usb: renesas_usbhs: disable TX IRQ before starting TX DMAC transfer
[linux/fpc-iii.git] / fs / btrfs / extent-tree.c
blob482ebbcd1d72512836b270f924cec713ec4c1ddd
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
40 #undef SCRAMBLE_DELAYED_REFS
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
63 * Control how reservations are dealt with.
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
77 static int update_block_group(struct btrfs_root *root,
78 u64 bytenr, u64 num_bytes, int alloc);
79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
80 struct btrfs_root *root,
81 u64 bytenr, u64 num_bytes, u64 parent,
82 u64 root_objectid, u64 owner_objectid,
83 u64 owner_offset, int refs_to_drop,
84 struct btrfs_delayed_extent_op *extra_op,
85 int no_quota);
86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 struct extent_buffer *leaf,
88 struct btrfs_extent_item *ei);
89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, u64 owner, u64 offset,
93 struct btrfs_key *ins, int ref_mod);
94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 u64 parent, u64 root_objectid,
97 u64 flags, struct btrfs_disk_key *key,
98 int level, struct btrfs_key *ins,
99 int no_quota);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
103 static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 u64 num_bytes, int reserve,
109 int delalloc);
110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
112 int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
115 static noinline int
116 block_group_cache_done(struct btrfs_block_group_cache *cache)
118 smp_mb();
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
125 return (cache->flags & bits) == bits;
128 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
130 atomic_inc(&cache->count);
133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
138 kfree(cache->free_space_ctl);
139 kfree(cache);
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
148 struct btrfs_block_group_cache *block_group)
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
178 spin_unlock(&info->block_group_cache_lock);
180 return 0;
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
187 static struct btrfs_block_group_cache *
188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
219 if (ret) {
220 btrfs_get_block_group(ret);
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
224 spin_unlock(&info->block_group_cache_lock);
226 return ret;
229 static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE, GFP_NOFS);
237 return 0;
240 static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
243 u64 start, end;
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE, GFP_NOFS);
254 static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
267 if (ret)
268 return ret;
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
276 if (ret)
277 return ret;
279 while (nr--) {
280 u64 start, len;
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
301 if (ret) {
302 kfree(logical);
303 return ret;
307 kfree(logical);
309 return 0;
312 static struct btrfs_caching_control *
313 get_caching_control(struct btrfs_block_group_cache *cache)
315 struct btrfs_caching_control *ctl;
317 spin_lock(&cache->lock);
318 if (cache->cached != BTRFS_CACHE_STARTED) {
319 spin_unlock(&cache->lock);
320 return NULL;
323 /* We're loading it the fast way, so we don't have a caching_ctl. */
324 if (!cache->caching_ctl) {
325 spin_unlock(&cache->lock);
326 return NULL;
329 ctl = cache->caching_ctl;
330 atomic_inc(&ctl->count);
331 spin_unlock(&cache->lock);
332 return ctl;
335 static void put_caching_control(struct btrfs_caching_control *ctl)
337 if (atomic_dec_and_test(&ctl->count))
338 kfree(ctl);
342 * this is only called by cache_block_group, since we could have freed extents
343 * we need to check the pinned_extents for any extents that can't be used yet
344 * since their free space will be released as soon as the transaction commits.
346 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
347 struct btrfs_fs_info *info, u64 start, u64 end)
349 u64 extent_start, extent_end, size, total_added = 0;
350 int ret;
352 while (start < end) {
353 ret = find_first_extent_bit(info->pinned_extents, start,
354 &extent_start, &extent_end,
355 EXTENT_DIRTY | EXTENT_UPTODATE,
356 NULL);
357 if (ret)
358 break;
360 if (extent_start <= start) {
361 start = extent_end + 1;
362 } else if (extent_start > start && extent_start < end) {
363 size = extent_start - start;
364 total_added += size;
365 ret = btrfs_add_free_space(block_group, start,
366 size);
367 BUG_ON(ret); /* -ENOMEM or logic error */
368 start = extent_end + 1;
369 } else {
370 break;
374 if (start < end) {
375 size = end - start;
376 total_added += size;
377 ret = btrfs_add_free_space(block_group, start, size);
378 BUG_ON(ret); /* -ENOMEM or logic error */
381 return total_added;
384 static noinline void caching_thread(struct btrfs_work *work)
386 struct btrfs_block_group_cache *block_group;
387 struct btrfs_fs_info *fs_info;
388 struct btrfs_caching_control *caching_ctl;
389 struct btrfs_root *extent_root;
390 struct btrfs_path *path;
391 struct extent_buffer *leaf;
392 struct btrfs_key key;
393 u64 total_found = 0;
394 u64 last = 0;
395 u32 nritems;
396 int ret = -ENOMEM;
398 caching_ctl = container_of(work, struct btrfs_caching_control, work);
399 block_group = caching_ctl->block_group;
400 fs_info = block_group->fs_info;
401 extent_root = fs_info->extent_root;
403 path = btrfs_alloc_path();
404 if (!path)
405 goto out;
407 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
410 * We don't want to deadlock with somebody trying to allocate a new
411 * extent for the extent root while also trying to search the extent
412 * root to add free space. So we skip locking and search the commit
413 * root, since its read-only
415 path->skip_locking = 1;
416 path->search_commit_root = 1;
417 path->reada = 1;
419 key.objectid = last;
420 key.offset = 0;
421 key.type = BTRFS_EXTENT_ITEM_KEY;
422 again:
423 mutex_lock(&caching_ctl->mutex);
424 /* need to make sure the commit_root doesn't disappear */
425 down_read(&fs_info->commit_root_sem);
427 next:
428 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
429 if (ret < 0)
430 goto err;
432 leaf = path->nodes[0];
433 nritems = btrfs_header_nritems(leaf);
435 while (1) {
436 if (btrfs_fs_closing(fs_info) > 1) {
437 last = (u64)-1;
438 break;
441 if (path->slots[0] < nritems) {
442 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
443 } else {
444 ret = find_next_key(path, 0, &key);
445 if (ret)
446 break;
448 if (need_resched() ||
449 rwsem_is_contended(&fs_info->commit_root_sem)) {
450 caching_ctl->progress = last;
451 btrfs_release_path(path);
452 up_read(&fs_info->commit_root_sem);
453 mutex_unlock(&caching_ctl->mutex);
454 cond_resched();
455 goto again;
458 ret = btrfs_next_leaf(extent_root, path);
459 if (ret < 0)
460 goto err;
461 if (ret)
462 break;
463 leaf = path->nodes[0];
464 nritems = btrfs_header_nritems(leaf);
465 continue;
468 if (key.objectid < last) {
469 key.objectid = last;
470 key.offset = 0;
471 key.type = BTRFS_EXTENT_ITEM_KEY;
473 caching_ctl->progress = last;
474 btrfs_release_path(path);
475 goto next;
478 if (key.objectid < block_group->key.objectid) {
479 path->slots[0]++;
480 continue;
483 if (key.objectid >= block_group->key.objectid +
484 block_group->key.offset)
485 break;
487 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
488 key.type == BTRFS_METADATA_ITEM_KEY) {
489 total_found += add_new_free_space(block_group,
490 fs_info, last,
491 key.objectid);
492 if (key.type == BTRFS_METADATA_ITEM_KEY)
493 last = key.objectid +
494 fs_info->tree_root->leafsize;
495 else
496 last = key.objectid + key.offset;
498 if (total_found > (1024 * 1024 * 2)) {
499 total_found = 0;
500 wake_up(&caching_ctl->wait);
503 path->slots[0]++;
505 ret = 0;
507 total_found += add_new_free_space(block_group, fs_info, last,
508 block_group->key.objectid +
509 block_group->key.offset);
510 caching_ctl->progress = (u64)-1;
512 spin_lock(&block_group->lock);
513 block_group->caching_ctl = NULL;
514 block_group->cached = BTRFS_CACHE_FINISHED;
515 spin_unlock(&block_group->lock);
517 err:
518 btrfs_free_path(path);
519 up_read(&fs_info->commit_root_sem);
521 free_excluded_extents(extent_root, block_group);
523 mutex_unlock(&caching_ctl->mutex);
524 out:
525 if (ret) {
526 spin_lock(&block_group->lock);
527 block_group->caching_ctl = NULL;
528 block_group->cached = BTRFS_CACHE_ERROR;
529 spin_unlock(&block_group->lock);
531 wake_up(&caching_ctl->wait);
533 put_caching_control(caching_ctl);
534 btrfs_put_block_group(block_group);
537 static int cache_block_group(struct btrfs_block_group_cache *cache,
538 int load_cache_only)
540 DEFINE_WAIT(wait);
541 struct btrfs_fs_info *fs_info = cache->fs_info;
542 struct btrfs_caching_control *caching_ctl;
543 int ret = 0;
545 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
546 if (!caching_ctl)
547 return -ENOMEM;
549 INIT_LIST_HEAD(&caching_ctl->list);
550 mutex_init(&caching_ctl->mutex);
551 init_waitqueue_head(&caching_ctl->wait);
552 caching_ctl->block_group = cache;
553 caching_ctl->progress = cache->key.objectid;
554 atomic_set(&caching_ctl->count, 1);
555 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
556 caching_thread, NULL, NULL);
558 spin_lock(&cache->lock);
560 * This should be a rare occasion, but this could happen I think in the
561 * case where one thread starts to load the space cache info, and then
562 * some other thread starts a transaction commit which tries to do an
563 * allocation while the other thread is still loading the space cache
564 * info. The previous loop should have kept us from choosing this block
565 * group, but if we've moved to the state where we will wait on caching
566 * block groups we need to first check if we're doing a fast load here,
567 * so we can wait for it to finish, otherwise we could end up allocating
568 * from a block group who's cache gets evicted for one reason or
569 * another.
571 while (cache->cached == BTRFS_CACHE_FAST) {
572 struct btrfs_caching_control *ctl;
574 ctl = cache->caching_ctl;
575 atomic_inc(&ctl->count);
576 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
577 spin_unlock(&cache->lock);
579 schedule();
581 finish_wait(&ctl->wait, &wait);
582 put_caching_control(ctl);
583 spin_lock(&cache->lock);
586 if (cache->cached != BTRFS_CACHE_NO) {
587 spin_unlock(&cache->lock);
588 kfree(caching_ctl);
589 return 0;
591 WARN_ON(cache->caching_ctl);
592 cache->caching_ctl = caching_ctl;
593 cache->cached = BTRFS_CACHE_FAST;
594 spin_unlock(&cache->lock);
596 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
597 ret = load_free_space_cache(fs_info, cache);
599 spin_lock(&cache->lock);
600 if (ret == 1) {
601 cache->caching_ctl = NULL;
602 cache->cached = BTRFS_CACHE_FINISHED;
603 cache->last_byte_to_unpin = (u64)-1;
604 } else {
605 if (load_cache_only) {
606 cache->caching_ctl = NULL;
607 cache->cached = BTRFS_CACHE_NO;
608 } else {
609 cache->cached = BTRFS_CACHE_STARTED;
612 spin_unlock(&cache->lock);
613 wake_up(&caching_ctl->wait);
614 if (ret == 1) {
615 put_caching_control(caching_ctl);
616 free_excluded_extents(fs_info->extent_root, cache);
617 return 0;
619 } else {
621 * We are not going to do the fast caching, set cached to the
622 * appropriate value and wakeup any waiters.
624 spin_lock(&cache->lock);
625 if (load_cache_only) {
626 cache->caching_ctl = NULL;
627 cache->cached = BTRFS_CACHE_NO;
628 } else {
629 cache->cached = BTRFS_CACHE_STARTED;
631 spin_unlock(&cache->lock);
632 wake_up(&caching_ctl->wait);
635 if (load_cache_only) {
636 put_caching_control(caching_ctl);
637 return 0;
640 down_write(&fs_info->commit_root_sem);
641 atomic_inc(&caching_ctl->count);
642 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
643 up_write(&fs_info->commit_root_sem);
645 btrfs_get_block_group(cache);
647 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
649 return ret;
653 * return the block group that starts at or after bytenr
655 static struct btrfs_block_group_cache *
656 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
658 struct btrfs_block_group_cache *cache;
660 cache = block_group_cache_tree_search(info, bytenr, 0);
662 return cache;
666 * return the block group that contains the given bytenr
668 struct btrfs_block_group_cache *btrfs_lookup_block_group(
669 struct btrfs_fs_info *info,
670 u64 bytenr)
672 struct btrfs_block_group_cache *cache;
674 cache = block_group_cache_tree_search(info, bytenr, 1);
676 return cache;
679 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
680 u64 flags)
682 struct list_head *head = &info->space_info;
683 struct btrfs_space_info *found;
685 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
687 rcu_read_lock();
688 list_for_each_entry_rcu(found, head, list) {
689 if (found->flags & flags) {
690 rcu_read_unlock();
691 return found;
694 rcu_read_unlock();
695 return NULL;
699 * after adding space to the filesystem, we need to clear the full flags
700 * on all the space infos.
702 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
704 struct list_head *head = &info->space_info;
705 struct btrfs_space_info *found;
707 rcu_read_lock();
708 list_for_each_entry_rcu(found, head, list)
709 found->full = 0;
710 rcu_read_unlock();
713 /* simple helper to search for an existing extent at a given offset */
714 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
716 int ret;
717 struct btrfs_key key;
718 struct btrfs_path *path;
720 path = btrfs_alloc_path();
721 if (!path)
722 return -ENOMEM;
724 key.objectid = start;
725 key.offset = len;
726 key.type = BTRFS_EXTENT_ITEM_KEY;
727 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
728 0, 0);
729 if (ret > 0) {
730 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
731 if (key.objectid == start &&
732 key.type == BTRFS_METADATA_ITEM_KEY)
733 ret = 0;
735 btrfs_free_path(path);
736 return ret;
740 * helper function to lookup reference count and flags of a tree block.
742 * the head node for delayed ref is used to store the sum of all the
743 * reference count modifications queued up in the rbtree. the head
744 * node may also store the extent flags to set. This way you can check
745 * to see what the reference count and extent flags would be if all of
746 * the delayed refs are not processed.
748 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
749 struct btrfs_root *root, u64 bytenr,
750 u64 offset, int metadata, u64 *refs, u64 *flags)
752 struct btrfs_delayed_ref_head *head;
753 struct btrfs_delayed_ref_root *delayed_refs;
754 struct btrfs_path *path;
755 struct btrfs_extent_item *ei;
756 struct extent_buffer *leaf;
757 struct btrfs_key key;
758 u32 item_size;
759 u64 num_refs;
760 u64 extent_flags;
761 int ret;
764 * If we don't have skinny metadata, don't bother doing anything
765 * different
767 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
768 offset = root->leafsize;
769 metadata = 0;
772 path = btrfs_alloc_path();
773 if (!path)
774 return -ENOMEM;
776 if (!trans) {
777 path->skip_locking = 1;
778 path->search_commit_root = 1;
781 search_again:
782 key.objectid = bytenr;
783 key.offset = offset;
784 if (metadata)
785 key.type = BTRFS_METADATA_ITEM_KEY;
786 else
787 key.type = BTRFS_EXTENT_ITEM_KEY;
789 again:
790 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
791 &key, path, 0, 0);
792 if (ret < 0)
793 goto out_free;
795 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
796 if (path->slots[0]) {
797 path->slots[0]--;
798 btrfs_item_key_to_cpu(path->nodes[0], &key,
799 path->slots[0]);
800 if (key.objectid == bytenr &&
801 key.type == BTRFS_EXTENT_ITEM_KEY &&
802 key.offset == root->leafsize)
803 ret = 0;
805 if (ret) {
806 key.objectid = bytenr;
807 key.type = BTRFS_EXTENT_ITEM_KEY;
808 key.offset = root->leafsize;
809 btrfs_release_path(path);
810 goto again;
814 if (ret == 0) {
815 leaf = path->nodes[0];
816 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
817 if (item_size >= sizeof(*ei)) {
818 ei = btrfs_item_ptr(leaf, path->slots[0],
819 struct btrfs_extent_item);
820 num_refs = btrfs_extent_refs(leaf, ei);
821 extent_flags = btrfs_extent_flags(leaf, ei);
822 } else {
823 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
824 struct btrfs_extent_item_v0 *ei0;
825 BUG_ON(item_size != sizeof(*ei0));
826 ei0 = btrfs_item_ptr(leaf, path->slots[0],
827 struct btrfs_extent_item_v0);
828 num_refs = btrfs_extent_refs_v0(leaf, ei0);
829 /* FIXME: this isn't correct for data */
830 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
831 #else
832 BUG();
833 #endif
835 BUG_ON(num_refs == 0);
836 } else {
837 num_refs = 0;
838 extent_flags = 0;
839 ret = 0;
842 if (!trans)
843 goto out;
845 delayed_refs = &trans->transaction->delayed_refs;
846 spin_lock(&delayed_refs->lock);
847 head = btrfs_find_delayed_ref_head(trans, bytenr);
848 if (head) {
849 if (!mutex_trylock(&head->mutex)) {
850 atomic_inc(&head->node.refs);
851 spin_unlock(&delayed_refs->lock);
853 btrfs_release_path(path);
856 * Mutex was contended, block until it's released and try
857 * again
859 mutex_lock(&head->mutex);
860 mutex_unlock(&head->mutex);
861 btrfs_put_delayed_ref(&head->node);
862 goto search_again;
864 spin_lock(&head->lock);
865 if (head->extent_op && head->extent_op->update_flags)
866 extent_flags |= head->extent_op->flags_to_set;
867 else
868 BUG_ON(num_refs == 0);
870 num_refs += head->node.ref_mod;
871 spin_unlock(&head->lock);
872 mutex_unlock(&head->mutex);
874 spin_unlock(&delayed_refs->lock);
875 out:
876 WARN_ON(num_refs == 0);
877 if (refs)
878 *refs = num_refs;
879 if (flags)
880 *flags = extent_flags;
881 out_free:
882 btrfs_free_path(path);
883 return ret;
887 * Back reference rules. Back refs have three main goals:
889 * 1) differentiate between all holders of references to an extent so that
890 * when a reference is dropped we can make sure it was a valid reference
891 * before freeing the extent.
893 * 2) Provide enough information to quickly find the holders of an extent
894 * if we notice a given block is corrupted or bad.
896 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
897 * maintenance. This is actually the same as #2, but with a slightly
898 * different use case.
900 * There are two kinds of back refs. The implicit back refs is optimized
901 * for pointers in non-shared tree blocks. For a given pointer in a block,
902 * back refs of this kind provide information about the block's owner tree
903 * and the pointer's key. These information allow us to find the block by
904 * b-tree searching. The full back refs is for pointers in tree blocks not
905 * referenced by their owner trees. The location of tree block is recorded
906 * in the back refs. Actually the full back refs is generic, and can be
907 * used in all cases the implicit back refs is used. The major shortcoming
908 * of the full back refs is its overhead. Every time a tree block gets
909 * COWed, we have to update back refs entry for all pointers in it.
911 * For a newly allocated tree block, we use implicit back refs for
912 * pointers in it. This means most tree related operations only involve
913 * implicit back refs. For a tree block created in old transaction, the
914 * only way to drop a reference to it is COW it. So we can detect the
915 * event that tree block loses its owner tree's reference and do the
916 * back refs conversion.
918 * When a tree block is COW'd through a tree, there are four cases:
920 * The reference count of the block is one and the tree is the block's
921 * owner tree. Nothing to do in this case.
923 * The reference count of the block is one and the tree is not the
924 * block's owner tree. In this case, full back refs is used for pointers
925 * in the block. Remove these full back refs, add implicit back refs for
926 * every pointers in the new block.
928 * The reference count of the block is greater than one and the tree is
929 * the block's owner tree. In this case, implicit back refs is used for
930 * pointers in the block. Add full back refs for every pointers in the
931 * block, increase lower level extents' reference counts. The original
932 * implicit back refs are entailed to the new block.
934 * The reference count of the block is greater than one and the tree is
935 * not the block's owner tree. Add implicit back refs for every pointer in
936 * the new block, increase lower level extents' reference count.
938 * Back Reference Key composing:
940 * The key objectid corresponds to the first byte in the extent,
941 * The key type is used to differentiate between types of back refs.
942 * There are different meanings of the key offset for different types
943 * of back refs.
945 * File extents can be referenced by:
947 * - multiple snapshots, subvolumes, or different generations in one subvol
948 * - different files inside a single subvolume
949 * - different offsets inside a file (bookend extents in file.c)
951 * The extent ref structure for the implicit back refs has fields for:
953 * - Objectid of the subvolume root
954 * - objectid of the file holding the reference
955 * - original offset in the file
956 * - how many bookend extents
958 * The key offset for the implicit back refs is hash of the first
959 * three fields.
961 * The extent ref structure for the full back refs has field for:
963 * - number of pointers in the tree leaf
965 * The key offset for the implicit back refs is the first byte of
966 * the tree leaf
968 * When a file extent is allocated, The implicit back refs is used.
969 * the fields are filled in:
971 * (root_key.objectid, inode objectid, offset in file, 1)
973 * When a file extent is removed file truncation, we find the
974 * corresponding implicit back refs and check the following fields:
976 * (btrfs_header_owner(leaf), inode objectid, offset in file)
978 * Btree extents can be referenced by:
980 * - Different subvolumes
982 * Both the implicit back refs and the full back refs for tree blocks
983 * only consist of key. The key offset for the implicit back refs is
984 * objectid of block's owner tree. The key offset for the full back refs
985 * is the first byte of parent block.
987 * When implicit back refs is used, information about the lowest key and
988 * level of the tree block are required. These information are stored in
989 * tree block info structure.
992 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
993 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
994 struct btrfs_root *root,
995 struct btrfs_path *path,
996 u64 owner, u32 extra_size)
998 struct btrfs_extent_item *item;
999 struct btrfs_extent_item_v0 *ei0;
1000 struct btrfs_extent_ref_v0 *ref0;
1001 struct btrfs_tree_block_info *bi;
1002 struct extent_buffer *leaf;
1003 struct btrfs_key key;
1004 struct btrfs_key found_key;
1005 u32 new_size = sizeof(*item);
1006 u64 refs;
1007 int ret;
1009 leaf = path->nodes[0];
1010 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1012 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1013 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1014 struct btrfs_extent_item_v0);
1015 refs = btrfs_extent_refs_v0(leaf, ei0);
1017 if (owner == (u64)-1) {
1018 while (1) {
1019 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1020 ret = btrfs_next_leaf(root, path);
1021 if (ret < 0)
1022 return ret;
1023 BUG_ON(ret > 0); /* Corruption */
1024 leaf = path->nodes[0];
1026 btrfs_item_key_to_cpu(leaf, &found_key,
1027 path->slots[0]);
1028 BUG_ON(key.objectid != found_key.objectid);
1029 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1030 path->slots[0]++;
1031 continue;
1033 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1034 struct btrfs_extent_ref_v0);
1035 owner = btrfs_ref_objectid_v0(leaf, ref0);
1036 break;
1039 btrfs_release_path(path);
1041 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1042 new_size += sizeof(*bi);
1044 new_size -= sizeof(*ei0);
1045 ret = btrfs_search_slot(trans, root, &key, path,
1046 new_size + extra_size, 1);
1047 if (ret < 0)
1048 return ret;
1049 BUG_ON(ret); /* Corruption */
1051 btrfs_extend_item(root, path, new_size);
1053 leaf = path->nodes[0];
1054 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1055 btrfs_set_extent_refs(leaf, item, refs);
1056 /* FIXME: get real generation */
1057 btrfs_set_extent_generation(leaf, item, 0);
1058 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1059 btrfs_set_extent_flags(leaf, item,
1060 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1061 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1062 bi = (struct btrfs_tree_block_info *)(item + 1);
1063 /* FIXME: get first key of the block */
1064 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1065 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1066 } else {
1067 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1069 btrfs_mark_buffer_dirty(leaf);
1070 return 0;
1072 #endif
1074 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1076 u32 high_crc = ~(u32)0;
1077 u32 low_crc = ~(u32)0;
1078 __le64 lenum;
1080 lenum = cpu_to_le64(root_objectid);
1081 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1082 lenum = cpu_to_le64(owner);
1083 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1084 lenum = cpu_to_le64(offset);
1085 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1087 return ((u64)high_crc << 31) ^ (u64)low_crc;
1090 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1091 struct btrfs_extent_data_ref *ref)
1093 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1094 btrfs_extent_data_ref_objectid(leaf, ref),
1095 btrfs_extent_data_ref_offset(leaf, ref));
1098 static int match_extent_data_ref(struct extent_buffer *leaf,
1099 struct btrfs_extent_data_ref *ref,
1100 u64 root_objectid, u64 owner, u64 offset)
1102 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1103 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1104 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1105 return 0;
1106 return 1;
1109 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1110 struct btrfs_root *root,
1111 struct btrfs_path *path,
1112 u64 bytenr, u64 parent,
1113 u64 root_objectid,
1114 u64 owner, u64 offset)
1116 struct btrfs_key key;
1117 struct btrfs_extent_data_ref *ref;
1118 struct extent_buffer *leaf;
1119 u32 nritems;
1120 int ret;
1121 int recow;
1122 int err = -ENOENT;
1124 key.objectid = bytenr;
1125 if (parent) {
1126 key.type = BTRFS_SHARED_DATA_REF_KEY;
1127 key.offset = parent;
1128 } else {
1129 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1130 key.offset = hash_extent_data_ref(root_objectid,
1131 owner, offset);
1133 again:
1134 recow = 0;
1135 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1136 if (ret < 0) {
1137 err = ret;
1138 goto fail;
1141 if (parent) {
1142 if (!ret)
1143 return 0;
1144 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1145 key.type = BTRFS_EXTENT_REF_V0_KEY;
1146 btrfs_release_path(path);
1147 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1148 if (ret < 0) {
1149 err = ret;
1150 goto fail;
1152 if (!ret)
1153 return 0;
1154 #endif
1155 goto fail;
1158 leaf = path->nodes[0];
1159 nritems = btrfs_header_nritems(leaf);
1160 while (1) {
1161 if (path->slots[0] >= nritems) {
1162 ret = btrfs_next_leaf(root, path);
1163 if (ret < 0)
1164 err = ret;
1165 if (ret)
1166 goto fail;
1168 leaf = path->nodes[0];
1169 nritems = btrfs_header_nritems(leaf);
1170 recow = 1;
1173 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1174 if (key.objectid != bytenr ||
1175 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1176 goto fail;
1178 ref = btrfs_item_ptr(leaf, path->slots[0],
1179 struct btrfs_extent_data_ref);
1181 if (match_extent_data_ref(leaf, ref, root_objectid,
1182 owner, offset)) {
1183 if (recow) {
1184 btrfs_release_path(path);
1185 goto again;
1187 err = 0;
1188 break;
1190 path->slots[0]++;
1192 fail:
1193 return err;
1196 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1197 struct btrfs_root *root,
1198 struct btrfs_path *path,
1199 u64 bytenr, u64 parent,
1200 u64 root_objectid, u64 owner,
1201 u64 offset, int refs_to_add)
1203 struct btrfs_key key;
1204 struct extent_buffer *leaf;
1205 u32 size;
1206 u32 num_refs;
1207 int ret;
1209 key.objectid = bytenr;
1210 if (parent) {
1211 key.type = BTRFS_SHARED_DATA_REF_KEY;
1212 key.offset = parent;
1213 size = sizeof(struct btrfs_shared_data_ref);
1214 } else {
1215 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1216 key.offset = hash_extent_data_ref(root_objectid,
1217 owner, offset);
1218 size = sizeof(struct btrfs_extent_data_ref);
1221 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1222 if (ret && ret != -EEXIST)
1223 goto fail;
1225 leaf = path->nodes[0];
1226 if (parent) {
1227 struct btrfs_shared_data_ref *ref;
1228 ref = btrfs_item_ptr(leaf, path->slots[0],
1229 struct btrfs_shared_data_ref);
1230 if (ret == 0) {
1231 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1232 } else {
1233 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1234 num_refs += refs_to_add;
1235 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1237 } else {
1238 struct btrfs_extent_data_ref *ref;
1239 while (ret == -EEXIST) {
1240 ref = btrfs_item_ptr(leaf, path->slots[0],
1241 struct btrfs_extent_data_ref);
1242 if (match_extent_data_ref(leaf, ref, root_objectid,
1243 owner, offset))
1244 break;
1245 btrfs_release_path(path);
1246 key.offset++;
1247 ret = btrfs_insert_empty_item(trans, root, path, &key,
1248 size);
1249 if (ret && ret != -EEXIST)
1250 goto fail;
1252 leaf = path->nodes[0];
1254 ref = btrfs_item_ptr(leaf, path->slots[0],
1255 struct btrfs_extent_data_ref);
1256 if (ret == 0) {
1257 btrfs_set_extent_data_ref_root(leaf, ref,
1258 root_objectid);
1259 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1260 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1261 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1262 } else {
1263 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1264 num_refs += refs_to_add;
1265 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1268 btrfs_mark_buffer_dirty(leaf);
1269 ret = 0;
1270 fail:
1271 btrfs_release_path(path);
1272 return ret;
1275 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1276 struct btrfs_root *root,
1277 struct btrfs_path *path,
1278 int refs_to_drop, int *last_ref)
1280 struct btrfs_key key;
1281 struct btrfs_extent_data_ref *ref1 = NULL;
1282 struct btrfs_shared_data_ref *ref2 = NULL;
1283 struct extent_buffer *leaf;
1284 u32 num_refs = 0;
1285 int ret = 0;
1287 leaf = path->nodes[0];
1288 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1290 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1291 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1292 struct btrfs_extent_data_ref);
1293 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1294 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1295 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1296 struct btrfs_shared_data_ref);
1297 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1298 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1299 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1300 struct btrfs_extent_ref_v0 *ref0;
1301 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1302 struct btrfs_extent_ref_v0);
1303 num_refs = btrfs_ref_count_v0(leaf, ref0);
1304 #endif
1305 } else {
1306 BUG();
1309 BUG_ON(num_refs < refs_to_drop);
1310 num_refs -= refs_to_drop;
1312 if (num_refs == 0) {
1313 ret = btrfs_del_item(trans, root, path);
1314 *last_ref = 1;
1315 } else {
1316 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1317 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1318 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1319 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1320 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1321 else {
1322 struct btrfs_extent_ref_v0 *ref0;
1323 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1324 struct btrfs_extent_ref_v0);
1325 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1327 #endif
1328 btrfs_mark_buffer_dirty(leaf);
1330 return ret;
1333 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1334 struct btrfs_path *path,
1335 struct btrfs_extent_inline_ref *iref)
1337 struct btrfs_key key;
1338 struct extent_buffer *leaf;
1339 struct btrfs_extent_data_ref *ref1;
1340 struct btrfs_shared_data_ref *ref2;
1341 u32 num_refs = 0;
1343 leaf = path->nodes[0];
1344 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1345 if (iref) {
1346 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1347 BTRFS_EXTENT_DATA_REF_KEY) {
1348 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1349 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1350 } else {
1351 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1352 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1354 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1355 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1356 struct btrfs_extent_data_ref);
1357 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1358 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1359 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1360 struct btrfs_shared_data_ref);
1361 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1362 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1363 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1364 struct btrfs_extent_ref_v0 *ref0;
1365 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1366 struct btrfs_extent_ref_v0);
1367 num_refs = btrfs_ref_count_v0(leaf, ref0);
1368 #endif
1369 } else {
1370 WARN_ON(1);
1372 return num_refs;
1375 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1376 struct btrfs_root *root,
1377 struct btrfs_path *path,
1378 u64 bytenr, u64 parent,
1379 u64 root_objectid)
1381 struct btrfs_key key;
1382 int ret;
1384 key.objectid = bytenr;
1385 if (parent) {
1386 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1387 key.offset = parent;
1388 } else {
1389 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1390 key.offset = root_objectid;
1393 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1394 if (ret > 0)
1395 ret = -ENOENT;
1396 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1397 if (ret == -ENOENT && parent) {
1398 btrfs_release_path(path);
1399 key.type = BTRFS_EXTENT_REF_V0_KEY;
1400 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1401 if (ret > 0)
1402 ret = -ENOENT;
1404 #endif
1405 return ret;
1408 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1409 struct btrfs_root *root,
1410 struct btrfs_path *path,
1411 u64 bytenr, u64 parent,
1412 u64 root_objectid)
1414 struct btrfs_key key;
1415 int ret;
1417 key.objectid = bytenr;
1418 if (parent) {
1419 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1420 key.offset = parent;
1421 } else {
1422 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1423 key.offset = root_objectid;
1426 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1427 btrfs_release_path(path);
1428 return ret;
1431 static inline int extent_ref_type(u64 parent, u64 owner)
1433 int type;
1434 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1435 if (parent > 0)
1436 type = BTRFS_SHARED_BLOCK_REF_KEY;
1437 else
1438 type = BTRFS_TREE_BLOCK_REF_KEY;
1439 } else {
1440 if (parent > 0)
1441 type = BTRFS_SHARED_DATA_REF_KEY;
1442 else
1443 type = BTRFS_EXTENT_DATA_REF_KEY;
1445 return type;
1448 static int find_next_key(struct btrfs_path *path, int level,
1449 struct btrfs_key *key)
1452 for (; level < BTRFS_MAX_LEVEL; level++) {
1453 if (!path->nodes[level])
1454 break;
1455 if (path->slots[level] + 1 >=
1456 btrfs_header_nritems(path->nodes[level]))
1457 continue;
1458 if (level == 0)
1459 btrfs_item_key_to_cpu(path->nodes[level], key,
1460 path->slots[level] + 1);
1461 else
1462 btrfs_node_key_to_cpu(path->nodes[level], key,
1463 path->slots[level] + 1);
1464 return 0;
1466 return 1;
1470 * look for inline back ref. if back ref is found, *ref_ret is set
1471 * to the address of inline back ref, and 0 is returned.
1473 * if back ref isn't found, *ref_ret is set to the address where it
1474 * should be inserted, and -ENOENT is returned.
1476 * if insert is true and there are too many inline back refs, the path
1477 * points to the extent item, and -EAGAIN is returned.
1479 * NOTE: inline back refs are ordered in the same way that back ref
1480 * items in the tree are ordered.
1482 static noinline_for_stack
1483 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1484 struct btrfs_root *root,
1485 struct btrfs_path *path,
1486 struct btrfs_extent_inline_ref **ref_ret,
1487 u64 bytenr, u64 num_bytes,
1488 u64 parent, u64 root_objectid,
1489 u64 owner, u64 offset, int insert)
1491 struct btrfs_key key;
1492 struct extent_buffer *leaf;
1493 struct btrfs_extent_item *ei;
1494 struct btrfs_extent_inline_ref *iref;
1495 u64 flags;
1496 u64 item_size;
1497 unsigned long ptr;
1498 unsigned long end;
1499 int extra_size;
1500 int type;
1501 int want;
1502 int ret;
1503 int err = 0;
1504 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1505 SKINNY_METADATA);
1507 key.objectid = bytenr;
1508 key.type = BTRFS_EXTENT_ITEM_KEY;
1509 key.offset = num_bytes;
1511 want = extent_ref_type(parent, owner);
1512 if (insert) {
1513 extra_size = btrfs_extent_inline_ref_size(want);
1514 path->keep_locks = 1;
1515 } else
1516 extra_size = -1;
1519 * Owner is our parent level, so we can just add one to get the level
1520 * for the block we are interested in.
1522 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1523 key.type = BTRFS_METADATA_ITEM_KEY;
1524 key.offset = owner;
1527 again:
1528 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1529 if (ret < 0) {
1530 err = ret;
1531 goto out;
1535 * We may be a newly converted file system which still has the old fat
1536 * extent entries for metadata, so try and see if we have one of those.
1538 if (ret > 0 && skinny_metadata) {
1539 skinny_metadata = false;
1540 if (path->slots[0]) {
1541 path->slots[0]--;
1542 btrfs_item_key_to_cpu(path->nodes[0], &key,
1543 path->slots[0]);
1544 if (key.objectid == bytenr &&
1545 key.type == BTRFS_EXTENT_ITEM_KEY &&
1546 key.offset == num_bytes)
1547 ret = 0;
1549 if (ret) {
1550 key.objectid = bytenr;
1551 key.type = BTRFS_EXTENT_ITEM_KEY;
1552 key.offset = num_bytes;
1553 btrfs_release_path(path);
1554 goto again;
1558 if (ret && !insert) {
1559 err = -ENOENT;
1560 goto out;
1561 } else if (WARN_ON(ret)) {
1562 err = -EIO;
1563 goto out;
1566 leaf = path->nodes[0];
1567 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1568 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1569 if (item_size < sizeof(*ei)) {
1570 if (!insert) {
1571 err = -ENOENT;
1572 goto out;
1574 ret = convert_extent_item_v0(trans, root, path, owner,
1575 extra_size);
1576 if (ret < 0) {
1577 err = ret;
1578 goto out;
1580 leaf = path->nodes[0];
1581 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1583 #endif
1584 BUG_ON(item_size < sizeof(*ei));
1586 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1587 flags = btrfs_extent_flags(leaf, ei);
1589 ptr = (unsigned long)(ei + 1);
1590 end = (unsigned long)ei + item_size;
1592 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1593 ptr += sizeof(struct btrfs_tree_block_info);
1594 BUG_ON(ptr > end);
1597 err = -ENOENT;
1598 while (1) {
1599 if (ptr >= end) {
1600 WARN_ON(ptr > end);
1601 break;
1603 iref = (struct btrfs_extent_inline_ref *)ptr;
1604 type = btrfs_extent_inline_ref_type(leaf, iref);
1605 if (want < type)
1606 break;
1607 if (want > type) {
1608 ptr += btrfs_extent_inline_ref_size(type);
1609 continue;
1612 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1613 struct btrfs_extent_data_ref *dref;
1614 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1615 if (match_extent_data_ref(leaf, dref, root_objectid,
1616 owner, offset)) {
1617 err = 0;
1618 break;
1620 if (hash_extent_data_ref_item(leaf, dref) <
1621 hash_extent_data_ref(root_objectid, owner, offset))
1622 break;
1623 } else {
1624 u64 ref_offset;
1625 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1626 if (parent > 0) {
1627 if (parent == ref_offset) {
1628 err = 0;
1629 break;
1631 if (ref_offset < parent)
1632 break;
1633 } else {
1634 if (root_objectid == ref_offset) {
1635 err = 0;
1636 break;
1638 if (ref_offset < root_objectid)
1639 break;
1642 ptr += btrfs_extent_inline_ref_size(type);
1644 if (err == -ENOENT && insert) {
1645 if (item_size + extra_size >=
1646 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1647 err = -EAGAIN;
1648 goto out;
1651 * To add new inline back ref, we have to make sure
1652 * there is no corresponding back ref item.
1653 * For simplicity, we just do not add new inline back
1654 * ref if there is any kind of item for this block
1656 if (find_next_key(path, 0, &key) == 0 &&
1657 key.objectid == bytenr &&
1658 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1659 err = -EAGAIN;
1660 goto out;
1663 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1664 out:
1665 if (insert) {
1666 path->keep_locks = 0;
1667 btrfs_unlock_up_safe(path, 1);
1669 return err;
1673 * helper to add new inline back ref
1675 static noinline_for_stack
1676 void setup_inline_extent_backref(struct btrfs_root *root,
1677 struct btrfs_path *path,
1678 struct btrfs_extent_inline_ref *iref,
1679 u64 parent, u64 root_objectid,
1680 u64 owner, u64 offset, int refs_to_add,
1681 struct btrfs_delayed_extent_op *extent_op)
1683 struct extent_buffer *leaf;
1684 struct btrfs_extent_item *ei;
1685 unsigned long ptr;
1686 unsigned long end;
1687 unsigned long item_offset;
1688 u64 refs;
1689 int size;
1690 int type;
1692 leaf = path->nodes[0];
1693 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1694 item_offset = (unsigned long)iref - (unsigned long)ei;
1696 type = extent_ref_type(parent, owner);
1697 size = btrfs_extent_inline_ref_size(type);
1699 btrfs_extend_item(root, path, size);
1701 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1702 refs = btrfs_extent_refs(leaf, ei);
1703 refs += refs_to_add;
1704 btrfs_set_extent_refs(leaf, ei, refs);
1705 if (extent_op)
1706 __run_delayed_extent_op(extent_op, leaf, ei);
1708 ptr = (unsigned long)ei + item_offset;
1709 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1710 if (ptr < end - size)
1711 memmove_extent_buffer(leaf, ptr + size, ptr,
1712 end - size - ptr);
1714 iref = (struct btrfs_extent_inline_ref *)ptr;
1715 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1716 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1717 struct btrfs_extent_data_ref *dref;
1718 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1719 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1720 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1721 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1722 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1723 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1724 struct btrfs_shared_data_ref *sref;
1725 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1726 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1727 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1728 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1729 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1730 } else {
1731 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1733 btrfs_mark_buffer_dirty(leaf);
1736 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1737 struct btrfs_root *root,
1738 struct btrfs_path *path,
1739 struct btrfs_extent_inline_ref **ref_ret,
1740 u64 bytenr, u64 num_bytes, u64 parent,
1741 u64 root_objectid, u64 owner, u64 offset)
1743 int ret;
1745 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1746 bytenr, num_bytes, parent,
1747 root_objectid, owner, offset, 0);
1748 if (ret != -ENOENT)
1749 return ret;
1751 btrfs_release_path(path);
1752 *ref_ret = NULL;
1754 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1755 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1756 root_objectid);
1757 } else {
1758 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1759 root_objectid, owner, offset);
1761 return ret;
1765 * helper to update/remove inline back ref
1767 static noinline_for_stack
1768 void update_inline_extent_backref(struct btrfs_root *root,
1769 struct btrfs_path *path,
1770 struct btrfs_extent_inline_ref *iref,
1771 int refs_to_mod,
1772 struct btrfs_delayed_extent_op *extent_op,
1773 int *last_ref)
1775 struct extent_buffer *leaf;
1776 struct btrfs_extent_item *ei;
1777 struct btrfs_extent_data_ref *dref = NULL;
1778 struct btrfs_shared_data_ref *sref = NULL;
1779 unsigned long ptr;
1780 unsigned long end;
1781 u32 item_size;
1782 int size;
1783 int type;
1784 u64 refs;
1786 leaf = path->nodes[0];
1787 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1788 refs = btrfs_extent_refs(leaf, ei);
1789 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1790 refs += refs_to_mod;
1791 btrfs_set_extent_refs(leaf, ei, refs);
1792 if (extent_op)
1793 __run_delayed_extent_op(extent_op, leaf, ei);
1795 type = btrfs_extent_inline_ref_type(leaf, iref);
1797 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1798 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1799 refs = btrfs_extent_data_ref_count(leaf, dref);
1800 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1801 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1802 refs = btrfs_shared_data_ref_count(leaf, sref);
1803 } else {
1804 refs = 1;
1805 BUG_ON(refs_to_mod != -1);
1808 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1809 refs += refs_to_mod;
1811 if (refs > 0) {
1812 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1813 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1814 else
1815 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1816 } else {
1817 *last_ref = 1;
1818 size = btrfs_extent_inline_ref_size(type);
1819 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1820 ptr = (unsigned long)iref;
1821 end = (unsigned long)ei + item_size;
1822 if (ptr + size < end)
1823 memmove_extent_buffer(leaf, ptr, ptr + size,
1824 end - ptr - size);
1825 item_size -= size;
1826 btrfs_truncate_item(root, path, item_size, 1);
1828 btrfs_mark_buffer_dirty(leaf);
1831 static noinline_for_stack
1832 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1833 struct btrfs_root *root,
1834 struct btrfs_path *path,
1835 u64 bytenr, u64 num_bytes, u64 parent,
1836 u64 root_objectid, u64 owner,
1837 u64 offset, int refs_to_add,
1838 struct btrfs_delayed_extent_op *extent_op)
1840 struct btrfs_extent_inline_ref *iref;
1841 int ret;
1843 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1844 bytenr, num_bytes, parent,
1845 root_objectid, owner, offset, 1);
1846 if (ret == 0) {
1847 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1848 update_inline_extent_backref(root, path, iref,
1849 refs_to_add, extent_op, NULL);
1850 } else if (ret == -ENOENT) {
1851 setup_inline_extent_backref(root, path, iref, parent,
1852 root_objectid, owner, offset,
1853 refs_to_add, extent_op);
1854 ret = 0;
1856 return ret;
1859 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1860 struct btrfs_root *root,
1861 struct btrfs_path *path,
1862 u64 bytenr, u64 parent, u64 root_objectid,
1863 u64 owner, u64 offset, int refs_to_add)
1865 int ret;
1866 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1867 BUG_ON(refs_to_add != 1);
1868 ret = insert_tree_block_ref(trans, root, path, bytenr,
1869 parent, root_objectid);
1870 } else {
1871 ret = insert_extent_data_ref(trans, root, path, bytenr,
1872 parent, root_objectid,
1873 owner, offset, refs_to_add);
1875 return ret;
1878 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1879 struct btrfs_root *root,
1880 struct btrfs_path *path,
1881 struct btrfs_extent_inline_ref *iref,
1882 int refs_to_drop, int is_data, int *last_ref)
1884 int ret = 0;
1886 BUG_ON(!is_data && refs_to_drop != 1);
1887 if (iref) {
1888 update_inline_extent_backref(root, path, iref,
1889 -refs_to_drop, NULL, last_ref);
1890 } else if (is_data) {
1891 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1892 last_ref);
1893 } else {
1894 *last_ref = 1;
1895 ret = btrfs_del_item(trans, root, path);
1897 return ret;
1900 static int btrfs_issue_discard(struct block_device *bdev,
1901 u64 start, u64 len)
1903 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1906 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1907 u64 num_bytes, u64 *actual_bytes)
1909 int ret;
1910 u64 discarded_bytes = 0;
1911 struct btrfs_bio *bbio = NULL;
1914 /* Tell the block device(s) that the sectors can be discarded */
1915 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1916 bytenr, &num_bytes, &bbio, 0);
1917 /* Error condition is -ENOMEM */
1918 if (!ret) {
1919 struct btrfs_bio_stripe *stripe = bbio->stripes;
1920 int i;
1923 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1924 if (!stripe->dev->can_discard)
1925 continue;
1927 ret = btrfs_issue_discard(stripe->dev->bdev,
1928 stripe->physical,
1929 stripe->length);
1930 if (!ret)
1931 discarded_bytes += stripe->length;
1932 else if (ret != -EOPNOTSUPP)
1933 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1936 * Just in case we get back EOPNOTSUPP for some reason,
1937 * just ignore the return value so we don't screw up
1938 * people calling discard_extent.
1940 ret = 0;
1942 kfree(bbio);
1945 if (actual_bytes)
1946 *actual_bytes = discarded_bytes;
1949 if (ret == -EOPNOTSUPP)
1950 ret = 0;
1951 return ret;
1954 /* Can return -ENOMEM */
1955 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1956 struct btrfs_root *root,
1957 u64 bytenr, u64 num_bytes, u64 parent,
1958 u64 root_objectid, u64 owner, u64 offset,
1959 int no_quota)
1961 int ret;
1962 struct btrfs_fs_info *fs_info = root->fs_info;
1964 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1965 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1967 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1968 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1969 num_bytes,
1970 parent, root_objectid, (int)owner,
1971 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1972 } else {
1973 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1974 num_bytes,
1975 parent, root_objectid, owner, offset,
1976 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1978 return ret;
1981 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1982 struct btrfs_root *root,
1983 u64 bytenr, u64 num_bytes,
1984 u64 parent, u64 root_objectid,
1985 u64 owner, u64 offset, int refs_to_add,
1986 int no_quota,
1987 struct btrfs_delayed_extent_op *extent_op)
1989 struct btrfs_fs_info *fs_info = root->fs_info;
1990 struct btrfs_path *path;
1991 struct extent_buffer *leaf;
1992 struct btrfs_extent_item *item;
1993 struct btrfs_key key;
1994 u64 refs;
1995 int ret;
1996 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1998 path = btrfs_alloc_path();
1999 if (!path)
2000 return -ENOMEM;
2002 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
2003 no_quota = 1;
2005 path->reada = 1;
2006 path->leave_spinning = 1;
2007 /* this will setup the path even if it fails to insert the back ref */
2008 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2009 bytenr, num_bytes, parent,
2010 root_objectid, owner, offset,
2011 refs_to_add, extent_op);
2012 if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
2013 goto out;
2015 * Ok we were able to insert an inline extent and it appears to be a new
2016 * reference, deal with the qgroup accounting.
2018 if (!ret && !no_quota) {
2019 ASSERT(root->fs_info->quota_enabled);
2020 leaf = path->nodes[0];
2021 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2022 item = btrfs_item_ptr(leaf, path->slots[0],
2023 struct btrfs_extent_item);
2024 if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2025 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2026 btrfs_release_path(path);
2028 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2029 bytenr, num_bytes, type, 0);
2030 goto out;
2034 * Ok we had -EAGAIN which means we didn't have space to insert and
2035 * inline extent ref, so just update the reference count and add a
2036 * normal backref.
2038 leaf = path->nodes[0];
2039 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2040 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2041 refs = btrfs_extent_refs(leaf, item);
2042 if (refs)
2043 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2044 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2045 if (extent_op)
2046 __run_delayed_extent_op(extent_op, leaf, item);
2048 btrfs_mark_buffer_dirty(leaf);
2049 btrfs_release_path(path);
2051 if (!no_quota) {
2052 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2053 bytenr, num_bytes, type, 0);
2054 if (ret)
2055 goto out;
2058 path->reada = 1;
2059 path->leave_spinning = 1;
2060 /* now insert the actual backref */
2061 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2062 path, bytenr, parent, root_objectid,
2063 owner, offset, refs_to_add);
2064 if (ret)
2065 btrfs_abort_transaction(trans, root, ret);
2066 out:
2067 btrfs_free_path(path);
2068 return ret;
2071 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2072 struct btrfs_root *root,
2073 struct btrfs_delayed_ref_node *node,
2074 struct btrfs_delayed_extent_op *extent_op,
2075 int insert_reserved)
2077 int ret = 0;
2078 struct btrfs_delayed_data_ref *ref;
2079 struct btrfs_key ins;
2080 u64 parent = 0;
2081 u64 ref_root = 0;
2082 u64 flags = 0;
2084 ins.objectid = node->bytenr;
2085 ins.offset = node->num_bytes;
2086 ins.type = BTRFS_EXTENT_ITEM_KEY;
2088 ref = btrfs_delayed_node_to_data_ref(node);
2089 trace_run_delayed_data_ref(node, ref, node->action);
2091 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2092 parent = ref->parent;
2093 ref_root = ref->root;
2095 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2096 if (extent_op)
2097 flags |= extent_op->flags_to_set;
2098 ret = alloc_reserved_file_extent(trans, root,
2099 parent, ref_root, flags,
2100 ref->objectid, ref->offset,
2101 &ins, node->ref_mod);
2102 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2103 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2104 node->num_bytes, parent,
2105 ref_root, ref->objectid,
2106 ref->offset, node->ref_mod,
2107 node->no_quota, extent_op);
2108 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2109 ret = __btrfs_free_extent(trans, root, node->bytenr,
2110 node->num_bytes, parent,
2111 ref_root, ref->objectid,
2112 ref->offset, node->ref_mod,
2113 extent_op, node->no_quota);
2114 } else {
2115 BUG();
2117 return ret;
2120 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2121 struct extent_buffer *leaf,
2122 struct btrfs_extent_item *ei)
2124 u64 flags = btrfs_extent_flags(leaf, ei);
2125 if (extent_op->update_flags) {
2126 flags |= extent_op->flags_to_set;
2127 btrfs_set_extent_flags(leaf, ei, flags);
2130 if (extent_op->update_key) {
2131 struct btrfs_tree_block_info *bi;
2132 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2133 bi = (struct btrfs_tree_block_info *)(ei + 1);
2134 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2138 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2139 struct btrfs_root *root,
2140 struct btrfs_delayed_ref_node *node,
2141 struct btrfs_delayed_extent_op *extent_op)
2143 struct btrfs_key key;
2144 struct btrfs_path *path;
2145 struct btrfs_extent_item *ei;
2146 struct extent_buffer *leaf;
2147 u32 item_size;
2148 int ret;
2149 int err = 0;
2150 int metadata = !extent_op->is_data;
2152 if (trans->aborted)
2153 return 0;
2155 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2156 metadata = 0;
2158 path = btrfs_alloc_path();
2159 if (!path)
2160 return -ENOMEM;
2162 key.objectid = node->bytenr;
2164 if (metadata) {
2165 key.type = BTRFS_METADATA_ITEM_KEY;
2166 key.offset = extent_op->level;
2167 } else {
2168 key.type = BTRFS_EXTENT_ITEM_KEY;
2169 key.offset = node->num_bytes;
2172 again:
2173 path->reada = 1;
2174 path->leave_spinning = 1;
2175 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2176 path, 0, 1);
2177 if (ret < 0) {
2178 err = ret;
2179 goto out;
2181 if (ret > 0) {
2182 if (metadata) {
2183 if (path->slots[0] > 0) {
2184 path->slots[0]--;
2185 btrfs_item_key_to_cpu(path->nodes[0], &key,
2186 path->slots[0]);
2187 if (key.objectid == node->bytenr &&
2188 key.type == BTRFS_EXTENT_ITEM_KEY &&
2189 key.offset == node->num_bytes)
2190 ret = 0;
2192 if (ret > 0) {
2193 btrfs_release_path(path);
2194 metadata = 0;
2196 key.objectid = node->bytenr;
2197 key.offset = node->num_bytes;
2198 key.type = BTRFS_EXTENT_ITEM_KEY;
2199 goto again;
2201 } else {
2202 err = -EIO;
2203 goto out;
2207 leaf = path->nodes[0];
2208 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2209 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2210 if (item_size < sizeof(*ei)) {
2211 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2212 path, (u64)-1, 0);
2213 if (ret < 0) {
2214 err = ret;
2215 goto out;
2217 leaf = path->nodes[0];
2218 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2220 #endif
2221 BUG_ON(item_size < sizeof(*ei));
2222 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2223 __run_delayed_extent_op(extent_op, leaf, ei);
2225 btrfs_mark_buffer_dirty(leaf);
2226 out:
2227 btrfs_free_path(path);
2228 return err;
2231 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2232 struct btrfs_root *root,
2233 struct btrfs_delayed_ref_node *node,
2234 struct btrfs_delayed_extent_op *extent_op,
2235 int insert_reserved)
2237 int ret = 0;
2238 struct btrfs_delayed_tree_ref *ref;
2239 struct btrfs_key ins;
2240 u64 parent = 0;
2241 u64 ref_root = 0;
2242 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2243 SKINNY_METADATA);
2245 ref = btrfs_delayed_node_to_tree_ref(node);
2246 trace_run_delayed_tree_ref(node, ref, node->action);
2248 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2249 parent = ref->parent;
2250 ref_root = ref->root;
2252 ins.objectid = node->bytenr;
2253 if (skinny_metadata) {
2254 ins.offset = ref->level;
2255 ins.type = BTRFS_METADATA_ITEM_KEY;
2256 } else {
2257 ins.offset = node->num_bytes;
2258 ins.type = BTRFS_EXTENT_ITEM_KEY;
2261 BUG_ON(node->ref_mod != 1);
2262 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2263 BUG_ON(!extent_op || !extent_op->update_flags);
2264 ret = alloc_reserved_tree_block(trans, root,
2265 parent, ref_root,
2266 extent_op->flags_to_set,
2267 &extent_op->key,
2268 ref->level, &ins,
2269 node->no_quota);
2270 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2271 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2272 node->num_bytes, parent, ref_root,
2273 ref->level, 0, 1, node->no_quota,
2274 extent_op);
2275 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2276 ret = __btrfs_free_extent(trans, root, node->bytenr,
2277 node->num_bytes, parent, ref_root,
2278 ref->level, 0, 1, extent_op,
2279 node->no_quota);
2280 } else {
2281 BUG();
2283 return ret;
2286 /* helper function to actually process a single delayed ref entry */
2287 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2288 struct btrfs_root *root,
2289 struct btrfs_delayed_ref_node *node,
2290 struct btrfs_delayed_extent_op *extent_op,
2291 int insert_reserved)
2293 int ret = 0;
2295 if (trans->aborted) {
2296 if (insert_reserved)
2297 btrfs_pin_extent(root, node->bytenr,
2298 node->num_bytes, 1);
2299 return 0;
2302 if (btrfs_delayed_ref_is_head(node)) {
2303 struct btrfs_delayed_ref_head *head;
2305 * we've hit the end of the chain and we were supposed
2306 * to insert this extent into the tree. But, it got
2307 * deleted before we ever needed to insert it, so all
2308 * we have to do is clean up the accounting
2310 BUG_ON(extent_op);
2311 head = btrfs_delayed_node_to_head(node);
2312 trace_run_delayed_ref_head(node, head, node->action);
2314 if (insert_reserved) {
2315 btrfs_pin_extent(root, node->bytenr,
2316 node->num_bytes, 1);
2317 if (head->is_data) {
2318 ret = btrfs_del_csums(trans, root,
2319 node->bytenr,
2320 node->num_bytes);
2323 return ret;
2326 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2327 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2328 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2329 insert_reserved);
2330 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2331 node->type == BTRFS_SHARED_DATA_REF_KEY)
2332 ret = run_delayed_data_ref(trans, root, node, extent_op,
2333 insert_reserved);
2334 else
2335 BUG();
2336 return ret;
2339 static noinline struct btrfs_delayed_ref_node *
2340 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2342 struct rb_node *node;
2343 struct btrfs_delayed_ref_node *ref, *last = NULL;;
2346 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2347 * this prevents ref count from going down to zero when
2348 * there still are pending delayed ref.
2350 node = rb_first(&head->ref_root);
2351 while (node) {
2352 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2353 rb_node);
2354 if (ref->action == BTRFS_ADD_DELAYED_REF)
2355 return ref;
2356 else if (last == NULL)
2357 last = ref;
2358 node = rb_next(node);
2360 return last;
2364 * Returns 0 on success or if called with an already aborted transaction.
2365 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2367 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2368 struct btrfs_root *root,
2369 unsigned long nr)
2371 struct btrfs_delayed_ref_root *delayed_refs;
2372 struct btrfs_delayed_ref_node *ref;
2373 struct btrfs_delayed_ref_head *locked_ref = NULL;
2374 struct btrfs_delayed_extent_op *extent_op;
2375 struct btrfs_fs_info *fs_info = root->fs_info;
2376 ktime_t start = ktime_get();
2377 int ret;
2378 unsigned long count = 0;
2379 unsigned long actual_count = 0;
2380 int must_insert_reserved = 0;
2382 delayed_refs = &trans->transaction->delayed_refs;
2383 while (1) {
2384 if (!locked_ref) {
2385 if (count >= nr)
2386 break;
2388 spin_lock(&delayed_refs->lock);
2389 locked_ref = btrfs_select_ref_head(trans);
2390 if (!locked_ref) {
2391 spin_unlock(&delayed_refs->lock);
2392 break;
2395 /* grab the lock that says we are going to process
2396 * all the refs for this head */
2397 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2398 spin_unlock(&delayed_refs->lock);
2400 * we may have dropped the spin lock to get the head
2401 * mutex lock, and that might have given someone else
2402 * time to free the head. If that's true, it has been
2403 * removed from our list and we can move on.
2405 if (ret == -EAGAIN) {
2406 locked_ref = NULL;
2407 count++;
2408 continue;
2413 * We need to try and merge add/drops of the same ref since we
2414 * can run into issues with relocate dropping the implicit ref
2415 * and then it being added back again before the drop can
2416 * finish. If we merged anything we need to re-loop so we can
2417 * get a good ref.
2419 spin_lock(&locked_ref->lock);
2420 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2421 locked_ref);
2424 * locked_ref is the head node, so we have to go one
2425 * node back for any delayed ref updates
2427 ref = select_delayed_ref(locked_ref);
2429 if (ref && ref->seq &&
2430 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2431 spin_unlock(&locked_ref->lock);
2432 btrfs_delayed_ref_unlock(locked_ref);
2433 spin_lock(&delayed_refs->lock);
2434 locked_ref->processing = 0;
2435 delayed_refs->num_heads_ready++;
2436 spin_unlock(&delayed_refs->lock);
2437 locked_ref = NULL;
2438 cond_resched();
2439 count++;
2440 continue;
2444 * record the must insert reserved flag before we
2445 * drop the spin lock.
2447 must_insert_reserved = locked_ref->must_insert_reserved;
2448 locked_ref->must_insert_reserved = 0;
2450 extent_op = locked_ref->extent_op;
2451 locked_ref->extent_op = NULL;
2453 if (!ref) {
2456 /* All delayed refs have been processed, Go ahead
2457 * and send the head node to run_one_delayed_ref,
2458 * so that any accounting fixes can happen
2460 ref = &locked_ref->node;
2462 if (extent_op && must_insert_reserved) {
2463 btrfs_free_delayed_extent_op(extent_op);
2464 extent_op = NULL;
2467 if (extent_op) {
2468 spin_unlock(&locked_ref->lock);
2469 ret = run_delayed_extent_op(trans, root,
2470 ref, extent_op);
2471 btrfs_free_delayed_extent_op(extent_op);
2473 if (ret) {
2475 * Need to reset must_insert_reserved if
2476 * there was an error so the abort stuff
2477 * can cleanup the reserved space
2478 * properly.
2480 if (must_insert_reserved)
2481 locked_ref->must_insert_reserved = 1;
2482 locked_ref->processing = 0;
2483 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2484 btrfs_delayed_ref_unlock(locked_ref);
2485 return ret;
2487 continue;
2491 * Need to drop our head ref lock and re-aqcuire the
2492 * delayed ref lock and then re-check to make sure
2493 * nobody got added.
2495 spin_unlock(&locked_ref->lock);
2496 spin_lock(&delayed_refs->lock);
2497 spin_lock(&locked_ref->lock);
2498 if (rb_first(&locked_ref->ref_root) ||
2499 locked_ref->extent_op) {
2500 spin_unlock(&locked_ref->lock);
2501 spin_unlock(&delayed_refs->lock);
2502 continue;
2504 ref->in_tree = 0;
2505 delayed_refs->num_heads--;
2506 rb_erase(&locked_ref->href_node,
2507 &delayed_refs->href_root);
2508 spin_unlock(&delayed_refs->lock);
2509 } else {
2510 actual_count++;
2511 ref->in_tree = 0;
2512 rb_erase(&ref->rb_node, &locked_ref->ref_root);
2514 atomic_dec(&delayed_refs->num_entries);
2516 if (!btrfs_delayed_ref_is_head(ref)) {
2518 * when we play the delayed ref, also correct the
2519 * ref_mod on head
2521 switch (ref->action) {
2522 case BTRFS_ADD_DELAYED_REF:
2523 case BTRFS_ADD_DELAYED_EXTENT:
2524 locked_ref->node.ref_mod -= ref->ref_mod;
2525 break;
2526 case BTRFS_DROP_DELAYED_REF:
2527 locked_ref->node.ref_mod += ref->ref_mod;
2528 break;
2529 default:
2530 WARN_ON(1);
2533 spin_unlock(&locked_ref->lock);
2535 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2536 must_insert_reserved);
2538 btrfs_free_delayed_extent_op(extent_op);
2539 if (ret) {
2540 locked_ref->processing = 0;
2541 btrfs_delayed_ref_unlock(locked_ref);
2542 btrfs_put_delayed_ref(ref);
2543 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2544 return ret;
2548 * If this node is a head, that means all the refs in this head
2549 * have been dealt with, and we will pick the next head to deal
2550 * with, so we must unlock the head and drop it from the cluster
2551 * list before we release it.
2553 if (btrfs_delayed_ref_is_head(ref)) {
2554 btrfs_delayed_ref_unlock(locked_ref);
2555 locked_ref = NULL;
2557 btrfs_put_delayed_ref(ref);
2558 count++;
2559 cond_resched();
2563 * We don't want to include ref heads since we can have empty ref heads
2564 * and those will drastically skew our runtime down since we just do
2565 * accounting, no actual extent tree updates.
2567 if (actual_count > 0) {
2568 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2569 u64 avg;
2572 * We weigh the current average higher than our current runtime
2573 * to avoid large swings in the average.
2575 spin_lock(&delayed_refs->lock);
2576 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2577 avg = div64_u64(avg, 4);
2578 fs_info->avg_delayed_ref_runtime = avg;
2579 spin_unlock(&delayed_refs->lock);
2581 return 0;
2584 #ifdef SCRAMBLE_DELAYED_REFS
2586 * Normally delayed refs get processed in ascending bytenr order. This
2587 * correlates in most cases to the order added. To expose dependencies on this
2588 * order, we start to process the tree in the middle instead of the beginning
2590 static u64 find_middle(struct rb_root *root)
2592 struct rb_node *n = root->rb_node;
2593 struct btrfs_delayed_ref_node *entry;
2594 int alt = 1;
2595 u64 middle;
2596 u64 first = 0, last = 0;
2598 n = rb_first(root);
2599 if (n) {
2600 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2601 first = entry->bytenr;
2603 n = rb_last(root);
2604 if (n) {
2605 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2606 last = entry->bytenr;
2608 n = root->rb_node;
2610 while (n) {
2611 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2612 WARN_ON(!entry->in_tree);
2614 middle = entry->bytenr;
2616 if (alt)
2617 n = n->rb_left;
2618 else
2619 n = n->rb_right;
2621 alt = 1 - alt;
2623 return middle;
2625 #endif
2627 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2629 u64 num_bytes;
2631 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2632 sizeof(struct btrfs_extent_inline_ref));
2633 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2634 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2637 * We don't ever fill up leaves all the way so multiply by 2 just to be
2638 * closer to what we're really going to want to ouse.
2640 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2643 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2644 struct btrfs_root *root)
2646 struct btrfs_block_rsv *global_rsv;
2647 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2648 u64 num_bytes;
2649 int ret = 0;
2651 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2652 num_heads = heads_to_leaves(root, num_heads);
2653 if (num_heads > 1)
2654 num_bytes += (num_heads - 1) * root->leafsize;
2655 num_bytes <<= 1;
2656 global_rsv = &root->fs_info->global_block_rsv;
2659 * If we can't allocate any more chunks lets make sure we have _lots_ of
2660 * wiggle room since running delayed refs can create more delayed refs.
2662 if (global_rsv->space_info->full)
2663 num_bytes <<= 1;
2665 spin_lock(&global_rsv->lock);
2666 if (global_rsv->reserved <= num_bytes)
2667 ret = 1;
2668 spin_unlock(&global_rsv->lock);
2669 return ret;
2672 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2673 struct btrfs_root *root)
2675 struct btrfs_fs_info *fs_info = root->fs_info;
2676 u64 num_entries =
2677 atomic_read(&trans->transaction->delayed_refs.num_entries);
2678 u64 avg_runtime;
2679 u64 val;
2681 smp_mb();
2682 avg_runtime = fs_info->avg_delayed_ref_runtime;
2683 val = num_entries * avg_runtime;
2684 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2685 return 1;
2686 if (val >= NSEC_PER_SEC / 2)
2687 return 2;
2689 return btrfs_check_space_for_delayed_refs(trans, root);
2692 struct async_delayed_refs {
2693 struct btrfs_root *root;
2694 int count;
2695 int error;
2696 int sync;
2697 struct completion wait;
2698 struct btrfs_work work;
2701 static void delayed_ref_async_start(struct btrfs_work *work)
2703 struct async_delayed_refs *async;
2704 struct btrfs_trans_handle *trans;
2705 int ret;
2707 async = container_of(work, struct async_delayed_refs, work);
2709 trans = btrfs_join_transaction(async->root);
2710 if (IS_ERR(trans)) {
2711 async->error = PTR_ERR(trans);
2712 goto done;
2716 * trans->sync means that when we call end_transaciton, we won't
2717 * wait on delayed refs
2719 trans->sync = true;
2720 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2721 if (ret)
2722 async->error = ret;
2724 ret = btrfs_end_transaction(trans, async->root);
2725 if (ret && !async->error)
2726 async->error = ret;
2727 done:
2728 if (async->sync)
2729 complete(&async->wait);
2730 else
2731 kfree(async);
2734 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2735 unsigned long count, int wait)
2737 struct async_delayed_refs *async;
2738 int ret;
2740 async = kmalloc(sizeof(*async), GFP_NOFS);
2741 if (!async)
2742 return -ENOMEM;
2744 async->root = root->fs_info->tree_root;
2745 async->count = count;
2746 async->error = 0;
2747 if (wait)
2748 async->sync = 1;
2749 else
2750 async->sync = 0;
2751 init_completion(&async->wait);
2753 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2754 delayed_ref_async_start, NULL, NULL);
2756 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2758 if (wait) {
2759 wait_for_completion(&async->wait);
2760 ret = async->error;
2761 kfree(async);
2762 return ret;
2764 return 0;
2768 * this starts processing the delayed reference count updates and
2769 * extent insertions we have queued up so far. count can be
2770 * 0, which means to process everything in the tree at the start
2771 * of the run (but not newly added entries), or it can be some target
2772 * number you'd like to process.
2774 * Returns 0 on success or if called with an aborted transaction
2775 * Returns <0 on error and aborts the transaction
2777 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2778 struct btrfs_root *root, unsigned long count)
2780 struct rb_node *node;
2781 struct btrfs_delayed_ref_root *delayed_refs;
2782 struct btrfs_delayed_ref_head *head;
2783 int ret;
2784 int run_all = count == (unsigned long)-1;
2785 int run_most = 0;
2787 /* We'll clean this up in btrfs_cleanup_transaction */
2788 if (trans->aborted)
2789 return 0;
2791 if (root == root->fs_info->extent_root)
2792 root = root->fs_info->tree_root;
2794 delayed_refs = &trans->transaction->delayed_refs;
2795 if (count == 0) {
2796 count = atomic_read(&delayed_refs->num_entries) * 2;
2797 run_most = 1;
2800 again:
2801 #ifdef SCRAMBLE_DELAYED_REFS
2802 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2803 #endif
2804 ret = __btrfs_run_delayed_refs(trans, root, count);
2805 if (ret < 0) {
2806 btrfs_abort_transaction(trans, root, ret);
2807 return ret;
2810 if (run_all) {
2811 if (!list_empty(&trans->new_bgs))
2812 btrfs_create_pending_block_groups(trans, root);
2814 spin_lock(&delayed_refs->lock);
2815 node = rb_first(&delayed_refs->href_root);
2816 if (!node) {
2817 spin_unlock(&delayed_refs->lock);
2818 goto out;
2820 count = (unsigned long)-1;
2822 while (node) {
2823 head = rb_entry(node, struct btrfs_delayed_ref_head,
2824 href_node);
2825 if (btrfs_delayed_ref_is_head(&head->node)) {
2826 struct btrfs_delayed_ref_node *ref;
2828 ref = &head->node;
2829 atomic_inc(&ref->refs);
2831 spin_unlock(&delayed_refs->lock);
2833 * Mutex was contended, block until it's
2834 * released and try again
2836 mutex_lock(&head->mutex);
2837 mutex_unlock(&head->mutex);
2839 btrfs_put_delayed_ref(ref);
2840 cond_resched();
2841 goto again;
2842 } else {
2843 WARN_ON(1);
2845 node = rb_next(node);
2847 spin_unlock(&delayed_refs->lock);
2848 cond_resched();
2849 goto again;
2851 out:
2852 ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2853 if (ret)
2854 return ret;
2855 assert_qgroups_uptodate(trans);
2856 return 0;
2859 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2860 struct btrfs_root *root,
2861 u64 bytenr, u64 num_bytes, u64 flags,
2862 int level, int is_data)
2864 struct btrfs_delayed_extent_op *extent_op;
2865 int ret;
2867 extent_op = btrfs_alloc_delayed_extent_op();
2868 if (!extent_op)
2869 return -ENOMEM;
2871 extent_op->flags_to_set = flags;
2872 extent_op->update_flags = 1;
2873 extent_op->update_key = 0;
2874 extent_op->is_data = is_data ? 1 : 0;
2875 extent_op->level = level;
2877 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2878 num_bytes, extent_op);
2879 if (ret)
2880 btrfs_free_delayed_extent_op(extent_op);
2881 return ret;
2884 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2885 struct btrfs_root *root,
2886 struct btrfs_path *path,
2887 u64 objectid, u64 offset, u64 bytenr)
2889 struct btrfs_delayed_ref_head *head;
2890 struct btrfs_delayed_ref_node *ref;
2891 struct btrfs_delayed_data_ref *data_ref;
2892 struct btrfs_delayed_ref_root *delayed_refs;
2893 struct rb_node *node;
2894 int ret = 0;
2896 delayed_refs = &trans->transaction->delayed_refs;
2897 spin_lock(&delayed_refs->lock);
2898 head = btrfs_find_delayed_ref_head(trans, bytenr);
2899 if (!head) {
2900 spin_unlock(&delayed_refs->lock);
2901 return 0;
2904 if (!mutex_trylock(&head->mutex)) {
2905 atomic_inc(&head->node.refs);
2906 spin_unlock(&delayed_refs->lock);
2908 btrfs_release_path(path);
2911 * Mutex was contended, block until it's released and let
2912 * caller try again
2914 mutex_lock(&head->mutex);
2915 mutex_unlock(&head->mutex);
2916 btrfs_put_delayed_ref(&head->node);
2917 return -EAGAIN;
2919 spin_unlock(&delayed_refs->lock);
2921 spin_lock(&head->lock);
2922 node = rb_first(&head->ref_root);
2923 while (node) {
2924 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2925 node = rb_next(node);
2927 /* If it's a shared ref we know a cross reference exists */
2928 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2929 ret = 1;
2930 break;
2933 data_ref = btrfs_delayed_node_to_data_ref(ref);
2936 * If our ref doesn't match the one we're currently looking at
2937 * then we have a cross reference.
2939 if (data_ref->root != root->root_key.objectid ||
2940 data_ref->objectid != objectid ||
2941 data_ref->offset != offset) {
2942 ret = 1;
2943 break;
2946 spin_unlock(&head->lock);
2947 mutex_unlock(&head->mutex);
2948 return ret;
2951 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2952 struct btrfs_root *root,
2953 struct btrfs_path *path,
2954 u64 objectid, u64 offset, u64 bytenr)
2956 struct btrfs_root *extent_root = root->fs_info->extent_root;
2957 struct extent_buffer *leaf;
2958 struct btrfs_extent_data_ref *ref;
2959 struct btrfs_extent_inline_ref *iref;
2960 struct btrfs_extent_item *ei;
2961 struct btrfs_key key;
2962 u32 item_size;
2963 int ret;
2965 key.objectid = bytenr;
2966 key.offset = (u64)-1;
2967 key.type = BTRFS_EXTENT_ITEM_KEY;
2969 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2970 if (ret < 0)
2971 goto out;
2972 BUG_ON(ret == 0); /* Corruption */
2974 ret = -ENOENT;
2975 if (path->slots[0] == 0)
2976 goto out;
2978 path->slots[0]--;
2979 leaf = path->nodes[0];
2980 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2982 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2983 goto out;
2985 ret = 1;
2986 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2987 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2988 if (item_size < sizeof(*ei)) {
2989 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2990 goto out;
2992 #endif
2993 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2995 if (item_size != sizeof(*ei) +
2996 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2997 goto out;
2999 if (btrfs_extent_generation(leaf, ei) <=
3000 btrfs_root_last_snapshot(&root->root_item))
3001 goto out;
3003 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3004 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3005 BTRFS_EXTENT_DATA_REF_KEY)
3006 goto out;
3008 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3009 if (btrfs_extent_refs(leaf, ei) !=
3010 btrfs_extent_data_ref_count(leaf, ref) ||
3011 btrfs_extent_data_ref_root(leaf, ref) !=
3012 root->root_key.objectid ||
3013 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3014 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3015 goto out;
3017 ret = 0;
3018 out:
3019 return ret;
3022 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3023 struct btrfs_root *root,
3024 u64 objectid, u64 offset, u64 bytenr)
3026 struct btrfs_path *path;
3027 int ret;
3028 int ret2;
3030 path = btrfs_alloc_path();
3031 if (!path)
3032 return -ENOENT;
3034 do {
3035 ret = check_committed_ref(trans, root, path, objectid,
3036 offset, bytenr);
3037 if (ret && ret != -ENOENT)
3038 goto out;
3040 ret2 = check_delayed_ref(trans, root, path, objectid,
3041 offset, bytenr);
3042 } while (ret2 == -EAGAIN);
3044 if (ret2 && ret2 != -ENOENT) {
3045 ret = ret2;
3046 goto out;
3049 if (ret != -ENOENT || ret2 != -ENOENT)
3050 ret = 0;
3051 out:
3052 btrfs_free_path(path);
3053 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3054 WARN_ON(ret > 0);
3055 return ret;
3058 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3059 struct btrfs_root *root,
3060 struct extent_buffer *buf,
3061 int full_backref, int inc, int no_quota)
3063 u64 bytenr;
3064 u64 num_bytes;
3065 u64 parent;
3066 u64 ref_root;
3067 u32 nritems;
3068 struct btrfs_key key;
3069 struct btrfs_file_extent_item *fi;
3070 int i;
3071 int level;
3072 int ret = 0;
3073 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3074 u64, u64, u64, u64, u64, u64, int);
3076 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3077 if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
3078 return 0;
3079 #endif
3080 ref_root = btrfs_header_owner(buf);
3081 nritems = btrfs_header_nritems(buf);
3082 level = btrfs_header_level(buf);
3084 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3085 return 0;
3087 if (inc)
3088 process_func = btrfs_inc_extent_ref;
3089 else
3090 process_func = btrfs_free_extent;
3092 if (full_backref)
3093 parent = buf->start;
3094 else
3095 parent = 0;
3097 for (i = 0; i < nritems; i++) {
3098 if (level == 0) {
3099 btrfs_item_key_to_cpu(buf, &key, i);
3100 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3101 continue;
3102 fi = btrfs_item_ptr(buf, i,
3103 struct btrfs_file_extent_item);
3104 if (btrfs_file_extent_type(buf, fi) ==
3105 BTRFS_FILE_EXTENT_INLINE)
3106 continue;
3107 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3108 if (bytenr == 0)
3109 continue;
3111 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3112 key.offset -= btrfs_file_extent_offset(buf, fi);
3113 ret = process_func(trans, root, bytenr, num_bytes,
3114 parent, ref_root, key.objectid,
3115 key.offset, no_quota);
3116 if (ret)
3117 goto fail;
3118 } else {
3119 bytenr = btrfs_node_blockptr(buf, i);
3120 num_bytes = btrfs_level_size(root, level - 1);
3121 ret = process_func(trans, root, bytenr, num_bytes,
3122 parent, ref_root, level - 1, 0,
3123 no_quota);
3124 if (ret)
3125 goto fail;
3128 return 0;
3129 fail:
3130 return ret;
3133 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3134 struct extent_buffer *buf, int full_backref, int no_quota)
3136 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, no_quota);
3139 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3140 struct extent_buffer *buf, int full_backref, int no_quota)
3142 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, no_quota);
3145 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3146 struct btrfs_root *root,
3147 struct btrfs_path *path,
3148 struct btrfs_block_group_cache *cache)
3150 int ret;
3151 struct btrfs_root *extent_root = root->fs_info->extent_root;
3152 unsigned long bi;
3153 struct extent_buffer *leaf;
3155 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3156 if (ret < 0)
3157 goto fail;
3158 BUG_ON(ret); /* Corruption */
3160 leaf = path->nodes[0];
3161 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3162 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3163 btrfs_mark_buffer_dirty(leaf);
3164 btrfs_release_path(path);
3165 fail:
3166 if (ret) {
3167 btrfs_abort_transaction(trans, root, ret);
3168 return ret;
3170 return 0;
3174 static struct btrfs_block_group_cache *
3175 next_block_group(struct btrfs_root *root,
3176 struct btrfs_block_group_cache *cache)
3178 struct rb_node *node;
3179 spin_lock(&root->fs_info->block_group_cache_lock);
3180 node = rb_next(&cache->cache_node);
3181 btrfs_put_block_group(cache);
3182 if (node) {
3183 cache = rb_entry(node, struct btrfs_block_group_cache,
3184 cache_node);
3185 btrfs_get_block_group(cache);
3186 } else
3187 cache = NULL;
3188 spin_unlock(&root->fs_info->block_group_cache_lock);
3189 return cache;
3192 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3193 struct btrfs_trans_handle *trans,
3194 struct btrfs_path *path)
3196 struct btrfs_root *root = block_group->fs_info->tree_root;
3197 struct inode *inode = NULL;
3198 u64 alloc_hint = 0;
3199 int dcs = BTRFS_DC_ERROR;
3200 int num_pages = 0;
3201 int retries = 0;
3202 int ret = 0;
3205 * If this block group is smaller than 100 megs don't bother caching the
3206 * block group.
3208 if (block_group->key.offset < (100 * 1024 * 1024)) {
3209 spin_lock(&block_group->lock);
3210 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3211 spin_unlock(&block_group->lock);
3212 return 0;
3215 again:
3216 inode = lookup_free_space_inode(root, block_group, path);
3217 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3218 ret = PTR_ERR(inode);
3219 btrfs_release_path(path);
3220 goto out;
3223 if (IS_ERR(inode)) {
3224 BUG_ON(retries);
3225 retries++;
3227 if (block_group->ro)
3228 goto out_free;
3230 ret = create_free_space_inode(root, trans, block_group, path);
3231 if (ret)
3232 goto out_free;
3233 goto again;
3236 /* We've already setup this transaction, go ahead and exit */
3237 if (block_group->cache_generation == trans->transid &&
3238 i_size_read(inode)) {
3239 dcs = BTRFS_DC_SETUP;
3240 goto out_put;
3244 * We want to set the generation to 0, that way if anything goes wrong
3245 * from here on out we know not to trust this cache when we load up next
3246 * time.
3248 BTRFS_I(inode)->generation = 0;
3249 ret = btrfs_update_inode(trans, root, inode);
3250 WARN_ON(ret);
3252 if (i_size_read(inode) > 0) {
3253 ret = btrfs_check_trunc_cache_free_space(root,
3254 &root->fs_info->global_block_rsv);
3255 if (ret)
3256 goto out_put;
3258 ret = btrfs_truncate_free_space_cache(root, trans, inode);
3259 if (ret)
3260 goto out_put;
3263 spin_lock(&block_group->lock);
3264 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3265 !btrfs_test_opt(root, SPACE_CACHE) ||
3266 block_group->delalloc_bytes) {
3268 * don't bother trying to write stuff out _if_
3269 * a) we're not cached,
3270 * b) we're with nospace_cache mount option.
3272 dcs = BTRFS_DC_WRITTEN;
3273 spin_unlock(&block_group->lock);
3274 goto out_put;
3276 spin_unlock(&block_group->lock);
3279 * Try to preallocate enough space based on how big the block group is.
3280 * Keep in mind this has to include any pinned space which could end up
3281 * taking up quite a bit since it's not folded into the other space
3282 * cache.
3284 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3285 if (!num_pages)
3286 num_pages = 1;
3288 num_pages *= 16;
3289 num_pages *= PAGE_CACHE_SIZE;
3291 ret = btrfs_check_data_free_space(inode, num_pages);
3292 if (ret)
3293 goto out_put;
3295 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3296 num_pages, num_pages,
3297 &alloc_hint);
3298 if (!ret)
3299 dcs = BTRFS_DC_SETUP;
3300 btrfs_free_reserved_data_space(inode, num_pages);
3302 out_put:
3303 iput(inode);
3304 out_free:
3305 btrfs_release_path(path);
3306 out:
3307 spin_lock(&block_group->lock);
3308 if (!ret && dcs == BTRFS_DC_SETUP)
3309 block_group->cache_generation = trans->transid;
3310 block_group->disk_cache_state = dcs;
3311 spin_unlock(&block_group->lock);
3313 return ret;
3316 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3317 struct btrfs_root *root)
3319 struct btrfs_block_group_cache *cache;
3320 int err = 0;
3321 struct btrfs_path *path;
3322 u64 last = 0;
3324 path = btrfs_alloc_path();
3325 if (!path)
3326 return -ENOMEM;
3328 again:
3329 while (1) {
3330 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3331 while (cache) {
3332 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3333 break;
3334 cache = next_block_group(root, cache);
3336 if (!cache) {
3337 if (last == 0)
3338 break;
3339 last = 0;
3340 continue;
3342 err = cache_save_setup(cache, trans, path);
3343 last = cache->key.objectid + cache->key.offset;
3344 btrfs_put_block_group(cache);
3347 while (1) {
3348 if (last == 0) {
3349 err = btrfs_run_delayed_refs(trans, root,
3350 (unsigned long)-1);
3351 if (err) /* File system offline */
3352 goto out;
3355 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3356 while (cache) {
3357 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3358 btrfs_put_block_group(cache);
3359 goto again;
3362 if (cache->dirty)
3363 break;
3364 cache = next_block_group(root, cache);
3366 if (!cache) {
3367 if (last == 0)
3368 break;
3369 last = 0;
3370 continue;
3373 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3374 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3375 cache->dirty = 0;
3376 last = cache->key.objectid + cache->key.offset;
3378 err = write_one_cache_group(trans, root, path, cache);
3379 btrfs_put_block_group(cache);
3380 if (err) /* File system offline */
3381 goto out;
3384 while (1) {
3386 * I don't think this is needed since we're just marking our
3387 * preallocated extent as written, but just in case it can't
3388 * hurt.
3390 if (last == 0) {
3391 err = btrfs_run_delayed_refs(trans, root,
3392 (unsigned long)-1);
3393 if (err) /* File system offline */
3394 goto out;
3397 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3398 while (cache) {
3400 * Really this shouldn't happen, but it could if we
3401 * couldn't write the entire preallocated extent and
3402 * splitting the extent resulted in a new block.
3404 if (cache->dirty) {
3405 btrfs_put_block_group(cache);
3406 goto again;
3408 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3409 break;
3410 cache = next_block_group(root, cache);
3412 if (!cache) {
3413 if (last == 0)
3414 break;
3415 last = 0;
3416 continue;
3419 err = btrfs_write_out_cache(root, trans, cache, path);
3422 * If we didn't have an error then the cache state is still
3423 * NEED_WRITE, so we can set it to WRITTEN.
3425 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3426 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3427 last = cache->key.objectid + cache->key.offset;
3428 btrfs_put_block_group(cache);
3430 out:
3432 btrfs_free_path(path);
3433 return err;
3436 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3438 struct btrfs_block_group_cache *block_group;
3439 int readonly = 0;
3441 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3442 if (!block_group || block_group->ro)
3443 readonly = 1;
3444 if (block_group)
3445 btrfs_put_block_group(block_group);
3446 return readonly;
3449 static const char *alloc_name(u64 flags)
3451 switch (flags) {
3452 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3453 return "mixed";
3454 case BTRFS_BLOCK_GROUP_METADATA:
3455 return "metadata";
3456 case BTRFS_BLOCK_GROUP_DATA:
3457 return "data";
3458 case BTRFS_BLOCK_GROUP_SYSTEM:
3459 return "system";
3460 default:
3461 WARN_ON(1);
3462 return "invalid-combination";
3466 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3467 u64 total_bytes, u64 bytes_used,
3468 struct btrfs_space_info **space_info)
3470 struct btrfs_space_info *found;
3471 int i;
3472 int factor;
3473 int ret;
3475 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3476 BTRFS_BLOCK_GROUP_RAID10))
3477 factor = 2;
3478 else
3479 factor = 1;
3481 found = __find_space_info(info, flags);
3482 if (found) {
3483 spin_lock(&found->lock);
3484 found->total_bytes += total_bytes;
3485 found->disk_total += total_bytes * factor;
3486 found->bytes_used += bytes_used;
3487 found->disk_used += bytes_used * factor;
3488 found->full = 0;
3489 spin_unlock(&found->lock);
3490 *space_info = found;
3491 return 0;
3493 found = kzalloc(sizeof(*found), GFP_NOFS);
3494 if (!found)
3495 return -ENOMEM;
3497 ret = percpu_counter_init(&found->total_bytes_pinned, 0);
3498 if (ret) {
3499 kfree(found);
3500 return ret;
3503 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3504 INIT_LIST_HEAD(&found->block_groups[i]);
3505 init_rwsem(&found->groups_sem);
3506 spin_lock_init(&found->lock);
3507 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3508 found->total_bytes = total_bytes;
3509 found->disk_total = total_bytes * factor;
3510 found->bytes_used = bytes_used;
3511 found->disk_used = bytes_used * factor;
3512 found->bytes_pinned = 0;
3513 found->bytes_reserved = 0;
3514 found->bytes_readonly = 0;
3515 found->bytes_may_use = 0;
3516 found->full = 0;
3517 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3518 found->chunk_alloc = 0;
3519 found->flush = 0;
3520 init_waitqueue_head(&found->wait);
3522 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3523 info->space_info_kobj, "%s",
3524 alloc_name(found->flags));
3525 if (ret) {
3526 kfree(found);
3527 return ret;
3530 *space_info = found;
3531 list_add_rcu(&found->list, &info->space_info);
3532 if (flags & BTRFS_BLOCK_GROUP_DATA)
3533 info->data_sinfo = found;
3535 return ret;
3538 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3540 u64 extra_flags = chunk_to_extended(flags) &
3541 BTRFS_EXTENDED_PROFILE_MASK;
3543 write_seqlock(&fs_info->profiles_lock);
3544 if (flags & BTRFS_BLOCK_GROUP_DATA)
3545 fs_info->avail_data_alloc_bits |= extra_flags;
3546 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3547 fs_info->avail_metadata_alloc_bits |= extra_flags;
3548 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3549 fs_info->avail_system_alloc_bits |= extra_flags;
3550 write_sequnlock(&fs_info->profiles_lock);
3554 * returns target flags in extended format or 0 if restripe for this
3555 * chunk_type is not in progress
3557 * should be called with either volume_mutex or balance_lock held
3559 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3561 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3562 u64 target = 0;
3564 if (!bctl)
3565 return 0;
3567 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3568 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3569 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3570 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3571 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3572 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3573 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3574 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3575 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3578 return target;
3582 * @flags: available profiles in extended format (see ctree.h)
3584 * Returns reduced profile in chunk format. If profile changing is in
3585 * progress (either running or paused) picks the target profile (if it's
3586 * already available), otherwise falls back to plain reducing.
3588 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3591 * we add in the count of missing devices because we want
3592 * to make sure that any RAID levels on a degraded FS
3593 * continue to be honored.
3595 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3596 root->fs_info->fs_devices->missing_devices;
3597 u64 target;
3598 u64 tmp;
3601 * see if restripe for this chunk_type is in progress, if so
3602 * try to reduce to the target profile
3604 spin_lock(&root->fs_info->balance_lock);
3605 target = get_restripe_target(root->fs_info, flags);
3606 if (target) {
3607 /* pick target profile only if it's already available */
3608 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3609 spin_unlock(&root->fs_info->balance_lock);
3610 return extended_to_chunk(target);
3613 spin_unlock(&root->fs_info->balance_lock);
3615 /* First, mask out the RAID levels which aren't possible */
3616 if (num_devices == 1)
3617 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3618 BTRFS_BLOCK_GROUP_RAID5);
3619 if (num_devices < 3)
3620 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3621 if (num_devices < 4)
3622 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3624 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3625 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3626 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3627 flags &= ~tmp;
3629 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3630 tmp = BTRFS_BLOCK_GROUP_RAID6;
3631 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3632 tmp = BTRFS_BLOCK_GROUP_RAID5;
3633 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3634 tmp = BTRFS_BLOCK_GROUP_RAID10;
3635 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3636 tmp = BTRFS_BLOCK_GROUP_RAID1;
3637 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3638 tmp = BTRFS_BLOCK_GROUP_RAID0;
3640 return extended_to_chunk(flags | tmp);
3643 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3645 unsigned seq;
3646 u64 flags;
3648 do {
3649 flags = orig_flags;
3650 seq = read_seqbegin(&root->fs_info->profiles_lock);
3652 if (flags & BTRFS_BLOCK_GROUP_DATA)
3653 flags |= root->fs_info->avail_data_alloc_bits;
3654 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3655 flags |= root->fs_info->avail_system_alloc_bits;
3656 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3657 flags |= root->fs_info->avail_metadata_alloc_bits;
3658 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3660 return btrfs_reduce_alloc_profile(root, flags);
3663 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3665 u64 flags;
3666 u64 ret;
3668 if (data)
3669 flags = BTRFS_BLOCK_GROUP_DATA;
3670 else if (root == root->fs_info->chunk_root)
3671 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3672 else
3673 flags = BTRFS_BLOCK_GROUP_METADATA;
3675 ret = get_alloc_profile(root, flags);
3676 return ret;
3680 * This will check the space that the inode allocates from to make sure we have
3681 * enough space for bytes.
3683 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3685 struct btrfs_space_info *data_sinfo;
3686 struct btrfs_root *root = BTRFS_I(inode)->root;
3687 struct btrfs_fs_info *fs_info = root->fs_info;
3688 u64 used;
3689 int ret = 0, committed = 0, alloc_chunk = 1;
3691 /* make sure bytes are sectorsize aligned */
3692 bytes = ALIGN(bytes, root->sectorsize);
3694 if (btrfs_is_free_space_inode(inode)) {
3695 committed = 1;
3696 ASSERT(current->journal_info);
3699 data_sinfo = fs_info->data_sinfo;
3700 if (!data_sinfo)
3701 goto alloc;
3703 again:
3704 /* make sure we have enough space to handle the data first */
3705 spin_lock(&data_sinfo->lock);
3706 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3707 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3708 data_sinfo->bytes_may_use;
3710 if (used + bytes > data_sinfo->total_bytes) {
3711 struct btrfs_trans_handle *trans;
3714 * if we don't have enough free bytes in this space then we need
3715 * to alloc a new chunk.
3717 if (!data_sinfo->full && alloc_chunk) {
3718 u64 alloc_target;
3720 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3721 spin_unlock(&data_sinfo->lock);
3722 alloc:
3723 alloc_target = btrfs_get_alloc_profile(root, 1);
3725 * It is ugly that we don't call nolock join
3726 * transaction for the free space inode case here.
3727 * But it is safe because we only do the data space
3728 * reservation for the free space cache in the
3729 * transaction context, the common join transaction
3730 * just increase the counter of the current transaction
3731 * handler, doesn't try to acquire the trans_lock of
3732 * the fs.
3734 trans = btrfs_join_transaction(root);
3735 if (IS_ERR(trans))
3736 return PTR_ERR(trans);
3738 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3739 alloc_target,
3740 CHUNK_ALLOC_NO_FORCE);
3741 btrfs_end_transaction(trans, root);
3742 if (ret < 0) {
3743 if (ret != -ENOSPC)
3744 return ret;
3745 else
3746 goto commit_trans;
3749 if (!data_sinfo)
3750 data_sinfo = fs_info->data_sinfo;
3752 goto again;
3756 * If we don't have enough pinned space to deal with this
3757 * allocation don't bother committing the transaction.
3759 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3760 bytes) < 0)
3761 committed = 1;
3762 spin_unlock(&data_sinfo->lock);
3764 /* commit the current transaction and try again */
3765 commit_trans:
3766 if (!committed &&
3767 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3768 committed = 1;
3770 trans = btrfs_join_transaction(root);
3771 if (IS_ERR(trans))
3772 return PTR_ERR(trans);
3773 ret = btrfs_commit_transaction(trans, root);
3774 if (ret)
3775 return ret;
3776 goto again;
3779 trace_btrfs_space_reservation(root->fs_info,
3780 "space_info:enospc",
3781 data_sinfo->flags, bytes, 1);
3782 return -ENOSPC;
3784 data_sinfo->bytes_may_use += bytes;
3785 trace_btrfs_space_reservation(root->fs_info, "space_info",
3786 data_sinfo->flags, bytes, 1);
3787 spin_unlock(&data_sinfo->lock);
3789 return 0;
3793 * Called if we need to clear a data reservation for this inode.
3795 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3797 struct btrfs_root *root = BTRFS_I(inode)->root;
3798 struct btrfs_space_info *data_sinfo;
3800 /* make sure bytes are sectorsize aligned */
3801 bytes = ALIGN(bytes, root->sectorsize);
3803 data_sinfo = root->fs_info->data_sinfo;
3804 spin_lock(&data_sinfo->lock);
3805 WARN_ON(data_sinfo->bytes_may_use < bytes);
3806 data_sinfo->bytes_may_use -= bytes;
3807 trace_btrfs_space_reservation(root->fs_info, "space_info",
3808 data_sinfo->flags, bytes, 0);
3809 spin_unlock(&data_sinfo->lock);
3812 static void force_metadata_allocation(struct btrfs_fs_info *info)
3814 struct list_head *head = &info->space_info;
3815 struct btrfs_space_info *found;
3817 rcu_read_lock();
3818 list_for_each_entry_rcu(found, head, list) {
3819 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3820 found->force_alloc = CHUNK_ALLOC_FORCE;
3822 rcu_read_unlock();
3825 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3827 return (global->size << 1);
3830 static int should_alloc_chunk(struct btrfs_root *root,
3831 struct btrfs_space_info *sinfo, int force)
3833 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3834 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3835 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3836 u64 thresh;
3838 if (force == CHUNK_ALLOC_FORCE)
3839 return 1;
3842 * We need to take into account the global rsv because for all intents
3843 * and purposes it's used space. Don't worry about locking the
3844 * global_rsv, it doesn't change except when the transaction commits.
3846 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3847 num_allocated += calc_global_rsv_need_space(global_rsv);
3850 * in limited mode, we want to have some free space up to
3851 * about 1% of the FS size.
3853 if (force == CHUNK_ALLOC_LIMITED) {
3854 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3855 thresh = max_t(u64, 64 * 1024 * 1024,
3856 div_factor_fine(thresh, 1));
3858 if (num_bytes - num_allocated < thresh)
3859 return 1;
3862 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3863 return 0;
3864 return 1;
3867 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3869 u64 num_dev;
3871 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3872 BTRFS_BLOCK_GROUP_RAID0 |
3873 BTRFS_BLOCK_GROUP_RAID5 |
3874 BTRFS_BLOCK_GROUP_RAID6))
3875 num_dev = root->fs_info->fs_devices->rw_devices;
3876 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3877 num_dev = 2;
3878 else
3879 num_dev = 1; /* DUP or single */
3881 /* metadata for updaing devices and chunk tree */
3882 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3885 static void check_system_chunk(struct btrfs_trans_handle *trans,
3886 struct btrfs_root *root, u64 type)
3888 struct btrfs_space_info *info;
3889 u64 left;
3890 u64 thresh;
3892 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3893 spin_lock(&info->lock);
3894 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3895 info->bytes_reserved - info->bytes_readonly;
3896 spin_unlock(&info->lock);
3898 thresh = get_system_chunk_thresh(root, type);
3899 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3900 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3901 left, thresh, type);
3902 dump_space_info(info, 0, 0);
3905 if (left < thresh) {
3906 u64 flags;
3908 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3909 btrfs_alloc_chunk(trans, root, flags);
3913 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3914 struct btrfs_root *extent_root, u64 flags, int force)
3916 struct btrfs_space_info *space_info;
3917 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3918 int wait_for_alloc = 0;
3919 int ret = 0;
3921 /* Don't re-enter if we're already allocating a chunk */
3922 if (trans->allocating_chunk)
3923 return -ENOSPC;
3925 space_info = __find_space_info(extent_root->fs_info, flags);
3926 if (!space_info) {
3927 ret = update_space_info(extent_root->fs_info, flags,
3928 0, 0, &space_info);
3929 BUG_ON(ret); /* -ENOMEM */
3931 BUG_ON(!space_info); /* Logic error */
3933 again:
3934 spin_lock(&space_info->lock);
3935 if (force < space_info->force_alloc)
3936 force = space_info->force_alloc;
3937 if (space_info->full) {
3938 if (should_alloc_chunk(extent_root, space_info, force))
3939 ret = -ENOSPC;
3940 else
3941 ret = 0;
3942 spin_unlock(&space_info->lock);
3943 return ret;
3946 if (!should_alloc_chunk(extent_root, space_info, force)) {
3947 spin_unlock(&space_info->lock);
3948 return 0;
3949 } else if (space_info->chunk_alloc) {
3950 wait_for_alloc = 1;
3951 } else {
3952 space_info->chunk_alloc = 1;
3955 spin_unlock(&space_info->lock);
3957 mutex_lock(&fs_info->chunk_mutex);
3960 * The chunk_mutex is held throughout the entirety of a chunk
3961 * allocation, so once we've acquired the chunk_mutex we know that the
3962 * other guy is done and we need to recheck and see if we should
3963 * allocate.
3965 if (wait_for_alloc) {
3966 mutex_unlock(&fs_info->chunk_mutex);
3967 wait_for_alloc = 0;
3968 goto again;
3971 trans->allocating_chunk = true;
3974 * If we have mixed data/metadata chunks we want to make sure we keep
3975 * allocating mixed chunks instead of individual chunks.
3977 if (btrfs_mixed_space_info(space_info))
3978 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3981 * if we're doing a data chunk, go ahead and make sure that
3982 * we keep a reasonable number of metadata chunks allocated in the
3983 * FS as well.
3985 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3986 fs_info->data_chunk_allocations++;
3987 if (!(fs_info->data_chunk_allocations %
3988 fs_info->metadata_ratio))
3989 force_metadata_allocation(fs_info);
3993 * Check if we have enough space in SYSTEM chunk because we may need
3994 * to update devices.
3996 check_system_chunk(trans, extent_root, flags);
3998 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3999 trans->allocating_chunk = false;
4001 spin_lock(&space_info->lock);
4002 if (ret < 0 && ret != -ENOSPC)
4003 goto out;
4004 if (ret)
4005 space_info->full = 1;
4006 else
4007 ret = 1;
4009 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4010 out:
4011 space_info->chunk_alloc = 0;
4012 spin_unlock(&space_info->lock);
4013 mutex_unlock(&fs_info->chunk_mutex);
4014 return ret;
4017 static int can_overcommit(struct btrfs_root *root,
4018 struct btrfs_space_info *space_info, u64 bytes,
4019 enum btrfs_reserve_flush_enum flush)
4021 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4022 u64 profile = btrfs_get_alloc_profile(root, 0);
4023 u64 space_size;
4024 u64 avail;
4025 u64 used;
4027 used = space_info->bytes_used + space_info->bytes_reserved +
4028 space_info->bytes_pinned + space_info->bytes_readonly;
4031 * We only want to allow over committing if we have lots of actual space
4032 * free, but if we don't have enough space to handle the global reserve
4033 * space then we could end up having a real enospc problem when trying
4034 * to allocate a chunk or some other such important allocation.
4036 spin_lock(&global_rsv->lock);
4037 space_size = calc_global_rsv_need_space(global_rsv);
4038 spin_unlock(&global_rsv->lock);
4039 if (used + space_size >= space_info->total_bytes)
4040 return 0;
4042 used += space_info->bytes_may_use;
4044 spin_lock(&root->fs_info->free_chunk_lock);
4045 avail = root->fs_info->free_chunk_space;
4046 spin_unlock(&root->fs_info->free_chunk_lock);
4049 * If we have dup, raid1 or raid10 then only half of the free
4050 * space is actually useable. For raid56, the space info used
4051 * doesn't include the parity drive, so we don't have to
4052 * change the math
4054 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4055 BTRFS_BLOCK_GROUP_RAID1 |
4056 BTRFS_BLOCK_GROUP_RAID10))
4057 avail >>= 1;
4060 * If we aren't flushing all things, let us overcommit up to
4061 * 1/2th of the space. If we can flush, don't let us overcommit
4062 * too much, let it overcommit up to 1/8 of the space.
4064 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4065 avail >>= 3;
4066 else
4067 avail >>= 1;
4069 if (used + bytes < space_info->total_bytes + avail)
4070 return 1;
4071 return 0;
4074 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4075 unsigned long nr_pages, int nr_items)
4077 struct super_block *sb = root->fs_info->sb;
4079 if (down_read_trylock(&sb->s_umount)) {
4080 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4081 up_read(&sb->s_umount);
4082 } else {
4084 * We needn't worry the filesystem going from r/w to r/o though
4085 * we don't acquire ->s_umount mutex, because the filesystem
4086 * should guarantee the delalloc inodes list be empty after
4087 * the filesystem is readonly(all dirty pages are written to
4088 * the disk).
4090 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4091 if (!current->journal_info)
4092 btrfs_wait_ordered_roots(root->fs_info, nr_items);
4096 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4098 u64 bytes;
4099 int nr;
4101 bytes = btrfs_calc_trans_metadata_size(root, 1);
4102 nr = (int)div64_u64(to_reclaim, bytes);
4103 if (!nr)
4104 nr = 1;
4105 return nr;
4108 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4111 * shrink metadata reservation for delalloc
4113 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4114 bool wait_ordered)
4116 struct btrfs_block_rsv *block_rsv;
4117 struct btrfs_space_info *space_info;
4118 struct btrfs_trans_handle *trans;
4119 u64 delalloc_bytes;
4120 u64 max_reclaim;
4121 long time_left;
4122 unsigned long nr_pages;
4123 int loops;
4124 int items;
4125 enum btrfs_reserve_flush_enum flush;
4127 /* Calc the number of the pages we need flush for space reservation */
4128 items = calc_reclaim_items_nr(root, to_reclaim);
4129 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4131 trans = (struct btrfs_trans_handle *)current->journal_info;
4132 block_rsv = &root->fs_info->delalloc_block_rsv;
4133 space_info = block_rsv->space_info;
4135 delalloc_bytes = percpu_counter_sum_positive(
4136 &root->fs_info->delalloc_bytes);
4137 if (delalloc_bytes == 0) {
4138 if (trans)
4139 return;
4140 if (wait_ordered)
4141 btrfs_wait_ordered_roots(root->fs_info, items);
4142 return;
4145 loops = 0;
4146 while (delalloc_bytes && loops < 3) {
4147 max_reclaim = min(delalloc_bytes, to_reclaim);
4148 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4149 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4151 * We need to wait for the async pages to actually start before
4152 * we do anything.
4154 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4155 if (!max_reclaim)
4156 goto skip_async;
4158 if (max_reclaim <= nr_pages)
4159 max_reclaim = 0;
4160 else
4161 max_reclaim -= nr_pages;
4163 wait_event(root->fs_info->async_submit_wait,
4164 atomic_read(&root->fs_info->async_delalloc_pages) <=
4165 (int)max_reclaim);
4166 skip_async:
4167 if (!trans)
4168 flush = BTRFS_RESERVE_FLUSH_ALL;
4169 else
4170 flush = BTRFS_RESERVE_NO_FLUSH;
4171 spin_lock(&space_info->lock);
4172 if (can_overcommit(root, space_info, orig, flush)) {
4173 spin_unlock(&space_info->lock);
4174 break;
4176 spin_unlock(&space_info->lock);
4178 loops++;
4179 if (wait_ordered && !trans) {
4180 btrfs_wait_ordered_roots(root->fs_info, items);
4181 } else {
4182 time_left = schedule_timeout_killable(1);
4183 if (time_left)
4184 break;
4186 delalloc_bytes = percpu_counter_sum_positive(
4187 &root->fs_info->delalloc_bytes);
4192 * maybe_commit_transaction - possibly commit the transaction if its ok to
4193 * @root - the root we're allocating for
4194 * @bytes - the number of bytes we want to reserve
4195 * @force - force the commit
4197 * This will check to make sure that committing the transaction will actually
4198 * get us somewhere and then commit the transaction if it does. Otherwise it
4199 * will return -ENOSPC.
4201 static int may_commit_transaction(struct btrfs_root *root,
4202 struct btrfs_space_info *space_info,
4203 u64 bytes, int force)
4205 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4206 struct btrfs_trans_handle *trans;
4208 trans = (struct btrfs_trans_handle *)current->journal_info;
4209 if (trans)
4210 return -EAGAIN;
4212 if (force)
4213 goto commit;
4215 /* See if there is enough pinned space to make this reservation */
4216 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4217 bytes) >= 0)
4218 goto commit;
4221 * See if there is some space in the delayed insertion reservation for
4222 * this reservation.
4224 if (space_info != delayed_rsv->space_info)
4225 return -ENOSPC;
4227 spin_lock(&delayed_rsv->lock);
4228 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4229 bytes - delayed_rsv->size) >= 0) {
4230 spin_unlock(&delayed_rsv->lock);
4231 return -ENOSPC;
4233 spin_unlock(&delayed_rsv->lock);
4235 commit:
4236 trans = btrfs_join_transaction(root);
4237 if (IS_ERR(trans))
4238 return -ENOSPC;
4240 return btrfs_commit_transaction(trans, root);
4243 enum flush_state {
4244 FLUSH_DELAYED_ITEMS_NR = 1,
4245 FLUSH_DELAYED_ITEMS = 2,
4246 FLUSH_DELALLOC = 3,
4247 FLUSH_DELALLOC_WAIT = 4,
4248 ALLOC_CHUNK = 5,
4249 COMMIT_TRANS = 6,
4252 static int flush_space(struct btrfs_root *root,
4253 struct btrfs_space_info *space_info, u64 num_bytes,
4254 u64 orig_bytes, int state)
4256 struct btrfs_trans_handle *trans;
4257 int nr;
4258 int ret = 0;
4260 switch (state) {
4261 case FLUSH_DELAYED_ITEMS_NR:
4262 case FLUSH_DELAYED_ITEMS:
4263 if (state == FLUSH_DELAYED_ITEMS_NR)
4264 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4265 else
4266 nr = -1;
4268 trans = btrfs_join_transaction(root);
4269 if (IS_ERR(trans)) {
4270 ret = PTR_ERR(trans);
4271 break;
4273 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4274 btrfs_end_transaction(trans, root);
4275 break;
4276 case FLUSH_DELALLOC:
4277 case FLUSH_DELALLOC_WAIT:
4278 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4279 state == FLUSH_DELALLOC_WAIT);
4280 break;
4281 case ALLOC_CHUNK:
4282 trans = btrfs_join_transaction(root);
4283 if (IS_ERR(trans)) {
4284 ret = PTR_ERR(trans);
4285 break;
4287 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4288 btrfs_get_alloc_profile(root, 0),
4289 CHUNK_ALLOC_NO_FORCE);
4290 btrfs_end_transaction(trans, root);
4291 if (ret == -ENOSPC)
4292 ret = 0;
4293 break;
4294 case COMMIT_TRANS:
4295 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4296 break;
4297 default:
4298 ret = -ENOSPC;
4299 break;
4302 return ret;
4305 static inline u64
4306 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4307 struct btrfs_space_info *space_info)
4309 u64 used;
4310 u64 expected;
4311 u64 to_reclaim;
4313 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4314 16 * 1024 * 1024);
4315 spin_lock(&space_info->lock);
4316 if (can_overcommit(root, space_info, to_reclaim,
4317 BTRFS_RESERVE_FLUSH_ALL)) {
4318 to_reclaim = 0;
4319 goto out;
4322 used = space_info->bytes_used + space_info->bytes_reserved +
4323 space_info->bytes_pinned + space_info->bytes_readonly +
4324 space_info->bytes_may_use;
4325 if (can_overcommit(root, space_info, 1024 * 1024,
4326 BTRFS_RESERVE_FLUSH_ALL))
4327 expected = div_factor_fine(space_info->total_bytes, 95);
4328 else
4329 expected = div_factor_fine(space_info->total_bytes, 90);
4331 if (used > expected)
4332 to_reclaim = used - expected;
4333 else
4334 to_reclaim = 0;
4335 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4336 space_info->bytes_reserved);
4337 out:
4338 spin_unlock(&space_info->lock);
4340 return to_reclaim;
4343 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4344 struct btrfs_fs_info *fs_info, u64 used)
4346 return (used >= div_factor_fine(space_info->total_bytes, 98) &&
4347 !btrfs_fs_closing(fs_info) &&
4348 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4351 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4352 struct btrfs_fs_info *fs_info,
4353 int flush_state)
4355 u64 used;
4357 spin_lock(&space_info->lock);
4359 * We run out of space and have not got any free space via flush_space,
4360 * so don't bother doing async reclaim.
4362 if (flush_state > COMMIT_TRANS && space_info->full) {
4363 spin_unlock(&space_info->lock);
4364 return 0;
4367 used = space_info->bytes_used + space_info->bytes_reserved +
4368 space_info->bytes_pinned + space_info->bytes_readonly +
4369 space_info->bytes_may_use;
4370 if (need_do_async_reclaim(space_info, fs_info, used)) {
4371 spin_unlock(&space_info->lock);
4372 return 1;
4374 spin_unlock(&space_info->lock);
4376 return 0;
4379 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4381 struct btrfs_fs_info *fs_info;
4382 struct btrfs_space_info *space_info;
4383 u64 to_reclaim;
4384 int flush_state;
4386 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4387 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4389 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4390 space_info);
4391 if (!to_reclaim)
4392 return;
4394 flush_state = FLUSH_DELAYED_ITEMS_NR;
4395 do {
4396 flush_space(fs_info->fs_root, space_info, to_reclaim,
4397 to_reclaim, flush_state);
4398 flush_state++;
4399 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4400 flush_state))
4401 return;
4402 } while (flush_state <= COMMIT_TRANS);
4404 if (btrfs_need_do_async_reclaim(space_info, fs_info, flush_state))
4405 queue_work(system_unbound_wq, work);
4408 void btrfs_init_async_reclaim_work(struct work_struct *work)
4410 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4414 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4415 * @root - the root we're allocating for
4416 * @block_rsv - the block_rsv we're allocating for
4417 * @orig_bytes - the number of bytes we want
4418 * @flush - whether or not we can flush to make our reservation
4420 * This will reserve orgi_bytes number of bytes from the space info associated
4421 * with the block_rsv. If there is not enough space it will make an attempt to
4422 * flush out space to make room. It will do this by flushing delalloc if
4423 * possible or committing the transaction. If flush is 0 then no attempts to
4424 * regain reservations will be made and this will fail if there is not enough
4425 * space already.
4427 static int reserve_metadata_bytes(struct btrfs_root *root,
4428 struct btrfs_block_rsv *block_rsv,
4429 u64 orig_bytes,
4430 enum btrfs_reserve_flush_enum flush)
4432 struct btrfs_space_info *space_info = block_rsv->space_info;
4433 u64 used;
4434 u64 num_bytes = orig_bytes;
4435 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4436 int ret = 0;
4437 bool flushing = false;
4439 again:
4440 ret = 0;
4441 spin_lock(&space_info->lock);
4443 * We only want to wait if somebody other than us is flushing and we
4444 * are actually allowed to flush all things.
4446 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4447 space_info->flush) {
4448 spin_unlock(&space_info->lock);
4450 * If we have a trans handle we can't wait because the flusher
4451 * may have to commit the transaction, which would mean we would
4452 * deadlock since we are waiting for the flusher to finish, but
4453 * hold the current transaction open.
4455 if (current->journal_info)
4456 return -EAGAIN;
4457 ret = wait_event_killable(space_info->wait, !space_info->flush);
4458 /* Must have been killed, return */
4459 if (ret)
4460 return -EINTR;
4462 spin_lock(&space_info->lock);
4465 ret = -ENOSPC;
4466 used = space_info->bytes_used + space_info->bytes_reserved +
4467 space_info->bytes_pinned + space_info->bytes_readonly +
4468 space_info->bytes_may_use;
4471 * The idea here is that we've not already over-reserved the block group
4472 * then we can go ahead and save our reservation first and then start
4473 * flushing if we need to. Otherwise if we've already overcommitted
4474 * lets start flushing stuff first and then come back and try to make
4475 * our reservation.
4477 if (used <= space_info->total_bytes) {
4478 if (used + orig_bytes <= space_info->total_bytes) {
4479 space_info->bytes_may_use += orig_bytes;
4480 trace_btrfs_space_reservation(root->fs_info,
4481 "space_info", space_info->flags, orig_bytes, 1);
4482 ret = 0;
4483 } else {
4485 * Ok set num_bytes to orig_bytes since we aren't
4486 * overocmmitted, this way we only try and reclaim what
4487 * we need.
4489 num_bytes = orig_bytes;
4491 } else {
4493 * Ok we're over committed, set num_bytes to the overcommitted
4494 * amount plus the amount of bytes that we need for this
4495 * reservation.
4497 num_bytes = used - space_info->total_bytes +
4498 (orig_bytes * 2);
4501 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4502 space_info->bytes_may_use += orig_bytes;
4503 trace_btrfs_space_reservation(root->fs_info, "space_info",
4504 space_info->flags, orig_bytes,
4506 ret = 0;
4510 * Couldn't make our reservation, save our place so while we're trying
4511 * to reclaim space we can actually use it instead of somebody else
4512 * stealing it from us.
4514 * We make the other tasks wait for the flush only when we can flush
4515 * all things.
4517 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4518 flushing = true;
4519 space_info->flush = 1;
4520 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4521 used += orig_bytes;
4523 * We will do the space reservation dance during log replay,
4524 * which means we won't have fs_info->fs_root set, so don't do
4525 * the async reclaim as we will panic.
4527 if (!root->fs_info->log_root_recovering &&
4528 need_do_async_reclaim(space_info, root->fs_info, used) &&
4529 !work_busy(&root->fs_info->async_reclaim_work))
4530 queue_work(system_unbound_wq,
4531 &root->fs_info->async_reclaim_work);
4533 spin_unlock(&space_info->lock);
4535 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4536 goto out;
4538 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4539 flush_state);
4540 flush_state++;
4543 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4544 * would happen. So skip delalloc flush.
4546 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4547 (flush_state == FLUSH_DELALLOC ||
4548 flush_state == FLUSH_DELALLOC_WAIT))
4549 flush_state = ALLOC_CHUNK;
4551 if (!ret)
4552 goto again;
4553 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4554 flush_state < COMMIT_TRANS)
4555 goto again;
4556 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4557 flush_state <= COMMIT_TRANS)
4558 goto again;
4560 out:
4561 if (ret == -ENOSPC &&
4562 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4563 struct btrfs_block_rsv *global_rsv =
4564 &root->fs_info->global_block_rsv;
4566 if (block_rsv != global_rsv &&
4567 !block_rsv_use_bytes(global_rsv, orig_bytes))
4568 ret = 0;
4570 if (ret == -ENOSPC)
4571 trace_btrfs_space_reservation(root->fs_info,
4572 "space_info:enospc",
4573 space_info->flags, orig_bytes, 1);
4574 if (flushing) {
4575 spin_lock(&space_info->lock);
4576 space_info->flush = 0;
4577 wake_up_all(&space_info->wait);
4578 spin_unlock(&space_info->lock);
4580 return ret;
4583 static struct btrfs_block_rsv *get_block_rsv(
4584 const struct btrfs_trans_handle *trans,
4585 const struct btrfs_root *root)
4587 struct btrfs_block_rsv *block_rsv = NULL;
4589 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4590 block_rsv = trans->block_rsv;
4592 if (root == root->fs_info->csum_root && trans->adding_csums)
4593 block_rsv = trans->block_rsv;
4595 if (root == root->fs_info->uuid_root)
4596 block_rsv = trans->block_rsv;
4598 if (!block_rsv)
4599 block_rsv = root->block_rsv;
4601 if (!block_rsv)
4602 block_rsv = &root->fs_info->empty_block_rsv;
4604 return block_rsv;
4607 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4608 u64 num_bytes)
4610 int ret = -ENOSPC;
4611 spin_lock(&block_rsv->lock);
4612 if (block_rsv->reserved >= num_bytes) {
4613 block_rsv->reserved -= num_bytes;
4614 if (block_rsv->reserved < block_rsv->size)
4615 block_rsv->full = 0;
4616 ret = 0;
4618 spin_unlock(&block_rsv->lock);
4619 return ret;
4622 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4623 u64 num_bytes, int update_size)
4625 spin_lock(&block_rsv->lock);
4626 block_rsv->reserved += num_bytes;
4627 if (update_size)
4628 block_rsv->size += num_bytes;
4629 else if (block_rsv->reserved >= block_rsv->size)
4630 block_rsv->full = 1;
4631 spin_unlock(&block_rsv->lock);
4634 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4635 struct btrfs_block_rsv *dest, u64 num_bytes,
4636 int min_factor)
4638 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4639 u64 min_bytes;
4641 if (global_rsv->space_info != dest->space_info)
4642 return -ENOSPC;
4644 spin_lock(&global_rsv->lock);
4645 min_bytes = div_factor(global_rsv->size, min_factor);
4646 if (global_rsv->reserved < min_bytes + num_bytes) {
4647 spin_unlock(&global_rsv->lock);
4648 return -ENOSPC;
4650 global_rsv->reserved -= num_bytes;
4651 if (global_rsv->reserved < global_rsv->size)
4652 global_rsv->full = 0;
4653 spin_unlock(&global_rsv->lock);
4655 block_rsv_add_bytes(dest, num_bytes, 1);
4656 return 0;
4659 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4660 struct btrfs_block_rsv *block_rsv,
4661 struct btrfs_block_rsv *dest, u64 num_bytes)
4663 struct btrfs_space_info *space_info = block_rsv->space_info;
4665 spin_lock(&block_rsv->lock);
4666 if (num_bytes == (u64)-1)
4667 num_bytes = block_rsv->size;
4668 block_rsv->size -= num_bytes;
4669 if (block_rsv->reserved >= block_rsv->size) {
4670 num_bytes = block_rsv->reserved - block_rsv->size;
4671 block_rsv->reserved = block_rsv->size;
4672 block_rsv->full = 1;
4673 } else {
4674 num_bytes = 0;
4676 spin_unlock(&block_rsv->lock);
4678 if (num_bytes > 0) {
4679 if (dest) {
4680 spin_lock(&dest->lock);
4681 if (!dest->full) {
4682 u64 bytes_to_add;
4684 bytes_to_add = dest->size - dest->reserved;
4685 bytes_to_add = min(num_bytes, bytes_to_add);
4686 dest->reserved += bytes_to_add;
4687 if (dest->reserved >= dest->size)
4688 dest->full = 1;
4689 num_bytes -= bytes_to_add;
4691 spin_unlock(&dest->lock);
4693 if (num_bytes) {
4694 spin_lock(&space_info->lock);
4695 space_info->bytes_may_use -= num_bytes;
4696 trace_btrfs_space_reservation(fs_info, "space_info",
4697 space_info->flags, num_bytes, 0);
4698 spin_unlock(&space_info->lock);
4703 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4704 struct btrfs_block_rsv *dst, u64 num_bytes)
4706 int ret;
4708 ret = block_rsv_use_bytes(src, num_bytes);
4709 if (ret)
4710 return ret;
4712 block_rsv_add_bytes(dst, num_bytes, 1);
4713 return 0;
4716 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4718 memset(rsv, 0, sizeof(*rsv));
4719 spin_lock_init(&rsv->lock);
4720 rsv->type = type;
4723 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4724 unsigned short type)
4726 struct btrfs_block_rsv *block_rsv;
4727 struct btrfs_fs_info *fs_info = root->fs_info;
4729 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4730 if (!block_rsv)
4731 return NULL;
4733 btrfs_init_block_rsv(block_rsv, type);
4734 block_rsv->space_info = __find_space_info(fs_info,
4735 BTRFS_BLOCK_GROUP_METADATA);
4736 return block_rsv;
4739 void btrfs_free_block_rsv(struct btrfs_root *root,
4740 struct btrfs_block_rsv *rsv)
4742 if (!rsv)
4743 return;
4744 btrfs_block_rsv_release(root, rsv, (u64)-1);
4745 kfree(rsv);
4748 int btrfs_block_rsv_add(struct btrfs_root *root,
4749 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4750 enum btrfs_reserve_flush_enum flush)
4752 int ret;
4754 if (num_bytes == 0)
4755 return 0;
4757 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4758 if (!ret) {
4759 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4760 return 0;
4763 return ret;
4766 int btrfs_block_rsv_check(struct btrfs_root *root,
4767 struct btrfs_block_rsv *block_rsv, int min_factor)
4769 u64 num_bytes = 0;
4770 int ret = -ENOSPC;
4772 if (!block_rsv)
4773 return 0;
4775 spin_lock(&block_rsv->lock);
4776 num_bytes = div_factor(block_rsv->size, min_factor);
4777 if (block_rsv->reserved >= num_bytes)
4778 ret = 0;
4779 spin_unlock(&block_rsv->lock);
4781 return ret;
4784 int btrfs_block_rsv_refill(struct btrfs_root *root,
4785 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4786 enum btrfs_reserve_flush_enum flush)
4788 u64 num_bytes = 0;
4789 int ret = -ENOSPC;
4791 if (!block_rsv)
4792 return 0;
4794 spin_lock(&block_rsv->lock);
4795 num_bytes = min_reserved;
4796 if (block_rsv->reserved >= num_bytes)
4797 ret = 0;
4798 else
4799 num_bytes -= block_rsv->reserved;
4800 spin_unlock(&block_rsv->lock);
4802 if (!ret)
4803 return 0;
4805 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4806 if (!ret) {
4807 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4808 return 0;
4811 return ret;
4814 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4815 struct btrfs_block_rsv *dst_rsv,
4816 u64 num_bytes)
4818 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4821 void btrfs_block_rsv_release(struct btrfs_root *root,
4822 struct btrfs_block_rsv *block_rsv,
4823 u64 num_bytes)
4825 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4826 if (global_rsv == block_rsv ||
4827 block_rsv->space_info != global_rsv->space_info)
4828 global_rsv = NULL;
4829 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4830 num_bytes);
4834 * helper to calculate size of global block reservation.
4835 * the desired value is sum of space used by extent tree,
4836 * checksum tree and root tree
4838 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4840 struct btrfs_space_info *sinfo;
4841 u64 num_bytes;
4842 u64 meta_used;
4843 u64 data_used;
4844 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4846 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4847 spin_lock(&sinfo->lock);
4848 data_used = sinfo->bytes_used;
4849 spin_unlock(&sinfo->lock);
4851 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4852 spin_lock(&sinfo->lock);
4853 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4854 data_used = 0;
4855 meta_used = sinfo->bytes_used;
4856 spin_unlock(&sinfo->lock);
4858 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4859 csum_size * 2;
4860 num_bytes += div64_u64(data_used + meta_used, 50);
4862 if (num_bytes * 3 > meta_used)
4863 num_bytes = div64_u64(meta_used, 3);
4865 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4868 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4870 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4871 struct btrfs_space_info *sinfo = block_rsv->space_info;
4872 u64 num_bytes;
4874 num_bytes = calc_global_metadata_size(fs_info);
4876 spin_lock(&sinfo->lock);
4877 spin_lock(&block_rsv->lock);
4879 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4881 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4882 sinfo->bytes_reserved + sinfo->bytes_readonly +
4883 sinfo->bytes_may_use;
4885 if (sinfo->total_bytes > num_bytes) {
4886 num_bytes = sinfo->total_bytes - num_bytes;
4887 block_rsv->reserved += num_bytes;
4888 sinfo->bytes_may_use += num_bytes;
4889 trace_btrfs_space_reservation(fs_info, "space_info",
4890 sinfo->flags, num_bytes, 1);
4893 if (block_rsv->reserved >= block_rsv->size) {
4894 num_bytes = block_rsv->reserved - block_rsv->size;
4895 sinfo->bytes_may_use -= num_bytes;
4896 trace_btrfs_space_reservation(fs_info, "space_info",
4897 sinfo->flags, num_bytes, 0);
4898 block_rsv->reserved = block_rsv->size;
4899 block_rsv->full = 1;
4902 spin_unlock(&block_rsv->lock);
4903 spin_unlock(&sinfo->lock);
4906 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4908 struct btrfs_space_info *space_info;
4910 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4911 fs_info->chunk_block_rsv.space_info = space_info;
4913 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4914 fs_info->global_block_rsv.space_info = space_info;
4915 fs_info->delalloc_block_rsv.space_info = space_info;
4916 fs_info->trans_block_rsv.space_info = space_info;
4917 fs_info->empty_block_rsv.space_info = space_info;
4918 fs_info->delayed_block_rsv.space_info = space_info;
4920 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4921 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4922 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4923 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4924 if (fs_info->quota_root)
4925 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4926 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4928 update_global_block_rsv(fs_info);
4931 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4933 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4934 (u64)-1);
4935 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4936 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4937 WARN_ON(fs_info->trans_block_rsv.size > 0);
4938 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4939 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4940 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4941 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4942 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4945 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4946 struct btrfs_root *root)
4948 if (!trans->block_rsv)
4949 return;
4951 if (!trans->bytes_reserved)
4952 return;
4954 trace_btrfs_space_reservation(root->fs_info, "transaction",
4955 trans->transid, trans->bytes_reserved, 0);
4956 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4957 trans->bytes_reserved = 0;
4960 /* Can only return 0 or -ENOSPC */
4961 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4962 struct inode *inode)
4964 struct btrfs_root *root = BTRFS_I(inode)->root;
4965 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4966 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4969 * We need to hold space in order to delete our orphan item once we've
4970 * added it, so this takes the reservation so we can release it later
4971 * when we are truly done with the orphan item.
4973 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4974 trace_btrfs_space_reservation(root->fs_info, "orphan",
4975 btrfs_ino(inode), num_bytes, 1);
4976 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4979 void btrfs_orphan_release_metadata(struct inode *inode)
4981 struct btrfs_root *root = BTRFS_I(inode)->root;
4982 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4983 trace_btrfs_space_reservation(root->fs_info, "orphan",
4984 btrfs_ino(inode), num_bytes, 0);
4985 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4989 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4990 * root: the root of the parent directory
4991 * rsv: block reservation
4992 * items: the number of items that we need do reservation
4993 * qgroup_reserved: used to return the reserved size in qgroup
4995 * This function is used to reserve the space for snapshot/subvolume
4996 * creation and deletion. Those operations are different with the
4997 * common file/directory operations, they change two fs/file trees
4998 * and root tree, the number of items that the qgroup reserves is
4999 * different with the free space reservation. So we can not use
5000 * the space reseravtion mechanism in start_transaction().
5002 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5003 struct btrfs_block_rsv *rsv,
5004 int items,
5005 u64 *qgroup_reserved,
5006 bool use_global_rsv)
5008 u64 num_bytes;
5009 int ret;
5010 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5012 if (root->fs_info->quota_enabled) {
5013 /* One for parent inode, two for dir entries */
5014 num_bytes = 3 * root->leafsize;
5015 ret = btrfs_qgroup_reserve(root, num_bytes);
5016 if (ret)
5017 return ret;
5018 } else {
5019 num_bytes = 0;
5022 *qgroup_reserved = num_bytes;
5024 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5025 rsv->space_info = __find_space_info(root->fs_info,
5026 BTRFS_BLOCK_GROUP_METADATA);
5027 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5028 BTRFS_RESERVE_FLUSH_ALL);
5030 if (ret == -ENOSPC && use_global_rsv)
5031 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5033 if (ret) {
5034 if (*qgroup_reserved)
5035 btrfs_qgroup_free(root, *qgroup_reserved);
5038 return ret;
5041 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5042 struct btrfs_block_rsv *rsv,
5043 u64 qgroup_reserved)
5045 btrfs_block_rsv_release(root, rsv, (u64)-1);
5046 if (qgroup_reserved)
5047 btrfs_qgroup_free(root, qgroup_reserved);
5051 * drop_outstanding_extent - drop an outstanding extent
5052 * @inode: the inode we're dropping the extent for
5054 * This is called when we are freeing up an outstanding extent, either called
5055 * after an error or after an extent is written. This will return the number of
5056 * reserved extents that need to be freed. This must be called with
5057 * BTRFS_I(inode)->lock held.
5059 static unsigned drop_outstanding_extent(struct inode *inode)
5061 unsigned drop_inode_space = 0;
5062 unsigned dropped_extents = 0;
5064 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
5065 BTRFS_I(inode)->outstanding_extents--;
5067 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5068 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5069 &BTRFS_I(inode)->runtime_flags))
5070 drop_inode_space = 1;
5073 * If we have more or the same amount of outsanding extents than we have
5074 * reserved then we need to leave the reserved extents count alone.
5076 if (BTRFS_I(inode)->outstanding_extents >=
5077 BTRFS_I(inode)->reserved_extents)
5078 return drop_inode_space;
5080 dropped_extents = BTRFS_I(inode)->reserved_extents -
5081 BTRFS_I(inode)->outstanding_extents;
5082 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5083 return dropped_extents + drop_inode_space;
5087 * calc_csum_metadata_size - return the amount of metada space that must be
5088 * reserved/free'd for the given bytes.
5089 * @inode: the inode we're manipulating
5090 * @num_bytes: the number of bytes in question
5091 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5093 * This adjusts the number of csum_bytes in the inode and then returns the
5094 * correct amount of metadata that must either be reserved or freed. We
5095 * calculate how many checksums we can fit into one leaf and then divide the
5096 * number of bytes that will need to be checksumed by this value to figure out
5097 * how many checksums will be required. If we are adding bytes then the number
5098 * may go up and we will return the number of additional bytes that must be
5099 * reserved. If it is going down we will return the number of bytes that must
5100 * be freed.
5102 * This must be called with BTRFS_I(inode)->lock held.
5104 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5105 int reserve)
5107 struct btrfs_root *root = BTRFS_I(inode)->root;
5108 u64 csum_size;
5109 int num_csums_per_leaf;
5110 int num_csums;
5111 int old_csums;
5113 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5114 BTRFS_I(inode)->csum_bytes == 0)
5115 return 0;
5117 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5118 if (reserve)
5119 BTRFS_I(inode)->csum_bytes += num_bytes;
5120 else
5121 BTRFS_I(inode)->csum_bytes -= num_bytes;
5122 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
5123 num_csums_per_leaf = (int)div64_u64(csum_size,
5124 sizeof(struct btrfs_csum_item) +
5125 sizeof(struct btrfs_disk_key));
5126 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5127 num_csums = num_csums + num_csums_per_leaf - 1;
5128 num_csums = num_csums / num_csums_per_leaf;
5130 old_csums = old_csums + num_csums_per_leaf - 1;
5131 old_csums = old_csums / num_csums_per_leaf;
5133 /* No change, no need to reserve more */
5134 if (old_csums == num_csums)
5135 return 0;
5137 if (reserve)
5138 return btrfs_calc_trans_metadata_size(root,
5139 num_csums - old_csums);
5141 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5144 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5146 struct btrfs_root *root = BTRFS_I(inode)->root;
5147 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5148 u64 to_reserve = 0;
5149 u64 csum_bytes;
5150 unsigned nr_extents = 0;
5151 int extra_reserve = 0;
5152 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5153 int ret = 0;
5154 bool delalloc_lock = true;
5155 u64 to_free = 0;
5156 unsigned dropped;
5158 /* If we are a free space inode we need to not flush since we will be in
5159 * the middle of a transaction commit. We also don't need the delalloc
5160 * mutex since we won't race with anybody. We need this mostly to make
5161 * lockdep shut its filthy mouth.
5163 if (btrfs_is_free_space_inode(inode)) {
5164 flush = BTRFS_RESERVE_NO_FLUSH;
5165 delalloc_lock = false;
5168 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5169 btrfs_transaction_in_commit(root->fs_info))
5170 schedule_timeout(1);
5172 if (delalloc_lock)
5173 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5175 num_bytes = ALIGN(num_bytes, root->sectorsize);
5177 spin_lock(&BTRFS_I(inode)->lock);
5178 BTRFS_I(inode)->outstanding_extents++;
5180 if (BTRFS_I(inode)->outstanding_extents >
5181 BTRFS_I(inode)->reserved_extents)
5182 nr_extents = BTRFS_I(inode)->outstanding_extents -
5183 BTRFS_I(inode)->reserved_extents;
5186 * Add an item to reserve for updating the inode when we complete the
5187 * delalloc io.
5189 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5190 &BTRFS_I(inode)->runtime_flags)) {
5191 nr_extents++;
5192 extra_reserve = 1;
5195 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5196 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5197 csum_bytes = BTRFS_I(inode)->csum_bytes;
5198 spin_unlock(&BTRFS_I(inode)->lock);
5200 if (root->fs_info->quota_enabled) {
5201 ret = btrfs_qgroup_reserve(root, num_bytes +
5202 nr_extents * root->leafsize);
5203 if (ret)
5204 goto out_fail;
5207 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5208 if (unlikely(ret)) {
5209 if (root->fs_info->quota_enabled)
5210 btrfs_qgroup_free(root, num_bytes +
5211 nr_extents * root->leafsize);
5212 goto out_fail;
5215 spin_lock(&BTRFS_I(inode)->lock);
5216 if (extra_reserve) {
5217 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5218 &BTRFS_I(inode)->runtime_flags);
5219 nr_extents--;
5221 BTRFS_I(inode)->reserved_extents += nr_extents;
5222 spin_unlock(&BTRFS_I(inode)->lock);
5224 if (delalloc_lock)
5225 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5227 if (to_reserve)
5228 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5229 btrfs_ino(inode), to_reserve, 1);
5230 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5232 return 0;
5234 out_fail:
5235 spin_lock(&BTRFS_I(inode)->lock);
5236 dropped = drop_outstanding_extent(inode);
5238 * If the inodes csum_bytes is the same as the original
5239 * csum_bytes then we know we haven't raced with any free()ers
5240 * so we can just reduce our inodes csum bytes and carry on.
5242 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5243 calc_csum_metadata_size(inode, num_bytes, 0);
5244 } else {
5245 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5246 u64 bytes;
5249 * This is tricky, but first we need to figure out how much we
5250 * free'd from any free-ers that occured during this
5251 * reservation, so we reset ->csum_bytes to the csum_bytes
5252 * before we dropped our lock, and then call the free for the
5253 * number of bytes that were freed while we were trying our
5254 * reservation.
5256 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5257 BTRFS_I(inode)->csum_bytes = csum_bytes;
5258 to_free = calc_csum_metadata_size(inode, bytes, 0);
5262 * Now we need to see how much we would have freed had we not
5263 * been making this reservation and our ->csum_bytes were not
5264 * artificially inflated.
5266 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5267 bytes = csum_bytes - orig_csum_bytes;
5268 bytes = calc_csum_metadata_size(inode, bytes, 0);
5271 * Now reset ->csum_bytes to what it should be. If bytes is
5272 * more than to_free then we would have free'd more space had we
5273 * not had an artificially high ->csum_bytes, so we need to free
5274 * the remainder. If bytes is the same or less then we don't
5275 * need to do anything, the other free-ers did the correct
5276 * thing.
5278 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5279 if (bytes > to_free)
5280 to_free = bytes - to_free;
5281 else
5282 to_free = 0;
5284 spin_unlock(&BTRFS_I(inode)->lock);
5285 if (dropped)
5286 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5288 if (to_free) {
5289 btrfs_block_rsv_release(root, block_rsv, to_free);
5290 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5291 btrfs_ino(inode), to_free, 0);
5293 if (delalloc_lock)
5294 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5295 return ret;
5299 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5300 * @inode: the inode to release the reservation for
5301 * @num_bytes: the number of bytes we're releasing
5303 * This will release the metadata reservation for an inode. This can be called
5304 * once we complete IO for a given set of bytes to release their metadata
5305 * reservations.
5307 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5309 struct btrfs_root *root = BTRFS_I(inode)->root;
5310 u64 to_free = 0;
5311 unsigned dropped;
5313 num_bytes = ALIGN(num_bytes, root->sectorsize);
5314 spin_lock(&BTRFS_I(inode)->lock);
5315 dropped = drop_outstanding_extent(inode);
5317 if (num_bytes)
5318 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5319 spin_unlock(&BTRFS_I(inode)->lock);
5320 if (dropped > 0)
5321 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5323 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5324 btrfs_ino(inode), to_free, 0);
5325 if (root->fs_info->quota_enabled) {
5326 btrfs_qgroup_free(root, num_bytes +
5327 dropped * root->leafsize);
5330 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5331 to_free);
5335 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5336 * @inode: inode we're writing to
5337 * @num_bytes: the number of bytes we want to allocate
5339 * This will do the following things
5341 * o reserve space in the data space info for num_bytes
5342 * o reserve space in the metadata space info based on number of outstanding
5343 * extents and how much csums will be needed
5344 * o add to the inodes ->delalloc_bytes
5345 * o add it to the fs_info's delalloc inodes list.
5347 * This will return 0 for success and -ENOSPC if there is no space left.
5349 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5351 int ret;
5353 ret = btrfs_check_data_free_space(inode, num_bytes);
5354 if (ret)
5355 return ret;
5357 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5358 if (ret) {
5359 btrfs_free_reserved_data_space(inode, num_bytes);
5360 return ret;
5363 return 0;
5367 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5368 * @inode: inode we're releasing space for
5369 * @num_bytes: the number of bytes we want to free up
5371 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5372 * called in the case that we don't need the metadata AND data reservations
5373 * anymore. So if there is an error or we insert an inline extent.
5375 * This function will release the metadata space that was not used and will
5376 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5377 * list if there are no delalloc bytes left.
5379 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5381 btrfs_delalloc_release_metadata(inode, num_bytes);
5382 btrfs_free_reserved_data_space(inode, num_bytes);
5385 static int update_block_group(struct btrfs_root *root,
5386 u64 bytenr, u64 num_bytes, int alloc)
5388 struct btrfs_block_group_cache *cache = NULL;
5389 struct btrfs_fs_info *info = root->fs_info;
5390 u64 total = num_bytes;
5391 u64 old_val;
5392 u64 byte_in_group;
5393 int factor;
5395 /* block accounting for super block */
5396 spin_lock(&info->delalloc_root_lock);
5397 old_val = btrfs_super_bytes_used(info->super_copy);
5398 if (alloc)
5399 old_val += num_bytes;
5400 else
5401 old_val -= num_bytes;
5402 btrfs_set_super_bytes_used(info->super_copy, old_val);
5403 spin_unlock(&info->delalloc_root_lock);
5405 while (total) {
5406 cache = btrfs_lookup_block_group(info, bytenr);
5407 if (!cache)
5408 return -ENOENT;
5409 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5410 BTRFS_BLOCK_GROUP_RAID1 |
5411 BTRFS_BLOCK_GROUP_RAID10))
5412 factor = 2;
5413 else
5414 factor = 1;
5416 * If this block group has free space cache written out, we
5417 * need to make sure to load it if we are removing space. This
5418 * is because we need the unpinning stage to actually add the
5419 * space back to the block group, otherwise we will leak space.
5421 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5422 cache_block_group(cache, 1);
5424 byte_in_group = bytenr - cache->key.objectid;
5425 WARN_ON(byte_in_group > cache->key.offset);
5427 spin_lock(&cache->space_info->lock);
5428 spin_lock(&cache->lock);
5430 if (btrfs_test_opt(root, SPACE_CACHE) &&
5431 cache->disk_cache_state < BTRFS_DC_CLEAR)
5432 cache->disk_cache_state = BTRFS_DC_CLEAR;
5434 cache->dirty = 1;
5435 old_val = btrfs_block_group_used(&cache->item);
5436 num_bytes = min(total, cache->key.offset - byte_in_group);
5437 if (alloc) {
5438 old_val += num_bytes;
5439 btrfs_set_block_group_used(&cache->item, old_val);
5440 cache->reserved -= num_bytes;
5441 cache->space_info->bytes_reserved -= num_bytes;
5442 cache->space_info->bytes_used += num_bytes;
5443 cache->space_info->disk_used += num_bytes * factor;
5444 spin_unlock(&cache->lock);
5445 spin_unlock(&cache->space_info->lock);
5446 } else {
5447 old_val -= num_bytes;
5448 btrfs_set_block_group_used(&cache->item, old_val);
5449 cache->pinned += num_bytes;
5450 cache->space_info->bytes_pinned += num_bytes;
5451 cache->space_info->bytes_used -= num_bytes;
5452 cache->space_info->disk_used -= num_bytes * factor;
5453 spin_unlock(&cache->lock);
5454 spin_unlock(&cache->space_info->lock);
5456 set_extent_dirty(info->pinned_extents,
5457 bytenr, bytenr + num_bytes - 1,
5458 GFP_NOFS | __GFP_NOFAIL);
5460 btrfs_put_block_group(cache);
5461 total -= num_bytes;
5462 bytenr += num_bytes;
5464 return 0;
5467 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5469 struct btrfs_block_group_cache *cache;
5470 u64 bytenr;
5472 spin_lock(&root->fs_info->block_group_cache_lock);
5473 bytenr = root->fs_info->first_logical_byte;
5474 spin_unlock(&root->fs_info->block_group_cache_lock);
5476 if (bytenr < (u64)-1)
5477 return bytenr;
5479 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5480 if (!cache)
5481 return 0;
5483 bytenr = cache->key.objectid;
5484 btrfs_put_block_group(cache);
5486 return bytenr;
5489 static int pin_down_extent(struct btrfs_root *root,
5490 struct btrfs_block_group_cache *cache,
5491 u64 bytenr, u64 num_bytes, int reserved)
5493 spin_lock(&cache->space_info->lock);
5494 spin_lock(&cache->lock);
5495 cache->pinned += num_bytes;
5496 cache->space_info->bytes_pinned += num_bytes;
5497 if (reserved) {
5498 cache->reserved -= num_bytes;
5499 cache->space_info->bytes_reserved -= num_bytes;
5501 spin_unlock(&cache->lock);
5502 spin_unlock(&cache->space_info->lock);
5504 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5505 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5506 if (reserved)
5507 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5508 return 0;
5512 * this function must be called within transaction
5514 int btrfs_pin_extent(struct btrfs_root *root,
5515 u64 bytenr, u64 num_bytes, int reserved)
5517 struct btrfs_block_group_cache *cache;
5519 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5520 BUG_ON(!cache); /* Logic error */
5522 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5524 btrfs_put_block_group(cache);
5525 return 0;
5529 * this function must be called within transaction
5531 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5532 u64 bytenr, u64 num_bytes)
5534 struct btrfs_block_group_cache *cache;
5535 int ret;
5537 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5538 if (!cache)
5539 return -EINVAL;
5542 * pull in the free space cache (if any) so that our pin
5543 * removes the free space from the cache. We have load_only set
5544 * to one because the slow code to read in the free extents does check
5545 * the pinned extents.
5547 cache_block_group(cache, 1);
5549 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5551 /* remove us from the free space cache (if we're there at all) */
5552 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5553 btrfs_put_block_group(cache);
5554 return ret;
5557 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5559 int ret;
5560 struct btrfs_block_group_cache *block_group;
5561 struct btrfs_caching_control *caching_ctl;
5563 block_group = btrfs_lookup_block_group(root->fs_info, start);
5564 if (!block_group)
5565 return -EINVAL;
5567 cache_block_group(block_group, 0);
5568 caching_ctl = get_caching_control(block_group);
5570 if (!caching_ctl) {
5571 /* Logic error */
5572 BUG_ON(!block_group_cache_done(block_group));
5573 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5574 } else {
5575 mutex_lock(&caching_ctl->mutex);
5577 if (start >= caching_ctl->progress) {
5578 ret = add_excluded_extent(root, start, num_bytes);
5579 } else if (start + num_bytes <= caching_ctl->progress) {
5580 ret = btrfs_remove_free_space(block_group,
5581 start, num_bytes);
5582 } else {
5583 num_bytes = caching_ctl->progress - start;
5584 ret = btrfs_remove_free_space(block_group,
5585 start, num_bytes);
5586 if (ret)
5587 goto out_lock;
5589 num_bytes = (start + num_bytes) -
5590 caching_ctl->progress;
5591 start = caching_ctl->progress;
5592 ret = add_excluded_extent(root, start, num_bytes);
5594 out_lock:
5595 mutex_unlock(&caching_ctl->mutex);
5596 put_caching_control(caching_ctl);
5598 btrfs_put_block_group(block_group);
5599 return ret;
5602 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5603 struct extent_buffer *eb)
5605 struct btrfs_file_extent_item *item;
5606 struct btrfs_key key;
5607 int found_type;
5608 int i;
5610 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5611 return 0;
5613 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5614 btrfs_item_key_to_cpu(eb, &key, i);
5615 if (key.type != BTRFS_EXTENT_DATA_KEY)
5616 continue;
5617 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5618 found_type = btrfs_file_extent_type(eb, item);
5619 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5620 continue;
5621 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5622 continue;
5623 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5624 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5625 __exclude_logged_extent(log, key.objectid, key.offset);
5628 return 0;
5632 * btrfs_update_reserved_bytes - update the block_group and space info counters
5633 * @cache: The cache we are manipulating
5634 * @num_bytes: The number of bytes in question
5635 * @reserve: One of the reservation enums
5636 * @delalloc: The blocks are allocated for the delalloc write
5638 * This is called by the allocator when it reserves space, or by somebody who is
5639 * freeing space that was never actually used on disk. For example if you
5640 * reserve some space for a new leaf in transaction A and before transaction A
5641 * commits you free that leaf, you call this with reserve set to 0 in order to
5642 * clear the reservation.
5644 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5645 * ENOSPC accounting. For data we handle the reservation through clearing the
5646 * delalloc bits in the io_tree. We have to do this since we could end up
5647 * allocating less disk space for the amount of data we have reserved in the
5648 * case of compression.
5650 * If this is a reservation and the block group has become read only we cannot
5651 * make the reservation and return -EAGAIN, otherwise this function always
5652 * succeeds.
5654 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5655 u64 num_bytes, int reserve, int delalloc)
5657 struct btrfs_space_info *space_info = cache->space_info;
5658 int ret = 0;
5660 spin_lock(&space_info->lock);
5661 spin_lock(&cache->lock);
5662 if (reserve != RESERVE_FREE) {
5663 if (cache->ro) {
5664 ret = -EAGAIN;
5665 } else {
5666 cache->reserved += num_bytes;
5667 space_info->bytes_reserved += num_bytes;
5668 if (reserve == RESERVE_ALLOC) {
5669 trace_btrfs_space_reservation(cache->fs_info,
5670 "space_info", space_info->flags,
5671 num_bytes, 0);
5672 space_info->bytes_may_use -= num_bytes;
5675 if (delalloc)
5676 cache->delalloc_bytes += num_bytes;
5678 } else {
5679 if (cache->ro)
5680 space_info->bytes_readonly += num_bytes;
5681 cache->reserved -= num_bytes;
5682 space_info->bytes_reserved -= num_bytes;
5684 if (delalloc)
5685 cache->delalloc_bytes -= num_bytes;
5687 spin_unlock(&cache->lock);
5688 spin_unlock(&space_info->lock);
5689 return ret;
5692 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5693 struct btrfs_root *root)
5695 struct btrfs_fs_info *fs_info = root->fs_info;
5696 struct btrfs_caching_control *next;
5697 struct btrfs_caching_control *caching_ctl;
5698 struct btrfs_block_group_cache *cache;
5700 down_write(&fs_info->commit_root_sem);
5702 list_for_each_entry_safe(caching_ctl, next,
5703 &fs_info->caching_block_groups, list) {
5704 cache = caching_ctl->block_group;
5705 if (block_group_cache_done(cache)) {
5706 cache->last_byte_to_unpin = (u64)-1;
5707 list_del_init(&caching_ctl->list);
5708 put_caching_control(caching_ctl);
5709 } else {
5710 cache->last_byte_to_unpin = caching_ctl->progress;
5714 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5715 fs_info->pinned_extents = &fs_info->freed_extents[1];
5716 else
5717 fs_info->pinned_extents = &fs_info->freed_extents[0];
5719 up_write(&fs_info->commit_root_sem);
5721 update_global_block_rsv(fs_info);
5724 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
5725 const bool return_free_space)
5727 struct btrfs_fs_info *fs_info = root->fs_info;
5728 struct btrfs_block_group_cache *cache = NULL;
5729 struct btrfs_space_info *space_info;
5730 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5731 u64 len;
5732 bool readonly;
5734 while (start <= end) {
5735 readonly = false;
5736 if (!cache ||
5737 start >= cache->key.objectid + cache->key.offset) {
5738 if (cache)
5739 btrfs_put_block_group(cache);
5740 cache = btrfs_lookup_block_group(fs_info, start);
5741 BUG_ON(!cache); /* Logic error */
5744 len = cache->key.objectid + cache->key.offset - start;
5745 len = min(len, end + 1 - start);
5747 if (start < cache->last_byte_to_unpin) {
5748 len = min(len, cache->last_byte_to_unpin - start);
5749 if (return_free_space)
5750 btrfs_add_free_space(cache, start, len);
5753 start += len;
5754 space_info = cache->space_info;
5756 spin_lock(&space_info->lock);
5757 spin_lock(&cache->lock);
5758 cache->pinned -= len;
5759 space_info->bytes_pinned -= len;
5760 percpu_counter_add(&space_info->total_bytes_pinned, -len);
5761 if (cache->ro) {
5762 space_info->bytes_readonly += len;
5763 readonly = true;
5765 spin_unlock(&cache->lock);
5766 if (!readonly && global_rsv->space_info == space_info) {
5767 spin_lock(&global_rsv->lock);
5768 if (!global_rsv->full) {
5769 len = min(len, global_rsv->size -
5770 global_rsv->reserved);
5771 global_rsv->reserved += len;
5772 space_info->bytes_may_use += len;
5773 if (global_rsv->reserved >= global_rsv->size)
5774 global_rsv->full = 1;
5776 spin_unlock(&global_rsv->lock);
5778 spin_unlock(&space_info->lock);
5781 if (cache)
5782 btrfs_put_block_group(cache);
5783 return 0;
5786 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5787 struct btrfs_root *root)
5789 struct btrfs_fs_info *fs_info = root->fs_info;
5790 struct extent_io_tree *unpin;
5791 u64 start;
5792 u64 end;
5793 int ret;
5795 if (trans->aborted)
5796 return 0;
5798 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5799 unpin = &fs_info->freed_extents[1];
5800 else
5801 unpin = &fs_info->freed_extents[0];
5803 while (1) {
5804 ret = find_first_extent_bit(unpin, 0, &start, &end,
5805 EXTENT_DIRTY, NULL);
5806 if (ret)
5807 break;
5809 if (btrfs_test_opt(root, DISCARD))
5810 ret = btrfs_discard_extent(root, start,
5811 end + 1 - start, NULL);
5813 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5814 unpin_extent_range(root, start, end, true);
5815 cond_resched();
5818 return 0;
5821 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5822 u64 owner, u64 root_objectid)
5824 struct btrfs_space_info *space_info;
5825 u64 flags;
5827 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5828 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5829 flags = BTRFS_BLOCK_GROUP_SYSTEM;
5830 else
5831 flags = BTRFS_BLOCK_GROUP_METADATA;
5832 } else {
5833 flags = BTRFS_BLOCK_GROUP_DATA;
5836 space_info = __find_space_info(fs_info, flags);
5837 BUG_ON(!space_info); /* Logic bug */
5838 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5842 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5843 struct btrfs_root *root,
5844 u64 bytenr, u64 num_bytes, u64 parent,
5845 u64 root_objectid, u64 owner_objectid,
5846 u64 owner_offset, int refs_to_drop,
5847 struct btrfs_delayed_extent_op *extent_op,
5848 int no_quota)
5850 struct btrfs_key key;
5851 struct btrfs_path *path;
5852 struct btrfs_fs_info *info = root->fs_info;
5853 struct btrfs_root *extent_root = info->extent_root;
5854 struct extent_buffer *leaf;
5855 struct btrfs_extent_item *ei;
5856 struct btrfs_extent_inline_ref *iref;
5857 int ret;
5858 int is_data;
5859 int extent_slot = 0;
5860 int found_extent = 0;
5861 int num_to_del = 1;
5862 u32 item_size;
5863 u64 refs;
5864 int last_ref = 0;
5865 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
5866 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5867 SKINNY_METADATA);
5869 if (!info->quota_enabled || !is_fstree(root_objectid))
5870 no_quota = 1;
5872 path = btrfs_alloc_path();
5873 if (!path)
5874 return -ENOMEM;
5876 path->reada = 1;
5877 path->leave_spinning = 1;
5879 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5880 BUG_ON(!is_data && refs_to_drop != 1);
5882 if (is_data)
5883 skinny_metadata = 0;
5885 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5886 bytenr, num_bytes, parent,
5887 root_objectid, owner_objectid,
5888 owner_offset);
5889 if (ret == 0) {
5890 extent_slot = path->slots[0];
5891 while (extent_slot >= 0) {
5892 btrfs_item_key_to_cpu(path->nodes[0], &key,
5893 extent_slot);
5894 if (key.objectid != bytenr)
5895 break;
5896 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5897 key.offset == num_bytes) {
5898 found_extent = 1;
5899 break;
5901 if (key.type == BTRFS_METADATA_ITEM_KEY &&
5902 key.offset == owner_objectid) {
5903 found_extent = 1;
5904 break;
5906 if (path->slots[0] - extent_slot > 5)
5907 break;
5908 extent_slot--;
5910 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5911 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5912 if (found_extent && item_size < sizeof(*ei))
5913 found_extent = 0;
5914 #endif
5915 if (!found_extent) {
5916 BUG_ON(iref);
5917 ret = remove_extent_backref(trans, extent_root, path,
5918 NULL, refs_to_drop,
5919 is_data, &last_ref);
5920 if (ret) {
5921 btrfs_abort_transaction(trans, extent_root, ret);
5922 goto out;
5924 btrfs_release_path(path);
5925 path->leave_spinning = 1;
5927 key.objectid = bytenr;
5928 key.type = BTRFS_EXTENT_ITEM_KEY;
5929 key.offset = num_bytes;
5931 if (!is_data && skinny_metadata) {
5932 key.type = BTRFS_METADATA_ITEM_KEY;
5933 key.offset = owner_objectid;
5936 ret = btrfs_search_slot(trans, extent_root,
5937 &key, path, -1, 1);
5938 if (ret > 0 && skinny_metadata && path->slots[0]) {
5940 * Couldn't find our skinny metadata item,
5941 * see if we have ye olde extent item.
5943 path->slots[0]--;
5944 btrfs_item_key_to_cpu(path->nodes[0], &key,
5945 path->slots[0]);
5946 if (key.objectid == bytenr &&
5947 key.type == BTRFS_EXTENT_ITEM_KEY &&
5948 key.offset == num_bytes)
5949 ret = 0;
5952 if (ret > 0 && skinny_metadata) {
5953 skinny_metadata = false;
5954 key.objectid = bytenr;
5955 key.type = BTRFS_EXTENT_ITEM_KEY;
5956 key.offset = num_bytes;
5957 btrfs_release_path(path);
5958 ret = btrfs_search_slot(trans, extent_root,
5959 &key, path, -1, 1);
5962 if (ret) {
5963 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5964 ret, bytenr);
5965 if (ret > 0)
5966 btrfs_print_leaf(extent_root,
5967 path->nodes[0]);
5969 if (ret < 0) {
5970 btrfs_abort_transaction(trans, extent_root, ret);
5971 goto out;
5973 extent_slot = path->slots[0];
5975 } else if (WARN_ON(ret == -ENOENT)) {
5976 btrfs_print_leaf(extent_root, path->nodes[0]);
5977 btrfs_err(info,
5978 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5979 bytenr, parent, root_objectid, owner_objectid,
5980 owner_offset);
5981 btrfs_abort_transaction(trans, extent_root, ret);
5982 goto out;
5983 } else {
5984 btrfs_abort_transaction(trans, extent_root, ret);
5985 goto out;
5988 leaf = path->nodes[0];
5989 item_size = btrfs_item_size_nr(leaf, extent_slot);
5990 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5991 if (item_size < sizeof(*ei)) {
5992 BUG_ON(found_extent || extent_slot != path->slots[0]);
5993 ret = convert_extent_item_v0(trans, extent_root, path,
5994 owner_objectid, 0);
5995 if (ret < 0) {
5996 btrfs_abort_transaction(trans, extent_root, ret);
5997 goto out;
6000 btrfs_release_path(path);
6001 path->leave_spinning = 1;
6003 key.objectid = bytenr;
6004 key.type = BTRFS_EXTENT_ITEM_KEY;
6005 key.offset = num_bytes;
6007 ret = btrfs_search_slot(trans, extent_root, &key, path,
6008 -1, 1);
6009 if (ret) {
6010 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6011 ret, bytenr);
6012 btrfs_print_leaf(extent_root, path->nodes[0]);
6014 if (ret < 0) {
6015 btrfs_abort_transaction(trans, extent_root, ret);
6016 goto out;
6019 extent_slot = path->slots[0];
6020 leaf = path->nodes[0];
6021 item_size = btrfs_item_size_nr(leaf, extent_slot);
6023 #endif
6024 BUG_ON(item_size < sizeof(*ei));
6025 ei = btrfs_item_ptr(leaf, extent_slot,
6026 struct btrfs_extent_item);
6027 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6028 key.type == BTRFS_EXTENT_ITEM_KEY) {
6029 struct btrfs_tree_block_info *bi;
6030 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6031 bi = (struct btrfs_tree_block_info *)(ei + 1);
6032 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6035 refs = btrfs_extent_refs(leaf, ei);
6036 if (refs < refs_to_drop) {
6037 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6038 "for bytenr %Lu", refs_to_drop, refs, bytenr);
6039 ret = -EINVAL;
6040 btrfs_abort_transaction(trans, extent_root, ret);
6041 goto out;
6043 refs -= refs_to_drop;
6045 if (refs > 0) {
6046 type = BTRFS_QGROUP_OPER_SUB_SHARED;
6047 if (extent_op)
6048 __run_delayed_extent_op(extent_op, leaf, ei);
6050 * In the case of inline back ref, reference count will
6051 * be updated by remove_extent_backref
6053 if (iref) {
6054 BUG_ON(!found_extent);
6055 } else {
6056 btrfs_set_extent_refs(leaf, ei, refs);
6057 btrfs_mark_buffer_dirty(leaf);
6059 if (found_extent) {
6060 ret = remove_extent_backref(trans, extent_root, path,
6061 iref, refs_to_drop,
6062 is_data, &last_ref);
6063 if (ret) {
6064 btrfs_abort_transaction(trans, extent_root, ret);
6065 goto out;
6068 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6069 root_objectid);
6070 } else {
6071 if (found_extent) {
6072 BUG_ON(is_data && refs_to_drop !=
6073 extent_data_ref_count(root, path, iref));
6074 if (iref) {
6075 BUG_ON(path->slots[0] != extent_slot);
6076 } else {
6077 BUG_ON(path->slots[0] != extent_slot + 1);
6078 path->slots[0] = extent_slot;
6079 num_to_del = 2;
6083 last_ref = 1;
6084 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6085 num_to_del);
6086 if (ret) {
6087 btrfs_abort_transaction(trans, extent_root, ret);
6088 goto out;
6090 btrfs_release_path(path);
6092 if (is_data) {
6093 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6094 if (ret) {
6095 btrfs_abort_transaction(trans, extent_root, ret);
6096 goto out;
6100 ret = update_block_group(root, bytenr, num_bytes, 0);
6101 if (ret) {
6102 btrfs_abort_transaction(trans, extent_root, ret);
6103 goto out;
6106 btrfs_release_path(path);
6108 /* Deal with the quota accounting */
6109 if (!ret && last_ref && !no_quota) {
6110 int mod_seq = 0;
6112 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6113 type == BTRFS_QGROUP_OPER_SUB_SHARED)
6114 mod_seq = 1;
6116 ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6117 bytenr, num_bytes, type,
6118 mod_seq);
6120 out:
6121 btrfs_free_path(path);
6122 return ret;
6126 * when we free an block, it is possible (and likely) that we free the last
6127 * delayed ref for that extent as well. This searches the delayed ref tree for
6128 * a given extent, and if there are no other delayed refs to be processed, it
6129 * removes it from the tree.
6131 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6132 struct btrfs_root *root, u64 bytenr)
6134 struct btrfs_delayed_ref_head *head;
6135 struct btrfs_delayed_ref_root *delayed_refs;
6136 int ret = 0;
6138 delayed_refs = &trans->transaction->delayed_refs;
6139 spin_lock(&delayed_refs->lock);
6140 head = btrfs_find_delayed_ref_head(trans, bytenr);
6141 if (!head)
6142 goto out_delayed_unlock;
6144 spin_lock(&head->lock);
6145 if (rb_first(&head->ref_root))
6146 goto out;
6148 if (head->extent_op) {
6149 if (!head->must_insert_reserved)
6150 goto out;
6151 btrfs_free_delayed_extent_op(head->extent_op);
6152 head->extent_op = NULL;
6156 * waiting for the lock here would deadlock. If someone else has it
6157 * locked they are already in the process of dropping it anyway
6159 if (!mutex_trylock(&head->mutex))
6160 goto out;
6163 * at this point we have a head with no other entries. Go
6164 * ahead and process it.
6166 head->node.in_tree = 0;
6167 rb_erase(&head->href_node, &delayed_refs->href_root);
6169 atomic_dec(&delayed_refs->num_entries);
6172 * we don't take a ref on the node because we're removing it from the
6173 * tree, so we just steal the ref the tree was holding.
6175 delayed_refs->num_heads--;
6176 if (head->processing == 0)
6177 delayed_refs->num_heads_ready--;
6178 head->processing = 0;
6179 spin_unlock(&head->lock);
6180 spin_unlock(&delayed_refs->lock);
6182 BUG_ON(head->extent_op);
6183 if (head->must_insert_reserved)
6184 ret = 1;
6186 mutex_unlock(&head->mutex);
6187 btrfs_put_delayed_ref(&head->node);
6188 return ret;
6189 out:
6190 spin_unlock(&head->lock);
6192 out_delayed_unlock:
6193 spin_unlock(&delayed_refs->lock);
6194 return 0;
6197 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6198 struct btrfs_root *root,
6199 struct extent_buffer *buf,
6200 u64 parent, int last_ref)
6202 struct btrfs_block_group_cache *cache = NULL;
6203 int pin = 1;
6204 int ret;
6206 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6207 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6208 buf->start, buf->len,
6209 parent, root->root_key.objectid,
6210 btrfs_header_level(buf),
6211 BTRFS_DROP_DELAYED_REF, NULL, 0);
6212 BUG_ON(ret); /* -ENOMEM */
6215 if (!last_ref)
6216 return;
6218 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6220 if (btrfs_header_generation(buf) == trans->transid) {
6221 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6222 ret = check_ref_cleanup(trans, root, buf->start);
6223 if (!ret)
6224 goto out;
6227 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6228 pin_down_extent(root, cache, buf->start, buf->len, 1);
6229 goto out;
6232 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6234 btrfs_add_free_space(cache, buf->start, buf->len);
6235 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6236 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6237 pin = 0;
6239 out:
6240 if (pin)
6241 add_pinned_bytes(root->fs_info, buf->len,
6242 btrfs_header_level(buf),
6243 root->root_key.objectid);
6246 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6247 * anymore.
6249 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6250 btrfs_put_block_group(cache);
6253 /* Can return -ENOMEM */
6254 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6255 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6256 u64 owner, u64 offset, int no_quota)
6258 int ret;
6259 struct btrfs_fs_info *fs_info = root->fs_info;
6261 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6262 if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
6263 return 0;
6264 #endif
6265 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6268 * tree log blocks never actually go into the extent allocation
6269 * tree, just update pinning info and exit early.
6271 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6272 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6273 /* unlocks the pinned mutex */
6274 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6275 ret = 0;
6276 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6277 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6278 num_bytes,
6279 parent, root_objectid, (int)owner,
6280 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6281 } else {
6282 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6283 num_bytes,
6284 parent, root_objectid, owner,
6285 offset, BTRFS_DROP_DELAYED_REF,
6286 NULL, no_quota);
6288 return ret;
6291 static u64 stripe_align(struct btrfs_root *root,
6292 struct btrfs_block_group_cache *cache,
6293 u64 val, u64 num_bytes)
6295 u64 ret = ALIGN(val, root->stripesize);
6296 return ret;
6300 * when we wait for progress in the block group caching, its because
6301 * our allocation attempt failed at least once. So, we must sleep
6302 * and let some progress happen before we try again.
6304 * This function will sleep at least once waiting for new free space to
6305 * show up, and then it will check the block group free space numbers
6306 * for our min num_bytes. Another option is to have it go ahead
6307 * and look in the rbtree for a free extent of a given size, but this
6308 * is a good start.
6310 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6311 * any of the information in this block group.
6313 static noinline void
6314 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6315 u64 num_bytes)
6317 struct btrfs_caching_control *caching_ctl;
6319 caching_ctl = get_caching_control(cache);
6320 if (!caching_ctl)
6321 return;
6323 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6324 (cache->free_space_ctl->free_space >= num_bytes));
6326 put_caching_control(caching_ctl);
6329 static noinline int
6330 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6332 struct btrfs_caching_control *caching_ctl;
6333 int ret = 0;
6335 caching_ctl = get_caching_control(cache);
6336 if (!caching_ctl)
6337 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6339 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6340 if (cache->cached == BTRFS_CACHE_ERROR)
6341 ret = -EIO;
6342 put_caching_control(caching_ctl);
6343 return ret;
6346 int __get_raid_index(u64 flags)
6348 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6349 return BTRFS_RAID_RAID10;
6350 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6351 return BTRFS_RAID_RAID1;
6352 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6353 return BTRFS_RAID_DUP;
6354 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6355 return BTRFS_RAID_RAID0;
6356 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6357 return BTRFS_RAID_RAID5;
6358 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6359 return BTRFS_RAID_RAID6;
6361 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6364 int get_block_group_index(struct btrfs_block_group_cache *cache)
6366 return __get_raid_index(cache->flags);
6369 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6370 [BTRFS_RAID_RAID10] = "raid10",
6371 [BTRFS_RAID_RAID1] = "raid1",
6372 [BTRFS_RAID_DUP] = "dup",
6373 [BTRFS_RAID_RAID0] = "raid0",
6374 [BTRFS_RAID_SINGLE] = "single",
6375 [BTRFS_RAID_RAID5] = "raid5",
6376 [BTRFS_RAID_RAID6] = "raid6",
6379 static const char *get_raid_name(enum btrfs_raid_types type)
6381 if (type >= BTRFS_NR_RAID_TYPES)
6382 return NULL;
6384 return btrfs_raid_type_names[type];
6387 enum btrfs_loop_type {
6388 LOOP_CACHING_NOWAIT = 0,
6389 LOOP_CACHING_WAIT = 1,
6390 LOOP_ALLOC_CHUNK = 2,
6391 LOOP_NO_EMPTY_SIZE = 3,
6394 static inline void
6395 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6396 int delalloc)
6398 if (delalloc)
6399 down_read(&cache->data_rwsem);
6402 static inline void
6403 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6404 int delalloc)
6406 btrfs_get_block_group(cache);
6407 if (delalloc)
6408 down_read(&cache->data_rwsem);
6411 static struct btrfs_block_group_cache *
6412 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6413 struct btrfs_free_cluster *cluster,
6414 int delalloc)
6416 struct btrfs_block_group_cache *used_bg;
6417 bool locked = false;
6418 again:
6419 spin_lock(&cluster->refill_lock);
6420 if (locked) {
6421 if (used_bg == cluster->block_group)
6422 return used_bg;
6424 up_read(&used_bg->data_rwsem);
6425 btrfs_put_block_group(used_bg);
6428 used_bg = cluster->block_group;
6429 if (!used_bg)
6430 return NULL;
6432 if (used_bg == block_group)
6433 return used_bg;
6435 btrfs_get_block_group(used_bg);
6437 if (!delalloc)
6438 return used_bg;
6440 if (down_read_trylock(&used_bg->data_rwsem))
6441 return used_bg;
6443 spin_unlock(&cluster->refill_lock);
6444 down_read(&used_bg->data_rwsem);
6445 locked = true;
6446 goto again;
6449 static inline void
6450 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6451 int delalloc)
6453 if (delalloc)
6454 up_read(&cache->data_rwsem);
6455 btrfs_put_block_group(cache);
6459 * walks the btree of allocated extents and find a hole of a given size.
6460 * The key ins is changed to record the hole:
6461 * ins->objectid == start position
6462 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6463 * ins->offset == the size of the hole.
6464 * Any available blocks before search_start are skipped.
6466 * If there is no suitable free space, we will record the max size of
6467 * the free space extent currently.
6469 static noinline int find_free_extent(struct btrfs_root *orig_root,
6470 u64 num_bytes, u64 empty_size,
6471 u64 hint_byte, struct btrfs_key *ins,
6472 u64 flags, int delalloc)
6474 int ret = 0;
6475 struct btrfs_root *root = orig_root->fs_info->extent_root;
6476 struct btrfs_free_cluster *last_ptr = NULL;
6477 struct btrfs_block_group_cache *block_group = NULL;
6478 u64 search_start = 0;
6479 u64 max_extent_size = 0;
6480 int empty_cluster = 2 * 1024 * 1024;
6481 struct btrfs_space_info *space_info;
6482 int loop = 0;
6483 int index = __get_raid_index(flags);
6484 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6485 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6486 bool failed_cluster_refill = false;
6487 bool failed_alloc = false;
6488 bool use_cluster = true;
6489 bool have_caching_bg = false;
6491 WARN_ON(num_bytes < root->sectorsize);
6492 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
6493 ins->objectid = 0;
6494 ins->offset = 0;
6496 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6498 space_info = __find_space_info(root->fs_info, flags);
6499 if (!space_info) {
6500 btrfs_err(root->fs_info, "No space info for %llu", flags);
6501 return -ENOSPC;
6505 * If the space info is for both data and metadata it means we have a
6506 * small filesystem and we can't use the clustering stuff.
6508 if (btrfs_mixed_space_info(space_info))
6509 use_cluster = false;
6511 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6512 last_ptr = &root->fs_info->meta_alloc_cluster;
6513 if (!btrfs_test_opt(root, SSD))
6514 empty_cluster = 64 * 1024;
6517 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6518 btrfs_test_opt(root, SSD)) {
6519 last_ptr = &root->fs_info->data_alloc_cluster;
6522 if (last_ptr) {
6523 spin_lock(&last_ptr->lock);
6524 if (last_ptr->block_group)
6525 hint_byte = last_ptr->window_start;
6526 spin_unlock(&last_ptr->lock);
6529 search_start = max(search_start, first_logical_byte(root, 0));
6530 search_start = max(search_start, hint_byte);
6532 if (!last_ptr)
6533 empty_cluster = 0;
6535 if (search_start == hint_byte) {
6536 block_group = btrfs_lookup_block_group(root->fs_info,
6537 search_start);
6539 * we don't want to use the block group if it doesn't match our
6540 * allocation bits, or if its not cached.
6542 * However if we are re-searching with an ideal block group
6543 * picked out then we don't care that the block group is cached.
6545 if (block_group && block_group_bits(block_group, flags) &&
6546 block_group->cached != BTRFS_CACHE_NO) {
6547 down_read(&space_info->groups_sem);
6548 if (list_empty(&block_group->list) ||
6549 block_group->ro) {
6551 * someone is removing this block group,
6552 * we can't jump into the have_block_group
6553 * target because our list pointers are not
6554 * valid
6556 btrfs_put_block_group(block_group);
6557 up_read(&space_info->groups_sem);
6558 } else {
6559 index = get_block_group_index(block_group);
6560 btrfs_lock_block_group(block_group, delalloc);
6561 goto have_block_group;
6563 } else if (block_group) {
6564 btrfs_put_block_group(block_group);
6567 search:
6568 have_caching_bg = false;
6569 down_read(&space_info->groups_sem);
6570 list_for_each_entry(block_group, &space_info->block_groups[index],
6571 list) {
6572 u64 offset;
6573 int cached;
6575 btrfs_grab_block_group(block_group, delalloc);
6576 search_start = block_group->key.objectid;
6579 * this can happen if we end up cycling through all the
6580 * raid types, but we want to make sure we only allocate
6581 * for the proper type.
6583 if (!block_group_bits(block_group, flags)) {
6584 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6585 BTRFS_BLOCK_GROUP_RAID1 |
6586 BTRFS_BLOCK_GROUP_RAID5 |
6587 BTRFS_BLOCK_GROUP_RAID6 |
6588 BTRFS_BLOCK_GROUP_RAID10;
6591 * if they asked for extra copies and this block group
6592 * doesn't provide them, bail. This does allow us to
6593 * fill raid0 from raid1.
6595 if ((flags & extra) && !(block_group->flags & extra))
6596 goto loop;
6599 have_block_group:
6600 cached = block_group_cache_done(block_group);
6601 if (unlikely(!cached)) {
6602 ret = cache_block_group(block_group, 0);
6603 BUG_ON(ret < 0);
6604 ret = 0;
6607 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6608 goto loop;
6609 if (unlikely(block_group->ro))
6610 goto loop;
6613 * Ok we want to try and use the cluster allocator, so
6614 * lets look there
6616 if (last_ptr) {
6617 struct btrfs_block_group_cache *used_block_group;
6618 unsigned long aligned_cluster;
6620 * the refill lock keeps out other
6621 * people trying to start a new cluster
6623 used_block_group = btrfs_lock_cluster(block_group,
6624 last_ptr,
6625 delalloc);
6626 if (!used_block_group)
6627 goto refill_cluster;
6629 if (used_block_group != block_group &&
6630 (used_block_group->ro ||
6631 !block_group_bits(used_block_group, flags)))
6632 goto release_cluster;
6634 offset = btrfs_alloc_from_cluster(used_block_group,
6635 last_ptr,
6636 num_bytes,
6637 used_block_group->key.objectid,
6638 &max_extent_size);
6639 if (offset) {
6640 /* we have a block, we're done */
6641 spin_unlock(&last_ptr->refill_lock);
6642 trace_btrfs_reserve_extent_cluster(root,
6643 used_block_group,
6644 search_start, num_bytes);
6645 if (used_block_group != block_group) {
6646 btrfs_release_block_group(block_group,
6647 delalloc);
6648 block_group = used_block_group;
6650 goto checks;
6653 WARN_ON(last_ptr->block_group != used_block_group);
6654 release_cluster:
6655 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6656 * set up a new clusters, so lets just skip it
6657 * and let the allocator find whatever block
6658 * it can find. If we reach this point, we
6659 * will have tried the cluster allocator
6660 * plenty of times and not have found
6661 * anything, so we are likely way too
6662 * fragmented for the clustering stuff to find
6663 * anything.
6665 * However, if the cluster is taken from the
6666 * current block group, release the cluster
6667 * first, so that we stand a better chance of
6668 * succeeding in the unclustered
6669 * allocation. */
6670 if (loop >= LOOP_NO_EMPTY_SIZE &&
6671 used_block_group != block_group) {
6672 spin_unlock(&last_ptr->refill_lock);
6673 btrfs_release_block_group(used_block_group,
6674 delalloc);
6675 goto unclustered_alloc;
6679 * this cluster didn't work out, free it and
6680 * start over
6682 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6684 if (used_block_group != block_group)
6685 btrfs_release_block_group(used_block_group,
6686 delalloc);
6687 refill_cluster:
6688 if (loop >= LOOP_NO_EMPTY_SIZE) {
6689 spin_unlock(&last_ptr->refill_lock);
6690 goto unclustered_alloc;
6693 aligned_cluster = max_t(unsigned long,
6694 empty_cluster + empty_size,
6695 block_group->full_stripe_len);
6697 /* allocate a cluster in this block group */
6698 ret = btrfs_find_space_cluster(root, block_group,
6699 last_ptr, search_start,
6700 num_bytes,
6701 aligned_cluster);
6702 if (ret == 0) {
6704 * now pull our allocation out of this
6705 * cluster
6707 offset = btrfs_alloc_from_cluster(block_group,
6708 last_ptr,
6709 num_bytes,
6710 search_start,
6711 &max_extent_size);
6712 if (offset) {
6713 /* we found one, proceed */
6714 spin_unlock(&last_ptr->refill_lock);
6715 trace_btrfs_reserve_extent_cluster(root,
6716 block_group, search_start,
6717 num_bytes);
6718 goto checks;
6720 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6721 && !failed_cluster_refill) {
6722 spin_unlock(&last_ptr->refill_lock);
6724 failed_cluster_refill = true;
6725 wait_block_group_cache_progress(block_group,
6726 num_bytes + empty_cluster + empty_size);
6727 goto have_block_group;
6731 * at this point we either didn't find a cluster
6732 * or we weren't able to allocate a block from our
6733 * cluster. Free the cluster we've been trying
6734 * to use, and go to the next block group
6736 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6737 spin_unlock(&last_ptr->refill_lock);
6738 goto loop;
6741 unclustered_alloc:
6742 spin_lock(&block_group->free_space_ctl->tree_lock);
6743 if (cached &&
6744 block_group->free_space_ctl->free_space <
6745 num_bytes + empty_cluster + empty_size) {
6746 if (block_group->free_space_ctl->free_space >
6747 max_extent_size)
6748 max_extent_size =
6749 block_group->free_space_ctl->free_space;
6750 spin_unlock(&block_group->free_space_ctl->tree_lock);
6751 goto loop;
6753 spin_unlock(&block_group->free_space_ctl->tree_lock);
6755 offset = btrfs_find_space_for_alloc(block_group, search_start,
6756 num_bytes, empty_size,
6757 &max_extent_size);
6759 * If we didn't find a chunk, and we haven't failed on this
6760 * block group before, and this block group is in the middle of
6761 * caching and we are ok with waiting, then go ahead and wait
6762 * for progress to be made, and set failed_alloc to true.
6764 * If failed_alloc is true then we've already waited on this
6765 * block group once and should move on to the next block group.
6767 if (!offset && !failed_alloc && !cached &&
6768 loop > LOOP_CACHING_NOWAIT) {
6769 wait_block_group_cache_progress(block_group,
6770 num_bytes + empty_size);
6771 failed_alloc = true;
6772 goto have_block_group;
6773 } else if (!offset) {
6774 if (!cached)
6775 have_caching_bg = true;
6776 goto loop;
6778 checks:
6779 search_start = stripe_align(root, block_group,
6780 offset, num_bytes);
6782 /* move on to the next group */
6783 if (search_start + num_bytes >
6784 block_group->key.objectid + block_group->key.offset) {
6785 btrfs_add_free_space(block_group, offset, num_bytes);
6786 goto loop;
6789 if (offset < search_start)
6790 btrfs_add_free_space(block_group, offset,
6791 search_start - offset);
6792 BUG_ON(offset > search_start);
6794 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
6795 alloc_type, delalloc);
6796 if (ret == -EAGAIN) {
6797 btrfs_add_free_space(block_group, offset, num_bytes);
6798 goto loop;
6801 /* we are all good, lets return */
6802 ins->objectid = search_start;
6803 ins->offset = num_bytes;
6805 trace_btrfs_reserve_extent(orig_root, block_group,
6806 search_start, num_bytes);
6807 btrfs_release_block_group(block_group, delalloc);
6808 break;
6809 loop:
6810 failed_cluster_refill = false;
6811 failed_alloc = false;
6812 BUG_ON(index != get_block_group_index(block_group));
6813 btrfs_release_block_group(block_group, delalloc);
6815 up_read(&space_info->groups_sem);
6817 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6818 goto search;
6820 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6821 goto search;
6824 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6825 * caching kthreads as we move along
6826 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6827 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6828 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6829 * again
6831 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6832 index = 0;
6833 loop++;
6834 if (loop == LOOP_ALLOC_CHUNK) {
6835 struct btrfs_trans_handle *trans;
6836 int exist = 0;
6838 trans = current->journal_info;
6839 if (trans)
6840 exist = 1;
6841 else
6842 trans = btrfs_join_transaction(root);
6844 if (IS_ERR(trans)) {
6845 ret = PTR_ERR(trans);
6846 goto out;
6849 ret = do_chunk_alloc(trans, root, flags,
6850 CHUNK_ALLOC_FORCE);
6852 * Do not bail out on ENOSPC since we
6853 * can do more things.
6855 if (ret < 0 && ret != -ENOSPC)
6856 btrfs_abort_transaction(trans,
6857 root, ret);
6858 else
6859 ret = 0;
6860 if (!exist)
6861 btrfs_end_transaction(trans, root);
6862 if (ret)
6863 goto out;
6866 if (loop == LOOP_NO_EMPTY_SIZE) {
6867 empty_size = 0;
6868 empty_cluster = 0;
6871 goto search;
6872 } else if (!ins->objectid) {
6873 ret = -ENOSPC;
6874 } else if (ins->objectid) {
6875 ret = 0;
6877 out:
6878 if (ret == -ENOSPC)
6879 ins->offset = max_extent_size;
6880 return ret;
6883 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6884 int dump_block_groups)
6886 struct btrfs_block_group_cache *cache;
6887 int index = 0;
6889 spin_lock(&info->lock);
6890 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
6891 info->flags,
6892 info->total_bytes - info->bytes_used - info->bytes_pinned -
6893 info->bytes_reserved - info->bytes_readonly,
6894 (info->full) ? "" : "not ");
6895 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6896 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6897 info->total_bytes, info->bytes_used, info->bytes_pinned,
6898 info->bytes_reserved, info->bytes_may_use,
6899 info->bytes_readonly);
6900 spin_unlock(&info->lock);
6902 if (!dump_block_groups)
6903 return;
6905 down_read(&info->groups_sem);
6906 again:
6907 list_for_each_entry(cache, &info->block_groups[index], list) {
6908 spin_lock(&cache->lock);
6909 printk(KERN_INFO "BTRFS: "
6910 "block group %llu has %llu bytes, "
6911 "%llu used %llu pinned %llu reserved %s\n",
6912 cache->key.objectid, cache->key.offset,
6913 btrfs_block_group_used(&cache->item), cache->pinned,
6914 cache->reserved, cache->ro ? "[readonly]" : "");
6915 btrfs_dump_free_space(cache, bytes);
6916 spin_unlock(&cache->lock);
6918 if (++index < BTRFS_NR_RAID_TYPES)
6919 goto again;
6920 up_read(&info->groups_sem);
6923 int btrfs_reserve_extent(struct btrfs_root *root,
6924 u64 num_bytes, u64 min_alloc_size,
6925 u64 empty_size, u64 hint_byte,
6926 struct btrfs_key *ins, int is_data, int delalloc)
6928 bool final_tried = false;
6929 u64 flags;
6930 int ret;
6932 flags = btrfs_get_alloc_profile(root, is_data);
6933 again:
6934 WARN_ON(num_bytes < root->sectorsize);
6935 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6936 flags, delalloc);
6938 if (ret == -ENOSPC) {
6939 if (!final_tried && ins->offset) {
6940 num_bytes = min(num_bytes >> 1, ins->offset);
6941 num_bytes = round_down(num_bytes, root->sectorsize);
6942 num_bytes = max(num_bytes, min_alloc_size);
6943 if (num_bytes == min_alloc_size)
6944 final_tried = true;
6945 goto again;
6946 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6947 struct btrfs_space_info *sinfo;
6949 sinfo = __find_space_info(root->fs_info, flags);
6950 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6951 flags, num_bytes);
6952 if (sinfo)
6953 dump_space_info(sinfo, num_bytes, 1);
6957 return ret;
6960 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6961 u64 start, u64 len,
6962 int pin, int delalloc)
6964 struct btrfs_block_group_cache *cache;
6965 int ret = 0;
6967 cache = btrfs_lookup_block_group(root->fs_info, start);
6968 if (!cache) {
6969 btrfs_err(root->fs_info, "Unable to find block group for %llu",
6970 start);
6971 return -ENOSPC;
6974 if (pin)
6975 pin_down_extent(root, cache, start, len, 1);
6976 else {
6977 if (btrfs_test_opt(root, DISCARD))
6978 ret = btrfs_discard_extent(root, start, len, NULL);
6979 btrfs_add_free_space(cache, start, len);
6980 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
6982 btrfs_put_block_group(cache);
6984 trace_btrfs_reserved_extent_free(root, start, len);
6986 return ret;
6989 int btrfs_free_reserved_extent(struct btrfs_root *root,
6990 u64 start, u64 len, int delalloc)
6992 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
6995 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6996 u64 start, u64 len)
6998 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7001 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7002 struct btrfs_root *root,
7003 u64 parent, u64 root_objectid,
7004 u64 flags, u64 owner, u64 offset,
7005 struct btrfs_key *ins, int ref_mod)
7007 int ret;
7008 struct btrfs_fs_info *fs_info = root->fs_info;
7009 struct btrfs_extent_item *extent_item;
7010 struct btrfs_extent_inline_ref *iref;
7011 struct btrfs_path *path;
7012 struct extent_buffer *leaf;
7013 int type;
7014 u32 size;
7016 if (parent > 0)
7017 type = BTRFS_SHARED_DATA_REF_KEY;
7018 else
7019 type = BTRFS_EXTENT_DATA_REF_KEY;
7021 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7023 path = btrfs_alloc_path();
7024 if (!path)
7025 return -ENOMEM;
7027 path->leave_spinning = 1;
7028 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7029 ins, size);
7030 if (ret) {
7031 btrfs_free_path(path);
7032 return ret;
7035 leaf = path->nodes[0];
7036 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7037 struct btrfs_extent_item);
7038 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7039 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7040 btrfs_set_extent_flags(leaf, extent_item,
7041 flags | BTRFS_EXTENT_FLAG_DATA);
7043 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7044 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7045 if (parent > 0) {
7046 struct btrfs_shared_data_ref *ref;
7047 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7048 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7049 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7050 } else {
7051 struct btrfs_extent_data_ref *ref;
7052 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7053 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7054 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7055 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7056 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7059 btrfs_mark_buffer_dirty(path->nodes[0]);
7060 btrfs_free_path(path);
7062 /* Always set parent to 0 here since its exclusive anyway. */
7063 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7064 ins->objectid, ins->offset,
7065 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7066 if (ret)
7067 return ret;
7069 ret = update_block_group(root, ins->objectid, ins->offset, 1);
7070 if (ret) { /* -ENOENT, logic error */
7071 btrfs_err(fs_info, "update block group failed for %llu %llu",
7072 ins->objectid, ins->offset);
7073 BUG();
7075 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7076 return ret;
7079 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7080 struct btrfs_root *root,
7081 u64 parent, u64 root_objectid,
7082 u64 flags, struct btrfs_disk_key *key,
7083 int level, struct btrfs_key *ins,
7084 int no_quota)
7086 int ret;
7087 struct btrfs_fs_info *fs_info = root->fs_info;
7088 struct btrfs_extent_item *extent_item;
7089 struct btrfs_tree_block_info *block_info;
7090 struct btrfs_extent_inline_ref *iref;
7091 struct btrfs_path *path;
7092 struct extent_buffer *leaf;
7093 u32 size = sizeof(*extent_item) + sizeof(*iref);
7094 u64 num_bytes = ins->offset;
7095 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7096 SKINNY_METADATA);
7098 if (!skinny_metadata)
7099 size += sizeof(*block_info);
7101 path = btrfs_alloc_path();
7102 if (!path) {
7103 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7104 root->leafsize);
7105 return -ENOMEM;
7108 path->leave_spinning = 1;
7109 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7110 ins, size);
7111 if (ret) {
7112 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7113 root->leafsize);
7114 btrfs_free_path(path);
7115 return ret;
7118 leaf = path->nodes[0];
7119 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7120 struct btrfs_extent_item);
7121 btrfs_set_extent_refs(leaf, extent_item, 1);
7122 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7123 btrfs_set_extent_flags(leaf, extent_item,
7124 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7126 if (skinny_metadata) {
7127 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7128 num_bytes = root->leafsize;
7129 } else {
7130 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7131 btrfs_set_tree_block_key(leaf, block_info, key);
7132 btrfs_set_tree_block_level(leaf, block_info, level);
7133 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7136 if (parent > 0) {
7137 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7138 btrfs_set_extent_inline_ref_type(leaf, iref,
7139 BTRFS_SHARED_BLOCK_REF_KEY);
7140 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7141 } else {
7142 btrfs_set_extent_inline_ref_type(leaf, iref,
7143 BTRFS_TREE_BLOCK_REF_KEY);
7144 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7147 btrfs_mark_buffer_dirty(leaf);
7148 btrfs_free_path(path);
7150 if (!no_quota) {
7151 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7152 ins->objectid, num_bytes,
7153 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7154 if (ret)
7155 return ret;
7158 ret = update_block_group(root, ins->objectid, root->leafsize, 1);
7159 if (ret) { /* -ENOENT, logic error */
7160 btrfs_err(fs_info, "update block group failed for %llu %llu",
7161 ins->objectid, ins->offset);
7162 BUG();
7165 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->leafsize);
7166 return ret;
7169 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7170 struct btrfs_root *root,
7171 u64 root_objectid, u64 owner,
7172 u64 offset, struct btrfs_key *ins)
7174 int ret;
7176 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7178 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7179 ins->offset, 0,
7180 root_objectid, owner, offset,
7181 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7182 return ret;
7186 * this is used by the tree logging recovery code. It records that
7187 * an extent has been allocated and makes sure to clear the free
7188 * space cache bits as well
7190 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7191 struct btrfs_root *root,
7192 u64 root_objectid, u64 owner, u64 offset,
7193 struct btrfs_key *ins)
7195 int ret;
7196 struct btrfs_block_group_cache *block_group;
7199 * Mixed block groups will exclude before processing the log so we only
7200 * need to do the exlude dance if this fs isn't mixed.
7202 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7203 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7204 if (ret)
7205 return ret;
7208 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7209 if (!block_group)
7210 return -EINVAL;
7212 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7213 RESERVE_ALLOC_NO_ACCOUNT, 0);
7214 BUG_ON(ret); /* logic error */
7215 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7216 0, owner, offset, ins, 1);
7217 btrfs_put_block_group(block_group);
7218 return ret;
7221 static struct extent_buffer *
7222 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7223 u64 bytenr, u32 blocksize, int level)
7225 struct extent_buffer *buf;
7227 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
7228 if (!buf)
7229 return ERR_PTR(-ENOMEM);
7230 btrfs_set_header_generation(buf, trans->transid);
7231 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7232 btrfs_tree_lock(buf);
7233 clean_tree_block(trans, root, buf);
7234 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7236 btrfs_set_lock_blocking(buf);
7237 btrfs_set_buffer_uptodate(buf);
7239 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7241 * we allow two log transactions at a time, use different
7242 * EXENT bit to differentiate dirty pages.
7244 if (root->log_transid % 2 == 0)
7245 set_extent_dirty(&root->dirty_log_pages, buf->start,
7246 buf->start + buf->len - 1, GFP_NOFS);
7247 else
7248 set_extent_new(&root->dirty_log_pages, buf->start,
7249 buf->start + buf->len - 1, GFP_NOFS);
7250 } else {
7251 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7252 buf->start + buf->len - 1, GFP_NOFS);
7254 trans->blocks_used++;
7255 /* this returns a buffer locked for blocking */
7256 return buf;
7259 static struct btrfs_block_rsv *
7260 use_block_rsv(struct btrfs_trans_handle *trans,
7261 struct btrfs_root *root, u32 blocksize)
7263 struct btrfs_block_rsv *block_rsv;
7264 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7265 int ret;
7266 bool global_updated = false;
7268 block_rsv = get_block_rsv(trans, root);
7270 if (unlikely(block_rsv->size == 0))
7271 goto try_reserve;
7272 again:
7273 ret = block_rsv_use_bytes(block_rsv, blocksize);
7274 if (!ret)
7275 return block_rsv;
7277 if (block_rsv->failfast)
7278 return ERR_PTR(ret);
7280 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7281 global_updated = true;
7282 update_global_block_rsv(root->fs_info);
7283 goto again;
7286 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7287 static DEFINE_RATELIMIT_STATE(_rs,
7288 DEFAULT_RATELIMIT_INTERVAL * 10,
7289 /*DEFAULT_RATELIMIT_BURST*/ 1);
7290 if (__ratelimit(&_rs))
7291 WARN(1, KERN_DEBUG
7292 "BTRFS: block rsv returned %d\n", ret);
7294 try_reserve:
7295 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7296 BTRFS_RESERVE_NO_FLUSH);
7297 if (!ret)
7298 return block_rsv;
7300 * If we couldn't reserve metadata bytes try and use some from
7301 * the global reserve if its space type is the same as the global
7302 * reservation.
7304 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7305 block_rsv->space_info == global_rsv->space_info) {
7306 ret = block_rsv_use_bytes(global_rsv, blocksize);
7307 if (!ret)
7308 return global_rsv;
7310 return ERR_PTR(ret);
7313 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7314 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7316 block_rsv_add_bytes(block_rsv, blocksize, 0);
7317 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7321 * finds a free extent and does all the dirty work required for allocation
7322 * returns the key for the extent through ins, and a tree buffer for
7323 * the first block of the extent through buf.
7325 * returns the tree buffer or NULL.
7327 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
7328 struct btrfs_root *root, u32 blocksize,
7329 u64 parent, u64 root_objectid,
7330 struct btrfs_disk_key *key, int level,
7331 u64 hint, u64 empty_size)
7333 struct btrfs_key ins;
7334 struct btrfs_block_rsv *block_rsv;
7335 struct extent_buffer *buf;
7336 u64 flags = 0;
7337 int ret;
7338 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7339 SKINNY_METADATA);
7341 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
7342 if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state))) {
7343 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7344 blocksize, level);
7345 if (!IS_ERR(buf))
7346 root->alloc_bytenr += blocksize;
7347 return buf;
7349 #endif
7350 block_rsv = use_block_rsv(trans, root, blocksize);
7351 if (IS_ERR(block_rsv))
7352 return ERR_CAST(block_rsv);
7354 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7355 empty_size, hint, &ins, 0, 0);
7356 if (ret) {
7357 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7358 return ERR_PTR(ret);
7361 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
7362 blocksize, level);
7363 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7365 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7366 if (parent == 0)
7367 parent = ins.objectid;
7368 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7369 } else
7370 BUG_ON(parent > 0);
7372 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7373 struct btrfs_delayed_extent_op *extent_op;
7374 extent_op = btrfs_alloc_delayed_extent_op();
7375 BUG_ON(!extent_op); /* -ENOMEM */
7376 if (key)
7377 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7378 else
7379 memset(&extent_op->key, 0, sizeof(extent_op->key));
7380 extent_op->flags_to_set = flags;
7381 if (skinny_metadata)
7382 extent_op->update_key = 0;
7383 else
7384 extent_op->update_key = 1;
7385 extent_op->update_flags = 1;
7386 extent_op->is_data = 0;
7387 extent_op->level = level;
7389 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7390 ins.objectid,
7391 ins.offset, parent, root_objectid,
7392 level, BTRFS_ADD_DELAYED_EXTENT,
7393 extent_op, 0);
7394 BUG_ON(ret); /* -ENOMEM */
7396 return buf;
7399 struct walk_control {
7400 u64 refs[BTRFS_MAX_LEVEL];
7401 u64 flags[BTRFS_MAX_LEVEL];
7402 struct btrfs_key update_progress;
7403 int stage;
7404 int level;
7405 int shared_level;
7406 int update_ref;
7407 int keep_locks;
7408 int reada_slot;
7409 int reada_count;
7410 int for_reloc;
7413 #define DROP_REFERENCE 1
7414 #define UPDATE_BACKREF 2
7416 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7417 struct btrfs_root *root,
7418 struct walk_control *wc,
7419 struct btrfs_path *path)
7421 u64 bytenr;
7422 u64 generation;
7423 u64 refs;
7424 u64 flags;
7425 u32 nritems;
7426 u32 blocksize;
7427 struct btrfs_key key;
7428 struct extent_buffer *eb;
7429 int ret;
7430 int slot;
7431 int nread = 0;
7433 if (path->slots[wc->level] < wc->reada_slot) {
7434 wc->reada_count = wc->reada_count * 2 / 3;
7435 wc->reada_count = max(wc->reada_count, 2);
7436 } else {
7437 wc->reada_count = wc->reada_count * 3 / 2;
7438 wc->reada_count = min_t(int, wc->reada_count,
7439 BTRFS_NODEPTRS_PER_BLOCK(root));
7442 eb = path->nodes[wc->level];
7443 nritems = btrfs_header_nritems(eb);
7444 blocksize = btrfs_level_size(root, wc->level - 1);
7446 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7447 if (nread >= wc->reada_count)
7448 break;
7450 cond_resched();
7451 bytenr = btrfs_node_blockptr(eb, slot);
7452 generation = btrfs_node_ptr_generation(eb, slot);
7454 if (slot == path->slots[wc->level])
7455 goto reada;
7457 if (wc->stage == UPDATE_BACKREF &&
7458 generation <= root->root_key.offset)
7459 continue;
7461 /* We don't lock the tree block, it's OK to be racy here */
7462 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7463 wc->level - 1, 1, &refs,
7464 &flags);
7465 /* We don't care about errors in readahead. */
7466 if (ret < 0)
7467 continue;
7468 BUG_ON(refs == 0);
7470 if (wc->stage == DROP_REFERENCE) {
7471 if (refs == 1)
7472 goto reada;
7474 if (wc->level == 1 &&
7475 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7476 continue;
7477 if (!wc->update_ref ||
7478 generation <= root->root_key.offset)
7479 continue;
7480 btrfs_node_key_to_cpu(eb, &key, slot);
7481 ret = btrfs_comp_cpu_keys(&key,
7482 &wc->update_progress);
7483 if (ret < 0)
7484 continue;
7485 } else {
7486 if (wc->level == 1 &&
7487 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7488 continue;
7490 reada:
7491 ret = readahead_tree_block(root, bytenr, blocksize,
7492 generation);
7493 if (ret)
7494 break;
7495 nread++;
7497 wc->reada_slot = slot;
7501 * helper to process tree block while walking down the tree.
7503 * when wc->stage == UPDATE_BACKREF, this function updates
7504 * back refs for pointers in the block.
7506 * NOTE: return value 1 means we should stop walking down.
7508 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7509 struct btrfs_root *root,
7510 struct btrfs_path *path,
7511 struct walk_control *wc, int lookup_info)
7513 int level = wc->level;
7514 struct extent_buffer *eb = path->nodes[level];
7515 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7516 int ret;
7518 if (wc->stage == UPDATE_BACKREF &&
7519 btrfs_header_owner(eb) != root->root_key.objectid)
7520 return 1;
7523 * when reference count of tree block is 1, it won't increase
7524 * again. once full backref flag is set, we never clear it.
7526 if (lookup_info &&
7527 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7528 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7529 BUG_ON(!path->locks[level]);
7530 ret = btrfs_lookup_extent_info(trans, root,
7531 eb->start, level, 1,
7532 &wc->refs[level],
7533 &wc->flags[level]);
7534 BUG_ON(ret == -ENOMEM);
7535 if (ret)
7536 return ret;
7537 BUG_ON(wc->refs[level] == 0);
7540 if (wc->stage == DROP_REFERENCE) {
7541 if (wc->refs[level] > 1)
7542 return 1;
7544 if (path->locks[level] && !wc->keep_locks) {
7545 btrfs_tree_unlock_rw(eb, path->locks[level]);
7546 path->locks[level] = 0;
7548 return 0;
7551 /* wc->stage == UPDATE_BACKREF */
7552 if (!(wc->flags[level] & flag)) {
7553 BUG_ON(!path->locks[level]);
7554 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
7555 BUG_ON(ret); /* -ENOMEM */
7556 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
7557 BUG_ON(ret); /* -ENOMEM */
7558 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7559 eb->len, flag,
7560 btrfs_header_level(eb), 0);
7561 BUG_ON(ret); /* -ENOMEM */
7562 wc->flags[level] |= flag;
7566 * the block is shared by multiple trees, so it's not good to
7567 * keep the tree lock
7569 if (path->locks[level] && level > 0) {
7570 btrfs_tree_unlock_rw(eb, path->locks[level]);
7571 path->locks[level] = 0;
7573 return 0;
7577 * helper to process tree block pointer.
7579 * when wc->stage == DROP_REFERENCE, this function checks
7580 * reference count of the block pointed to. if the block
7581 * is shared and we need update back refs for the subtree
7582 * rooted at the block, this function changes wc->stage to
7583 * UPDATE_BACKREF. if the block is shared and there is no
7584 * need to update back, this function drops the reference
7585 * to the block.
7587 * NOTE: return value 1 means we should stop walking down.
7589 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7590 struct btrfs_root *root,
7591 struct btrfs_path *path,
7592 struct walk_control *wc, int *lookup_info)
7594 u64 bytenr;
7595 u64 generation;
7596 u64 parent;
7597 u32 blocksize;
7598 struct btrfs_key key;
7599 struct extent_buffer *next;
7600 int level = wc->level;
7601 int reada = 0;
7602 int ret = 0;
7604 generation = btrfs_node_ptr_generation(path->nodes[level],
7605 path->slots[level]);
7607 * if the lower level block was created before the snapshot
7608 * was created, we know there is no need to update back refs
7609 * for the subtree
7611 if (wc->stage == UPDATE_BACKREF &&
7612 generation <= root->root_key.offset) {
7613 *lookup_info = 1;
7614 return 1;
7617 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7618 blocksize = btrfs_level_size(root, level - 1);
7620 next = btrfs_find_tree_block(root, bytenr, blocksize);
7621 if (!next) {
7622 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7623 if (!next)
7624 return -ENOMEM;
7625 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7626 level - 1);
7627 reada = 1;
7629 btrfs_tree_lock(next);
7630 btrfs_set_lock_blocking(next);
7632 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7633 &wc->refs[level - 1],
7634 &wc->flags[level - 1]);
7635 if (ret < 0) {
7636 btrfs_tree_unlock(next);
7637 return ret;
7640 if (unlikely(wc->refs[level - 1] == 0)) {
7641 btrfs_err(root->fs_info, "Missing references.");
7642 BUG();
7644 *lookup_info = 0;
7646 if (wc->stage == DROP_REFERENCE) {
7647 if (wc->refs[level - 1] > 1) {
7648 if (level == 1 &&
7649 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7650 goto skip;
7652 if (!wc->update_ref ||
7653 generation <= root->root_key.offset)
7654 goto skip;
7656 btrfs_node_key_to_cpu(path->nodes[level], &key,
7657 path->slots[level]);
7658 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7659 if (ret < 0)
7660 goto skip;
7662 wc->stage = UPDATE_BACKREF;
7663 wc->shared_level = level - 1;
7665 } else {
7666 if (level == 1 &&
7667 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7668 goto skip;
7671 if (!btrfs_buffer_uptodate(next, generation, 0)) {
7672 btrfs_tree_unlock(next);
7673 free_extent_buffer(next);
7674 next = NULL;
7675 *lookup_info = 1;
7678 if (!next) {
7679 if (reada && level == 1)
7680 reada_walk_down(trans, root, wc, path);
7681 next = read_tree_block(root, bytenr, blocksize, generation);
7682 if (!next || !extent_buffer_uptodate(next)) {
7683 free_extent_buffer(next);
7684 return -EIO;
7686 btrfs_tree_lock(next);
7687 btrfs_set_lock_blocking(next);
7690 level--;
7691 BUG_ON(level != btrfs_header_level(next));
7692 path->nodes[level] = next;
7693 path->slots[level] = 0;
7694 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7695 wc->level = level;
7696 if (wc->level == 1)
7697 wc->reada_slot = 0;
7698 return 0;
7699 skip:
7700 wc->refs[level - 1] = 0;
7701 wc->flags[level - 1] = 0;
7702 if (wc->stage == DROP_REFERENCE) {
7703 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7704 parent = path->nodes[level]->start;
7705 } else {
7706 BUG_ON(root->root_key.objectid !=
7707 btrfs_header_owner(path->nodes[level]));
7708 parent = 0;
7711 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7712 root->root_key.objectid, level - 1, 0, 0);
7713 BUG_ON(ret); /* -ENOMEM */
7715 btrfs_tree_unlock(next);
7716 free_extent_buffer(next);
7717 *lookup_info = 1;
7718 return 1;
7722 * helper to process tree block while walking up the tree.
7724 * when wc->stage == DROP_REFERENCE, this function drops
7725 * reference count on the block.
7727 * when wc->stage == UPDATE_BACKREF, this function changes
7728 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7729 * to UPDATE_BACKREF previously while processing the block.
7731 * NOTE: return value 1 means we should stop walking up.
7733 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7734 struct btrfs_root *root,
7735 struct btrfs_path *path,
7736 struct walk_control *wc)
7738 int ret;
7739 int level = wc->level;
7740 struct extent_buffer *eb = path->nodes[level];
7741 u64 parent = 0;
7743 if (wc->stage == UPDATE_BACKREF) {
7744 BUG_ON(wc->shared_level < level);
7745 if (level < wc->shared_level)
7746 goto out;
7748 ret = find_next_key(path, level + 1, &wc->update_progress);
7749 if (ret > 0)
7750 wc->update_ref = 0;
7752 wc->stage = DROP_REFERENCE;
7753 wc->shared_level = -1;
7754 path->slots[level] = 0;
7757 * check reference count again if the block isn't locked.
7758 * we should start walking down the tree again if reference
7759 * count is one.
7761 if (!path->locks[level]) {
7762 BUG_ON(level == 0);
7763 btrfs_tree_lock(eb);
7764 btrfs_set_lock_blocking(eb);
7765 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7767 ret = btrfs_lookup_extent_info(trans, root,
7768 eb->start, level, 1,
7769 &wc->refs[level],
7770 &wc->flags[level]);
7771 if (ret < 0) {
7772 btrfs_tree_unlock_rw(eb, path->locks[level]);
7773 path->locks[level] = 0;
7774 return ret;
7776 BUG_ON(wc->refs[level] == 0);
7777 if (wc->refs[level] == 1) {
7778 btrfs_tree_unlock_rw(eb, path->locks[level]);
7779 path->locks[level] = 0;
7780 return 1;
7785 /* wc->stage == DROP_REFERENCE */
7786 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7788 if (wc->refs[level] == 1) {
7789 if (level == 0) {
7790 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7791 ret = btrfs_dec_ref(trans, root, eb, 1,
7792 wc->for_reloc);
7793 else
7794 ret = btrfs_dec_ref(trans, root, eb, 0,
7795 wc->for_reloc);
7796 BUG_ON(ret); /* -ENOMEM */
7798 /* make block locked assertion in clean_tree_block happy */
7799 if (!path->locks[level] &&
7800 btrfs_header_generation(eb) == trans->transid) {
7801 btrfs_tree_lock(eb);
7802 btrfs_set_lock_blocking(eb);
7803 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7805 clean_tree_block(trans, root, eb);
7808 if (eb == root->node) {
7809 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7810 parent = eb->start;
7811 else
7812 BUG_ON(root->root_key.objectid !=
7813 btrfs_header_owner(eb));
7814 } else {
7815 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7816 parent = path->nodes[level + 1]->start;
7817 else
7818 BUG_ON(root->root_key.objectid !=
7819 btrfs_header_owner(path->nodes[level + 1]));
7822 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7823 out:
7824 wc->refs[level] = 0;
7825 wc->flags[level] = 0;
7826 return 0;
7829 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7830 struct btrfs_root *root,
7831 struct btrfs_path *path,
7832 struct walk_control *wc)
7834 int level = wc->level;
7835 int lookup_info = 1;
7836 int ret;
7838 while (level >= 0) {
7839 ret = walk_down_proc(trans, root, path, wc, lookup_info);
7840 if (ret > 0)
7841 break;
7843 if (level == 0)
7844 break;
7846 if (path->slots[level] >=
7847 btrfs_header_nritems(path->nodes[level]))
7848 break;
7850 ret = do_walk_down(trans, root, path, wc, &lookup_info);
7851 if (ret > 0) {
7852 path->slots[level]++;
7853 continue;
7854 } else if (ret < 0)
7855 return ret;
7856 level = wc->level;
7858 return 0;
7861 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7862 struct btrfs_root *root,
7863 struct btrfs_path *path,
7864 struct walk_control *wc, int max_level)
7866 int level = wc->level;
7867 int ret;
7869 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7870 while (level < max_level && path->nodes[level]) {
7871 wc->level = level;
7872 if (path->slots[level] + 1 <
7873 btrfs_header_nritems(path->nodes[level])) {
7874 path->slots[level]++;
7875 return 0;
7876 } else {
7877 ret = walk_up_proc(trans, root, path, wc);
7878 if (ret > 0)
7879 return 0;
7881 if (path->locks[level]) {
7882 btrfs_tree_unlock_rw(path->nodes[level],
7883 path->locks[level]);
7884 path->locks[level] = 0;
7886 free_extent_buffer(path->nodes[level]);
7887 path->nodes[level] = NULL;
7888 level++;
7891 return 1;
7895 * drop a subvolume tree.
7897 * this function traverses the tree freeing any blocks that only
7898 * referenced by the tree.
7900 * when a shared tree block is found. this function decreases its
7901 * reference count by one. if update_ref is true, this function
7902 * also make sure backrefs for the shared block and all lower level
7903 * blocks are properly updated.
7905 * If called with for_reloc == 0, may exit early with -EAGAIN
7907 int btrfs_drop_snapshot(struct btrfs_root *root,
7908 struct btrfs_block_rsv *block_rsv, int update_ref,
7909 int for_reloc)
7911 struct btrfs_path *path;
7912 struct btrfs_trans_handle *trans;
7913 struct btrfs_root *tree_root = root->fs_info->tree_root;
7914 struct btrfs_root_item *root_item = &root->root_item;
7915 struct walk_control *wc;
7916 struct btrfs_key key;
7917 int err = 0;
7918 int ret;
7919 int level;
7920 bool root_dropped = false;
7922 path = btrfs_alloc_path();
7923 if (!path) {
7924 err = -ENOMEM;
7925 goto out;
7928 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7929 if (!wc) {
7930 btrfs_free_path(path);
7931 err = -ENOMEM;
7932 goto out;
7935 trans = btrfs_start_transaction(tree_root, 0);
7936 if (IS_ERR(trans)) {
7937 err = PTR_ERR(trans);
7938 goto out_free;
7941 if (block_rsv)
7942 trans->block_rsv = block_rsv;
7944 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7945 level = btrfs_header_level(root->node);
7946 path->nodes[level] = btrfs_lock_root_node(root);
7947 btrfs_set_lock_blocking(path->nodes[level]);
7948 path->slots[level] = 0;
7949 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7950 memset(&wc->update_progress, 0,
7951 sizeof(wc->update_progress));
7952 } else {
7953 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7954 memcpy(&wc->update_progress, &key,
7955 sizeof(wc->update_progress));
7957 level = root_item->drop_level;
7958 BUG_ON(level == 0);
7959 path->lowest_level = level;
7960 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7961 path->lowest_level = 0;
7962 if (ret < 0) {
7963 err = ret;
7964 goto out_end_trans;
7966 WARN_ON(ret > 0);
7969 * unlock our path, this is safe because only this
7970 * function is allowed to delete this snapshot
7972 btrfs_unlock_up_safe(path, 0);
7974 level = btrfs_header_level(root->node);
7975 while (1) {
7976 btrfs_tree_lock(path->nodes[level]);
7977 btrfs_set_lock_blocking(path->nodes[level]);
7978 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7980 ret = btrfs_lookup_extent_info(trans, root,
7981 path->nodes[level]->start,
7982 level, 1, &wc->refs[level],
7983 &wc->flags[level]);
7984 if (ret < 0) {
7985 err = ret;
7986 goto out_end_trans;
7988 BUG_ON(wc->refs[level] == 0);
7990 if (level == root_item->drop_level)
7991 break;
7993 btrfs_tree_unlock(path->nodes[level]);
7994 path->locks[level] = 0;
7995 WARN_ON(wc->refs[level] != 1);
7996 level--;
8000 wc->level = level;
8001 wc->shared_level = -1;
8002 wc->stage = DROP_REFERENCE;
8003 wc->update_ref = update_ref;
8004 wc->keep_locks = 0;
8005 wc->for_reloc = for_reloc;
8006 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8008 while (1) {
8010 ret = walk_down_tree(trans, root, path, wc);
8011 if (ret < 0) {
8012 err = ret;
8013 break;
8016 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8017 if (ret < 0) {
8018 err = ret;
8019 break;
8022 if (ret > 0) {
8023 BUG_ON(wc->stage != DROP_REFERENCE);
8024 break;
8027 if (wc->stage == DROP_REFERENCE) {
8028 level = wc->level;
8029 btrfs_node_key(path->nodes[level],
8030 &root_item->drop_progress,
8031 path->slots[level]);
8032 root_item->drop_level = level;
8035 BUG_ON(wc->level == 0);
8036 if (btrfs_should_end_transaction(trans, tree_root) ||
8037 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8038 ret = btrfs_update_root(trans, tree_root,
8039 &root->root_key,
8040 root_item);
8041 if (ret) {
8042 btrfs_abort_transaction(trans, tree_root, ret);
8043 err = ret;
8044 goto out_end_trans;
8047 btrfs_end_transaction_throttle(trans, tree_root);
8048 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8049 pr_debug("BTRFS: drop snapshot early exit\n");
8050 err = -EAGAIN;
8051 goto out_free;
8054 trans = btrfs_start_transaction(tree_root, 0);
8055 if (IS_ERR(trans)) {
8056 err = PTR_ERR(trans);
8057 goto out_free;
8059 if (block_rsv)
8060 trans->block_rsv = block_rsv;
8063 btrfs_release_path(path);
8064 if (err)
8065 goto out_end_trans;
8067 ret = btrfs_del_root(trans, tree_root, &root->root_key);
8068 if (ret) {
8069 btrfs_abort_transaction(trans, tree_root, ret);
8070 goto out_end_trans;
8073 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8074 ret = btrfs_find_root(tree_root, &root->root_key, path,
8075 NULL, NULL);
8076 if (ret < 0) {
8077 btrfs_abort_transaction(trans, tree_root, ret);
8078 err = ret;
8079 goto out_end_trans;
8080 } else if (ret > 0) {
8081 /* if we fail to delete the orphan item this time
8082 * around, it'll get picked up the next time.
8084 * The most common failure here is just -ENOENT.
8086 btrfs_del_orphan_item(trans, tree_root,
8087 root->root_key.objectid);
8091 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8092 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8093 } else {
8094 free_extent_buffer(root->node);
8095 free_extent_buffer(root->commit_root);
8096 btrfs_put_fs_root(root);
8098 root_dropped = true;
8099 out_end_trans:
8100 btrfs_end_transaction_throttle(trans, tree_root);
8101 out_free:
8102 kfree(wc);
8103 btrfs_free_path(path);
8104 out:
8106 * So if we need to stop dropping the snapshot for whatever reason we
8107 * need to make sure to add it back to the dead root list so that we
8108 * keep trying to do the work later. This also cleans up roots if we
8109 * don't have it in the radix (like when we recover after a power fail
8110 * or unmount) so we don't leak memory.
8112 if (!for_reloc && root_dropped == false)
8113 btrfs_add_dead_root(root);
8114 if (err && err != -EAGAIN)
8115 btrfs_std_error(root->fs_info, err);
8116 return err;
8120 * drop subtree rooted at tree block 'node'.
8122 * NOTE: this function will unlock and release tree block 'node'
8123 * only used by relocation code
8125 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8126 struct btrfs_root *root,
8127 struct extent_buffer *node,
8128 struct extent_buffer *parent)
8130 struct btrfs_path *path;
8131 struct walk_control *wc;
8132 int level;
8133 int parent_level;
8134 int ret = 0;
8135 int wret;
8137 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8139 path = btrfs_alloc_path();
8140 if (!path)
8141 return -ENOMEM;
8143 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8144 if (!wc) {
8145 btrfs_free_path(path);
8146 return -ENOMEM;
8149 btrfs_assert_tree_locked(parent);
8150 parent_level = btrfs_header_level(parent);
8151 extent_buffer_get(parent);
8152 path->nodes[parent_level] = parent;
8153 path->slots[parent_level] = btrfs_header_nritems(parent);
8155 btrfs_assert_tree_locked(node);
8156 level = btrfs_header_level(node);
8157 path->nodes[level] = node;
8158 path->slots[level] = 0;
8159 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8161 wc->refs[parent_level] = 1;
8162 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8163 wc->level = level;
8164 wc->shared_level = -1;
8165 wc->stage = DROP_REFERENCE;
8166 wc->update_ref = 0;
8167 wc->keep_locks = 1;
8168 wc->for_reloc = 1;
8169 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8171 while (1) {
8172 wret = walk_down_tree(trans, root, path, wc);
8173 if (wret < 0) {
8174 ret = wret;
8175 break;
8178 wret = walk_up_tree(trans, root, path, wc, parent_level);
8179 if (wret < 0)
8180 ret = wret;
8181 if (wret != 0)
8182 break;
8185 kfree(wc);
8186 btrfs_free_path(path);
8187 return ret;
8190 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8192 u64 num_devices;
8193 u64 stripped;
8196 * if restripe for this chunk_type is on pick target profile and
8197 * return, otherwise do the usual balance
8199 stripped = get_restripe_target(root->fs_info, flags);
8200 if (stripped)
8201 return extended_to_chunk(stripped);
8204 * we add in the count of missing devices because we want
8205 * to make sure that any RAID levels on a degraded FS
8206 * continue to be honored.
8208 num_devices = root->fs_info->fs_devices->rw_devices +
8209 root->fs_info->fs_devices->missing_devices;
8211 stripped = BTRFS_BLOCK_GROUP_RAID0 |
8212 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8213 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8215 if (num_devices == 1) {
8216 stripped |= BTRFS_BLOCK_GROUP_DUP;
8217 stripped = flags & ~stripped;
8219 /* turn raid0 into single device chunks */
8220 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8221 return stripped;
8223 /* turn mirroring into duplication */
8224 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8225 BTRFS_BLOCK_GROUP_RAID10))
8226 return stripped | BTRFS_BLOCK_GROUP_DUP;
8227 } else {
8228 /* they already had raid on here, just return */
8229 if (flags & stripped)
8230 return flags;
8232 stripped |= BTRFS_BLOCK_GROUP_DUP;
8233 stripped = flags & ~stripped;
8235 /* switch duplicated blocks with raid1 */
8236 if (flags & BTRFS_BLOCK_GROUP_DUP)
8237 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8239 /* this is drive concat, leave it alone */
8242 return flags;
8245 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8247 struct btrfs_space_info *sinfo = cache->space_info;
8248 u64 num_bytes;
8249 u64 min_allocable_bytes;
8250 int ret = -ENOSPC;
8254 * We need some metadata space and system metadata space for
8255 * allocating chunks in some corner cases until we force to set
8256 * it to be readonly.
8258 if ((sinfo->flags &
8259 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8260 !force)
8261 min_allocable_bytes = 1 * 1024 * 1024;
8262 else
8263 min_allocable_bytes = 0;
8265 spin_lock(&sinfo->lock);
8266 spin_lock(&cache->lock);
8268 if (cache->ro) {
8269 ret = 0;
8270 goto out;
8273 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8274 cache->bytes_super - btrfs_block_group_used(&cache->item);
8276 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8277 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8278 min_allocable_bytes <= sinfo->total_bytes) {
8279 sinfo->bytes_readonly += num_bytes;
8280 cache->ro = 1;
8281 ret = 0;
8283 out:
8284 spin_unlock(&cache->lock);
8285 spin_unlock(&sinfo->lock);
8286 return ret;
8289 int btrfs_set_block_group_ro(struct btrfs_root *root,
8290 struct btrfs_block_group_cache *cache)
8293 struct btrfs_trans_handle *trans;
8294 u64 alloc_flags;
8295 int ret;
8297 BUG_ON(cache->ro);
8299 trans = btrfs_join_transaction(root);
8300 if (IS_ERR(trans))
8301 return PTR_ERR(trans);
8303 alloc_flags = update_block_group_flags(root, cache->flags);
8304 if (alloc_flags != cache->flags) {
8305 ret = do_chunk_alloc(trans, root, alloc_flags,
8306 CHUNK_ALLOC_FORCE);
8307 if (ret < 0)
8308 goto out;
8311 ret = set_block_group_ro(cache, 0);
8312 if (!ret)
8313 goto out;
8314 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8315 ret = do_chunk_alloc(trans, root, alloc_flags,
8316 CHUNK_ALLOC_FORCE);
8317 if (ret < 0)
8318 goto out;
8319 ret = set_block_group_ro(cache, 0);
8320 out:
8321 btrfs_end_transaction(trans, root);
8322 return ret;
8325 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8326 struct btrfs_root *root, u64 type)
8328 u64 alloc_flags = get_alloc_profile(root, type);
8329 return do_chunk_alloc(trans, root, alloc_flags,
8330 CHUNK_ALLOC_FORCE);
8334 * helper to account the unused space of all the readonly block group in the
8335 * list. takes mirrors into account.
8337 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
8339 struct btrfs_block_group_cache *block_group;
8340 u64 free_bytes = 0;
8341 int factor;
8343 list_for_each_entry(block_group, groups_list, list) {
8344 spin_lock(&block_group->lock);
8346 if (!block_group->ro) {
8347 spin_unlock(&block_group->lock);
8348 continue;
8351 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8352 BTRFS_BLOCK_GROUP_RAID10 |
8353 BTRFS_BLOCK_GROUP_DUP))
8354 factor = 2;
8355 else
8356 factor = 1;
8358 free_bytes += (block_group->key.offset -
8359 btrfs_block_group_used(&block_group->item)) *
8360 factor;
8362 spin_unlock(&block_group->lock);
8365 return free_bytes;
8369 * helper to account the unused space of all the readonly block group in the
8370 * space_info. takes mirrors into account.
8372 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8374 int i;
8375 u64 free_bytes = 0;
8377 spin_lock(&sinfo->lock);
8379 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
8380 if (!list_empty(&sinfo->block_groups[i]))
8381 free_bytes += __btrfs_get_ro_block_group_free_space(
8382 &sinfo->block_groups[i]);
8384 spin_unlock(&sinfo->lock);
8386 return free_bytes;
8389 void btrfs_set_block_group_rw(struct btrfs_root *root,
8390 struct btrfs_block_group_cache *cache)
8392 struct btrfs_space_info *sinfo = cache->space_info;
8393 u64 num_bytes;
8395 BUG_ON(!cache->ro);
8397 spin_lock(&sinfo->lock);
8398 spin_lock(&cache->lock);
8399 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8400 cache->bytes_super - btrfs_block_group_used(&cache->item);
8401 sinfo->bytes_readonly -= num_bytes;
8402 cache->ro = 0;
8403 spin_unlock(&cache->lock);
8404 spin_unlock(&sinfo->lock);
8408 * checks to see if its even possible to relocate this block group.
8410 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8411 * ok to go ahead and try.
8413 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8415 struct btrfs_block_group_cache *block_group;
8416 struct btrfs_space_info *space_info;
8417 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8418 struct btrfs_device *device;
8419 struct btrfs_trans_handle *trans;
8420 u64 min_free;
8421 u64 dev_min = 1;
8422 u64 dev_nr = 0;
8423 u64 target;
8424 int index;
8425 int full = 0;
8426 int ret = 0;
8428 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8430 /* odd, couldn't find the block group, leave it alone */
8431 if (!block_group)
8432 return -1;
8434 min_free = btrfs_block_group_used(&block_group->item);
8436 /* no bytes used, we're good */
8437 if (!min_free)
8438 goto out;
8440 space_info = block_group->space_info;
8441 spin_lock(&space_info->lock);
8443 full = space_info->full;
8446 * if this is the last block group we have in this space, we can't
8447 * relocate it unless we're able to allocate a new chunk below.
8449 * Otherwise, we need to make sure we have room in the space to handle
8450 * all of the extents from this block group. If we can, we're good
8452 if ((space_info->total_bytes != block_group->key.offset) &&
8453 (space_info->bytes_used + space_info->bytes_reserved +
8454 space_info->bytes_pinned + space_info->bytes_readonly +
8455 min_free < space_info->total_bytes)) {
8456 spin_unlock(&space_info->lock);
8457 goto out;
8459 spin_unlock(&space_info->lock);
8462 * ok we don't have enough space, but maybe we have free space on our
8463 * devices to allocate new chunks for relocation, so loop through our
8464 * alloc devices and guess if we have enough space. if this block
8465 * group is going to be restriped, run checks against the target
8466 * profile instead of the current one.
8468 ret = -1;
8471 * index:
8472 * 0: raid10
8473 * 1: raid1
8474 * 2: dup
8475 * 3: raid0
8476 * 4: single
8478 target = get_restripe_target(root->fs_info, block_group->flags);
8479 if (target) {
8480 index = __get_raid_index(extended_to_chunk(target));
8481 } else {
8483 * this is just a balance, so if we were marked as full
8484 * we know there is no space for a new chunk
8486 if (full)
8487 goto out;
8489 index = get_block_group_index(block_group);
8492 if (index == BTRFS_RAID_RAID10) {
8493 dev_min = 4;
8494 /* Divide by 2 */
8495 min_free >>= 1;
8496 } else if (index == BTRFS_RAID_RAID1) {
8497 dev_min = 2;
8498 } else if (index == BTRFS_RAID_DUP) {
8499 /* Multiply by 2 */
8500 min_free <<= 1;
8501 } else if (index == BTRFS_RAID_RAID0) {
8502 dev_min = fs_devices->rw_devices;
8503 do_div(min_free, dev_min);
8506 /* We need to do this so that we can look at pending chunks */
8507 trans = btrfs_join_transaction(root);
8508 if (IS_ERR(trans)) {
8509 ret = PTR_ERR(trans);
8510 goto out;
8513 mutex_lock(&root->fs_info->chunk_mutex);
8514 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8515 u64 dev_offset;
8518 * check to make sure we can actually find a chunk with enough
8519 * space to fit our block group in.
8521 if (device->total_bytes > device->bytes_used + min_free &&
8522 !device->is_tgtdev_for_dev_replace) {
8523 ret = find_free_dev_extent(trans, device, min_free,
8524 &dev_offset, NULL);
8525 if (!ret)
8526 dev_nr++;
8528 if (dev_nr >= dev_min)
8529 break;
8531 ret = -1;
8534 mutex_unlock(&root->fs_info->chunk_mutex);
8535 btrfs_end_transaction(trans, root);
8536 out:
8537 btrfs_put_block_group(block_group);
8538 return ret;
8541 static int find_first_block_group(struct btrfs_root *root,
8542 struct btrfs_path *path, struct btrfs_key *key)
8544 int ret = 0;
8545 struct btrfs_key found_key;
8546 struct extent_buffer *leaf;
8547 int slot;
8549 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8550 if (ret < 0)
8551 goto out;
8553 while (1) {
8554 slot = path->slots[0];
8555 leaf = path->nodes[0];
8556 if (slot >= btrfs_header_nritems(leaf)) {
8557 ret = btrfs_next_leaf(root, path);
8558 if (ret == 0)
8559 continue;
8560 if (ret < 0)
8561 goto out;
8562 break;
8564 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8566 if (found_key.objectid >= key->objectid &&
8567 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8568 ret = 0;
8569 goto out;
8571 path->slots[0]++;
8573 out:
8574 return ret;
8577 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8579 struct btrfs_block_group_cache *block_group;
8580 u64 last = 0;
8582 while (1) {
8583 struct inode *inode;
8585 block_group = btrfs_lookup_first_block_group(info, last);
8586 while (block_group) {
8587 spin_lock(&block_group->lock);
8588 if (block_group->iref)
8589 break;
8590 spin_unlock(&block_group->lock);
8591 block_group = next_block_group(info->tree_root,
8592 block_group);
8594 if (!block_group) {
8595 if (last == 0)
8596 break;
8597 last = 0;
8598 continue;
8601 inode = block_group->inode;
8602 block_group->iref = 0;
8603 block_group->inode = NULL;
8604 spin_unlock(&block_group->lock);
8605 iput(inode);
8606 last = block_group->key.objectid + block_group->key.offset;
8607 btrfs_put_block_group(block_group);
8611 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8613 struct btrfs_block_group_cache *block_group;
8614 struct btrfs_space_info *space_info;
8615 struct btrfs_caching_control *caching_ctl;
8616 struct rb_node *n;
8618 down_write(&info->commit_root_sem);
8619 while (!list_empty(&info->caching_block_groups)) {
8620 caching_ctl = list_entry(info->caching_block_groups.next,
8621 struct btrfs_caching_control, list);
8622 list_del(&caching_ctl->list);
8623 put_caching_control(caching_ctl);
8625 up_write(&info->commit_root_sem);
8627 spin_lock(&info->block_group_cache_lock);
8628 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8629 block_group = rb_entry(n, struct btrfs_block_group_cache,
8630 cache_node);
8631 rb_erase(&block_group->cache_node,
8632 &info->block_group_cache_tree);
8633 spin_unlock(&info->block_group_cache_lock);
8635 down_write(&block_group->space_info->groups_sem);
8636 list_del(&block_group->list);
8637 up_write(&block_group->space_info->groups_sem);
8639 if (block_group->cached == BTRFS_CACHE_STARTED)
8640 wait_block_group_cache_done(block_group);
8643 * We haven't cached this block group, which means we could
8644 * possibly have excluded extents on this block group.
8646 if (block_group->cached == BTRFS_CACHE_NO ||
8647 block_group->cached == BTRFS_CACHE_ERROR)
8648 free_excluded_extents(info->extent_root, block_group);
8650 btrfs_remove_free_space_cache(block_group);
8651 btrfs_put_block_group(block_group);
8653 spin_lock(&info->block_group_cache_lock);
8655 spin_unlock(&info->block_group_cache_lock);
8657 /* now that all the block groups are freed, go through and
8658 * free all the space_info structs. This is only called during
8659 * the final stages of unmount, and so we know nobody is
8660 * using them. We call synchronize_rcu() once before we start,
8661 * just to be on the safe side.
8663 synchronize_rcu();
8665 release_global_block_rsv(info);
8667 while (!list_empty(&info->space_info)) {
8668 int i;
8670 space_info = list_entry(info->space_info.next,
8671 struct btrfs_space_info,
8672 list);
8673 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8674 if (WARN_ON(space_info->bytes_pinned > 0 ||
8675 space_info->bytes_reserved > 0 ||
8676 space_info->bytes_may_use > 0)) {
8677 dump_space_info(space_info, 0, 0);
8680 list_del(&space_info->list);
8681 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
8682 struct kobject *kobj;
8683 kobj = space_info->block_group_kobjs[i];
8684 space_info->block_group_kobjs[i] = NULL;
8685 if (kobj) {
8686 kobject_del(kobj);
8687 kobject_put(kobj);
8690 kobject_del(&space_info->kobj);
8691 kobject_put(&space_info->kobj);
8693 return 0;
8696 static void __link_block_group(struct btrfs_space_info *space_info,
8697 struct btrfs_block_group_cache *cache)
8699 int index = get_block_group_index(cache);
8700 bool first = false;
8702 down_write(&space_info->groups_sem);
8703 if (list_empty(&space_info->block_groups[index]))
8704 first = true;
8705 list_add_tail(&cache->list, &space_info->block_groups[index]);
8706 up_write(&space_info->groups_sem);
8708 if (first) {
8709 struct raid_kobject *rkobj;
8710 int ret;
8712 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
8713 if (!rkobj)
8714 goto out_err;
8715 rkobj->raid_type = index;
8716 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
8717 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
8718 "%s", get_raid_name(index));
8719 if (ret) {
8720 kobject_put(&rkobj->kobj);
8721 goto out_err;
8723 space_info->block_group_kobjs[index] = &rkobj->kobj;
8726 return;
8727 out_err:
8728 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8731 static struct btrfs_block_group_cache *
8732 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
8734 struct btrfs_block_group_cache *cache;
8736 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8737 if (!cache)
8738 return NULL;
8740 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8741 GFP_NOFS);
8742 if (!cache->free_space_ctl) {
8743 kfree(cache);
8744 return NULL;
8747 cache->key.objectid = start;
8748 cache->key.offset = size;
8749 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8751 cache->sectorsize = root->sectorsize;
8752 cache->fs_info = root->fs_info;
8753 cache->full_stripe_len = btrfs_full_stripe_len(root,
8754 &root->fs_info->mapping_tree,
8755 start);
8756 atomic_set(&cache->count, 1);
8757 spin_lock_init(&cache->lock);
8758 init_rwsem(&cache->data_rwsem);
8759 INIT_LIST_HEAD(&cache->list);
8760 INIT_LIST_HEAD(&cache->cluster_list);
8761 INIT_LIST_HEAD(&cache->new_bg_list);
8762 btrfs_init_free_space_ctl(cache);
8764 return cache;
8767 int btrfs_read_block_groups(struct btrfs_root *root)
8769 struct btrfs_path *path;
8770 int ret;
8771 struct btrfs_block_group_cache *cache;
8772 struct btrfs_fs_info *info = root->fs_info;
8773 struct btrfs_space_info *space_info;
8774 struct btrfs_key key;
8775 struct btrfs_key found_key;
8776 struct extent_buffer *leaf;
8777 int need_clear = 0;
8778 u64 cache_gen;
8780 root = info->extent_root;
8781 key.objectid = 0;
8782 key.offset = 0;
8783 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8784 path = btrfs_alloc_path();
8785 if (!path)
8786 return -ENOMEM;
8787 path->reada = 1;
8789 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8790 if (btrfs_test_opt(root, SPACE_CACHE) &&
8791 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8792 need_clear = 1;
8793 if (btrfs_test_opt(root, CLEAR_CACHE))
8794 need_clear = 1;
8796 while (1) {
8797 ret = find_first_block_group(root, path, &key);
8798 if (ret > 0)
8799 break;
8800 if (ret != 0)
8801 goto error;
8803 leaf = path->nodes[0];
8804 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8806 cache = btrfs_create_block_group_cache(root, found_key.objectid,
8807 found_key.offset);
8808 if (!cache) {
8809 ret = -ENOMEM;
8810 goto error;
8813 if (need_clear) {
8815 * When we mount with old space cache, we need to
8816 * set BTRFS_DC_CLEAR and set dirty flag.
8818 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8819 * truncate the old free space cache inode and
8820 * setup a new one.
8821 * b) Setting 'dirty flag' makes sure that we flush
8822 * the new space cache info onto disk.
8824 cache->disk_cache_state = BTRFS_DC_CLEAR;
8825 if (btrfs_test_opt(root, SPACE_CACHE))
8826 cache->dirty = 1;
8829 read_extent_buffer(leaf, &cache->item,
8830 btrfs_item_ptr_offset(leaf, path->slots[0]),
8831 sizeof(cache->item));
8832 cache->flags = btrfs_block_group_flags(&cache->item);
8834 key.objectid = found_key.objectid + found_key.offset;
8835 btrfs_release_path(path);
8838 * We need to exclude the super stripes now so that the space
8839 * info has super bytes accounted for, otherwise we'll think
8840 * we have more space than we actually do.
8842 ret = exclude_super_stripes(root, cache);
8843 if (ret) {
8845 * We may have excluded something, so call this just in
8846 * case.
8848 free_excluded_extents(root, cache);
8849 btrfs_put_block_group(cache);
8850 goto error;
8854 * check for two cases, either we are full, and therefore
8855 * don't need to bother with the caching work since we won't
8856 * find any space, or we are empty, and we can just add all
8857 * the space in and be done with it. This saves us _alot_ of
8858 * time, particularly in the full case.
8860 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8861 cache->last_byte_to_unpin = (u64)-1;
8862 cache->cached = BTRFS_CACHE_FINISHED;
8863 free_excluded_extents(root, cache);
8864 } else if (btrfs_block_group_used(&cache->item) == 0) {
8865 cache->last_byte_to_unpin = (u64)-1;
8866 cache->cached = BTRFS_CACHE_FINISHED;
8867 add_new_free_space(cache, root->fs_info,
8868 found_key.objectid,
8869 found_key.objectid +
8870 found_key.offset);
8871 free_excluded_extents(root, cache);
8874 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8875 if (ret) {
8876 btrfs_remove_free_space_cache(cache);
8877 btrfs_put_block_group(cache);
8878 goto error;
8881 ret = update_space_info(info, cache->flags, found_key.offset,
8882 btrfs_block_group_used(&cache->item),
8883 &space_info);
8884 if (ret) {
8885 btrfs_remove_free_space_cache(cache);
8886 spin_lock(&info->block_group_cache_lock);
8887 rb_erase(&cache->cache_node,
8888 &info->block_group_cache_tree);
8889 spin_unlock(&info->block_group_cache_lock);
8890 btrfs_put_block_group(cache);
8891 goto error;
8894 cache->space_info = space_info;
8895 spin_lock(&cache->space_info->lock);
8896 cache->space_info->bytes_readonly += cache->bytes_super;
8897 spin_unlock(&cache->space_info->lock);
8899 __link_block_group(space_info, cache);
8901 set_avail_alloc_bits(root->fs_info, cache->flags);
8902 if (btrfs_chunk_readonly(root, cache->key.objectid))
8903 set_block_group_ro(cache, 1);
8906 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8907 if (!(get_alloc_profile(root, space_info->flags) &
8908 (BTRFS_BLOCK_GROUP_RAID10 |
8909 BTRFS_BLOCK_GROUP_RAID1 |
8910 BTRFS_BLOCK_GROUP_RAID5 |
8911 BTRFS_BLOCK_GROUP_RAID6 |
8912 BTRFS_BLOCK_GROUP_DUP)))
8913 continue;
8915 * avoid allocating from un-mirrored block group if there are
8916 * mirrored block groups.
8918 list_for_each_entry(cache,
8919 &space_info->block_groups[BTRFS_RAID_RAID0],
8920 list)
8921 set_block_group_ro(cache, 1);
8922 list_for_each_entry(cache,
8923 &space_info->block_groups[BTRFS_RAID_SINGLE],
8924 list)
8925 set_block_group_ro(cache, 1);
8928 init_global_block_rsv(info);
8929 ret = 0;
8930 error:
8931 btrfs_free_path(path);
8932 return ret;
8935 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8936 struct btrfs_root *root)
8938 struct btrfs_block_group_cache *block_group, *tmp;
8939 struct btrfs_root *extent_root = root->fs_info->extent_root;
8940 struct btrfs_block_group_item item;
8941 struct btrfs_key key;
8942 int ret = 0;
8944 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8945 new_bg_list) {
8946 list_del_init(&block_group->new_bg_list);
8948 if (ret)
8949 continue;
8951 spin_lock(&block_group->lock);
8952 memcpy(&item, &block_group->item, sizeof(item));
8953 memcpy(&key, &block_group->key, sizeof(key));
8954 spin_unlock(&block_group->lock);
8956 ret = btrfs_insert_item(trans, extent_root, &key, &item,
8957 sizeof(item));
8958 if (ret)
8959 btrfs_abort_transaction(trans, extent_root, ret);
8960 ret = btrfs_finish_chunk_alloc(trans, extent_root,
8961 key.objectid, key.offset);
8962 if (ret)
8963 btrfs_abort_transaction(trans, extent_root, ret);
8967 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8968 struct btrfs_root *root, u64 bytes_used,
8969 u64 type, u64 chunk_objectid, u64 chunk_offset,
8970 u64 size)
8972 int ret;
8973 struct btrfs_root *extent_root;
8974 struct btrfs_block_group_cache *cache;
8976 extent_root = root->fs_info->extent_root;
8978 btrfs_set_log_full_commit(root->fs_info, trans);
8980 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
8981 if (!cache)
8982 return -ENOMEM;
8984 btrfs_set_block_group_used(&cache->item, bytes_used);
8985 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8986 btrfs_set_block_group_flags(&cache->item, type);
8988 cache->flags = type;
8989 cache->last_byte_to_unpin = (u64)-1;
8990 cache->cached = BTRFS_CACHE_FINISHED;
8991 ret = exclude_super_stripes(root, cache);
8992 if (ret) {
8994 * We may have excluded something, so call this just in
8995 * case.
8997 free_excluded_extents(root, cache);
8998 btrfs_put_block_group(cache);
8999 return ret;
9002 add_new_free_space(cache, root->fs_info, chunk_offset,
9003 chunk_offset + size);
9005 free_excluded_extents(root, cache);
9007 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9008 if (ret) {
9009 btrfs_remove_free_space_cache(cache);
9010 btrfs_put_block_group(cache);
9011 return ret;
9014 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9015 &cache->space_info);
9016 if (ret) {
9017 btrfs_remove_free_space_cache(cache);
9018 spin_lock(&root->fs_info->block_group_cache_lock);
9019 rb_erase(&cache->cache_node,
9020 &root->fs_info->block_group_cache_tree);
9021 spin_unlock(&root->fs_info->block_group_cache_lock);
9022 btrfs_put_block_group(cache);
9023 return ret;
9025 update_global_block_rsv(root->fs_info);
9027 spin_lock(&cache->space_info->lock);
9028 cache->space_info->bytes_readonly += cache->bytes_super;
9029 spin_unlock(&cache->space_info->lock);
9031 __link_block_group(cache->space_info, cache);
9033 list_add_tail(&cache->new_bg_list, &trans->new_bgs);
9035 set_avail_alloc_bits(extent_root->fs_info, type);
9037 return 0;
9040 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9042 u64 extra_flags = chunk_to_extended(flags) &
9043 BTRFS_EXTENDED_PROFILE_MASK;
9045 write_seqlock(&fs_info->profiles_lock);
9046 if (flags & BTRFS_BLOCK_GROUP_DATA)
9047 fs_info->avail_data_alloc_bits &= ~extra_flags;
9048 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9049 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9050 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9051 fs_info->avail_system_alloc_bits &= ~extra_flags;
9052 write_sequnlock(&fs_info->profiles_lock);
9055 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9056 struct btrfs_root *root, u64 group_start)
9058 struct btrfs_path *path;
9059 struct btrfs_block_group_cache *block_group;
9060 struct btrfs_free_cluster *cluster;
9061 struct btrfs_root *tree_root = root->fs_info->tree_root;
9062 struct btrfs_key key;
9063 struct inode *inode;
9064 struct kobject *kobj = NULL;
9065 int ret;
9066 int index;
9067 int factor;
9069 root = root->fs_info->extent_root;
9071 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9072 BUG_ON(!block_group);
9073 BUG_ON(!block_group->ro);
9076 * Free the reserved super bytes from this block group before
9077 * remove it.
9079 free_excluded_extents(root, block_group);
9081 memcpy(&key, &block_group->key, sizeof(key));
9082 index = get_block_group_index(block_group);
9083 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9084 BTRFS_BLOCK_GROUP_RAID1 |
9085 BTRFS_BLOCK_GROUP_RAID10))
9086 factor = 2;
9087 else
9088 factor = 1;
9090 /* make sure this block group isn't part of an allocation cluster */
9091 cluster = &root->fs_info->data_alloc_cluster;
9092 spin_lock(&cluster->refill_lock);
9093 btrfs_return_cluster_to_free_space(block_group, cluster);
9094 spin_unlock(&cluster->refill_lock);
9097 * make sure this block group isn't part of a metadata
9098 * allocation cluster
9100 cluster = &root->fs_info->meta_alloc_cluster;
9101 spin_lock(&cluster->refill_lock);
9102 btrfs_return_cluster_to_free_space(block_group, cluster);
9103 spin_unlock(&cluster->refill_lock);
9105 path = btrfs_alloc_path();
9106 if (!path) {
9107 ret = -ENOMEM;
9108 goto out;
9111 inode = lookup_free_space_inode(tree_root, block_group, path);
9112 if (!IS_ERR(inode)) {
9113 ret = btrfs_orphan_add(trans, inode);
9114 if (ret) {
9115 btrfs_add_delayed_iput(inode);
9116 goto out;
9118 clear_nlink(inode);
9119 /* One for the block groups ref */
9120 spin_lock(&block_group->lock);
9121 if (block_group->iref) {
9122 block_group->iref = 0;
9123 block_group->inode = NULL;
9124 spin_unlock(&block_group->lock);
9125 iput(inode);
9126 } else {
9127 spin_unlock(&block_group->lock);
9129 /* One for our lookup ref */
9130 btrfs_add_delayed_iput(inode);
9133 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9134 key.offset = block_group->key.objectid;
9135 key.type = 0;
9137 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9138 if (ret < 0)
9139 goto out;
9140 if (ret > 0)
9141 btrfs_release_path(path);
9142 if (ret == 0) {
9143 ret = btrfs_del_item(trans, tree_root, path);
9144 if (ret)
9145 goto out;
9146 btrfs_release_path(path);
9149 spin_lock(&root->fs_info->block_group_cache_lock);
9150 rb_erase(&block_group->cache_node,
9151 &root->fs_info->block_group_cache_tree);
9153 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9154 root->fs_info->first_logical_byte = (u64)-1;
9155 spin_unlock(&root->fs_info->block_group_cache_lock);
9157 down_write(&block_group->space_info->groups_sem);
9159 * we must use list_del_init so people can check to see if they
9160 * are still on the list after taking the semaphore
9162 list_del_init(&block_group->list);
9163 if (list_empty(&block_group->space_info->block_groups[index])) {
9164 kobj = block_group->space_info->block_group_kobjs[index];
9165 block_group->space_info->block_group_kobjs[index] = NULL;
9166 clear_avail_alloc_bits(root->fs_info, block_group->flags);
9168 up_write(&block_group->space_info->groups_sem);
9169 if (kobj) {
9170 kobject_del(kobj);
9171 kobject_put(kobj);
9174 if (block_group->cached == BTRFS_CACHE_STARTED)
9175 wait_block_group_cache_done(block_group);
9177 btrfs_remove_free_space_cache(block_group);
9179 spin_lock(&block_group->space_info->lock);
9180 block_group->space_info->total_bytes -= block_group->key.offset;
9181 block_group->space_info->bytes_readonly -= block_group->key.offset;
9182 block_group->space_info->disk_total -= block_group->key.offset * factor;
9183 spin_unlock(&block_group->space_info->lock);
9185 memcpy(&key, &block_group->key, sizeof(key));
9187 btrfs_clear_space_info_full(root->fs_info);
9189 btrfs_put_block_group(block_group);
9190 btrfs_put_block_group(block_group);
9192 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9193 if (ret > 0)
9194 ret = -EIO;
9195 if (ret < 0)
9196 goto out;
9198 ret = btrfs_del_item(trans, root, path);
9199 out:
9200 btrfs_free_path(path);
9201 return ret;
9204 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9206 struct btrfs_space_info *space_info;
9207 struct btrfs_super_block *disk_super;
9208 u64 features;
9209 u64 flags;
9210 int mixed = 0;
9211 int ret;
9213 disk_super = fs_info->super_copy;
9214 if (!btrfs_super_root(disk_super))
9215 return -EINVAL;
9217 features = btrfs_super_incompat_flags(disk_super);
9218 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
9219 mixed = 1;
9221 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9222 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9223 if (ret)
9224 goto out;
9226 if (mixed) {
9227 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
9228 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9229 } else {
9230 flags = BTRFS_BLOCK_GROUP_METADATA;
9231 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9232 if (ret)
9233 goto out;
9235 flags = BTRFS_BLOCK_GROUP_DATA;
9236 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9238 out:
9239 return ret;
9242 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
9244 return unpin_extent_range(root, start, end, false);
9247 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
9248 u64 num_bytes, u64 *actual_bytes)
9250 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
9253 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
9255 struct btrfs_fs_info *fs_info = root->fs_info;
9256 struct btrfs_block_group_cache *cache = NULL;
9257 u64 group_trimmed;
9258 u64 start;
9259 u64 end;
9260 u64 trimmed = 0;
9261 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
9262 int ret = 0;
9265 * try to trim all FS space, our block group may start from non-zero.
9267 if (range->len == total_bytes)
9268 cache = btrfs_lookup_first_block_group(fs_info, range->start);
9269 else
9270 cache = btrfs_lookup_block_group(fs_info, range->start);
9272 while (cache) {
9273 if (cache->key.objectid >= (range->start + range->len)) {
9274 btrfs_put_block_group(cache);
9275 break;
9278 start = max(range->start, cache->key.objectid);
9279 end = min(range->start + range->len,
9280 cache->key.objectid + cache->key.offset);
9282 if (end - start >= range->minlen) {
9283 if (!block_group_cache_done(cache)) {
9284 ret = cache_block_group(cache, 0);
9285 if (ret) {
9286 btrfs_put_block_group(cache);
9287 break;
9289 ret = wait_block_group_cache_done(cache);
9290 if (ret) {
9291 btrfs_put_block_group(cache);
9292 break;
9295 ret = btrfs_trim_block_group(cache,
9296 &group_trimmed,
9297 start,
9298 end,
9299 range->minlen);
9301 trimmed += group_trimmed;
9302 if (ret) {
9303 btrfs_put_block_group(cache);
9304 break;
9308 cache = next_block_group(fs_info->tree_root, cache);
9311 range->len = trimmed;
9312 return ret;
9316 * btrfs_{start,end}_write() is similar to mnt_{want, drop}_write(),
9317 * they are used to prevent the some tasks writing data into the page cache
9318 * by nocow before the subvolume is snapshoted, but flush the data into
9319 * the disk after the snapshot creation.
9321 void btrfs_end_nocow_write(struct btrfs_root *root)
9323 percpu_counter_dec(&root->subv_writers->counter);
9325 * Make sure counter is updated before we wake up
9326 * waiters.
9328 smp_mb();
9329 if (waitqueue_active(&root->subv_writers->wait))
9330 wake_up(&root->subv_writers->wait);
9333 int btrfs_start_nocow_write(struct btrfs_root *root)
9335 if (unlikely(atomic_read(&root->will_be_snapshoted)))
9336 return 0;
9338 percpu_counter_inc(&root->subv_writers->counter);
9340 * Make sure counter is updated before we check for snapshot creation.
9342 smp_mb();
9343 if (unlikely(atomic_read(&root->will_be_snapshoted))) {
9344 btrfs_end_nocow_write(root);
9345 return 0;
9347 return 1;