usb: renesas_usbhs: disable TX IRQ before starting TX DMAC transfer
[linux/fpc-iii.git] / fs / xfs / xfs_buf.c
blob7d988a50c3536d09cdad0fda7eec1514cbfa3795
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
37 #include "xfs_log_format.h"
38 #include "xfs_trans_resv.h"
39 #include "xfs_sb.h"
40 #include "xfs_ag.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43 #include "xfs_log.h"
45 static kmem_zone_t *xfs_buf_zone;
47 static struct workqueue_struct *xfslogd_workqueue;
49 #ifdef XFS_BUF_LOCK_TRACKING
50 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
51 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
52 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
53 #else
54 # define XB_SET_OWNER(bp) do { } while (0)
55 # define XB_CLEAR_OWNER(bp) do { } while (0)
56 # define XB_GET_OWNER(bp) do { } while (0)
57 #endif
59 #define xb_to_gfp(flags) \
60 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
63 static inline int
64 xfs_buf_is_vmapped(
65 struct xfs_buf *bp)
68 * Return true if the buffer is vmapped.
70 * b_addr is null if the buffer is not mapped, but the code is clever
71 * enough to know it doesn't have to map a single page, so the check has
72 * to be both for b_addr and bp->b_page_count > 1.
74 return bp->b_addr && bp->b_page_count > 1;
77 static inline int
78 xfs_buf_vmap_len(
79 struct xfs_buf *bp)
81 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
85 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
86 * b_lru_ref count so that the buffer is freed immediately when the buffer
87 * reference count falls to zero. If the buffer is already on the LRU, we need
88 * to remove the reference that LRU holds on the buffer.
90 * This prevents build-up of stale buffers on the LRU.
92 void
93 xfs_buf_stale(
94 struct xfs_buf *bp)
96 ASSERT(xfs_buf_islocked(bp));
98 bp->b_flags |= XBF_STALE;
101 * Clear the delwri status so that a delwri queue walker will not
102 * flush this buffer to disk now that it is stale. The delwri queue has
103 * a reference to the buffer, so this is safe to do.
105 bp->b_flags &= ~_XBF_DELWRI_Q;
107 spin_lock(&bp->b_lock);
108 atomic_set(&bp->b_lru_ref, 0);
109 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
110 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
111 atomic_dec(&bp->b_hold);
113 ASSERT(atomic_read(&bp->b_hold) >= 1);
114 spin_unlock(&bp->b_lock);
117 static int
118 xfs_buf_get_maps(
119 struct xfs_buf *bp,
120 int map_count)
122 ASSERT(bp->b_maps == NULL);
123 bp->b_map_count = map_count;
125 if (map_count == 1) {
126 bp->b_maps = &bp->__b_map;
127 return 0;
130 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
131 KM_NOFS);
132 if (!bp->b_maps)
133 return ENOMEM;
134 return 0;
138 * Frees b_pages if it was allocated.
140 static void
141 xfs_buf_free_maps(
142 struct xfs_buf *bp)
144 if (bp->b_maps != &bp->__b_map) {
145 kmem_free(bp->b_maps);
146 bp->b_maps = NULL;
150 struct xfs_buf *
151 _xfs_buf_alloc(
152 struct xfs_buftarg *target,
153 struct xfs_buf_map *map,
154 int nmaps,
155 xfs_buf_flags_t flags)
157 struct xfs_buf *bp;
158 int error;
159 int i;
161 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
162 if (unlikely(!bp))
163 return NULL;
166 * We don't want certain flags to appear in b_flags unless they are
167 * specifically set by later operations on the buffer.
169 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
171 atomic_set(&bp->b_hold, 1);
172 atomic_set(&bp->b_lru_ref, 1);
173 init_completion(&bp->b_iowait);
174 INIT_LIST_HEAD(&bp->b_lru);
175 INIT_LIST_HEAD(&bp->b_list);
176 RB_CLEAR_NODE(&bp->b_rbnode);
177 sema_init(&bp->b_sema, 0); /* held, no waiters */
178 spin_lock_init(&bp->b_lock);
179 XB_SET_OWNER(bp);
180 bp->b_target = target;
181 bp->b_flags = flags;
184 * Set length and io_length to the same value initially.
185 * I/O routines should use io_length, which will be the same in
186 * most cases but may be reset (e.g. XFS recovery).
188 error = xfs_buf_get_maps(bp, nmaps);
189 if (error) {
190 kmem_zone_free(xfs_buf_zone, bp);
191 return NULL;
194 bp->b_bn = map[0].bm_bn;
195 bp->b_length = 0;
196 for (i = 0; i < nmaps; i++) {
197 bp->b_maps[i].bm_bn = map[i].bm_bn;
198 bp->b_maps[i].bm_len = map[i].bm_len;
199 bp->b_length += map[i].bm_len;
201 bp->b_io_length = bp->b_length;
203 atomic_set(&bp->b_pin_count, 0);
204 init_waitqueue_head(&bp->b_waiters);
206 XFS_STATS_INC(xb_create);
207 trace_xfs_buf_init(bp, _RET_IP_);
209 return bp;
213 * Allocate a page array capable of holding a specified number
214 * of pages, and point the page buf at it.
216 STATIC int
217 _xfs_buf_get_pages(
218 xfs_buf_t *bp,
219 int page_count)
221 /* Make sure that we have a page list */
222 if (bp->b_pages == NULL) {
223 bp->b_page_count = page_count;
224 if (page_count <= XB_PAGES) {
225 bp->b_pages = bp->b_page_array;
226 } else {
227 bp->b_pages = kmem_alloc(sizeof(struct page *) *
228 page_count, KM_NOFS);
229 if (bp->b_pages == NULL)
230 return -ENOMEM;
232 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
234 return 0;
238 * Frees b_pages if it was allocated.
240 STATIC void
241 _xfs_buf_free_pages(
242 xfs_buf_t *bp)
244 if (bp->b_pages != bp->b_page_array) {
245 kmem_free(bp->b_pages);
246 bp->b_pages = NULL;
251 * Releases the specified buffer.
253 * The modification state of any associated pages is left unchanged.
254 * The buffer must not be on any hash - use xfs_buf_rele instead for
255 * hashed and refcounted buffers
257 void
258 xfs_buf_free(
259 xfs_buf_t *bp)
261 trace_xfs_buf_free(bp, _RET_IP_);
263 ASSERT(list_empty(&bp->b_lru));
265 if (bp->b_flags & _XBF_PAGES) {
266 uint i;
268 if (xfs_buf_is_vmapped(bp))
269 vm_unmap_ram(bp->b_addr - bp->b_offset,
270 bp->b_page_count);
272 for (i = 0; i < bp->b_page_count; i++) {
273 struct page *page = bp->b_pages[i];
275 __free_page(page);
277 } else if (bp->b_flags & _XBF_KMEM)
278 kmem_free(bp->b_addr);
279 _xfs_buf_free_pages(bp);
280 xfs_buf_free_maps(bp);
281 kmem_zone_free(xfs_buf_zone, bp);
285 * Allocates all the pages for buffer in question and builds it's page list.
287 STATIC int
288 xfs_buf_allocate_memory(
289 xfs_buf_t *bp,
290 uint flags)
292 size_t size;
293 size_t nbytes, offset;
294 gfp_t gfp_mask = xb_to_gfp(flags);
295 unsigned short page_count, i;
296 xfs_off_t start, end;
297 int error;
300 * for buffers that are contained within a single page, just allocate
301 * the memory from the heap - there's no need for the complexity of
302 * page arrays to keep allocation down to order 0.
304 size = BBTOB(bp->b_length);
305 if (size < PAGE_SIZE) {
306 bp->b_addr = kmem_alloc(size, KM_NOFS);
307 if (!bp->b_addr) {
308 /* low memory - use alloc_page loop instead */
309 goto use_alloc_page;
312 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
313 ((unsigned long)bp->b_addr & PAGE_MASK)) {
314 /* b_addr spans two pages - use alloc_page instead */
315 kmem_free(bp->b_addr);
316 bp->b_addr = NULL;
317 goto use_alloc_page;
319 bp->b_offset = offset_in_page(bp->b_addr);
320 bp->b_pages = bp->b_page_array;
321 bp->b_pages[0] = virt_to_page(bp->b_addr);
322 bp->b_page_count = 1;
323 bp->b_flags |= _XBF_KMEM;
324 return 0;
327 use_alloc_page:
328 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
329 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
330 >> PAGE_SHIFT;
331 page_count = end - start;
332 error = _xfs_buf_get_pages(bp, page_count);
333 if (unlikely(error))
334 return error;
336 offset = bp->b_offset;
337 bp->b_flags |= _XBF_PAGES;
339 for (i = 0; i < bp->b_page_count; i++) {
340 struct page *page;
341 uint retries = 0;
342 retry:
343 page = alloc_page(gfp_mask);
344 if (unlikely(page == NULL)) {
345 if (flags & XBF_READ_AHEAD) {
346 bp->b_page_count = i;
347 error = ENOMEM;
348 goto out_free_pages;
352 * This could deadlock.
354 * But until all the XFS lowlevel code is revamped to
355 * handle buffer allocation failures we can't do much.
357 if (!(++retries % 100))
358 xfs_err(NULL,
359 "possible memory allocation deadlock in %s (mode:0x%x)",
360 __func__, gfp_mask);
362 XFS_STATS_INC(xb_page_retries);
363 congestion_wait(BLK_RW_ASYNC, HZ/50);
364 goto retry;
367 XFS_STATS_INC(xb_page_found);
369 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
370 size -= nbytes;
371 bp->b_pages[i] = page;
372 offset = 0;
374 return 0;
376 out_free_pages:
377 for (i = 0; i < bp->b_page_count; i++)
378 __free_page(bp->b_pages[i]);
379 return error;
383 * Map buffer into kernel address-space if necessary.
385 STATIC int
386 _xfs_buf_map_pages(
387 xfs_buf_t *bp,
388 uint flags)
390 ASSERT(bp->b_flags & _XBF_PAGES);
391 if (bp->b_page_count == 1) {
392 /* A single page buffer is always mappable */
393 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
394 } else if (flags & XBF_UNMAPPED) {
395 bp->b_addr = NULL;
396 } else {
397 int retried = 0;
398 unsigned noio_flag;
401 * vm_map_ram() will allocate auxillary structures (e.g.
402 * pagetables) with GFP_KERNEL, yet we are likely to be under
403 * GFP_NOFS context here. Hence we need to tell memory reclaim
404 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
405 * memory reclaim re-entering the filesystem here and
406 * potentially deadlocking.
408 noio_flag = memalloc_noio_save();
409 do {
410 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
411 -1, PAGE_KERNEL);
412 if (bp->b_addr)
413 break;
414 vm_unmap_aliases();
415 } while (retried++ <= 1);
416 memalloc_noio_restore(noio_flag);
418 if (!bp->b_addr)
419 return -ENOMEM;
420 bp->b_addr += bp->b_offset;
423 return 0;
427 * Finding and Reading Buffers
431 * Look up, and creates if absent, a lockable buffer for
432 * a given range of an inode. The buffer is returned
433 * locked. No I/O is implied by this call.
435 xfs_buf_t *
436 _xfs_buf_find(
437 struct xfs_buftarg *btp,
438 struct xfs_buf_map *map,
439 int nmaps,
440 xfs_buf_flags_t flags,
441 xfs_buf_t *new_bp)
443 size_t numbytes;
444 struct xfs_perag *pag;
445 struct rb_node **rbp;
446 struct rb_node *parent;
447 xfs_buf_t *bp;
448 xfs_daddr_t blkno = map[0].bm_bn;
449 xfs_daddr_t eofs;
450 int numblks = 0;
451 int i;
453 for (i = 0; i < nmaps; i++)
454 numblks += map[i].bm_len;
455 numbytes = BBTOB(numblks);
457 /* Check for IOs smaller than the sector size / not sector aligned */
458 ASSERT(!(numbytes < btp->bt_meta_sectorsize));
459 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
462 * Corrupted block numbers can get through to here, unfortunately, so we
463 * have to check that the buffer falls within the filesystem bounds.
465 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
466 if (blkno >= eofs) {
468 * XXX (dgc): we should really be returning EFSCORRUPTED here,
469 * but none of the higher level infrastructure supports
470 * returning a specific error on buffer lookup failures.
472 xfs_alert(btp->bt_mount,
473 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
474 __func__, blkno, eofs);
475 WARN_ON(1);
476 return NULL;
479 /* get tree root */
480 pag = xfs_perag_get(btp->bt_mount,
481 xfs_daddr_to_agno(btp->bt_mount, blkno));
483 /* walk tree */
484 spin_lock(&pag->pag_buf_lock);
485 rbp = &pag->pag_buf_tree.rb_node;
486 parent = NULL;
487 bp = NULL;
488 while (*rbp) {
489 parent = *rbp;
490 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
492 if (blkno < bp->b_bn)
493 rbp = &(*rbp)->rb_left;
494 else if (blkno > bp->b_bn)
495 rbp = &(*rbp)->rb_right;
496 else {
498 * found a block number match. If the range doesn't
499 * match, the only way this is allowed is if the buffer
500 * in the cache is stale and the transaction that made
501 * it stale has not yet committed. i.e. we are
502 * reallocating a busy extent. Skip this buffer and
503 * continue searching to the right for an exact match.
505 if (bp->b_length != numblks) {
506 ASSERT(bp->b_flags & XBF_STALE);
507 rbp = &(*rbp)->rb_right;
508 continue;
510 atomic_inc(&bp->b_hold);
511 goto found;
515 /* No match found */
516 if (new_bp) {
517 rb_link_node(&new_bp->b_rbnode, parent, rbp);
518 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
519 /* the buffer keeps the perag reference until it is freed */
520 new_bp->b_pag = pag;
521 spin_unlock(&pag->pag_buf_lock);
522 } else {
523 XFS_STATS_INC(xb_miss_locked);
524 spin_unlock(&pag->pag_buf_lock);
525 xfs_perag_put(pag);
527 return new_bp;
529 found:
530 spin_unlock(&pag->pag_buf_lock);
531 xfs_perag_put(pag);
533 if (!xfs_buf_trylock(bp)) {
534 if (flags & XBF_TRYLOCK) {
535 xfs_buf_rele(bp);
536 XFS_STATS_INC(xb_busy_locked);
537 return NULL;
539 xfs_buf_lock(bp);
540 XFS_STATS_INC(xb_get_locked_waited);
544 * if the buffer is stale, clear all the external state associated with
545 * it. We need to keep flags such as how we allocated the buffer memory
546 * intact here.
548 if (bp->b_flags & XBF_STALE) {
549 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
550 ASSERT(bp->b_iodone == NULL);
551 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
552 bp->b_ops = NULL;
555 trace_xfs_buf_find(bp, flags, _RET_IP_);
556 XFS_STATS_INC(xb_get_locked);
557 return bp;
561 * Assembles a buffer covering the specified range. The code is optimised for
562 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
563 * more hits than misses.
565 struct xfs_buf *
566 xfs_buf_get_map(
567 struct xfs_buftarg *target,
568 struct xfs_buf_map *map,
569 int nmaps,
570 xfs_buf_flags_t flags)
572 struct xfs_buf *bp;
573 struct xfs_buf *new_bp;
574 int error = 0;
576 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
577 if (likely(bp))
578 goto found;
580 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
581 if (unlikely(!new_bp))
582 return NULL;
584 error = xfs_buf_allocate_memory(new_bp, flags);
585 if (error) {
586 xfs_buf_free(new_bp);
587 return NULL;
590 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
591 if (!bp) {
592 xfs_buf_free(new_bp);
593 return NULL;
596 if (bp != new_bp)
597 xfs_buf_free(new_bp);
599 found:
600 if (!bp->b_addr) {
601 error = _xfs_buf_map_pages(bp, flags);
602 if (unlikely(error)) {
603 xfs_warn(target->bt_mount,
604 "%s: failed to map pagesn", __func__);
605 xfs_buf_relse(bp);
606 return NULL;
611 * Clear b_error if this is a lookup from a caller that doesn't expect
612 * valid data to be found in the buffer.
614 if (!(flags & XBF_READ))
615 xfs_buf_ioerror(bp, 0);
617 XFS_STATS_INC(xb_get);
618 trace_xfs_buf_get(bp, flags, _RET_IP_);
619 return bp;
622 STATIC int
623 _xfs_buf_read(
624 xfs_buf_t *bp,
625 xfs_buf_flags_t flags)
627 ASSERT(!(flags & XBF_WRITE));
628 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
630 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
631 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
633 xfs_buf_iorequest(bp);
634 if (flags & XBF_ASYNC)
635 return 0;
636 return xfs_buf_iowait(bp);
639 xfs_buf_t *
640 xfs_buf_read_map(
641 struct xfs_buftarg *target,
642 struct xfs_buf_map *map,
643 int nmaps,
644 xfs_buf_flags_t flags,
645 const struct xfs_buf_ops *ops)
647 struct xfs_buf *bp;
649 flags |= XBF_READ;
651 bp = xfs_buf_get_map(target, map, nmaps, flags);
652 if (bp) {
653 trace_xfs_buf_read(bp, flags, _RET_IP_);
655 if (!XFS_BUF_ISDONE(bp)) {
656 XFS_STATS_INC(xb_get_read);
657 bp->b_ops = ops;
658 _xfs_buf_read(bp, flags);
659 } else if (flags & XBF_ASYNC) {
661 * Read ahead call which is already satisfied,
662 * drop the buffer
664 xfs_buf_relse(bp);
665 return NULL;
666 } else {
667 /* We do not want read in the flags */
668 bp->b_flags &= ~XBF_READ;
672 return bp;
676 * If we are not low on memory then do the readahead in a deadlock
677 * safe manner.
679 void
680 xfs_buf_readahead_map(
681 struct xfs_buftarg *target,
682 struct xfs_buf_map *map,
683 int nmaps,
684 const struct xfs_buf_ops *ops)
686 if (bdi_read_congested(target->bt_bdi))
687 return;
689 xfs_buf_read_map(target, map, nmaps,
690 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
694 * Read an uncached buffer from disk. Allocates and returns a locked
695 * buffer containing the disk contents or nothing.
697 struct xfs_buf *
698 xfs_buf_read_uncached(
699 struct xfs_buftarg *target,
700 xfs_daddr_t daddr,
701 size_t numblks,
702 int flags,
703 const struct xfs_buf_ops *ops)
705 struct xfs_buf *bp;
707 bp = xfs_buf_get_uncached(target, numblks, flags);
708 if (!bp)
709 return NULL;
711 /* set up the buffer for a read IO */
712 ASSERT(bp->b_map_count == 1);
713 bp->b_bn = daddr;
714 bp->b_maps[0].bm_bn = daddr;
715 bp->b_flags |= XBF_READ;
716 bp->b_ops = ops;
718 if (XFS_FORCED_SHUTDOWN(target->bt_mount)) {
719 xfs_buf_relse(bp);
720 return NULL;
722 xfs_buf_iorequest(bp);
723 xfs_buf_iowait(bp);
724 return bp;
728 * Return a buffer allocated as an empty buffer and associated to external
729 * memory via xfs_buf_associate_memory() back to it's empty state.
731 void
732 xfs_buf_set_empty(
733 struct xfs_buf *bp,
734 size_t numblks)
736 if (bp->b_pages)
737 _xfs_buf_free_pages(bp);
739 bp->b_pages = NULL;
740 bp->b_page_count = 0;
741 bp->b_addr = NULL;
742 bp->b_length = numblks;
743 bp->b_io_length = numblks;
745 ASSERT(bp->b_map_count == 1);
746 bp->b_bn = XFS_BUF_DADDR_NULL;
747 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
748 bp->b_maps[0].bm_len = bp->b_length;
751 static inline struct page *
752 mem_to_page(
753 void *addr)
755 if ((!is_vmalloc_addr(addr))) {
756 return virt_to_page(addr);
757 } else {
758 return vmalloc_to_page(addr);
763 xfs_buf_associate_memory(
764 xfs_buf_t *bp,
765 void *mem,
766 size_t len)
768 int rval;
769 int i = 0;
770 unsigned long pageaddr;
771 unsigned long offset;
772 size_t buflen;
773 int page_count;
775 pageaddr = (unsigned long)mem & PAGE_MASK;
776 offset = (unsigned long)mem - pageaddr;
777 buflen = PAGE_ALIGN(len + offset);
778 page_count = buflen >> PAGE_SHIFT;
780 /* Free any previous set of page pointers */
781 if (bp->b_pages)
782 _xfs_buf_free_pages(bp);
784 bp->b_pages = NULL;
785 bp->b_addr = mem;
787 rval = _xfs_buf_get_pages(bp, page_count);
788 if (rval)
789 return rval;
791 bp->b_offset = offset;
793 for (i = 0; i < bp->b_page_count; i++) {
794 bp->b_pages[i] = mem_to_page((void *)pageaddr);
795 pageaddr += PAGE_SIZE;
798 bp->b_io_length = BTOBB(len);
799 bp->b_length = BTOBB(buflen);
801 return 0;
804 xfs_buf_t *
805 xfs_buf_get_uncached(
806 struct xfs_buftarg *target,
807 size_t numblks,
808 int flags)
810 unsigned long page_count;
811 int error, i;
812 struct xfs_buf *bp;
813 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
815 bp = _xfs_buf_alloc(target, &map, 1, 0);
816 if (unlikely(bp == NULL))
817 goto fail;
819 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
820 error = _xfs_buf_get_pages(bp, page_count);
821 if (error)
822 goto fail_free_buf;
824 for (i = 0; i < page_count; i++) {
825 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
826 if (!bp->b_pages[i])
827 goto fail_free_mem;
829 bp->b_flags |= _XBF_PAGES;
831 error = _xfs_buf_map_pages(bp, 0);
832 if (unlikely(error)) {
833 xfs_warn(target->bt_mount,
834 "%s: failed to map pages", __func__);
835 goto fail_free_mem;
838 trace_xfs_buf_get_uncached(bp, _RET_IP_);
839 return bp;
841 fail_free_mem:
842 while (--i >= 0)
843 __free_page(bp->b_pages[i]);
844 _xfs_buf_free_pages(bp);
845 fail_free_buf:
846 xfs_buf_free_maps(bp);
847 kmem_zone_free(xfs_buf_zone, bp);
848 fail:
849 return NULL;
853 * Increment reference count on buffer, to hold the buffer concurrently
854 * with another thread which may release (free) the buffer asynchronously.
855 * Must hold the buffer already to call this function.
857 void
858 xfs_buf_hold(
859 xfs_buf_t *bp)
861 trace_xfs_buf_hold(bp, _RET_IP_);
862 atomic_inc(&bp->b_hold);
866 * Releases a hold on the specified buffer. If the
867 * the hold count is 1, calls xfs_buf_free.
869 void
870 xfs_buf_rele(
871 xfs_buf_t *bp)
873 struct xfs_perag *pag = bp->b_pag;
875 trace_xfs_buf_rele(bp, _RET_IP_);
877 if (!pag) {
878 ASSERT(list_empty(&bp->b_lru));
879 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
880 if (atomic_dec_and_test(&bp->b_hold))
881 xfs_buf_free(bp);
882 return;
885 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
887 ASSERT(atomic_read(&bp->b_hold) > 0);
888 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
889 spin_lock(&bp->b_lock);
890 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
892 * If the buffer is added to the LRU take a new
893 * reference to the buffer for the LRU and clear the
894 * (now stale) dispose list state flag
896 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
897 bp->b_state &= ~XFS_BSTATE_DISPOSE;
898 atomic_inc(&bp->b_hold);
900 spin_unlock(&bp->b_lock);
901 spin_unlock(&pag->pag_buf_lock);
902 } else {
904 * most of the time buffers will already be removed from
905 * the LRU, so optimise that case by checking for the
906 * XFS_BSTATE_DISPOSE flag indicating the last list the
907 * buffer was on was the disposal list
909 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
910 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
911 } else {
912 ASSERT(list_empty(&bp->b_lru));
914 spin_unlock(&bp->b_lock);
916 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
917 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
918 spin_unlock(&pag->pag_buf_lock);
919 xfs_perag_put(pag);
920 xfs_buf_free(bp);
927 * Lock a buffer object, if it is not already locked.
929 * If we come across a stale, pinned, locked buffer, we know that we are
930 * being asked to lock a buffer that has been reallocated. Because it is
931 * pinned, we know that the log has not been pushed to disk and hence it
932 * will still be locked. Rather than continuing to have trylock attempts
933 * fail until someone else pushes the log, push it ourselves before
934 * returning. This means that the xfsaild will not get stuck trying
935 * to push on stale inode buffers.
938 xfs_buf_trylock(
939 struct xfs_buf *bp)
941 int locked;
943 locked = down_trylock(&bp->b_sema) == 0;
944 if (locked)
945 XB_SET_OWNER(bp);
947 trace_xfs_buf_trylock(bp, _RET_IP_);
948 return locked;
952 * Lock a buffer object.
954 * If we come across a stale, pinned, locked buffer, we know that we
955 * are being asked to lock a buffer that has been reallocated. Because
956 * it is pinned, we know that the log has not been pushed to disk and
957 * hence it will still be locked. Rather than sleeping until someone
958 * else pushes the log, push it ourselves before trying to get the lock.
960 void
961 xfs_buf_lock(
962 struct xfs_buf *bp)
964 trace_xfs_buf_lock(bp, _RET_IP_);
966 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
967 xfs_log_force(bp->b_target->bt_mount, 0);
968 down(&bp->b_sema);
969 XB_SET_OWNER(bp);
971 trace_xfs_buf_lock_done(bp, _RET_IP_);
974 void
975 xfs_buf_unlock(
976 struct xfs_buf *bp)
978 XB_CLEAR_OWNER(bp);
979 up(&bp->b_sema);
981 trace_xfs_buf_unlock(bp, _RET_IP_);
984 STATIC void
985 xfs_buf_wait_unpin(
986 xfs_buf_t *bp)
988 DECLARE_WAITQUEUE (wait, current);
990 if (atomic_read(&bp->b_pin_count) == 0)
991 return;
993 add_wait_queue(&bp->b_waiters, &wait);
994 for (;;) {
995 set_current_state(TASK_UNINTERRUPTIBLE);
996 if (atomic_read(&bp->b_pin_count) == 0)
997 break;
998 io_schedule();
1000 remove_wait_queue(&bp->b_waiters, &wait);
1001 set_current_state(TASK_RUNNING);
1005 * Buffer Utility Routines
1008 STATIC void
1009 xfs_buf_iodone_work(
1010 struct work_struct *work)
1012 struct xfs_buf *bp =
1013 container_of(work, xfs_buf_t, b_iodone_work);
1014 bool read = !!(bp->b_flags & XBF_READ);
1016 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1018 /* only validate buffers that were read without errors */
1019 if (read && bp->b_ops && !bp->b_error && (bp->b_flags & XBF_DONE))
1020 bp->b_ops->verify_read(bp);
1022 if (bp->b_iodone)
1023 (*(bp->b_iodone))(bp);
1024 else if (bp->b_flags & XBF_ASYNC)
1025 xfs_buf_relse(bp);
1026 else {
1027 ASSERT(read && bp->b_ops);
1028 complete(&bp->b_iowait);
1032 void
1033 xfs_buf_ioend(
1034 struct xfs_buf *bp,
1035 int schedule)
1037 bool read = !!(bp->b_flags & XBF_READ);
1039 trace_xfs_buf_iodone(bp, _RET_IP_);
1041 if (bp->b_error == 0)
1042 bp->b_flags |= XBF_DONE;
1044 if (bp->b_iodone || (read && bp->b_ops) || (bp->b_flags & XBF_ASYNC)) {
1045 if (schedule) {
1046 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1047 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1048 } else {
1049 xfs_buf_iodone_work(&bp->b_iodone_work);
1051 } else {
1052 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1053 complete(&bp->b_iowait);
1057 void
1058 xfs_buf_ioerror(
1059 xfs_buf_t *bp,
1060 int error)
1062 ASSERT(error >= 0 && error <= 0xffff);
1063 bp->b_error = (unsigned short)error;
1064 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1067 void
1068 xfs_buf_ioerror_alert(
1069 struct xfs_buf *bp,
1070 const char *func)
1072 xfs_alert(bp->b_target->bt_mount,
1073 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1074 (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
1078 * Called when we want to stop a buffer from getting written or read.
1079 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1080 * so that the proper iodone callbacks get called.
1082 STATIC int
1083 xfs_bioerror(
1084 xfs_buf_t *bp)
1086 #ifdef XFSERRORDEBUG
1087 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1088 #endif
1091 * No need to wait until the buffer is unpinned, we aren't flushing it.
1093 xfs_buf_ioerror(bp, EIO);
1096 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1098 XFS_BUF_UNREAD(bp);
1099 XFS_BUF_UNDONE(bp);
1100 xfs_buf_stale(bp);
1102 xfs_buf_ioend(bp, 0);
1104 return EIO;
1108 * Same as xfs_bioerror, except that we are releasing the buffer
1109 * here ourselves, and avoiding the xfs_buf_ioend call.
1110 * This is meant for userdata errors; metadata bufs come with
1111 * iodone functions attached, so that we can track down errors.
1114 xfs_bioerror_relse(
1115 struct xfs_buf *bp)
1117 int64_t fl = bp->b_flags;
1119 * No need to wait until the buffer is unpinned.
1120 * We aren't flushing it.
1122 * chunkhold expects B_DONE to be set, whether
1123 * we actually finish the I/O or not. We don't want to
1124 * change that interface.
1126 XFS_BUF_UNREAD(bp);
1127 XFS_BUF_DONE(bp);
1128 xfs_buf_stale(bp);
1129 bp->b_iodone = NULL;
1130 if (!(fl & XBF_ASYNC)) {
1132 * Mark b_error and B_ERROR _both_.
1133 * Lot's of chunkcache code assumes that.
1134 * There's no reason to mark error for
1135 * ASYNC buffers.
1137 xfs_buf_ioerror(bp, EIO);
1138 complete(&bp->b_iowait);
1139 } else {
1140 xfs_buf_relse(bp);
1143 return EIO;
1146 STATIC int
1147 xfs_bdstrat_cb(
1148 struct xfs_buf *bp)
1150 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1151 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1153 * Metadata write that didn't get logged but
1154 * written delayed anyway. These aren't associated
1155 * with a transaction, and can be ignored.
1157 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1158 return xfs_bioerror_relse(bp);
1159 else
1160 return xfs_bioerror(bp);
1163 xfs_buf_iorequest(bp);
1164 return 0;
1168 xfs_bwrite(
1169 struct xfs_buf *bp)
1171 int error;
1173 ASSERT(xfs_buf_islocked(bp));
1175 bp->b_flags |= XBF_WRITE;
1176 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | XBF_WRITE_FAIL);
1178 xfs_bdstrat_cb(bp);
1180 error = xfs_buf_iowait(bp);
1181 if (error) {
1182 xfs_force_shutdown(bp->b_target->bt_mount,
1183 SHUTDOWN_META_IO_ERROR);
1185 return error;
1188 STATIC void
1189 _xfs_buf_ioend(
1190 xfs_buf_t *bp,
1191 int schedule)
1193 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1194 xfs_buf_ioend(bp, schedule);
1197 STATIC void
1198 xfs_buf_bio_end_io(
1199 struct bio *bio,
1200 int error)
1202 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1205 * don't overwrite existing errors - otherwise we can lose errors on
1206 * buffers that require multiple bios to complete.
1208 if (!bp->b_error)
1209 xfs_buf_ioerror(bp, -error);
1211 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1212 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1214 _xfs_buf_ioend(bp, 1);
1215 bio_put(bio);
1218 static void
1219 xfs_buf_ioapply_map(
1220 struct xfs_buf *bp,
1221 int map,
1222 int *buf_offset,
1223 int *count,
1224 int rw)
1226 int page_index;
1227 int total_nr_pages = bp->b_page_count;
1228 int nr_pages;
1229 struct bio *bio;
1230 sector_t sector = bp->b_maps[map].bm_bn;
1231 int size;
1232 int offset;
1234 total_nr_pages = bp->b_page_count;
1236 /* skip the pages in the buffer before the start offset */
1237 page_index = 0;
1238 offset = *buf_offset;
1239 while (offset >= PAGE_SIZE) {
1240 page_index++;
1241 offset -= PAGE_SIZE;
1245 * Limit the IO size to the length of the current vector, and update the
1246 * remaining IO count for the next time around.
1248 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1249 *count -= size;
1250 *buf_offset += size;
1252 next_chunk:
1253 atomic_inc(&bp->b_io_remaining);
1254 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1255 if (nr_pages > total_nr_pages)
1256 nr_pages = total_nr_pages;
1258 bio = bio_alloc(GFP_NOIO, nr_pages);
1259 bio->bi_bdev = bp->b_target->bt_bdev;
1260 bio->bi_iter.bi_sector = sector;
1261 bio->bi_end_io = xfs_buf_bio_end_io;
1262 bio->bi_private = bp;
1265 for (; size && nr_pages; nr_pages--, page_index++) {
1266 int rbytes, nbytes = PAGE_SIZE - offset;
1268 if (nbytes > size)
1269 nbytes = size;
1271 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1272 offset);
1273 if (rbytes < nbytes)
1274 break;
1276 offset = 0;
1277 sector += BTOBB(nbytes);
1278 size -= nbytes;
1279 total_nr_pages--;
1282 if (likely(bio->bi_iter.bi_size)) {
1283 if (xfs_buf_is_vmapped(bp)) {
1284 flush_kernel_vmap_range(bp->b_addr,
1285 xfs_buf_vmap_len(bp));
1287 submit_bio(rw, bio);
1288 if (size)
1289 goto next_chunk;
1290 } else {
1292 * This is guaranteed not to be the last io reference count
1293 * because the caller (xfs_buf_iorequest) holds a count itself.
1295 atomic_dec(&bp->b_io_remaining);
1296 xfs_buf_ioerror(bp, EIO);
1297 bio_put(bio);
1302 STATIC void
1303 _xfs_buf_ioapply(
1304 struct xfs_buf *bp)
1306 struct blk_plug plug;
1307 int rw;
1308 int offset;
1309 int size;
1310 int i;
1313 * Make sure we capture only current IO errors rather than stale errors
1314 * left over from previous use of the buffer (e.g. failed readahead).
1316 bp->b_error = 0;
1318 if (bp->b_flags & XBF_WRITE) {
1319 if (bp->b_flags & XBF_SYNCIO)
1320 rw = WRITE_SYNC;
1321 else
1322 rw = WRITE;
1323 if (bp->b_flags & XBF_FUA)
1324 rw |= REQ_FUA;
1325 if (bp->b_flags & XBF_FLUSH)
1326 rw |= REQ_FLUSH;
1329 * Run the write verifier callback function if it exists. If
1330 * this function fails it will mark the buffer with an error and
1331 * the IO should not be dispatched.
1333 if (bp->b_ops) {
1334 bp->b_ops->verify_write(bp);
1335 if (bp->b_error) {
1336 xfs_force_shutdown(bp->b_target->bt_mount,
1337 SHUTDOWN_CORRUPT_INCORE);
1338 return;
1341 } else if (bp->b_flags & XBF_READ_AHEAD) {
1342 rw = READA;
1343 } else {
1344 rw = READ;
1347 /* we only use the buffer cache for meta-data */
1348 rw |= REQ_META;
1351 * Walk all the vectors issuing IO on them. Set up the initial offset
1352 * into the buffer and the desired IO size before we start -
1353 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1354 * subsequent call.
1356 offset = bp->b_offset;
1357 size = BBTOB(bp->b_io_length);
1358 blk_start_plug(&plug);
1359 for (i = 0; i < bp->b_map_count; i++) {
1360 xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1361 if (bp->b_error)
1362 break;
1363 if (size <= 0)
1364 break; /* all done */
1366 blk_finish_plug(&plug);
1369 void
1370 xfs_buf_iorequest(
1371 xfs_buf_t *bp)
1373 trace_xfs_buf_iorequest(bp, _RET_IP_);
1375 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1377 if (bp->b_flags & XBF_WRITE)
1378 xfs_buf_wait_unpin(bp);
1379 xfs_buf_hold(bp);
1382 * Set the count to 1 initially, this will stop an I/O
1383 * completion callout which happens before we have started
1384 * all the I/O from calling xfs_buf_ioend too early.
1386 atomic_set(&bp->b_io_remaining, 1);
1387 _xfs_buf_ioapply(bp);
1389 * If _xfs_buf_ioapply failed, we'll get back here with
1390 * only the reference we took above. _xfs_buf_ioend will
1391 * drop it to zero, so we'd better not queue it for later,
1392 * or we'll free it before it's done.
1394 _xfs_buf_ioend(bp, bp->b_error ? 0 : 1);
1396 xfs_buf_rele(bp);
1400 * Waits for I/O to complete on the buffer supplied. It returns immediately if
1401 * no I/O is pending or there is already a pending error on the buffer, in which
1402 * case nothing will ever complete. It returns the I/O error code, if any, or
1403 * 0 if there was no error.
1406 xfs_buf_iowait(
1407 xfs_buf_t *bp)
1409 trace_xfs_buf_iowait(bp, _RET_IP_);
1411 if (!bp->b_error)
1412 wait_for_completion(&bp->b_iowait);
1414 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1415 return bp->b_error;
1418 xfs_caddr_t
1419 xfs_buf_offset(
1420 xfs_buf_t *bp,
1421 size_t offset)
1423 struct page *page;
1425 if (bp->b_addr)
1426 return bp->b_addr + offset;
1428 offset += bp->b_offset;
1429 page = bp->b_pages[offset >> PAGE_SHIFT];
1430 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1434 * Move data into or out of a buffer.
1436 void
1437 xfs_buf_iomove(
1438 xfs_buf_t *bp, /* buffer to process */
1439 size_t boff, /* starting buffer offset */
1440 size_t bsize, /* length to copy */
1441 void *data, /* data address */
1442 xfs_buf_rw_t mode) /* read/write/zero flag */
1444 size_t bend;
1446 bend = boff + bsize;
1447 while (boff < bend) {
1448 struct page *page;
1449 int page_index, page_offset, csize;
1451 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1452 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1453 page = bp->b_pages[page_index];
1454 csize = min_t(size_t, PAGE_SIZE - page_offset,
1455 BBTOB(bp->b_io_length) - boff);
1457 ASSERT((csize + page_offset) <= PAGE_SIZE);
1459 switch (mode) {
1460 case XBRW_ZERO:
1461 memset(page_address(page) + page_offset, 0, csize);
1462 break;
1463 case XBRW_READ:
1464 memcpy(data, page_address(page) + page_offset, csize);
1465 break;
1466 case XBRW_WRITE:
1467 memcpy(page_address(page) + page_offset, data, csize);
1470 boff += csize;
1471 data += csize;
1476 * Handling of buffer targets (buftargs).
1480 * Wait for any bufs with callbacks that have been submitted but have not yet
1481 * returned. These buffers will have an elevated hold count, so wait on those
1482 * while freeing all the buffers only held by the LRU.
1484 static enum lru_status
1485 xfs_buftarg_wait_rele(
1486 struct list_head *item,
1487 spinlock_t *lru_lock,
1488 void *arg)
1491 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1492 struct list_head *dispose = arg;
1494 if (atomic_read(&bp->b_hold) > 1) {
1495 /* need to wait, so skip it this pass */
1496 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1497 return LRU_SKIP;
1499 if (!spin_trylock(&bp->b_lock))
1500 return LRU_SKIP;
1503 * clear the LRU reference count so the buffer doesn't get
1504 * ignored in xfs_buf_rele().
1506 atomic_set(&bp->b_lru_ref, 0);
1507 bp->b_state |= XFS_BSTATE_DISPOSE;
1508 list_move(item, dispose);
1509 spin_unlock(&bp->b_lock);
1510 return LRU_REMOVED;
1513 void
1514 xfs_wait_buftarg(
1515 struct xfs_buftarg *btp)
1517 LIST_HEAD(dispose);
1518 int loop = 0;
1520 /* loop until there is nothing left on the lru list. */
1521 while (list_lru_count(&btp->bt_lru)) {
1522 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1523 &dispose, LONG_MAX);
1525 while (!list_empty(&dispose)) {
1526 struct xfs_buf *bp;
1527 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1528 list_del_init(&bp->b_lru);
1529 if (bp->b_flags & XBF_WRITE_FAIL) {
1530 xfs_alert(btp->bt_mount,
1531 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!\n"
1532 "Please run xfs_repair to determine the extent of the problem.",
1533 (long long)bp->b_bn);
1535 xfs_buf_rele(bp);
1537 if (loop++ != 0)
1538 delay(100);
1542 static enum lru_status
1543 xfs_buftarg_isolate(
1544 struct list_head *item,
1545 spinlock_t *lru_lock,
1546 void *arg)
1548 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1549 struct list_head *dispose = arg;
1552 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1553 * If we fail to get the lock, just skip it.
1555 if (!spin_trylock(&bp->b_lock))
1556 return LRU_SKIP;
1558 * Decrement the b_lru_ref count unless the value is already
1559 * zero. If the value is already zero, we need to reclaim the
1560 * buffer, otherwise it gets another trip through the LRU.
1562 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1563 spin_unlock(&bp->b_lock);
1564 return LRU_ROTATE;
1567 bp->b_state |= XFS_BSTATE_DISPOSE;
1568 list_move(item, dispose);
1569 spin_unlock(&bp->b_lock);
1570 return LRU_REMOVED;
1573 static unsigned long
1574 xfs_buftarg_shrink_scan(
1575 struct shrinker *shrink,
1576 struct shrink_control *sc)
1578 struct xfs_buftarg *btp = container_of(shrink,
1579 struct xfs_buftarg, bt_shrinker);
1580 LIST_HEAD(dispose);
1581 unsigned long freed;
1582 unsigned long nr_to_scan = sc->nr_to_scan;
1584 freed = list_lru_walk_node(&btp->bt_lru, sc->nid, xfs_buftarg_isolate,
1585 &dispose, &nr_to_scan);
1587 while (!list_empty(&dispose)) {
1588 struct xfs_buf *bp;
1589 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1590 list_del_init(&bp->b_lru);
1591 xfs_buf_rele(bp);
1594 return freed;
1597 static unsigned long
1598 xfs_buftarg_shrink_count(
1599 struct shrinker *shrink,
1600 struct shrink_control *sc)
1602 struct xfs_buftarg *btp = container_of(shrink,
1603 struct xfs_buftarg, bt_shrinker);
1604 return list_lru_count_node(&btp->bt_lru, sc->nid);
1607 void
1608 xfs_free_buftarg(
1609 struct xfs_mount *mp,
1610 struct xfs_buftarg *btp)
1612 unregister_shrinker(&btp->bt_shrinker);
1613 list_lru_destroy(&btp->bt_lru);
1615 if (mp->m_flags & XFS_MOUNT_BARRIER)
1616 xfs_blkdev_issue_flush(btp);
1618 kmem_free(btp);
1622 xfs_setsize_buftarg(
1623 xfs_buftarg_t *btp,
1624 unsigned int sectorsize)
1626 /* Set up metadata sector size info */
1627 btp->bt_meta_sectorsize = sectorsize;
1628 btp->bt_meta_sectormask = sectorsize - 1;
1630 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1631 char name[BDEVNAME_SIZE];
1633 bdevname(btp->bt_bdev, name);
1635 xfs_warn(btp->bt_mount,
1636 "Cannot set_blocksize to %u on device %s",
1637 sectorsize, name);
1638 return EINVAL;
1641 /* Set up device logical sector size mask */
1642 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1643 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1645 return 0;
1649 * When allocating the initial buffer target we have not yet
1650 * read in the superblock, so don't know what sized sectors
1651 * are being used at this early stage. Play safe.
1653 STATIC int
1654 xfs_setsize_buftarg_early(
1655 xfs_buftarg_t *btp,
1656 struct block_device *bdev)
1658 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1661 xfs_buftarg_t *
1662 xfs_alloc_buftarg(
1663 struct xfs_mount *mp,
1664 struct block_device *bdev)
1666 xfs_buftarg_t *btp;
1668 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1670 btp->bt_mount = mp;
1671 btp->bt_dev = bdev->bd_dev;
1672 btp->bt_bdev = bdev;
1673 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1674 if (!btp->bt_bdi)
1675 goto error;
1677 if (xfs_setsize_buftarg_early(btp, bdev))
1678 goto error;
1680 if (list_lru_init(&btp->bt_lru))
1681 goto error;
1683 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1684 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1685 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1686 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1687 register_shrinker(&btp->bt_shrinker);
1688 return btp;
1690 error:
1691 kmem_free(btp);
1692 return NULL;
1696 * Add a buffer to the delayed write list.
1698 * This queues a buffer for writeout if it hasn't already been. Note that
1699 * neither this routine nor the buffer list submission functions perform
1700 * any internal synchronization. It is expected that the lists are thread-local
1701 * to the callers.
1703 * Returns true if we queued up the buffer, or false if it already had
1704 * been on the buffer list.
1706 bool
1707 xfs_buf_delwri_queue(
1708 struct xfs_buf *bp,
1709 struct list_head *list)
1711 ASSERT(xfs_buf_islocked(bp));
1712 ASSERT(!(bp->b_flags & XBF_READ));
1715 * If the buffer is already marked delwri it already is queued up
1716 * by someone else for imediate writeout. Just ignore it in that
1717 * case.
1719 if (bp->b_flags & _XBF_DELWRI_Q) {
1720 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1721 return false;
1724 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1727 * If a buffer gets written out synchronously or marked stale while it
1728 * is on a delwri list we lazily remove it. To do this, the other party
1729 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1730 * It remains referenced and on the list. In a rare corner case it
1731 * might get readded to a delwri list after the synchronous writeout, in
1732 * which case we need just need to re-add the flag here.
1734 bp->b_flags |= _XBF_DELWRI_Q;
1735 if (list_empty(&bp->b_list)) {
1736 atomic_inc(&bp->b_hold);
1737 list_add_tail(&bp->b_list, list);
1740 return true;
1744 * Compare function is more complex than it needs to be because
1745 * the return value is only 32 bits and we are doing comparisons
1746 * on 64 bit values
1748 static int
1749 xfs_buf_cmp(
1750 void *priv,
1751 struct list_head *a,
1752 struct list_head *b)
1754 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1755 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1756 xfs_daddr_t diff;
1758 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1759 if (diff < 0)
1760 return -1;
1761 if (diff > 0)
1762 return 1;
1763 return 0;
1766 static int
1767 __xfs_buf_delwri_submit(
1768 struct list_head *buffer_list,
1769 struct list_head *io_list,
1770 bool wait)
1772 struct blk_plug plug;
1773 struct xfs_buf *bp, *n;
1774 int pinned = 0;
1776 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1777 if (!wait) {
1778 if (xfs_buf_ispinned(bp)) {
1779 pinned++;
1780 continue;
1782 if (!xfs_buf_trylock(bp))
1783 continue;
1784 } else {
1785 xfs_buf_lock(bp);
1789 * Someone else might have written the buffer synchronously or
1790 * marked it stale in the meantime. In that case only the
1791 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1792 * reference and remove it from the list here.
1794 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1795 list_del_init(&bp->b_list);
1796 xfs_buf_relse(bp);
1797 continue;
1800 list_move_tail(&bp->b_list, io_list);
1801 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1804 list_sort(NULL, io_list, xfs_buf_cmp);
1806 blk_start_plug(&plug);
1807 list_for_each_entry_safe(bp, n, io_list, b_list) {
1808 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC | XBF_WRITE_FAIL);
1809 bp->b_flags |= XBF_WRITE;
1811 if (!wait) {
1812 bp->b_flags |= XBF_ASYNC;
1813 list_del_init(&bp->b_list);
1815 xfs_bdstrat_cb(bp);
1817 blk_finish_plug(&plug);
1819 return pinned;
1823 * Write out a buffer list asynchronously.
1825 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1826 * out and not wait for I/O completion on any of the buffers. This interface
1827 * is only safely useable for callers that can track I/O completion by higher
1828 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1829 * function.
1832 xfs_buf_delwri_submit_nowait(
1833 struct list_head *buffer_list)
1835 LIST_HEAD (io_list);
1836 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1840 * Write out a buffer list synchronously.
1842 * This will take the @buffer_list, write all buffers out and wait for I/O
1843 * completion on all of the buffers. @buffer_list is consumed by the function,
1844 * so callers must have some other way of tracking buffers if they require such
1845 * functionality.
1848 xfs_buf_delwri_submit(
1849 struct list_head *buffer_list)
1851 LIST_HEAD (io_list);
1852 int error = 0, error2;
1853 struct xfs_buf *bp;
1855 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1857 /* Wait for IO to complete. */
1858 while (!list_empty(&io_list)) {
1859 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
1861 list_del_init(&bp->b_list);
1862 error2 = xfs_buf_iowait(bp);
1863 xfs_buf_relse(bp);
1864 if (!error)
1865 error = error2;
1868 return error;
1871 int __init
1872 xfs_buf_init(void)
1874 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1875 KM_ZONE_HWALIGN, NULL);
1876 if (!xfs_buf_zone)
1877 goto out;
1879 xfslogd_workqueue = alloc_workqueue("xfslogd",
1880 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1881 if (!xfslogd_workqueue)
1882 goto out_free_buf_zone;
1884 return 0;
1886 out_free_buf_zone:
1887 kmem_zone_destroy(xfs_buf_zone);
1888 out:
1889 return -ENOMEM;
1892 void
1893 xfs_buf_terminate(void)
1895 destroy_workqueue(xfslogd_workqueue);
1896 kmem_zone_destroy(xfs_buf_zone);