4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_u.d_alias, d_inode of aliases
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
52 * dentry->d_sb->s_dentry_lru_lock protects:
53 * - the dcache lru lists and counters
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
62 * - d_u.d_alias, d_inode
65 * dentry->d_inode->i_lock
67 * dentry->d_sb->s_dentry_lru_lock
68 * dcache_hash_bucket lock
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
74 * dentry->d_parent->d_lock
77 * If no ancestor relationship:
78 * if (dentry1 < dentry2)
82 int sysctl_vfs_cache_pressure __read_mostly
= 100;
83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
85 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
87 EXPORT_SYMBOL(rename_lock
);
89 static struct kmem_cache
*dentry_cache __read_mostly
;
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
100 static unsigned int d_hash_mask __read_mostly
;
101 static unsigned int d_hash_shift __read_mostly
;
103 static struct hlist_bl_head
*dentry_hashtable __read_mostly
;
105 static inline struct hlist_bl_head
*d_hash(const struct dentry
*parent
,
108 hash
+= (unsigned long) parent
/ L1_CACHE_BYTES
;
109 return dentry_hashtable
+ hash_32(hash
, d_hash_shift
);
112 /* Statistics gathering. */
113 struct dentry_stat_t dentry_stat
= {
117 static DEFINE_PER_CPU(long, nr_dentry
);
118 static DEFINE_PER_CPU(long, nr_dentry_unused
);
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 * Here we resort to our own counters instead of using generic per-cpu counters
124 * for consistency with what the vfs inode code does. We are expected to harvest
125 * better code and performance by having our own specialized counters.
127 * Please note that the loop is done over all possible CPUs, not over all online
128 * CPUs. The reason for this is that we don't want to play games with CPUs going
129 * on and off. If one of them goes off, we will just keep their counters.
131 * glommer: See cffbc8a for details, and if you ever intend to change this,
132 * please update all vfs counters to match.
134 static long get_nr_dentry(void)
138 for_each_possible_cpu(i
)
139 sum
+= per_cpu(nr_dentry
, i
);
140 return sum
< 0 ? 0 : sum
;
143 static long get_nr_dentry_unused(void)
147 for_each_possible_cpu(i
)
148 sum
+= per_cpu(nr_dentry_unused
, i
);
149 return sum
< 0 ? 0 : sum
;
152 int proc_nr_dentry(struct ctl_table
*table
, int write
, void __user
*buffer
,
153 size_t *lenp
, loff_t
*ppos
)
155 dentry_stat
.nr_dentry
= get_nr_dentry();
156 dentry_stat
.nr_unused
= get_nr_dentry_unused();
157 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
162 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
163 * The strings are both count bytes long, and count is non-zero.
165 #ifdef CONFIG_DCACHE_WORD_ACCESS
167 #include <asm/word-at-a-time.h>
169 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
170 * aligned allocation for this particular component. We don't
171 * strictly need the load_unaligned_zeropad() safety, but it
172 * doesn't hurt either.
174 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
175 * need the careful unaligned handling.
177 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
179 unsigned long a
,b
,mask
;
182 a
= *(unsigned long *)cs
;
183 b
= load_unaligned_zeropad(ct
);
184 if (tcount
< sizeof(unsigned long))
186 if (unlikely(a
!= b
))
188 cs
+= sizeof(unsigned long);
189 ct
+= sizeof(unsigned long);
190 tcount
-= sizeof(unsigned long);
194 mask
= bytemask_from_count(tcount
);
195 return unlikely(!!((a
^ b
) & mask
));
200 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
214 static inline int dentry_cmp(const struct dentry
*dentry
, const unsigned char *ct
, unsigned tcount
)
216 const unsigned char *cs
;
218 * Be careful about RCU walk racing with rename:
219 * use ACCESS_ONCE to fetch the name pointer.
221 * NOTE! Even if a rename will mean that the length
222 * was not loaded atomically, we don't care. The
223 * RCU walk will check the sequence count eventually,
224 * and catch it. And we won't overrun the buffer,
225 * because we're reading the name pointer atomically,
226 * and a dentry name is guaranteed to be properly
227 * terminated with a NUL byte.
229 * End result: even if 'len' is wrong, we'll exit
230 * early because the data cannot match (there can
231 * be no NUL in the ct/tcount data)
233 cs
= ACCESS_ONCE(dentry
->d_name
.name
);
234 smp_read_barrier_depends();
235 return dentry_string_cmp(cs
, ct
, tcount
);
238 static void __d_free(struct rcu_head
*head
)
240 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
242 if (dname_external(dentry
))
243 kfree(dentry
->d_name
.name
);
244 kmem_cache_free(dentry_cache
, dentry
);
247 static void dentry_free(struct dentry
*dentry
)
249 WARN_ON(!hlist_unhashed(&dentry
->d_u
.d_alias
));
251 /* if dentry was never visible to RCU, immediate free is OK */
252 if (!(dentry
->d_flags
& DCACHE_RCUACCESS
))
253 __d_free(&dentry
->d_u
.d_rcu
);
255 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
259 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
260 * @dentry: the target dentry
261 * After this call, in-progress rcu-walk path lookup will fail. This
262 * should be called after unhashing, and after changing d_inode (if
263 * the dentry has not already been unhashed).
265 static inline void dentry_rcuwalk_barrier(struct dentry
*dentry
)
267 assert_spin_locked(&dentry
->d_lock
);
268 /* Go through a barrier */
269 write_seqcount_barrier(&dentry
->d_seq
);
273 * Release the dentry's inode, using the filesystem
274 * d_iput() operation if defined. Dentry has no refcount
277 static void dentry_iput(struct dentry
* dentry
)
278 __releases(dentry
->d_lock
)
279 __releases(dentry
->d_inode
->i_lock
)
281 struct inode
*inode
= dentry
->d_inode
;
283 dentry
->d_inode
= NULL
;
284 hlist_del_init(&dentry
->d_u
.d_alias
);
285 spin_unlock(&dentry
->d_lock
);
286 spin_unlock(&inode
->i_lock
);
288 fsnotify_inoderemove(inode
);
289 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
290 dentry
->d_op
->d_iput(dentry
, inode
);
294 spin_unlock(&dentry
->d_lock
);
299 * Release the dentry's inode, using the filesystem
300 * d_iput() operation if defined. dentry remains in-use.
302 static void dentry_unlink_inode(struct dentry
* dentry
)
303 __releases(dentry
->d_lock
)
304 __releases(dentry
->d_inode
->i_lock
)
306 struct inode
*inode
= dentry
->d_inode
;
307 __d_clear_type(dentry
);
308 dentry
->d_inode
= NULL
;
309 hlist_del_init(&dentry
->d_u
.d_alias
);
310 dentry_rcuwalk_barrier(dentry
);
311 spin_unlock(&dentry
->d_lock
);
312 spin_unlock(&inode
->i_lock
);
314 fsnotify_inoderemove(inode
);
315 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
316 dentry
->d_op
->d_iput(dentry
, inode
);
322 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
323 * is in use - which includes both the "real" per-superblock
324 * LRU list _and_ the DCACHE_SHRINK_LIST use.
326 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
327 * on the shrink list (ie not on the superblock LRU list).
329 * The per-cpu "nr_dentry_unused" counters are updated with
330 * the DCACHE_LRU_LIST bit.
332 * These helper functions make sure we always follow the
333 * rules. d_lock must be held by the caller.
335 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
336 static void d_lru_add(struct dentry
*dentry
)
338 D_FLAG_VERIFY(dentry
, 0);
339 dentry
->d_flags
|= DCACHE_LRU_LIST
;
340 this_cpu_inc(nr_dentry_unused
);
341 WARN_ON_ONCE(!list_lru_add(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
344 static void d_lru_del(struct dentry
*dentry
)
346 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
347 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
348 this_cpu_dec(nr_dentry_unused
);
349 WARN_ON_ONCE(!list_lru_del(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
352 static void d_shrink_del(struct dentry
*dentry
)
354 D_FLAG_VERIFY(dentry
, DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
355 list_del_init(&dentry
->d_lru
);
356 dentry
->d_flags
&= ~(DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
357 this_cpu_dec(nr_dentry_unused
);
360 static void d_shrink_add(struct dentry
*dentry
, struct list_head
*list
)
362 D_FLAG_VERIFY(dentry
, 0);
363 list_add(&dentry
->d_lru
, list
);
364 dentry
->d_flags
|= DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
;
365 this_cpu_inc(nr_dentry_unused
);
369 * These can only be called under the global LRU lock, ie during the
370 * callback for freeing the LRU list. "isolate" removes it from the
371 * LRU lists entirely, while shrink_move moves it to the indicated
374 static void d_lru_isolate(struct dentry
*dentry
)
376 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
377 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
378 this_cpu_dec(nr_dentry_unused
);
379 list_del_init(&dentry
->d_lru
);
382 static void d_lru_shrink_move(struct dentry
*dentry
, struct list_head
*list
)
384 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
385 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
386 list_move_tail(&dentry
->d_lru
, list
);
390 * dentry_lru_(add|del)_list) must be called with d_lock held.
392 static void dentry_lru_add(struct dentry
*dentry
)
394 if (unlikely(!(dentry
->d_flags
& DCACHE_LRU_LIST
)))
399 * d_drop - drop a dentry
400 * @dentry: dentry to drop
402 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
403 * be found through a VFS lookup any more. Note that this is different from
404 * deleting the dentry - d_delete will try to mark the dentry negative if
405 * possible, giving a successful _negative_ lookup, while d_drop will
406 * just make the cache lookup fail.
408 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
409 * reason (NFS timeouts or autofs deletes).
411 * __d_drop requires dentry->d_lock.
413 void __d_drop(struct dentry
*dentry
)
415 if (!d_unhashed(dentry
)) {
416 struct hlist_bl_head
*b
;
418 * Hashed dentries are normally on the dentry hashtable,
419 * with the exception of those newly allocated by
420 * d_obtain_alias, which are always IS_ROOT:
422 if (unlikely(IS_ROOT(dentry
)))
423 b
= &dentry
->d_sb
->s_anon
;
425 b
= d_hash(dentry
->d_parent
, dentry
->d_name
.hash
);
428 __hlist_bl_del(&dentry
->d_hash
);
429 dentry
->d_hash
.pprev
= NULL
;
431 dentry_rcuwalk_barrier(dentry
);
434 EXPORT_SYMBOL(__d_drop
);
436 void d_drop(struct dentry
*dentry
)
438 spin_lock(&dentry
->d_lock
);
440 spin_unlock(&dentry
->d_lock
);
442 EXPORT_SYMBOL(d_drop
);
444 static void __dentry_kill(struct dentry
*dentry
)
446 struct dentry
*parent
= NULL
;
447 bool can_free
= true;
448 if (!IS_ROOT(dentry
))
449 parent
= dentry
->d_parent
;
452 * The dentry is now unrecoverably dead to the world.
454 lockref_mark_dead(&dentry
->d_lockref
);
457 * inform the fs via d_prune that this dentry is about to be
458 * unhashed and destroyed.
460 if ((dentry
->d_flags
& DCACHE_OP_PRUNE
) && !d_unhashed(dentry
))
461 dentry
->d_op
->d_prune(dentry
);
463 if (dentry
->d_flags
& DCACHE_LRU_LIST
) {
464 if (!(dentry
->d_flags
& DCACHE_SHRINK_LIST
))
467 /* if it was on the hash then remove it */
469 __list_del_entry(&dentry
->d_child
);
471 * Inform d_walk() that we are no longer attached to the
474 dentry
->d_flags
|= DCACHE_DENTRY_KILLED
;
476 spin_unlock(&parent
->d_lock
);
479 * dentry_iput drops the locks, at which point nobody (except
480 * transient RCU lookups) can reach this dentry.
482 BUG_ON((int)dentry
->d_lockref
.count
> 0);
483 this_cpu_dec(nr_dentry
);
484 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
485 dentry
->d_op
->d_release(dentry
);
487 spin_lock(&dentry
->d_lock
);
488 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
489 dentry
->d_flags
|= DCACHE_MAY_FREE
;
492 spin_unlock(&dentry
->d_lock
);
493 if (likely(can_free
))
498 * Finish off a dentry we've decided to kill.
499 * dentry->d_lock must be held, returns with it unlocked.
500 * If ref is non-zero, then decrement the refcount too.
501 * Returns dentry requiring refcount drop, or NULL if we're done.
503 static struct dentry
*dentry_kill(struct dentry
*dentry
)
504 __releases(dentry
->d_lock
)
506 struct inode
*inode
= dentry
->d_inode
;
507 struct dentry
*parent
= NULL
;
509 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
)))
512 if (!IS_ROOT(dentry
)) {
513 parent
= dentry
->d_parent
;
514 if (unlikely(!spin_trylock(&parent
->d_lock
))) {
516 spin_unlock(&inode
->i_lock
);
521 __dentry_kill(dentry
);
525 spin_unlock(&dentry
->d_lock
);
527 return dentry
; /* try again with same dentry */
530 static inline struct dentry
*lock_parent(struct dentry
*dentry
)
532 struct dentry
*parent
= dentry
->d_parent
;
535 if (unlikely((int)dentry
->d_lockref
.count
< 0))
537 if (likely(spin_trylock(&parent
->d_lock
)))
540 spin_unlock(&dentry
->d_lock
);
542 parent
= ACCESS_ONCE(dentry
->d_parent
);
543 spin_lock(&parent
->d_lock
);
545 * We can't blindly lock dentry until we are sure
546 * that we won't violate the locking order.
547 * Any changes of dentry->d_parent must have
548 * been done with parent->d_lock held, so
549 * spin_lock() above is enough of a barrier
550 * for checking if it's still our child.
552 if (unlikely(parent
!= dentry
->d_parent
)) {
553 spin_unlock(&parent
->d_lock
);
557 if (parent
!= dentry
)
558 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
567 * This is complicated by the fact that we do not want to put
568 * dentries that are no longer on any hash chain on the unused
569 * list: we'd much rather just get rid of them immediately.
571 * However, that implies that we have to traverse the dentry
572 * tree upwards to the parents which might _also_ now be
573 * scheduled for deletion (it may have been only waiting for
574 * its last child to go away).
576 * This tail recursion is done by hand as we don't want to depend
577 * on the compiler to always get this right (gcc generally doesn't).
578 * Real recursion would eat up our stack space.
582 * dput - release a dentry
583 * @dentry: dentry to release
585 * Release a dentry. This will drop the usage count and if appropriate
586 * call the dentry unlink method as well as removing it from the queues and
587 * releasing its resources. If the parent dentries were scheduled for release
588 * they too may now get deleted.
590 void dput(struct dentry
*dentry
)
592 if (unlikely(!dentry
))
596 if (lockref_put_or_lock(&dentry
->d_lockref
))
599 /* Unreachable? Get rid of it */
600 if (unlikely(d_unhashed(dentry
)))
603 if (unlikely(dentry
->d_flags
& DCACHE_DISCONNECTED
))
606 if (unlikely(dentry
->d_flags
& DCACHE_OP_DELETE
)) {
607 if (dentry
->d_op
->d_delete(dentry
))
611 if (!(dentry
->d_flags
& DCACHE_REFERENCED
))
612 dentry
->d_flags
|= DCACHE_REFERENCED
;
613 dentry_lru_add(dentry
);
615 dentry
->d_lockref
.count
--;
616 spin_unlock(&dentry
->d_lock
);
620 dentry
= dentry_kill(dentry
);
627 * d_invalidate - invalidate a dentry
628 * @dentry: dentry to invalidate
630 * Try to invalidate the dentry if it turns out to be
631 * possible. If there are other dentries that can be
632 * reached through this one we can't delete it and we
633 * return -EBUSY. On success we return 0.
638 int d_invalidate(struct dentry
* dentry
)
641 * If it's already been dropped, return OK.
643 spin_lock(&dentry
->d_lock
);
644 if (d_unhashed(dentry
)) {
645 spin_unlock(&dentry
->d_lock
);
649 * Check whether to do a partial shrink_dcache
650 * to get rid of unused child entries.
652 if (!list_empty(&dentry
->d_subdirs
)) {
653 spin_unlock(&dentry
->d_lock
);
654 shrink_dcache_parent(dentry
);
655 spin_lock(&dentry
->d_lock
);
659 * Somebody else still using it?
661 * If it's a directory, we can't drop it
662 * for fear of somebody re-populating it
663 * with children (even though dropping it
664 * would make it unreachable from the root,
665 * we might still populate it if it was a
666 * working directory or similar).
667 * We also need to leave mountpoints alone,
670 if (dentry
->d_lockref
.count
> 1 && dentry
->d_inode
) {
671 if (S_ISDIR(dentry
->d_inode
->i_mode
) || d_mountpoint(dentry
)) {
672 spin_unlock(&dentry
->d_lock
);
678 spin_unlock(&dentry
->d_lock
);
681 EXPORT_SYMBOL(d_invalidate
);
683 /* This must be called with d_lock held */
684 static inline void __dget_dlock(struct dentry
*dentry
)
686 dentry
->d_lockref
.count
++;
689 static inline void __dget(struct dentry
*dentry
)
691 lockref_get(&dentry
->d_lockref
);
694 struct dentry
*dget_parent(struct dentry
*dentry
)
700 * Do optimistic parent lookup without any
704 ret
= ACCESS_ONCE(dentry
->d_parent
);
705 gotref
= lockref_get_not_zero(&ret
->d_lockref
);
707 if (likely(gotref
)) {
708 if (likely(ret
== ACCESS_ONCE(dentry
->d_parent
)))
715 * Don't need rcu_dereference because we re-check it was correct under
719 ret
= dentry
->d_parent
;
720 spin_lock(&ret
->d_lock
);
721 if (unlikely(ret
!= dentry
->d_parent
)) {
722 spin_unlock(&ret
->d_lock
);
727 BUG_ON(!ret
->d_lockref
.count
);
728 ret
->d_lockref
.count
++;
729 spin_unlock(&ret
->d_lock
);
732 EXPORT_SYMBOL(dget_parent
);
735 * d_find_alias - grab a hashed alias of inode
736 * @inode: inode in question
737 * @want_discon: flag, used by d_splice_alias, to request
738 * that only a DISCONNECTED alias be returned.
740 * If inode has a hashed alias, or is a directory and has any alias,
741 * acquire the reference to alias and return it. Otherwise return NULL.
742 * Notice that if inode is a directory there can be only one alias and
743 * it can be unhashed only if it has no children, or if it is the root
746 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
747 * any other hashed alias over that one unless @want_discon is set,
748 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
750 static struct dentry
*__d_find_alias(struct inode
*inode
, int want_discon
)
752 struct dentry
*alias
, *discon_alias
;
756 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
757 spin_lock(&alias
->d_lock
);
758 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
759 if (IS_ROOT(alias
) &&
760 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
761 discon_alias
= alias
;
762 } else if (!want_discon
) {
764 spin_unlock(&alias
->d_lock
);
768 spin_unlock(&alias
->d_lock
);
771 alias
= discon_alias
;
772 spin_lock(&alias
->d_lock
);
773 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
774 if (IS_ROOT(alias
) &&
775 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
777 spin_unlock(&alias
->d_lock
);
781 spin_unlock(&alias
->d_lock
);
787 struct dentry
*d_find_alias(struct inode
*inode
)
789 struct dentry
*de
= NULL
;
791 if (!hlist_empty(&inode
->i_dentry
)) {
792 spin_lock(&inode
->i_lock
);
793 de
= __d_find_alias(inode
, 0);
794 spin_unlock(&inode
->i_lock
);
798 EXPORT_SYMBOL(d_find_alias
);
801 * Try to kill dentries associated with this inode.
802 * WARNING: you must own a reference to inode.
804 void d_prune_aliases(struct inode
*inode
)
806 struct dentry
*dentry
;
808 spin_lock(&inode
->i_lock
);
809 hlist_for_each_entry(dentry
, &inode
->i_dentry
, d_u
.d_alias
) {
810 spin_lock(&dentry
->d_lock
);
811 if (!dentry
->d_lockref
.count
) {
813 * inform the fs via d_prune that this dentry
814 * is about to be unhashed and destroyed.
816 if ((dentry
->d_flags
& DCACHE_OP_PRUNE
) &&
818 dentry
->d_op
->d_prune(dentry
);
820 __dget_dlock(dentry
);
822 spin_unlock(&dentry
->d_lock
);
823 spin_unlock(&inode
->i_lock
);
827 spin_unlock(&dentry
->d_lock
);
829 spin_unlock(&inode
->i_lock
);
831 EXPORT_SYMBOL(d_prune_aliases
);
833 static void shrink_dentry_list(struct list_head
*list
)
835 struct dentry
*dentry
, *parent
;
837 while (!list_empty(list
)) {
839 dentry
= list_entry(list
->prev
, struct dentry
, d_lru
);
840 spin_lock(&dentry
->d_lock
);
841 parent
= lock_parent(dentry
);
844 * The dispose list is isolated and dentries are not accounted
845 * to the LRU here, so we can simply remove it from the list
846 * here regardless of whether it is referenced or not.
848 d_shrink_del(dentry
);
851 * We found an inuse dentry which was not removed from
852 * the LRU because of laziness during lookup. Do not free it.
854 if ((int)dentry
->d_lockref
.count
> 0) {
855 spin_unlock(&dentry
->d_lock
);
857 spin_unlock(&parent
->d_lock
);
862 if (unlikely(dentry
->d_flags
& DCACHE_DENTRY_KILLED
)) {
863 bool can_free
= dentry
->d_flags
& DCACHE_MAY_FREE
;
864 spin_unlock(&dentry
->d_lock
);
866 spin_unlock(&parent
->d_lock
);
872 inode
= dentry
->d_inode
;
873 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
))) {
874 d_shrink_add(dentry
, list
);
875 spin_unlock(&dentry
->d_lock
);
877 spin_unlock(&parent
->d_lock
);
881 __dentry_kill(dentry
);
884 * We need to prune ancestors too. This is necessary to prevent
885 * quadratic behavior of shrink_dcache_parent(), but is also
886 * expected to be beneficial in reducing dentry cache
890 while (dentry
&& !lockref_put_or_lock(&dentry
->d_lockref
)) {
891 parent
= lock_parent(dentry
);
892 if (dentry
->d_lockref
.count
!= 1) {
893 dentry
->d_lockref
.count
--;
894 spin_unlock(&dentry
->d_lock
);
896 spin_unlock(&parent
->d_lock
);
899 inode
= dentry
->d_inode
; /* can't be NULL */
900 if (unlikely(!spin_trylock(&inode
->i_lock
))) {
901 spin_unlock(&dentry
->d_lock
);
903 spin_unlock(&parent
->d_lock
);
907 __dentry_kill(dentry
);
913 static enum lru_status
914 dentry_lru_isolate(struct list_head
*item
, spinlock_t
*lru_lock
, void *arg
)
916 struct list_head
*freeable
= arg
;
917 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
921 * we are inverting the lru lock/dentry->d_lock here,
922 * so use a trylock. If we fail to get the lock, just skip
925 if (!spin_trylock(&dentry
->d_lock
))
929 * Referenced dentries are still in use. If they have active
930 * counts, just remove them from the LRU. Otherwise give them
931 * another pass through the LRU.
933 if (dentry
->d_lockref
.count
) {
934 d_lru_isolate(dentry
);
935 spin_unlock(&dentry
->d_lock
);
939 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
940 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
941 spin_unlock(&dentry
->d_lock
);
944 * The list move itself will be made by the common LRU code. At
945 * this point, we've dropped the dentry->d_lock but keep the
946 * lru lock. This is safe to do, since every list movement is
947 * protected by the lru lock even if both locks are held.
949 * This is guaranteed by the fact that all LRU management
950 * functions are intermediated by the LRU API calls like
951 * list_lru_add and list_lru_del. List movement in this file
952 * only ever occur through this functions or through callbacks
953 * like this one, that are called from the LRU API.
955 * The only exceptions to this are functions like
956 * shrink_dentry_list, and code that first checks for the
957 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
958 * operating only with stack provided lists after they are
959 * properly isolated from the main list. It is thus, always a
965 d_lru_shrink_move(dentry
, freeable
);
966 spin_unlock(&dentry
->d_lock
);
972 * prune_dcache_sb - shrink the dcache
974 * @nr_to_scan : number of entries to try to free
975 * @nid: which node to scan for freeable entities
977 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
978 * done when we need more memory an called from the superblock shrinker
981 * This function may fail to free any resources if all the dentries are in
984 long prune_dcache_sb(struct super_block
*sb
, unsigned long nr_to_scan
,
990 freed
= list_lru_walk_node(&sb
->s_dentry_lru
, nid
, dentry_lru_isolate
,
991 &dispose
, &nr_to_scan
);
992 shrink_dentry_list(&dispose
);
996 static enum lru_status
dentry_lru_isolate_shrink(struct list_head
*item
,
997 spinlock_t
*lru_lock
, void *arg
)
999 struct list_head
*freeable
= arg
;
1000 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
1003 * we are inverting the lru lock/dentry->d_lock here,
1004 * so use a trylock. If we fail to get the lock, just skip
1007 if (!spin_trylock(&dentry
->d_lock
))
1010 d_lru_shrink_move(dentry
, freeable
);
1011 spin_unlock(&dentry
->d_lock
);
1018 * shrink_dcache_sb - shrink dcache for a superblock
1021 * Shrink the dcache for the specified super block. This is used to free
1022 * the dcache before unmounting a file system.
1024 void shrink_dcache_sb(struct super_block
*sb
)
1031 freed
= list_lru_walk(&sb
->s_dentry_lru
,
1032 dentry_lru_isolate_shrink
, &dispose
, UINT_MAX
);
1034 this_cpu_sub(nr_dentry_unused
, freed
);
1035 shrink_dentry_list(&dispose
);
1036 } while (freed
> 0);
1038 EXPORT_SYMBOL(shrink_dcache_sb
);
1041 * enum d_walk_ret - action to talke during tree walk
1042 * @D_WALK_CONTINUE: contrinue walk
1043 * @D_WALK_QUIT: quit walk
1044 * @D_WALK_NORETRY: quit when retry is needed
1045 * @D_WALK_SKIP: skip this dentry and its children
1055 * d_walk - walk the dentry tree
1056 * @parent: start of walk
1057 * @data: data passed to @enter() and @finish()
1058 * @enter: callback when first entering the dentry
1059 * @finish: callback when successfully finished the walk
1061 * The @enter() and @finish() callbacks are called with d_lock held.
1063 static void d_walk(struct dentry
*parent
, void *data
,
1064 enum d_walk_ret (*enter
)(void *, struct dentry
*),
1065 void (*finish
)(void *))
1067 struct dentry
*this_parent
;
1068 struct list_head
*next
;
1070 enum d_walk_ret ret
;
1074 read_seqbegin_or_lock(&rename_lock
, &seq
);
1075 this_parent
= parent
;
1076 spin_lock(&this_parent
->d_lock
);
1078 ret
= enter(data
, this_parent
);
1080 case D_WALK_CONTINUE
:
1085 case D_WALK_NORETRY
:
1090 next
= this_parent
->d_subdirs
.next
;
1092 while (next
!= &this_parent
->d_subdirs
) {
1093 struct list_head
*tmp
= next
;
1094 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_child
);
1097 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1099 ret
= enter(data
, dentry
);
1101 case D_WALK_CONTINUE
:
1104 spin_unlock(&dentry
->d_lock
);
1106 case D_WALK_NORETRY
:
1110 spin_unlock(&dentry
->d_lock
);
1114 if (!list_empty(&dentry
->d_subdirs
)) {
1115 spin_unlock(&this_parent
->d_lock
);
1116 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1117 this_parent
= dentry
;
1118 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1121 spin_unlock(&dentry
->d_lock
);
1124 * All done at this level ... ascend and resume the search.
1128 if (this_parent
!= parent
) {
1129 struct dentry
*child
= this_parent
;
1130 this_parent
= child
->d_parent
;
1132 spin_unlock(&child
->d_lock
);
1133 spin_lock(&this_parent
->d_lock
);
1135 /* might go back up the wrong parent if we have had a rename. */
1136 if (need_seqretry(&rename_lock
, seq
))
1138 /* go into the first sibling still alive */
1140 next
= child
->d_child
.next
;
1141 if (next
== &this_parent
->d_subdirs
)
1143 child
= list_entry(next
, struct dentry
, d_child
);
1144 } while (unlikely(child
->d_flags
& DCACHE_DENTRY_KILLED
));
1148 if (need_seqretry(&rename_lock
, seq
))
1155 spin_unlock(&this_parent
->d_lock
);
1156 done_seqretry(&rename_lock
, seq
);
1160 spin_unlock(&this_parent
->d_lock
);
1170 * Search for at least 1 mount point in the dentry's subdirs.
1171 * We descend to the next level whenever the d_subdirs
1172 * list is non-empty and continue searching.
1175 static enum d_walk_ret
check_mount(void *data
, struct dentry
*dentry
)
1178 if (d_mountpoint(dentry
)) {
1182 return D_WALK_CONTINUE
;
1186 * have_submounts - check for mounts over a dentry
1187 * @parent: dentry to check.
1189 * Return true if the parent or its subdirectories contain
1192 int have_submounts(struct dentry
*parent
)
1196 d_walk(parent
, &ret
, check_mount
, NULL
);
1200 EXPORT_SYMBOL(have_submounts
);
1203 * Called by mount code to set a mountpoint and check if the mountpoint is
1204 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1205 * subtree can become unreachable).
1207 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1208 * this reason take rename_lock and d_lock on dentry and ancestors.
1210 int d_set_mounted(struct dentry
*dentry
)
1214 write_seqlock(&rename_lock
);
1215 for (p
= dentry
->d_parent
; !IS_ROOT(p
); p
= p
->d_parent
) {
1216 /* Need exclusion wrt. check_submounts_and_drop() */
1217 spin_lock(&p
->d_lock
);
1218 if (unlikely(d_unhashed(p
))) {
1219 spin_unlock(&p
->d_lock
);
1222 spin_unlock(&p
->d_lock
);
1224 spin_lock(&dentry
->d_lock
);
1225 if (!d_unlinked(dentry
)) {
1226 dentry
->d_flags
|= DCACHE_MOUNTED
;
1229 spin_unlock(&dentry
->d_lock
);
1231 write_sequnlock(&rename_lock
);
1236 * Search the dentry child list of the specified parent,
1237 * and move any unused dentries to the end of the unused
1238 * list for prune_dcache(). We descend to the next level
1239 * whenever the d_subdirs list is non-empty and continue
1242 * It returns zero iff there are no unused children,
1243 * otherwise it returns the number of children moved to
1244 * the end of the unused list. This may not be the total
1245 * number of unused children, because select_parent can
1246 * drop the lock and return early due to latency
1250 struct select_data
{
1251 struct dentry
*start
;
1252 struct list_head dispose
;
1256 static enum d_walk_ret
select_collect(void *_data
, struct dentry
*dentry
)
1258 struct select_data
*data
= _data
;
1259 enum d_walk_ret ret
= D_WALK_CONTINUE
;
1261 if (data
->start
== dentry
)
1264 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
1267 if (dentry
->d_flags
& DCACHE_LRU_LIST
)
1269 if (!dentry
->d_lockref
.count
) {
1270 d_shrink_add(dentry
, &data
->dispose
);
1275 * We can return to the caller if we have found some (this
1276 * ensures forward progress). We'll be coming back to find
1279 if (!list_empty(&data
->dispose
))
1280 ret
= need_resched() ? D_WALK_QUIT
: D_WALK_NORETRY
;
1286 * shrink_dcache_parent - prune dcache
1287 * @parent: parent of entries to prune
1289 * Prune the dcache to remove unused children of the parent dentry.
1291 void shrink_dcache_parent(struct dentry
*parent
)
1294 struct select_data data
;
1296 INIT_LIST_HEAD(&data
.dispose
);
1297 data
.start
= parent
;
1300 d_walk(parent
, &data
, select_collect
, NULL
);
1304 shrink_dentry_list(&data
.dispose
);
1308 EXPORT_SYMBOL(shrink_dcache_parent
);
1310 static enum d_walk_ret
umount_check(void *_data
, struct dentry
*dentry
)
1312 /* it has busy descendents; complain about those instead */
1313 if (!list_empty(&dentry
->d_subdirs
))
1314 return D_WALK_CONTINUE
;
1316 /* root with refcount 1 is fine */
1317 if (dentry
== _data
&& dentry
->d_lockref
.count
== 1)
1318 return D_WALK_CONTINUE
;
1320 printk(KERN_ERR
"BUG: Dentry %p{i=%lx,n=%pd} "
1321 " still in use (%d) [unmount of %s %s]\n",
1324 dentry
->d_inode
->i_ino
: 0UL,
1326 dentry
->d_lockref
.count
,
1327 dentry
->d_sb
->s_type
->name
,
1328 dentry
->d_sb
->s_id
);
1330 return D_WALK_CONTINUE
;
1333 static void do_one_tree(struct dentry
*dentry
)
1335 shrink_dcache_parent(dentry
);
1336 d_walk(dentry
, dentry
, umount_check
, NULL
);
1342 * destroy the dentries attached to a superblock on unmounting
1344 void shrink_dcache_for_umount(struct super_block
*sb
)
1346 struct dentry
*dentry
;
1348 WARN(down_read_trylock(&sb
->s_umount
), "s_umount should've been locked");
1350 dentry
= sb
->s_root
;
1352 do_one_tree(dentry
);
1354 while (!hlist_bl_empty(&sb
->s_anon
)) {
1355 dentry
= dget(hlist_bl_entry(hlist_bl_first(&sb
->s_anon
), struct dentry
, d_hash
));
1356 do_one_tree(dentry
);
1360 static enum d_walk_ret
check_and_collect(void *_data
, struct dentry
*dentry
)
1362 struct select_data
*data
= _data
;
1364 if (d_mountpoint(dentry
)) {
1365 data
->found
= -EBUSY
;
1369 return select_collect(_data
, dentry
);
1372 static void check_and_drop(void *_data
)
1374 struct select_data
*data
= _data
;
1376 if (d_mountpoint(data
->start
))
1377 data
->found
= -EBUSY
;
1379 __d_drop(data
->start
);
1383 * check_submounts_and_drop - prune dcache, check for submounts and drop
1385 * All done as a single atomic operation relative to has_unlinked_ancestor().
1386 * Returns 0 if successfully unhashed @parent. If there were submounts then
1389 * @dentry: dentry to prune and drop
1391 int check_submounts_and_drop(struct dentry
*dentry
)
1395 /* Negative dentries can be dropped without further checks */
1396 if (!dentry
->d_inode
) {
1402 struct select_data data
;
1404 INIT_LIST_HEAD(&data
.dispose
);
1405 data
.start
= dentry
;
1408 d_walk(dentry
, &data
, check_and_collect
, check_and_drop
);
1411 if (!list_empty(&data
.dispose
))
1412 shrink_dentry_list(&data
.dispose
);
1423 EXPORT_SYMBOL(check_submounts_and_drop
);
1426 * __d_alloc - allocate a dcache entry
1427 * @sb: filesystem it will belong to
1428 * @name: qstr of the name
1430 * Allocates a dentry. It returns %NULL if there is insufficient memory
1431 * available. On a success the dentry is returned. The name passed in is
1432 * copied and the copy passed in may be reused after this call.
1435 struct dentry
*__d_alloc(struct super_block
*sb
, const struct qstr
*name
)
1437 struct dentry
*dentry
;
1440 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1445 * We guarantee that the inline name is always NUL-terminated.
1446 * This way the memcpy() done by the name switching in rename
1447 * will still always have a NUL at the end, even if we might
1448 * be overwriting an internal NUL character
1450 dentry
->d_iname
[DNAME_INLINE_LEN
-1] = 0;
1451 if (name
->len
> DNAME_INLINE_LEN
-1) {
1452 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
1454 kmem_cache_free(dentry_cache
, dentry
);
1458 dname
= dentry
->d_iname
;
1461 dentry
->d_name
.len
= name
->len
;
1462 dentry
->d_name
.hash
= name
->hash
;
1463 memcpy(dname
, name
->name
, name
->len
);
1464 dname
[name
->len
] = 0;
1466 /* Make sure we always see the terminating NUL character */
1468 dentry
->d_name
.name
= dname
;
1470 dentry
->d_lockref
.count
= 1;
1471 dentry
->d_flags
= 0;
1472 spin_lock_init(&dentry
->d_lock
);
1473 seqcount_init(&dentry
->d_seq
);
1474 dentry
->d_inode
= NULL
;
1475 dentry
->d_parent
= dentry
;
1477 dentry
->d_op
= NULL
;
1478 dentry
->d_fsdata
= NULL
;
1479 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1480 INIT_LIST_HEAD(&dentry
->d_lru
);
1481 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1482 INIT_HLIST_NODE(&dentry
->d_u
.d_alias
);
1483 INIT_LIST_HEAD(&dentry
->d_child
);
1484 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1486 this_cpu_inc(nr_dentry
);
1492 * d_alloc - allocate a dcache entry
1493 * @parent: parent of entry to allocate
1494 * @name: qstr of the name
1496 * Allocates a dentry. It returns %NULL if there is insufficient memory
1497 * available. On a success the dentry is returned. The name passed in is
1498 * copied and the copy passed in may be reused after this call.
1500 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1502 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, name
);
1506 spin_lock(&parent
->d_lock
);
1508 * don't need child lock because it is not subject
1509 * to concurrency here
1511 __dget_dlock(parent
);
1512 dentry
->d_parent
= parent
;
1513 list_add(&dentry
->d_child
, &parent
->d_subdirs
);
1514 spin_unlock(&parent
->d_lock
);
1518 EXPORT_SYMBOL(d_alloc
);
1521 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1522 * @sb: the superblock
1523 * @name: qstr of the name
1525 * For a filesystem that just pins its dentries in memory and never
1526 * performs lookups at all, return an unhashed IS_ROOT dentry.
1528 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1530 return __d_alloc(sb
, name
);
1532 EXPORT_SYMBOL(d_alloc_pseudo
);
1534 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1539 q
.len
= strlen(name
);
1540 q
.hash
= full_name_hash(q
.name
, q
.len
);
1541 return d_alloc(parent
, &q
);
1543 EXPORT_SYMBOL(d_alloc_name
);
1545 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1547 WARN_ON_ONCE(dentry
->d_op
);
1548 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1550 DCACHE_OP_REVALIDATE
|
1551 DCACHE_OP_WEAK_REVALIDATE
|
1552 DCACHE_OP_DELETE
));
1557 dentry
->d_flags
|= DCACHE_OP_HASH
;
1559 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1560 if (op
->d_revalidate
)
1561 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1562 if (op
->d_weak_revalidate
)
1563 dentry
->d_flags
|= DCACHE_OP_WEAK_REVALIDATE
;
1565 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1567 dentry
->d_flags
|= DCACHE_OP_PRUNE
;
1570 EXPORT_SYMBOL(d_set_d_op
);
1572 static unsigned d_flags_for_inode(struct inode
*inode
)
1574 unsigned add_flags
= DCACHE_FILE_TYPE
;
1577 return DCACHE_MISS_TYPE
;
1579 if (S_ISDIR(inode
->i_mode
)) {
1580 add_flags
= DCACHE_DIRECTORY_TYPE
;
1581 if (unlikely(!(inode
->i_opflags
& IOP_LOOKUP
))) {
1582 if (unlikely(!inode
->i_op
->lookup
))
1583 add_flags
= DCACHE_AUTODIR_TYPE
;
1585 inode
->i_opflags
|= IOP_LOOKUP
;
1587 } else if (unlikely(!(inode
->i_opflags
& IOP_NOFOLLOW
))) {
1588 if (unlikely(inode
->i_op
->follow_link
))
1589 add_flags
= DCACHE_SYMLINK_TYPE
;
1591 inode
->i_opflags
|= IOP_NOFOLLOW
;
1594 if (unlikely(IS_AUTOMOUNT(inode
)))
1595 add_flags
|= DCACHE_NEED_AUTOMOUNT
;
1599 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1601 unsigned add_flags
= d_flags_for_inode(inode
);
1603 spin_lock(&dentry
->d_lock
);
1604 __d_set_type(dentry
, add_flags
);
1606 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
1607 dentry
->d_inode
= inode
;
1608 dentry_rcuwalk_barrier(dentry
);
1609 spin_unlock(&dentry
->d_lock
);
1610 fsnotify_d_instantiate(dentry
, inode
);
1614 * d_instantiate - fill in inode information for a dentry
1615 * @entry: dentry to complete
1616 * @inode: inode to attach to this dentry
1618 * Fill in inode information in the entry.
1620 * This turns negative dentries into productive full members
1623 * NOTE! This assumes that the inode count has been incremented
1624 * (or otherwise set) by the caller to indicate that it is now
1625 * in use by the dcache.
1628 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1630 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1632 spin_lock(&inode
->i_lock
);
1633 __d_instantiate(entry
, inode
);
1635 spin_unlock(&inode
->i_lock
);
1636 security_d_instantiate(entry
, inode
);
1638 EXPORT_SYMBOL(d_instantiate
);
1641 * d_instantiate_unique - instantiate a non-aliased dentry
1642 * @entry: dentry to instantiate
1643 * @inode: inode to attach to this dentry
1645 * Fill in inode information in the entry. On success, it returns NULL.
1646 * If an unhashed alias of "entry" already exists, then we return the
1647 * aliased dentry instead and drop one reference to inode.
1649 * Note that in order to avoid conflicts with rename() etc, the caller
1650 * had better be holding the parent directory semaphore.
1652 * This also assumes that the inode count has been incremented
1653 * (or otherwise set) by the caller to indicate that it is now
1654 * in use by the dcache.
1656 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
1657 struct inode
*inode
)
1659 struct dentry
*alias
;
1660 int len
= entry
->d_name
.len
;
1661 const char *name
= entry
->d_name
.name
;
1662 unsigned int hash
= entry
->d_name
.hash
;
1665 __d_instantiate(entry
, NULL
);
1669 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
1671 * Don't need alias->d_lock here, because aliases with
1672 * d_parent == entry->d_parent are not subject to name or
1673 * parent changes, because the parent inode i_mutex is held.
1675 if (alias
->d_name
.hash
!= hash
)
1677 if (alias
->d_parent
!= entry
->d_parent
)
1679 if (alias
->d_name
.len
!= len
)
1681 if (dentry_cmp(alias
, name
, len
))
1687 __d_instantiate(entry
, inode
);
1691 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1693 struct dentry
*result
;
1695 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1698 spin_lock(&inode
->i_lock
);
1699 result
= __d_instantiate_unique(entry
, inode
);
1701 spin_unlock(&inode
->i_lock
);
1704 security_d_instantiate(entry
, inode
);
1708 BUG_ON(!d_unhashed(result
));
1713 EXPORT_SYMBOL(d_instantiate_unique
);
1716 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1717 * @entry: dentry to complete
1718 * @inode: inode to attach to this dentry
1720 * Fill in inode information in the entry. If a directory alias is found, then
1721 * return an error (and drop inode). Together with d_materialise_unique() this
1722 * guarantees that a directory inode may never have more than one alias.
1724 int d_instantiate_no_diralias(struct dentry
*entry
, struct inode
*inode
)
1726 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1728 spin_lock(&inode
->i_lock
);
1729 if (S_ISDIR(inode
->i_mode
) && !hlist_empty(&inode
->i_dentry
)) {
1730 spin_unlock(&inode
->i_lock
);
1734 __d_instantiate(entry
, inode
);
1735 spin_unlock(&inode
->i_lock
);
1736 security_d_instantiate(entry
, inode
);
1740 EXPORT_SYMBOL(d_instantiate_no_diralias
);
1742 struct dentry
*d_make_root(struct inode
*root_inode
)
1744 struct dentry
*res
= NULL
;
1747 static const struct qstr name
= QSTR_INIT("/", 1);
1749 res
= __d_alloc(root_inode
->i_sb
, &name
);
1751 d_instantiate(res
, root_inode
);
1757 EXPORT_SYMBOL(d_make_root
);
1759 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
1761 struct dentry
*alias
;
1763 if (hlist_empty(&inode
->i_dentry
))
1765 alias
= hlist_entry(inode
->i_dentry
.first
, struct dentry
, d_u
.d_alias
);
1771 * d_find_any_alias - find any alias for a given inode
1772 * @inode: inode to find an alias for
1774 * If any aliases exist for the given inode, take and return a
1775 * reference for one of them. If no aliases exist, return %NULL.
1777 struct dentry
*d_find_any_alias(struct inode
*inode
)
1781 spin_lock(&inode
->i_lock
);
1782 de
= __d_find_any_alias(inode
);
1783 spin_unlock(&inode
->i_lock
);
1786 EXPORT_SYMBOL(d_find_any_alias
);
1789 * d_obtain_alias - find or allocate a dentry for a given inode
1790 * @inode: inode to allocate the dentry for
1792 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1793 * similar open by handle operations. The returned dentry may be anonymous,
1794 * or may have a full name (if the inode was already in the cache).
1796 * When called on a directory inode, we must ensure that the inode only ever
1797 * has one dentry. If a dentry is found, that is returned instead of
1798 * allocating a new one.
1800 * On successful return, the reference to the inode has been transferred
1801 * to the dentry. In case of an error the reference on the inode is released.
1802 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1803 * be passed in and will be the error will be propagate to the return value,
1804 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1806 struct dentry
*d_obtain_alias(struct inode
*inode
)
1808 static const struct qstr anonstring
= QSTR_INIT("/", 1);
1814 return ERR_PTR(-ESTALE
);
1816 return ERR_CAST(inode
);
1818 res
= d_find_any_alias(inode
);
1822 tmp
= __d_alloc(inode
->i_sb
, &anonstring
);
1824 res
= ERR_PTR(-ENOMEM
);
1828 spin_lock(&inode
->i_lock
);
1829 res
= __d_find_any_alias(inode
);
1831 spin_unlock(&inode
->i_lock
);
1836 /* attach a disconnected dentry */
1837 add_flags
= d_flags_for_inode(inode
) | DCACHE_DISCONNECTED
;
1839 spin_lock(&tmp
->d_lock
);
1840 tmp
->d_inode
= inode
;
1841 tmp
->d_flags
|= add_flags
;
1842 hlist_add_head(&tmp
->d_u
.d_alias
, &inode
->i_dentry
);
1843 hlist_bl_lock(&tmp
->d_sb
->s_anon
);
1844 hlist_bl_add_head(&tmp
->d_hash
, &tmp
->d_sb
->s_anon
);
1845 hlist_bl_unlock(&tmp
->d_sb
->s_anon
);
1846 spin_unlock(&tmp
->d_lock
);
1847 spin_unlock(&inode
->i_lock
);
1848 security_d_instantiate(tmp
, inode
);
1853 if (res
&& !IS_ERR(res
))
1854 security_d_instantiate(res
, inode
);
1858 EXPORT_SYMBOL(d_obtain_alias
);
1861 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1862 * @inode: the inode which may have a disconnected dentry
1863 * @dentry: a negative dentry which we want to point to the inode.
1865 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1866 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1867 * and return it, else simply d_add the inode to the dentry and return NULL.
1869 * This is needed in the lookup routine of any filesystem that is exportable
1870 * (via knfsd) so that we can build dcache paths to directories effectively.
1872 * If a dentry was found and moved, then it is returned. Otherwise NULL
1873 * is returned. This matches the expected return value of ->lookup.
1875 * Cluster filesystems may call this function with a negative, hashed dentry.
1876 * In that case, we know that the inode will be a regular file, and also this
1877 * will only occur during atomic_open. So we need to check for the dentry
1878 * being already hashed only in the final case.
1880 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
1882 struct dentry
*new = NULL
;
1885 return ERR_CAST(inode
);
1887 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1888 spin_lock(&inode
->i_lock
);
1889 new = __d_find_alias(inode
, 1);
1891 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
1892 spin_unlock(&inode
->i_lock
);
1893 security_d_instantiate(new, inode
);
1894 d_move(new, dentry
);
1897 /* already taking inode->i_lock, so d_add() by hand */
1898 __d_instantiate(dentry
, inode
);
1899 spin_unlock(&inode
->i_lock
);
1900 security_d_instantiate(dentry
, inode
);
1904 d_instantiate(dentry
, inode
);
1905 if (d_unhashed(dentry
))
1910 EXPORT_SYMBOL(d_splice_alias
);
1913 * d_add_ci - lookup or allocate new dentry with case-exact name
1914 * @inode: the inode case-insensitive lookup has found
1915 * @dentry: the negative dentry that was passed to the parent's lookup func
1916 * @name: the case-exact name to be associated with the returned dentry
1918 * This is to avoid filling the dcache with case-insensitive names to the
1919 * same inode, only the actual correct case is stored in the dcache for
1920 * case-insensitive filesystems.
1922 * For a case-insensitive lookup match and if the the case-exact dentry
1923 * already exists in in the dcache, use it and return it.
1925 * If no entry exists with the exact case name, allocate new dentry with
1926 * the exact case, and return the spliced entry.
1928 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
1931 struct dentry
*found
;
1935 * First check if a dentry matching the name already exists,
1936 * if not go ahead and create it now.
1938 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
1939 if (unlikely(IS_ERR(found
)))
1942 new = d_alloc(dentry
->d_parent
, name
);
1944 found
= ERR_PTR(-ENOMEM
);
1948 found
= d_splice_alias(inode
, new);
1957 * If a matching dentry exists, and it's not negative use it.
1959 * Decrement the reference count to balance the iget() done
1962 if (found
->d_inode
) {
1963 if (unlikely(found
->d_inode
!= inode
)) {
1964 /* This can't happen because bad inodes are unhashed. */
1965 BUG_ON(!is_bad_inode(inode
));
1966 BUG_ON(!is_bad_inode(found
->d_inode
));
1973 * Negative dentry: instantiate it unless the inode is a directory and
1974 * already has a dentry.
1976 new = d_splice_alias(inode
, found
);
1987 EXPORT_SYMBOL(d_add_ci
);
1990 * Do the slow-case of the dentry name compare.
1992 * Unlike the dentry_cmp() function, we need to atomically
1993 * load the name and length information, so that the
1994 * filesystem can rely on them, and can use the 'name' and
1995 * 'len' information without worrying about walking off the
1996 * end of memory etc.
1998 * Thus the read_seqcount_retry() and the "duplicate" info
1999 * in arguments (the low-level filesystem should not look
2000 * at the dentry inode or name contents directly, since
2001 * rename can change them while we're in RCU mode).
2003 enum slow_d_compare
{
2009 static noinline
enum slow_d_compare
slow_dentry_cmp(
2010 const struct dentry
*parent
,
2011 struct dentry
*dentry
,
2013 const struct qstr
*name
)
2015 int tlen
= dentry
->d_name
.len
;
2016 const char *tname
= dentry
->d_name
.name
;
2018 if (read_seqcount_retry(&dentry
->d_seq
, seq
)) {
2020 return D_COMP_SEQRETRY
;
2022 if (parent
->d_op
->d_compare(parent
, dentry
, tlen
, tname
, name
))
2023 return D_COMP_NOMATCH
;
2028 * __d_lookup_rcu - search for a dentry (racy, store-free)
2029 * @parent: parent dentry
2030 * @name: qstr of name we wish to find
2031 * @seqp: returns d_seq value at the point where the dentry was found
2032 * Returns: dentry, or NULL
2034 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2035 * resolution (store-free path walking) design described in
2036 * Documentation/filesystems/path-lookup.txt.
2038 * This is not to be used outside core vfs.
2040 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2041 * held, and rcu_read_lock held. The returned dentry must not be stored into
2042 * without taking d_lock and checking d_seq sequence count against @seq
2045 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2048 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2049 * the returned dentry, so long as its parent's seqlock is checked after the
2050 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2051 * is formed, giving integrity down the path walk.
2053 * NOTE! The caller *has* to check the resulting dentry against the sequence
2054 * number we've returned before using any of the resulting dentry state!
2056 struct dentry
*__d_lookup_rcu(const struct dentry
*parent
,
2057 const struct qstr
*name
,
2060 u64 hashlen
= name
->hash_len
;
2061 const unsigned char *str
= name
->name
;
2062 struct hlist_bl_head
*b
= d_hash(parent
, hashlen_hash(hashlen
));
2063 struct hlist_bl_node
*node
;
2064 struct dentry
*dentry
;
2067 * Note: There is significant duplication with __d_lookup_rcu which is
2068 * required to prevent single threaded performance regressions
2069 * especially on architectures where smp_rmb (in seqcounts) are costly.
2070 * Keep the two functions in sync.
2074 * The hash list is protected using RCU.
2076 * Carefully use d_seq when comparing a candidate dentry, to avoid
2077 * races with d_move().
2079 * It is possible that concurrent renames can mess up our list
2080 * walk here and result in missing our dentry, resulting in the
2081 * false-negative result. d_lookup() protects against concurrent
2082 * renames using rename_lock seqlock.
2084 * See Documentation/filesystems/path-lookup.txt for more details.
2086 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2091 * The dentry sequence count protects us from concurrent
2092 * renames, and thus protects parent and name fields.
2094 * The caller must perform a seqcount check in order
2095 * to do anything useful with the returned dentry.
2097 * NOTE! We do a "raw" seqcount_begin here. That means that
2098 * we don't wait for the sequence count to stabilize if it
2099 * is in the middle of a sequence change. If we do the slow
2100 * dentry compare, we will do seqretries until it is stable,
2101 * and if we end up with a successful lookup, we actually
2102 * want to exit RCU lookup anyway.
2104 seq
= raw_seqcount_begin(&dentry
->d_seq
);
2105 if (dentry
->d_parent
!= parent
)
2107 if (d_unhashed(dentry
))
2110 if (unlikely(parent
->d_flags
& DCACHE_OP_COMPARE
)) {
2111 if (dentry
->d_name
.hash
!= hashlen_hash(hashlen
))
2114 switch (slow_dentry_cmp(parent
, dentry
, seq
, name
)) {
2117 case D_COMP_NOMATCH
:
2124 if (dentry
->d_name
.hash_len
!= hashlen
)
2127 if (!dentry_cmp(dentry
, str
, hashlen_len(hashlen
)))
2134 * d_lookup - search for a dentry
2135 * @parent: parent dentry
2136 * @name: qstr of name we wish to find
2137 * Returns: dentry, or NULL
2139 * d_lookup searches the children of the parent dentry for the name in
2140 * question. If the dentry is found its reference count is incremented and the
2141 * dentry is returned. The caller must use dput to free the entry when it has
2142 * finished using it. %NULL is returned if the dentry does not exist.
2144 struct dentry
*d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2146 struct dentry
*dentry
;
2150 seq
= read_seqbegin(&rename_lock
);
2151 dentry
= __d_lookup(parent
, name
);
2154 } while (read_seqretry(&rename_lock
, seq
));
2157 EXPORT_SYMBOL(d_lookup
);
2160 * __d_lookup - search for a dentry (racy)
2161 * @parent: parent dentry
2162 * @name: qstr of name we wish to find
2163 * Returns: dentry, or NULL
2165 * __d_lookup is like d_lookup, however it may (rarely) return a
2166 * false-negative result due to unrelated rename activity.
2168 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2169 * however it must be used carefully, eg. with a following d_lookup in
2170 * the case of failure.
2172 * __d_lookup callers must be commented.
2174 struct dentry
*__d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2176 unsigned int len
= name
->len
;
2177 unsigned int hash
= name
->hash
;
2178 const unsigned char *str
= name
->name
;
2179 struct hlist_bl_head
*b
= d_hash(parent
, hash
);
2180 struct hlist_bl_node
*node
;
2181 struct dentry
*found
= NULL
;
2182 struct dentry
*dentry
;
2185 * Note: There is significant duplication with __d_lookup_rcu which is
2186 * required to prevent single threaded performance regressions
2187 * especially on architectures where smp_rmb (in seqcounts) are costly.
2188 * Keep the two functions in sync.
2192 * The hash list is protected using RCU.
2194 * Take d_lock when comparing a candidate dentry, to avoid races
2197 * It is possible that concurrent renames can mess up our list
2198 * walk here and result in missing our dentry, resulting in the
2199 * false-negative result. d_lookup() protects against concurrent
2200 * renames using rename_lock seqlock.
2202 * See Documentation/filesystems/path-lookup.txt for more details.
2206 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2208 if (dentry
->d_name
.hash
!= hash
)
2211 spin_lock(&dentry
->d_lock
);
2212 if (dentry
->d_parent
!= parent
)
2214 if (d_unhashed(dentry
))
2218 * It is safe to compare names since d_move() cannot
2219 * change the qstr (protected by d_lock).
2221 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
2222 int tlen
= dentry
->d_name
.len
;
2223 const char *tname
= dentry
->d_name
.name
;
2224 if (parent
->d_op
->d_compare(parent
, dentry
, tlen
, tname
, name
))
2227 if (dentry
->d_name
.len
!= len
)
2229 if (dentry_cmp(dentry
, str
, len
))
2233 dentry
->d_lockref
.count
++;
2235 spin_unlock(&dentry
->d_lock
);
2238 spin_unlock(&dentry
->d_lock
);
2246 * d_hash_and_lookup - hash the qstr then search for a dentry
2247 * @dir: Directory to search in
2248 * @name: qstr of name we wish to find
2250 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2252 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
2255 * Check for a fs-specific hash function. Note that we must
2256 * calculate the standard hash first, as the d_op->d_hash()
2257 * routine may choose to leave the hash value unchanged.
2259 name
->hash
= full_name_hash(name
->name
, name
->len
);
2260 if (dir
->d_flags
& DCACHE_OP_HASH
) {
2261 int err
= dir
->d_op
->d_hash(dir
, name
);
2262 if (unlikely(err
< 0))
2263 return ERR_PTR(err
);
2265 return d_lookup(dir
, name
);
2267 EXPORT_SYMBOL(d_hash_and_lookup
);
2270 * d_validate - verify dentry provided from insecure source (deprecated)
2271 * @dentry: The dentry alleged to be valid child of @dparent
2272 * @dparent: The parent dentry (known to be valid)
2274 * An insecure source has sent us a dentry, here we verify it and dget() it.
2275 * This is used by ncpfs in its readdir implementation.
2276 * Zero is returned in the dentry is invalid.
2278 * This function is slow for big directories, and deprecated, do not use it.
2280 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
2282 struct dentry
*child
;
2284 spin_lock(&dparent
->d_lock
);
2285 list_for_each_entry(child
, &dparent
->d_subdirs
, d_child
) {
2286 if (dentry
== child
) {
2287 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2288 __dget_dlock(dentry
);
2289 spin_unlock(&dentry
->d_lock
);
2290 spin_unlock(&dparent
->d_lock
);
2294 spin_unlock(&dparent
->d_lock
);
2298 EXPORT_SYMBOL(d_validate
);
2301 * When a file is deleted, we have two options:
2302 * - turn this dentry into a negative dentry
2303 * - unhash this dentry and free it.
2305 * Usually, we want to just turn this into
2306 * a negative dentry, but if anybody else is
2307 * currently using the dentry or the inode
2308 * we can't do that and we fall back on removing
2309 * it from the hash queues and waiting for
2310 * it to be deleted later when it has no users
2314 * d_delete - delete a dentry
2315 * @dentry: The dentry to delete
2317 * Turn the dentry into a negative dentry if possible, otherwise
2318 * remove it from the hash queues so it can be deleted later
2321 void d_delete(struct dentry
* dentry
)
2323 struct inode
*inode
;
2326 * Are we the only user?
2329 spin_lock(&dentry
->d_lock
);
2330 inode
= dentry
->d_inode
;
2331 isdir
= S_ISDIR(inode
->i_mode
);
2332 if (dentry
->d_lockref
.count
== 1) {
2333 if (!spin_trylock(&inode
->i_lock
)) {
2334 spin_unlock(&dentry
->d_lock
);
2338 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
2339 dentry_unlink_inode(dentry
);
2340 fsnotify_nameremove(dentry
, isdir
);
2344 if (!d_unhashed(dentry
))
2347 spin_unlock(&dentry
->d_lock
);
2349 fsnotify_nameremove(dentry
, isdir
);
2351 EXPORT_SYMBOL(d_delete
);
2353 static void __d_rehash(struct dentry
* entry
, struct hlist_bl_head
*b
)
2355 BUG_ON(!d_unhashed(entry
));
2357 entry
->d_flags
|= DCACHE_RCUACCESS
;
2358 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2362 static void _d_rehash(struct dentry
* entry
)
2364 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
2368 * d_rehash - add an entry back to the hash
2369 * @entry: dentry to add to the hash
2371 * Adds a dentry to the hash according to its name.
2374 void d_rehash(struct dentry
* entry
)
2376 spin_lock(&entry
->d_lock
);
2378 spin_unlock(&entry
->d_lock
);
2380 EXPORT_SYMBOL(d_rehash
);
2383 * dentry_update_name_case - update case insensitive dentry with a new name
2384 * @dentry: dentry to be updated
2387 * Update a case insensitive dentry with new case of name.
2389 * dentry must have been returned by d_lookup with name @name. Old and new
2390 * name lengths must match (ie. no d_compare which allows mismatched name
2393 * Parent inode i_mutex must be held over d_lookup and into this call (to
2394 * keep renames and concurrent inserts, and readdir(2) away).
2396 void dentry_update_name_case(struct dentry
*dentry
, struct qstr
*name
)
2398 BUG_ON(!mutex_is_locked(&dentry
->d_parent
->d_inode
->i_mutex
));
2399 BUG_ON(dentry
->d_name
.len
!= name
->len
); /* d_lookup gives this */
2401 spin_lock(&dentry
->d_lock
);
2402 write_seqcount_begin(&dentry
->d_seq
);
2403 memcpy((unsigned char *)dentry
->d_name
.name
, name
->name
, name
->len
);
2404 write_seqcount_end(&dentry
->d_seq
);
2405 spin_unlock(&dentry
->d_lock
);
2407 EXPORT_SYMBOL(dentry_update_name_case
);
2409 static void switch_names(struct dentry
*dentry
, struct dentry
*target
,
2412 if (dname_external(target
)) {
2413 if (dname_external(dentry
)) {
2415 * Both external: swap the pointers
2417 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2420 * dentry:internal, target:external. Steal target's
2421 * storage and make target internal.
2423 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2424 dentry
->d_name
.len
+ 1);
2425 dentry
->d_name
.name
= target
->d_name
.name
;
2426 target
->d_name
.name
= target
->d_iname
;
2429 if (dname_external(dentry
)) {
2431 * dentry:external, target:internal. Give dentry's
2432 * storage to target and make dentry internal
2434 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2435 target
->d_name
.len
+ 1);
2436 target
->d_name
.name
= dentry
->d_name
.name
;
2437 dentry
->d_name
.name
= dentry
->d_iname
;
2440 * Both are internal.
2443 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN
, sizeof(long)));
2444 kmemcheck_mark_initialized(dentry
->d_iname
, DNAME_INLINE_LEN
);
2445 kmemcheck_mark_initialized(target
->d_iname
, DNAME_INLINE_LEN
);
2447 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2448 target
->d_name
.len
+ 1);
2449 dentry
->d_name
.hash_len
= target
->d_name
.hash_len
;
2452 for (i
= 0; i
< DNAME_INLINE_LEN
/ sizeof(long); i
++) {
2453 swap(((long *) &dentry
->d_iname
)[i
],
2454 ((long *) &target
->d_iname
)[i
]);
2458 swap(dentry
->d_name
.hash_len
, target
->d_name
.hash_len
);
2461 static void dentry_lock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2464 * XXXX: do we really need to take target->d_lock?
2466 if (IS_ROOT(dentry
) || dentry
->d_parent
== target
->d_parent
)
2467 spin_lock(&target
->d_parent
->d_lock
);
2469 if (d_ancestor(dentry
->d_parent
, target
->d_parent
)) {
2470 spin_lock(&dentry
->d_parent
->d_lock
);
2471 spin_lock_nested(&target
->d_parent
->d_lock
,
2472 DENTRY_D_LOCK_NESTED
);
2474 spin_lock(&target
->d_parent
->d_lock
);
2475 spin_lock_nested(&dentry
->d_parent
->d_lock
,
2476 DENTRY_D_LOCK_NESTED
);
2479 if (target
< dentry
) {
2480 spin_lock_nested(&target
->d_lock
, 2);
2481 spin_lock_nested(&dentry
->d_lock
, 3);
2483 spin_lock_nested(&dentry
->d_lock
, 2);
2484 spin_lock_nested(&target
->d_lock
, 3);
2488 static void dentry_unlock_parents_for_move(struct dentry
*dentry
,
2489 struct dentry
*target
)
2491 if (target
->d_parent
!= dentry
->d_parent
)
2492 spin_unlock(&dentry
->d_parent
->d_lock
);
2493 if (target
->d_parent
!= target
)
2494 spin_unlock(&target
->d_parent
->d_lock
);
2498 * When switching names, the actual string doesn't strictly have to
2499 * be preserved in the target - because we're dropping the target
2500 * anyway. As such, we can just do a simple memcpy() to copy over
2501 * the new name before we switch, unless we are going to rehash
2502 * it. Note that if we *do* unhash the target, we are not allowed
2503 * to rehash it without giving it a new name/hash key - whether
2504 * we swap or overwrite the names here, resulting name won't match
2505 * the reality in filesystem; it's only there for d_path() purposes.
2506 * Note that all of this is happening under rename_lock, so the
2507 * any hash lookup seeing it in the middle of manipulations will
2508 * be discarded anyway. So we do not care what happens to the hash
2512 * __d_move - move a dentry
2513 * @dentry: entry to move
2514 * @target: new dentry
2515 * @exchange: exchange the two dentries
2517 * Update the dcache to reflect the move of a file name. Negative
2518 * dcache entries should not be moved in this way. Caller must hold
2519 * rename_lock, the i_mutex of the source and target directories,
2520 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2522 static void __d_move(struct dentry
*dentry
, struct dentry
*target
,
2525 if (!dentry
->d_inode
)
2526 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
2528 BUG_ON(d_ancestor(dentry
, target
));
2529 BUG_ON(d_ancestor(target
, dentry
));
2531 dentry_lock_for_move(dentry
, target
);
2533 write_seqcount_begin(&dentry
->d_seq
);
2534 write_seqcount_begin_nested(&target
->d_seq
, DENTRY_D_LOCK_NESTED
);
2536 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2539 * Move the dentry to the target hash queue. Don't bother checking
2540 * for the same hash queue because of how unlikely it is.
2543 __d_rehash(dentry
, d_hash(target
->d_parent
, target
->d_name
.hash
));
2546 * Unhash the target (d_delete() is not usable here). If exchanging
2547 * the two dentries, then rehash onto the other's hash queue.
2552 d_hash(dentry
->d_parent
, dentry
->d_name
.hash
));
2555 list_del(&dentry
->d_child
);
2556 list_del(&target
->d_child
);
2558 /* Switch the names.. */
2559 switch_names(dentry
, target
, exchange
);
2561 /* ... and switch the parents */
2562 if (IS_ROOT(dentry
)) {
2563 dentry
->d_parent
= target
->d_parent
;
2564 target
->d_parent
= target
;
2565 INIT_LIST_HEAD(&target
->d_child
);
2567 swap(dentry
->d_parent
, target
->d_parent
);
2569 /* And add them back to the (new) parent lists */
2570 list_add(&target
->d_child
, &target
->d_parent
->d_subdirs
);
2573 list_add(&dentry
->d_child
, &dentry
->d_parent
->d_subdirs
);
2575 write_seqcount_end(&target
->d_seq
);
2576 write_seqcount_end(&dentry
->d_seq
);
2578 dentry_unlock_parents_for_move(dentry
, target
);
2580 fsnotify_d_move(target
);
2581 spin_unlock(&target
->d_lock
);
2582 fsnotify_d_move(dentry
);
2583 spin_unlock(&dentry
->d_lock
);
2587 * d_move - move a dentry
2588 * @dentry: entry to move
2589 * @target: new dentry
2591 * Update the dcache to reflect the move of a file name. Negative
2592 * dcache entries should not be moved in this way. See the locking
2593 * requirements for __d_move.
2595 void d_move(struct dentry
*dentry
, struct dentry
*target
)
2597 write_seqlock(&rename_lock
);
2598 __d_move(dentry
, target
, false);
2599 write_sequnlock(&rename_lock
);
2601 EXPORT_SYMBOL(d_move
);
2604 * d_exchange - exchange two dentries
2605 * @dentry1: first dentry
2606 * @dentry2: second dentry
2608 void d_exchange(struct dentry
*dentry1
, struct dentry
*dentry2
)
2610 write_seqlock(&rename_lock
);
2612 WARN_ON(!dentry1
->d_inode
);
2613 WARN_ON(!dentry2
->d_inode
);
2614 WARN_ON(IS_ROOT(dentry1
));
2615 WARN_ON(IS_ROOT(dentry2
));
2617 __d_move(dentry1
, dentry2
, true);
2619 write_sequnlock(&rename_lock
);
2623 * d_ancestor - search for an ancestor
2624 * @p1: ancestor dentry
2627 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2628 * an ancestor of p2, else NULL.
2630 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2634 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2635 if (p
->d_parent
== p1
)
2642 * This helper attempts to cope with remotely renamed directories
2644 * It assumes that the caller is already holding
2645 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2647 * Note: If ever the locking in lock_rename() changes, then please
2648 * remember to update this too...
2650 static struct dentry
*__d_unalias(struct inode
*inode
,
2651 struct dentry
*dentry
, struct dentry
*alias
)
2653 struct mutex
*m1
= NULL
, *m2
= NULL
;
2654 struct dentry
*ret
= ERR_PTR(-EBUSY
);
2656 /* If alias and dentry share a parent, then no extra locks required */
2657 if (alias
->d_parent
== dentry
->d_parent
)
2660 /* See lock_rename() */
2661 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2663 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2664 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
2666 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
2668 if (likely(!d_mountpoint(alias
))) {
2669 __d_move(alias
, dentry
, false);
2673 spin_unlock(&inode
->i_lock
);
2682 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2683 * named dentry in place of the dentry to be replaced.
2684 * returns with anon->d_lock held!
2686 static void __d_materialise_dentry(struct dentry
*dentry
, struct dentry
*anon
)
2688 struct dentry
*dparent
;
2690 dentry_lock_for_move(anon
, dentry
);
2692 write_seqcount_begin(&dentry
->d_seq
);
2693 write_seqcount_begin_nested(&anon
->d_seq
, DENTRY_D_LOCK_NESTED
);
2695 dparent
= dentry
->d_parent
;
2697 switch_names(dentry
, anon
, false);
2699 dentry
->d_parent
= dentry
;
2700 list_del_init(&dentry
->d_child
);
2701 anon
->d_parent
= dparent
;
2702 list_move(&anon
->d_child
, &dparent
->d_subdirs
);
2704 write_seqcount_end(&dentry
->d_seq
);
2705 write_seqcount_end(&anon
->d_seq
);
2707 dentry_unlock_parents_for_move(anon
, dentry
);
2708 spin_unlock(&dentry
->d_lock
);
2710 /* anon->d_lock still locked, returns locked */
2714 * d_materialise_unique - introduce an inode into the tree
2715 * @dentry: candidate dentry
2716 * @inode: inode to bind to the dentry, to which aliases may be attached
2718 * Introduces an dentry into the tree, substituting an extant disconnected
2719 * root directory alias in its place if there is one. Caller must hold the
2720 * i_mutex of the parent directory.
2722 struct dentry
*d_materialise_unique(struct dentry
*dentry
, struct inode
*inode
)
2724 struct dentry
*actual
;
2726 BUG_ON(!d_unhashed(dentry
));
2730 __d_instantiate(dentry
, NULL
);
2735 spin_lock(&inode
->i_lock
);
2737 if (S_ISDIR(inode
->i_mode
)) {
2738 struct dentry
*alias
;
2740 /* Does an aliased dentry already exist? */
2741 alias
= __d_find_alias(inode
, 0);
2744 write_seqlock(&rename_lock
);
2746 if (d_ancestor(alias
, dentry
)) {
2747 /* Check for loops */
2748 actual
= ERR_PTR(-ELOOP
);
2749 spin_unlock(&inode
->i_lock
);
2750 } else if (IS_ROOT(alias
)) {
2751 /* Is this an anonymous mountpoint that we
2752 * could splice into our tree? */
2753 __d_materialise_dentry(dentry
, alias
);
2754 write_sequnlock(&rename_lock
);
2758 /* Nope, but we must(!) avoid directory
2759 * aliasing. This drops inode->i_lock */
2760 actual
= __d_unalias(inode
, dentry
, alias
);
2762 write_sequnlock(&rename_lock
);
2763 if (IS_ERR(actual
)) {
2764 if (PTR_ERR(actual
) == -ELOOP
)
2765 pr_warn_ratelimited(
2766 "VFS: Lookup of '%s' in %s %s"
2767 " would have caused loop\n",
2768 dentry
->d_name
.name
,
2769 inode
->i_sb
->s_type
->name
,
2777 /* Add a unique reference */
2778 actual
= __d_instantiate_unique(dentry
, inode
);
2782 BUG_ON(!d_unhashed(actual
));
2784 spin_lock(&actual
->d_lock
);
2787 spin_unlock(&actual
->d_lock
);
2788 spin_unlock(&inode
->i_lock
);
2790 if (actual
== dentry
) {
2791 security_d_instantiate(dentry
, inode
);
2798 EXPORT_SYMBOL_GPL(d_materialise_unique
);
2800 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
2804 return -ENAMETOOLONG
;
2806 memcpy(*buffer
, str
, namelen
);
2811 * prepend_name - prepend a pathname in front of current buffer pointer
2812 * @buffer: buffer pointer
2813 * @buflen: allocated length of the buffer
2814 * @name: name string and length qstr structure
2816 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2817 * make sure that either the old or the new name pointer and length are
2818 * fetched. However, there may be mismatch between length and pointer.
2819 * The length cannot be trusted, we need to copy it byte-by-byte until
2820 * the length is reached or a null byte is found. It also prepends "/" at
2821 * the beginning of the name. The sequence number check at the caller will
2822 * retry it again when a d_move() does happen. So any garbage in the buffer
2823 * due to mismatched pointer and length will be discarded.
2825 * Data dependency barrier is needed to make sure that we see that terminating
2826 * NUL. Alpha strikes again, film at 11...
2828 static int prepend_name(char **buffer
, int *buflen
, struct qstr
*name
)
2830 const char *dname
= ACCESS_ONCE(name
->name
);
2831 u32 dlen
= ACCESS_ONCE(name
->len
);
2834 smp_read_barrier_depends();
2836 *buflen
-= dlen
+ 1;
2838 return -ENAMETOOLONG
;
2839 p
= *buffer
-= dlen
+ 1;
2851 * prepend_path - Prepend path string to a buffer
2852 * @path: the dentry/vfsmount to report
2853 * @root: root vfsmnt/dentry
2854 * @buffer: pointer to the end of the buffer
2855 * @buflen: pointer to buffer length
2857 * The function will first try to write out the pathname without taking any
2858 * lock other than the RCU read lock to make sure that dentries won't go away.
2859 * It only checks the sequence number of the global rename_lock as any change
2860 * in the dentry's d_seq will be preceded by changes in the rename_lock
2861 * sequence number. If the sequence number had been changed, it will restart
2862 * the whole pathname back-tracing sequence again by taking the rename_lock.
2863 * In this case, there is no need to take the RCU read lock as the recursive
2864 * parent pointer references will keep the dentry chain alive as long as no
2865 * rename operation is performed.
2867 static int prepend_path(const struct path
*path
,
2868 const struct path
*root
,
2869 char **buffer
, int *buflen
)
2871 struct dentry
*dentry
;
2872 struct vfsmount
*vfsmnt
;
2875 unsigned seq
, m_seq
= 0;
2881 read_seqbegin_or_lock(&mount_lock
, &m_seq
);
2888 dentry
= path
->dentry
;
2890 mnt
= real_mount(vfsmnt
);
2891 read_seqbegin_or_lock(&rename_lock
, &seq
);
2892 while (dentry
!= root
->dentry
|| vfsmnt
!= root
->mnt
) {
2893 struct dentry
* parent
;
2895 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
2896 struct mount
*parent
= ACCESS_ONCE(mnt
->mnt_parent
);
2898 if (dentry
!= vfsmnt
->mnt_root
) {
2905 if (mnt
!= parent
) {
2906 dentry
= ACCESS_ONCE(mnt
->mnt_mountpoint
);
2912 error
= is_mounted(vfsmnt
) ? 1 : 2;
2915 parent
= dentry
->d_parent
;
2917 error
= prepend_name(&bptr
, &blen
, &dentry
->d_name
);
2925 if (need_seqretry(&rename_lock
, seq
)) {
2929 done_seqretry(&rename_lock
, seq
);
2933 if (need_seqretry(&mount_lock
, m_seq
)) {
2937 done_seqretry(&mount_lock
, m_seq
);
2939 if (error
>= 0 && bptr
== *buffer
) {
2941 error
= -ENAMETOOLONG
;
2951 * __d_path - return the path of a dentry
2952 * @path: the dentry/vfsmount to report
2953 * @root: root vfsmnt/dentry
2954 * @buf: buffer to return value in
2955 * @buflen: buffer length
2957 * Convert a dentry into an ASCII path name.
2959 * Returns a pointer into the buffer or an error code if the
2960 * path was too long.
2962 * "buflen" should be positive.
2964 * If the path is not reachable from the supplied root, return %NULL.
2966 char *__d_path(const struct path
*path
,
2967 const struct path
*root
,
2968 char *buf
, int buflen
)
2970 char *res
= buf
+ buflen
;
2973 prepend(&res
, &buflen
, "\0", 1);
2974 error
= prepend_path(path
, root
, &res
, &buflen
);
2977 return ERR_PTR(error
);
2983 char *d_absolute_path(const struct path
*path
,
2984 char *buf
, int buflen
)
2986 struct path root
= {};
2987 char *res
= buf
+ buflen
;
2990 prepend(&res
, &buflen
, "\0", 1);
2991 error
= prepend_path(path
, &root
, &res
, &buflen
);
2996 return ERR_PTR(error
);
3001 * same as __d_path but appends "(deleted)" for unlinked files.
3003 static int path_with_deleted(const struct path
*path
,
3004 const struct path
*root
,
3005 char **buf
, int *buflen
)
3007 prepend(buf
, buflen
, "\0", 1);
3008 if (d_unlinked(path
->dentry
)) {
3009 int error
= prepend(buf
, buflen
, " (deleted)", 10);
3014 return prepend_path(path
, root
, buf
, buflen
);
3017 static int prepend_unreachable(char **buffer
, int *buflen
)
3019 return prepend(buffer
, buflen
, "(unreachable)", 13);
3022 static void get_fs_root_rcu(struct fs_struct
*fs
, struct path
*root
)
3027 seq
= read_seqcount_begin(&fs
->seq
);
3029 } while (read_seqcount_retry(&fs
->seq
, seq
));
3033 * d_path - return the path of a dentry
3034 * @path: path to report
3035 * @buf: buffer to return value in
3036 * @buflen: buffer length
3038 * Convert a dentry into an ASCII path name. If the entry has been deleted
3039 * the string " (deleted)" is appended. Note that this is ambiguous.
3041 * Returns a pointer into the buffer or an error code if the path was
3042 * too long. Note: Callers should use the returned pointer, not the passed
3043 * in buffer, to use the name! The implementation often starts at an offset
3044 * into the buffer, and may leave 0 bytes at the start.
3046 * "buflen" should be positive.
3048 char *d_path(const struct path
*path
, char *buf
, int buflen
)
3050 char *res
= buf
+ buflen
;
3055 * We have various synthetic filesystems that never get mounted. On
3056 * these filesystems dentries are never used for lookup purposes, and
3057 * thus don't need to be hashed. They also don't need a name until a
3058 * user wants to identify the object in /proc/pid/fd/. The little hack
3059 * below allows us to generate a name for these objects on demand:
3061 * Some pseudo inodes are mountable. When they are mounted
3062 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3063 * and instead have d_path return the mounted path.
3065 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
&&
3066 (!IS_ROOT(path
->dentry
) || path
->dentry
!= path
->mnt
->mnt_root
))
3067 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
3070 get_fs_root_rcu(current
->fs
, &root
);
3071 error
= path_with_deleted(path
, &root
, &res
, &buflen
);
3075 res
= ERR_PTR(error
);
3078 EXPORT_SYMBOL(d_path
);
3081 * Helper function for dentry_operations.d_dname() members
3083 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
3084 const char *fmt
, ...)
3090 va_start(args
, fmt
);
3091 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
3094 if (sz
> sizeof(temp
) || sz
> buflen
)
3095 return ERR_PTR(-ENAMETOOLONG
);
3097 buffer
+= buflen
- sz
;
3098 return memcpy(buffer
, temp
, sz
);
3101 char *simple_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
3103 char *end
= buffer
+ buflen
;
3104 /* these dentries are never renamed, so d_lock is not needed */
3105 if (prepend(&end
, &buflen
, " (deleted)", 11) ||
3106 prepend(&end
, &buflen
, dentry
->d_name
.name
, dentry
->d_name
.len
) ||
3107 prepend(&end
, &buflen
, "/", 1))
3108 end
= ERR_PTR(-ENAMETOOLONG
);
3111 EXPORT_SYMBOL(simple_dname
);
3114 * Write full pathname from the root of the filesystem into the buffer.
3116 static char *__dentry_path(struct dentry
*d
, char *buf
, int buflen
)
3118 struct dentry
*dentry
;
3131 prepend(&end
, &len
, "\0", 1);
3135 read_seqbegin_or_lock(&rename_lock
, &seq
);
3136 while (!IS_ROOT(dentry
)) {
3137 struct dentry
*parent
= dentry
->d_parent
;
3140 error
= prepend_name(&end
, &len
, &dentry
->d_name
);
3149 if (need_seqretry(&rename_lock
, seq
)) {
3153 done_seqretry(&rename_lock
, seq
);
3158 return ERR_PTR(-ENAMETOOLONG
);
3161 char *dentry_path_raw(struct dentry
*dentry
, char *buf
, int buflen
)
3163 return __dentry_path(dentry
, buf
, buflen
);
3165 EXPORT_SYMBOL(dentry_path_raw
);
3167 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
3172 if (d_unlinked(dentry
)) {
3174 if (prepend(&p
, &buflen
, "//deleted", 10) != 0)
3178 retval
= __dentry_path(dentry
, buf
, buflen
);
3179 if (!IS_ERR(retval
) && p
)
3180 *p
= '/'; /* restore '/' overriden with '\0' */
3183 return ERR_PTR(-ENAMETOOLONG
);
3186 static void get_fs_root_and_pwd_rcu(struct fs_struct
*fs
, struct path
*root
,
3192 seq
= read_seqcount_begin(&fs
->seq
);
3195 } while (read_seqcount_retry(&fs
->seq
, seq
));
3199 * NOTE! The user-level library version returns a
3200 * character pointer. The kernel system call just
3201 * returns the length of the buffer filled (which
3202 * includes the ending '\0' character), or a negative
3203 * error value. So libc would do something like
3205 * char *getcwd(char * buf, size_t size)
3209 * retval = sys_getcwd(buf, size);
3216 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
3219 struct path pwd
, root
;
3220 char *page
= __getname();
3226 get_fs_root_and_pwd_rcu(current
->fs
, &root
, &pwd
);
3229 if (!d_unlinked(pwd
.dentry
)) {
3231 char *cwd
= page
+ PATH_MAX
;
3232 int buflen
= PATH_MAX
;
3234 prepend(&cwd
, &buflen
, "\0", 1);
3235 error
= prepend_path(&pwd
, &root
, &cwd
, &buflen
);
3241 /* Unreachable from current root */
3243 error
= prepend_unreachable(&cwd
, &buflen
);
3249 len
= PATH_MAX
+ page
- cwd
;
3252 if (copy_to_user(buf
, cwd
, len
))
3265 * Test whether new_dentry is a subdirectory of old_dentry.
3267 * Trivially implemented using the dcache structure
3271 * is_subdir - is new dentry a subdirectory of old_dentry
3272 * @new_dentry: new dentry
3273 * @old_dentry: old dentry
3275 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3276 * Returns 0 otherwise.
3277 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3280 int is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
3285 if (new_dentry
== old_dentry
)
3289 /* for restarting inner loop in case of seq retry */
3290 seq
= read_seqbegin(&rename_lock
);
3292 * Need rcu_readlock to protect against the d_parent trashing
3296 if (d_ancestor(old_dentry
, new_dentry
))
3301 } while (read_seqretry(&rename_lock
, seq
));
3306 static enum d_walk_ret
d_genocide_kill(void *data
, struct dentry
*dentry
)
3308 struct dentry
*root
= data
;
3309 if (dentry
!= root
) {
3310 if (d_unhashed(dentry
) || !dentry
->d_inode
)
3313 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
3314 dentry
->d_flags
|= DCACHE_GENOCIDE
;
3315 dentry
->d_lockref
.count
--;
3318 return D_WALK_CONTINUE
;
3321 void d_genocide(struct dentry
*parent
)
3323 d_walk(parent
, parent
, d_genocide_kill
, NULL
);
3326 void d_tmpfile(struct dentry
*dentry
, struct inode
*inode
)
3328 inode_dec_link_count(inode
);
3329 BUG_ON(dentry
->d_name
.name
!= dentry
->d_iname
||
3330 !hlist_unhashed(&dentry
->d_u
.d_alias
) ||
3331 !d_unlinked(dentry
));
3332 spin_lock(&dentry
->d_parent
->d_lock
);
3333 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
3334 dentry
->d_name
.len
= sprintf(dentry
->d_iname
, "#%llu",
3335 (unsigned long long)inode
->i_ino
);
3336 spin_unlock(&dentry
->d_lock
);
3337 spin_unlock(&dentry
->d_parent
->d_lock
);
3338 d_instantiate(dentry
, inode
);
3340 EXPORT_SYMBOL(d_tmpfile
);
3342 static __initdata
unsigned long dhash_entries
;
3343 static int __init
set_dhash_entries(char *str
)
3347 dhash_entries
= simple_strtoul(str
, &str
, 0);
3350 __setup("dhash_entries=", set_dhash_entries
);
3352 static void __init
dcache_init_early(void)
3356 /* If hashes are distributed across NUMA nodes, defer
3357 * hash allocation until vmalloc space is available.
3363 alloc_large_system_hash("Dentry cache",
3364 sizeof(struct hlist_bl_head
),
3373 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3374 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3377 static void __init
dcache_init(void)
3382 * A constructor could be added for stable state like the lists,
3383 * but it is probably not worth it because of the cache nature
3386 dentry_cache
= KMEM_CACHE(dentry
,
3387 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
3389 /* Hash may have been set up in dcache_init_early */
3394 alloc_large_system_hash("Dentry cache",
3395 sizeof(struct hlist_bl_head
),
3404 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3405 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3408 /* SLAB cache for __getname() consumers */
3409 struct kmem_cache
*names_cachep __read_mostly
;
3410 EXPORT_SYMBOL(names_cachep
);
3412 EXPORT_SYMBOL(d_genocide
);
3414 void __init
vfs_caches_init_early(void)
3416 dcache_init_early();
3420 void __init
vfs_caches_init(unsigned long mempages
)
3422 unsigned long reserve
;
3424 /* Base hash sizes on available memory, with a reserve equal to
3425 150% of current kernel size */
3427 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
3428 mempages
-= reserve
;
3430 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
3431 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3435 files_init(mempages
);