key
.offset
);
8963 btrfs_abort_transaction(trans
, extent_root
, ret
);
8967 int btrfs_make_block_group(struct btrfs_trans_handle
*trans
,
8968 struct btrfs_root
*root
, u64 bytes_used
,
8969 u64 type
, u64 chunk_objectid
, u64 chunk_offset
,
8973 struct btrfs_root
*extent_root
;
8974 struct btrfs_block_group_cache
*cache
;
8976 extent_root
= root
->fs_info
->extent_root
;
8978 btrfs_set_log_full_commit(root
->fs_info
, trans
);
8980 cache
= btrfs_create_block_group_cache(root
, chunk_offset
, size
);
8984 btrfs_set_block_group_used(&cache
->item
, bytes_used
);
8985 btrfs_set_block_group_chunk_objectid(&cache
->item
, chunk_objectid
);
8986 btrfs_set_block_group_flags(&cache
->item
, type
);
8988 cache
->flags
= type
;
8989 cache
->last_byte_to_unpin
= (u64
)-1;
8990 cache
->cached
= BTRFS_CACHE_FINISHED
;
8991 ret
= exclude_super_stripes(root
, cache
);
8994 * We may have excluded something, so call this just in
8997 free_excluded_extents(root
, cache
);
8998 btrfs_put_block_group(cache
);
9002 add_new_free_space(cache
, root
->fs_info
, chunk_offset
,
9003 chunk_offset
+ size
);
9005 free_excluded_extents(root
, cache
);
9007 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
9009 btrfs_remove_free_space_cache(cache
);
9010 btrfs_put_block_group(cache
);
9014 ret
= update_space_info(root
->fs_info
, cache
->flags
, size
, bytes_used
,
9015 &cache
->space_info
);
9017 btrfs_remove_free_space_cache(cache
);
9018 spin_lock(&root
->fs_info
->block_group_cache_lock
);
9019 rb_erase(&cache
->cache_node
,
9020 &root
->fs_info
->block_group_cache_tree
);
9021 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
9022 btrfs_put_block_group(cache
);
9025 update_global_block_rsv(root
->fs_info
);
9027 spin_lock(&cache
->space_info
->lock
);
9028 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
9029 spin_unlock(&cache
->space_info
->lock
);
9031 __link_block_group(cache
->space_info
, cache
);
9033 list_add_tail(&cache
->new_bg_list
, &trans
->new_bgs
);
9035 set_avail_alloc_bits(extent_root
->fs_info
, type
);
9040 static void clear_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
9042 u64 extra_flags
= chunk_to_extended(flags
) &
9043 BTRFS_EXTENDED_PROFILE_MASK
;
9045 write_seqlock(&fs_info
->profiles_lock
);
9046 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
9047 fs_info
->avail_data_alloc_bits
&= ~extra_flags
;
9048 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
9049 fs_info
->avail_metadata_alloc_bits
&= ~extra_flags
;
9050 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
9051 fs_info
->avail_system_alloc_bits
&= ~extra_flags
;
9052 write_sequnlock(&fs_info
->profiles_lock
);
9055 int btrfs_remove_block_group(struct btrfs_trans_handle
*trans
,
9056 struct btrfs_root
*root
, u64 group_start
)
9058 struct btrfs_path
*path
;
9059 struct btrfs_block_group_cache
*block_group
;
9060 struct btrfs_free_cluster
*cluster
;
9061 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
9062 struct btrfs_key key
;
9063 struct inode
*inode
;
9064 struct kobject
*kobj
= NULL
;
9069 root
= root
->fs_info
->extent_root
;
9071 block_group
= btrfs_lookup_block_group(root
->fs_info
, group_start
);
9072 BUG_ON(!block_group
);
9073 BUG_ON(!block_group
->ro
);
9076 * Free the reserved super bytes from this block group before
9079 free_excluded_extents(root
, block_group
);
9081 memcpy(&key
, &block_group
->key
, sizeof(key
));
9082 index
= get_block_group_index(block_group
);
9083 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
9084 BTRFS_BLOCK_GROUP_RAID1
|
9085 BTRFS_BLOCK_GROUP_RAID10
))
9090 /* make sure this block group isn't part of an allocation cluster */
9091 cluster
= &root
->fs_info
->data_alloc_cluster
;
9092 spin_lock(&cluster
->refill_lock
);
9093 btrfs_return_cluster_to_free_space(block_group
, cluster
);
9094 spin_unlock(&cluster
->refill_lock
);
9097 * make sure this block group isn't part of a metadata
9098 * allocation cluster
9100 cluster
= &root
->fs_info
->meta_alloc_cluster
;
9101 spin_lock(&cluster
->refill_lock
);
9102 btrfs_return_cluster_to_free_space(block_group
, cluster
);
9103 spin_unlock(&cluster
->refill_lock
);
9105 path
= btrfs_alloc_path();
9111 inode
= lookup_free_space_inode(tree_root
, block_group
, path
);
9112 if (!IS_ERR(inode
)) {
9113 ret
= btrfs_orphan_add(trans
, inode
);
9115 btrfs_add_delayed_iput(inode
);
9119 /* One for the block groups ref */
9120 spin_lock(&block_group
->lock
);
9121 if (block_group
->iref
) {
9122 block_group
->iref
= 0;
9123 block_group
->inode
= NULL
;
9124 spin_unlock(&block_group
->lock
);
9127 spin_unlock(&block_group
->lock
);
9129 /* One for our lookup ref */
9130 btrfs_add_delayed_iput(inode
);
9133 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
9134 key
.offset
= block_group
->key
.objectid
;
9137 ret
= btrfs_search_slot(trans
, tree_root
, &key
, path
, -1, 1);
9141 btrfs_release_path(path
);
9143 ret
= btrfs_del_item(trans
, tree_root
, path
);
9146 btrfs_release_path(path
);
9149 spin_lock(&root
->fs_info
->block_group_cache_lock
);
9150 rb_erase(&block_group
->cache_node
,
9151 &root
->fs_info
->block_group_cache_tree
);
9153 if (root
->fs_info
->first_logical_byte
== block_group
->key
.objectid
)
9154 root
->fs_info
->first_logical_byte
= (u64
)-1;
9155 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
9157 down_write(&block_group
->space_info
->groups_sem
);
9159 * we must use list_del_init so people can check to see if they
9160 * are still on the list after taking the semaphore
9162 list_del_init(&block_group
->list
);
9163 if (list_empty(&block_group
->space_info
->block_groups
[index
])) {
9164 kobj
= block_group
->space_info
->block_group_kobjs
[index
];
9165 block_group
->space_info
->block_group_kobjs
[index
] = NULL
;
9166 clear_avail_alloc_bits(root
->fs_info
, block_group
->flags
);
9168 up_write(&block_group
->space_info
->groups_sem
);
9174 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
9175 wait_block_group_cache_done(block_group
);
9177 btrfs_remove_free_space_cache(block_group
);
9179 spin_lock(&block_group
->space_info
->lock
);
9180 block_group
->space_info
->total_bytes
-= block_group
->key
.offset
;
9181 block_group
->space_info
->bytes_readonly
-= block_group
->key
.offset
;
9182 block_group
->space_info
->disk_total
-= block_group
->key
.offset
* factor
;
9183 spin_unlock(&block_group
->space_info
->lock
);
9185 memcpy(&key
, &block_group
->key
, sizeof(key
));
9187 btrfs_clear_space_info_full(root
->fs_info
);
9189 btrfs_put_block_group(block_group
);
9190 btrfs_put_block_group(block_group
);
9192 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
9198 ret
= btrfs_del_item(trans
, root
, path
);
9200 btrfs_free_path(path
);
9204 int btrfs_init_space_info(struct btrfs_fs_info
*fs_info
)
9206 struct btrfs_space_info
*space_info
;
9207 struct btrfs_super_block
*disk_super
;
9213 disk_super
= fs_info
->super_copy
;
9214 if (!btrfs_super_root(disk_super
))
9217 features
= btrfs_super_incompat_flags(disk_super
);
9218 if (features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
9221 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
9222 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
9227 flags
= BTRFS_BLOCK_GROUP_METADATA
| BTRFS_BLOCK_GROUP_DATA
;
9228 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
9230 flags
= BTRFS_BLOCK_GROUP_METADATA
;
9231 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
9235 flags
= BTRFS_BLOCK_GROUP_DATA
;
9236 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
9242 int btrfs_error_unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
9244 return unpin_extent_range(root
, start
, end
, false);
9247 int btrfs_error_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
9248 u64 num_bytes
, u64
*actual_bytes
)
9250 return btrfs_discard_extent(root
, bytenr
, num_bytes
, actual_bytes
);
9253 int btrfs_trim_fs(struct btrfs_root
*root
, struct fstrim_range
*range
)
9255 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
9256 struct btrfs_block_group_cache
*cache
= NULL
;
9261 u64 total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
9265 * try to trim all FS space, our block group may start from non-zero.
9267 if (range
->len
== total_bytes
)
9268 cache
= btrfs_lookup_first_block_group(fs_info
, range
->start
);
9270 cache
= btrfs_lookup_block_group(fs_info
, range
->start
);
9273 if (cache
->key
.objectid
>= (range
->start
+ range
->len
)) {
9274 btrfs_put_block_group(cache
);
9278 start
= max(range
->start
, cache
->key
.objectid
);
9279 end
= min(range
->start
+ range
->len
,
9280 cache
->key
.objectid
+ cache
->key
.offset
);
9282 if (end
- start
>= range
->minlen
) {
9283 if (!block_group_cache_done(cache
)) {
9284 ret
= cache_block_group(cache
, 0);
9286 btrfs_put_block_group(cache
);
9289 ret
= wait_block_group_cache_done(cache
);
9291 btrfs_put_block_group(cache
);
9295 ret
= btrfs_trim_block_group(cache
,
9301 trimmed
+= group_trimmed
;
9303 btrfs_put_block_group(cache
);
9308 cache
= next_block_group(fs_info
->tree_root
, cache
);
9311 range
->len
= trimmed
;
9316 * btrfs_{start,end}_write() is similar to mnt_{want, drop}_write(),
9317 * they are used to prevent the some tasks writing data into the page cache
9318 * by nocow before the subvolume is snapshoted, but flush the data into
9319 * the disk after the snapshot creation.
9321 void btrfs_end_nocow_write(struct btrfs_root
*root
)
9323 percpu_counter_dec(&root
->subv_writers
->counter
);
9325 * Make sure counter is updated before we wake up
9329 if (waitqueue_active(&root
->subv_writers
->wait
))
9330 wake_up(&root
->subv_writers
->wait
);
9333 int btrfs_start_nocow_write(struct btrfs_root
*root
)
9335 if (unlikely(atomic_read(&root
->will_be_snapshoted
)))
9338 percpu_counter_inc(&root
->subv_writers
->counter
);
9340 * Make sure counter is updated before we check for snapshot creation.
9343 if (unlikely(atomic_read(&root
->will_be_snapshoted
))) {
9344 btrfs_end_nocow_write(root
);