2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
26 #include "xfs_mount.h"
27 #include "xfs_inode.h"
28 #include "xfs_error.h"
29 #include "xfs_trans.h"
30 #include "xfs_trans_priv.h"
31 #include "xfs_inode_item.h"
32 #include "xfs_quota.h"
33 #include "xfs_trace.h"
34 #include "xfs_icache.h"
35 #include "xfs_bmap_util.h"
37 #include <linux/kthread.h>
38 #include <linux/freezer.h>
40 STATIC
void __xfs_inode_clear_reclaim_tag(struct xfs_mount
*mp
,
41 struct xfs_perag
*pag
, struct xfs_inode
*ip
);
44 * Allocate and initialise an xfs_inode.
54 * if this didn't occur in transactions, we could use
55 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
56 * code up to do this anyway.
58 ip
= kmem_zone_alloc(xfs_inode_zone
, KM_SLEEP
);
61 if (inode_init_always(mp
->m_super
, VFS_I(ip
))) {
62 kmem_zone_free(xfs_inode_zone
, ip
);
66 ASSERT(atomic_read(&ip
->i_pincount
) == 0);
67 ASSERT(!spin_is_locked(&ip
->i_flags_lock
));
68 ASSERT(!xfs_isiflocked(ip
));
69 ASSERT(ip
->i_ino
== 0);
71 mrlock_init(&ip
->i_iolock
, MRLOCK_BARRIER
, "xfsio", ip
->i_ino
);
73 /* initialise the xfs inode */
76 memset(&ip
->i_imap
, 0, sizeof(struct xfs_imap
));
78 memset(&ip
->i_df
, 0, sizeof(xfs_ifork_t
));
80 ip
->i_delayed_blks
= 0;
81 memset(&ip
->i_d
, 0, sizeof(xfs_icdinode_t
));
87 xfs_inode_free_callback(
88 struct rcu_head
*head
)
90 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
91 struct xfs_inode
*ip
= XFS_I(inode
);
93 kmem_zone_free(xfs_inode_zone
, ip
);
100 switch (ip
->i_d
.di_mode
& S_IFMT
) {
104 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
109 xfs_idestroy_fork(ip
, XFS_ATTR_FORK
);
112 ASSERT(!(ip
->i_itemp
->ili_item
.li_flags
& XFS_LI_IN_AIL
));
113 xfs_inode_item_destroy(ip
);
118 * Because we use RCU freeing we need to ensure the inode always
119 * appears to be reclaimed with an invalid inode number when in the
120 * free state. The ip->i_flags_lock provides the barrier against lookup
123 spin_lock(&ip
->i_flags_lock
);
124 ip
->i_flags
= XFS_IRECLAIM
;
126 spin_unlock(&ip
->i_flags_lock
);
128 /* asserts to verify all state is correct here */
129 ASSERT(atomic_read(&ip
->i_pincount
) == 0);
130 ASSERT(!xfs_isiflocked(ip
));
132 call_rcu(&VFS_I(ip
)->i_rcu
, xfs_inode_free_callback
);
136 * Check the validity of the inode we just found it the cache
140 struct xfs_perag
*pag
,
141 struct xfs_inode
*ip
,
144 int lock_flags
) __releases(RCU
)
146 struct inode
*inode
= VFS_I(ip
);
147 struct xfs_mount
*mp
= ip
->i_mount
;
151 * check for re-use of an inode within an RCU grace period due to the
152 * radix tree nodes not being updated yet. We monitor for this by
153 * setting the inode number to zero before freeing the inode structure.
154 * If the inode has been reallocated and set up, then the inode number
155 * will not match, so check for that, too.
157 spin_lock(&ip
->i_flags_lock
);
158 if (ip
->i_ino
!= ino
) {
159 trace_xfs_iget_skip(ip
);
160 XFS_STATS_INC(xs_ig_frecycle
);
167 * If we are racing with another cache hit that is currently
168 * instantiating this inode or currently recycling it out of
169 * reclaimabe state, wait for the initialisation to complete
172 * XXX(hch): eventually we should do something equivalent to
173 * wait_on_inode to wait for these flags to be cleared
174 * instead of polling for it.
176 if (ip
->i_flags
& (XFS_INEW
|XFS_IRECLAIM
)) {
177 trace_xfs_iget_skip(ip
);
178 XFS_STATS_INC(xs_ig_frecycle
);
184 * If lookup is racing with unlink return an error immediately.
186 if (ip
->i_d
.di_mode
== 0 && !(flags
& XFS_IGET_CREATE
)) {
192 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
193 * Need to carefully get it back into useable state.
195 if (ip
->i_flags
& XFS_IRECLAIMABLE
) {
196 trace_xfs_iget_reclaim(ip
);
199 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
200 * from stomping over us while we recycle the inode. We can't
201 * clear the radix tree reclaimable tag yet as it requires
202 * pag_ici_lock to be held exclusive.
204 ip
->i_flags
|= XFS_IRECLAIM
;
206 spin_unlock(&ip
->i_flags_lock
);
209 error
= -inode_init_always(mp
->m_super
, inode
);
212 * Re-initializing the inode failed, and we are in deep
213 * trouble. Try to re-add it to the reclaim list.
216 spin_lock(&ip
->i_flags_lock
);
218 ip
->i_flags
&= ~(XFS_INEW
| XFS_IRECLAIM
);
219 ASSERT(ip
->i_flags
& XFS_IRECLAIMABLE
);
220 trace_xfs_iget_reclaim_fail(ip
);
224 spin_lock(&pag
->pag_ici_lock
);
225 spin_lock(&ip
->i_flags_lock
);
228 * Clear the per-lifetime state in the inode as we are now
229 * effectively a new inode and need to return to the initial
230 * state before reuse occurs.
232 ip
->i_flags
&= ~XFS_IRECLAIM_RESET_FLAGS
;
233 ip
->i_flags
|= XFS_INEW
;
234 __xfs_inode_clear_reclaim_tag(mp
, pag
, ip
);
235 inode
->i_state
= I_NEW
;
237 ASSERT(!rwsem_is_locked(&ip
->i_iolock
.mr_lock
));
238 mrlock_init(&ip
->i_iolock
, MRLOCK_BARRIER
, "xfsio", ip
->i_ino
);
240 spin_unlock(&ip
->i_flags_lock
);
241 spin_unlock(&pag
->pag_ici_lock
);
243 /* If the VFS inode is being torn down, pause and try again. */
245 trace_xfs_iget_skip(ip
);
250 /* We've got a live one. */
251 spin_unlock(&ip
->i_flags_lock
);
253 trace_xfs_iget_hit(ip
);
257 xfs_ilock(ip
, lock_flags
);
259 xfs_iflags_clear(ip
, XFS_ISTALE
| XFS_IDONTCACHE
);
260 XFS_STATS_INC(xs_ig_found
);
265 spin_unlock(&ip
->i_flags_lock
);
273 struct xfs_mount
*mp
,
274 struct xfs_perag
*pag
,
277 struct xfs_inode
**ipp
,
281 struct xfs_inode
*ip
;
283 xfs_agino_t agino
= XFS_INO_TO_AGINO(mp
, ino
);
286 ip
= xfs_inode_alloc(mp
, ino
);
290 error
= xfs_iread(mp
, tp
, ip
, flags
);
294 trace_xfs_iget_miss(ip
);
296 if ((ip
->i_d
.di_mode
== 0) && !(flags
& XFS_IGET_CREATE
)) {
302 * Preload the radix tree so we can insert safely under the
303 * write spinlock. Note that we cannot sleep inside the preload
304 * region. Since we can be called from transaction context, don't
305 * recurse into the file system.
307 if (radix_tree_preload(GFP_NOFS
)) {
313 * Because the inode hasn't been added to the radix-tree yet it can't
314 * be found by another thread, so we can do the non-sleeping lock here.
317 if (!xfs_ilock_nowait(ip
, lock_flags
))
322 * These values must be set before inserting the inode into the radix
323 * tree as the moment it is inserted a concurrent lookup (allowed by the
324 * RCU locking mechanism) can find it and that lookup must see that this
325 * is an inode currently under construction (i.e. that XFS_INEW is set).
326 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
327 * memory barrier that ensures this detection works correctly at lookup
331 if (flags
& XFS_IGET_DONTCACHE
)
332 iflags
|= XFS_IDONTCACHE
;
336 xfs_iflags_set(ip
, iflags
);
338 /* insert the new inode */
339 spin_lock(&pag
->pag_ici_lock
);
340 error
= radix_tree_insert(&pag
->pag_ici_root
, agino
, ip
);
341 if (unlikely(error
)) {
342 WARN_ON(error
!= -EEXIST
);
343 XFS_STATS_INC(xs_ig_dup
);
345 goto out_preload_end
;
347 spin_unlock(&pag
->pag_ici_lock
);
348 radix_tree_preload_end();
354 spin_unlock(&pag
->pag_ici_lock
);
355 radix_tree_preload_end();
357 xfs_iunlock(ip
, lock_flags
);
359 __destroy_inode(VFS_I(ip
));
365 * Look up an inode by number in the given file system.
366 * The inode is looked up in the cache held in each AG.
367 * If the inode is found in the cache, initialise the vfs inode
370 * If it is not in core, read it in from the file system's device,
371 * add it to the cache and initialise the vfs inode.
373 * The inode is locked according to the value of the lock_flags parameter.
374 * This flag parameter indicates how and if the inode's IO lock and inode lock
377 * mp -- the mount point structure for the current file system. It points
378 * to the inode hash table.
379 * tp -- a pointer to the current transaction if there is one. This is
380 * simply passed through to the xfs_iread() call.
381 * ino -- the number of the inode desired. This is the unique identifier
382 * within the file system for the inode being requested.
383 * lock_flags -- flags indicating how to lock the inode. See the comment
384 * for xfs_ilock() for a list of valid values.
401 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
402 * doesn't get freed while it's being referenced during a
403 * radix tree traversal here. It assumes this function
404 * aqcuires only the ILOCK (and therefore it has no need to
405 * involve the IOLOCK in this synchronization).
407 ASSERT((lock_flags
& (XFS_IOLOCK_EXCL
| XFS_IOLOCK_SHARED
)) == 0);
409 /* reject inode numbers outside existing AGs */
410 if (!ino
|| XFS_INO_TO_AGNO(mp
, ino
) >= mp
->m_sb
.sb_agcount
)
413 /* get the perag structure and ensure that it's inode capable */
414 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ino
));
415 agino
= XFS_INO_TO_AGINO(mp
, ino
);
420 ip
= radix_tree_lookup(&pag
->pag_ici_root
, agino
);
423 error
= xfs_iget_cache_hit(pag
, ip
, ino
, flags
, lock_flags
);
425 goto out_error_or_again
;
428 XFS_STATS_INC(xs_ig_missed
);
430 error
= xfs_iget_cache_miss(mp
, pag
, tp
, ino
, &ip
,
433 goto out_error_or_again
;
440 * If we have a real type for an on-disk inode, we can set ops(&unlock)
441 * now. If it's a new inode being created, xfs_ialloc will handle it.
443 if (xfs_iflags_test(ip
, XFS_INEW
) && ip
->i_d
.di_mode
!= 0)
448 if (error
== EAGAIN
) {
457 * The inode lookup is done in batches to keep the amount of lock traffic and
458 * radix tree lookups to a minimum. The batch size is a trade off between
459 * lookup reduction and stack usage. This is in the reclaim path, so we can't
462 #define XFS_LOOKUP_BATCH 32
465 xfs_inode_ag_walk_grab(
466 struct xfs_inode
*ip
)
468 struct inode
*inode
= VFS_I(ip
);
470 ASSERT(rcu_read_lock_held());
473 * check for stale RCU freed inode
475 * If the inode has been reallocated, it doesn't matter if it's not in
476 * the AG we are walking - we are walking for writeback, so if it
477 * passes all the "valid inode" checks and is dirty, then we'll write
478 * it back anyway. If it has been reallocated and still being
479 * initialised, the XFS_INEW check below will catch it.
481 spin_lock(&ip
->i_flags_lock
);
483 goto out_unlock_noent
;
485 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
486 if (__xfs_iflags_test(ip
, XFS_INEW
| XFS_IRECLAIMABLE
| XFS_IRECLAIM
))
487 goto out_unlock_noent
;
488 spin_unlock(&ip
->i_flags_lock
);
490 /* nothing to sync during shutdown */
491 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
494 /* If we can't grab the inode, it must on it's way to reclaim. */
502 spin_unlock(&ip
->i_flags_lock
);
508 struct xfs_mount
*mp
,
509 struct xfs_perag
*pag
,
510 int (*execute
)(struct xfs_inode
*ip
, int flags
,
516 uint32_t first_index
;
528 struct xfs_inode
*batch
[XFS_LOOKUP_BATCH
];
535 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
,
536 (void **)batch
, first_index
,
539 nr_found
= radix_tree_gang_lookup_tag(
541 (void **) batch
, first_index
,
542 XFS_LOOKUP_BATCH
, tag
);
550 * Grab the inodes before we drop the lock. if we found
551 * nothing, nr == 0 and the loop will be skipped.
553 for (i
= 0; i
< nr_found
; i
++) {
554 struct xfs_inode
*ip
= batch
[i
];
556 if (done
|| xfs_inode_ag_walk_grab(ip
))
560 * Update the index for the next lookup. Catch
561 * overflows into the next AG range which can occur if
562 * we have inodes in the last block of the AG and we
563 * are currently pointing to the last inode.
565 * Because we may see inodes that are from the wrong AG
566 * due to RCU freeing and reallocation, only update the
567 * index if it lies in this AG. It was a race that lead
568 * us to see this inode, so another lookup from the
569 * same index will not find it again.
571 if (XFS_INO_TO_AGNO(mp
, ip
->i_ino
) != pag
->pag_agno
)
573 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
+ 1);
574 if (first_index
< XFS_INO_TO_AGINO(mp
, ip
->i_ino
))
578 /* unlock now we've grabbed the inodes. */
581 for (i
= 0; i
< nr_found
; i
++) {
584 error
= execute(batch
[i
], flags
, args
);
586 if (error
== EAGAIN
) {
590 if (error
&& last_error
!= EFSCORRUPTED
)
594 /* bail out if the filesystem is corrupted. */
595 if (error
== EFSCORRUPTED
)
600 } while (nr_found
&& !done
);
610 * Background scanning to trim post-EOF preallocated space. This is queued
611 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
615 struct xfs_mount
*mp
)
618 if (radix_tree_tagged(&mp
->m_perag_tree
, XFS_ICI_EOFBLOCKS_TAG
))
619 queue_delayed_work(mp
->m_eofblocks_workqueue
,
620 &mp
->m_eofblocks_work
,
621 msecs_to_jiffies(xfs_eofb_secs
* 1000));
626 xfs_eofblocks_worker(
627 struct work_struct
*work
)
629 struct xfs_mount
*mp
= container_of(to_delayed_work(work
),
630 struct xfs_mount
, m_eofblocks_work
);
631 xfs_icache_free_eofblocks(mp
, NULL
);
632 xfs_queue_eofblocks(mp
);
636 xfs_inode_ag_iterator(
637 struct xfs_mount
*mp
,
638 int (*execute
)(struct xfs_inode
*ip
, int flags
,
643 struct xfs_perag
*pag
;
649 while ((pag
= xfs_perag_get(mp
, ag
))) {
650 ag
= pag
->pag_agno
+ 1;
651 error
= xfs_inode_ag_walk(mp
, pag
, execute
, flags
, args
, -1);
655 if (error
== EFSCORRUPTED
)
659 return XFS_ERROR(last_error
);
663 xfs_inode_ag_iterator_tag(
664 struct xfs_mount
*mp
,
665 int (*execute
)(struct xfs_inode
*ip
, int flags
,
671 struct xfs_perag
*pag
;
677 while ((pag
= xfs_perag_get_tag(mp
, ag
, tag
))) {
678 ag
= pag
->pag_agno
+ 1;
679 error
= xfs_inode_ag_walk(mp
, pag
, execute
, flags
, args
, tag
);
683 if (error
== EFSCORRUPTED
)
687 return XFS_ERROR(last_error
);
691 * Queue a new inode reclaim pass if there are reclaimable inodes and there
692 * isn't a reclaim pass already in progress. By default it runs every 5s based
693 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
694 * tunable, but that can be done if this method proves to be ineffective or too
698 xfs_reclaim_work_queue(
699 struct xfs_mount
*mp
)
703 if (radix_tree_tagged(&mp
->m_perag_tree
, XFS_ICI_RECLAIM_TAG
)) {
704 queue_delayed_work(mp
->m_reclaim_workqueue
, &mp
->m_reclaim_work
,
705 msecs_to_jiffies(xfs_syncd_centisecs
/ 6 * 10));
711 * This is a fast pass over the inode cache to try to get reclaim moving on as
712 * many inodes as possible in a short period of time. It kicks itself every few
713 * seconds, as well as being kicked by the inode cache shrinker when memory
714 * goes low. It scans as quickly as possible avoiding locked inodes or those
715 * already being flushed, and once done schedules a future pass.
719 struct work_struct
*work
)
721 struct xfs_mount
*mp
= container_of(to_delayed_work(work
),
722 struct xfs_mount
, m_reclaim_work
);
724 xfs_reclaim_inodes(mp
, SYNC_TRYLOCK
);
725 xfs_reclaim_work_queue(mp
);
729 __xfs_inode_set_reclaim_tag(
730 struct xfs_perag
*pag
,
731 struct xfs_inode
*ip
)
733 radix_tree_tag_set(&pag
->pag_ici_root
,
734 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
),
735 XFS_ICI_RECLAIM_TAG
);
737 if (!pag
->pag_ici_reclaimable
) {
738 /* propagate the reclaim tag up into the perag radix tree */
739 spin_lock(&ip
->i_mount
->m_perag_lock
);
740 radix_tree_tag_set(&ip
->i_mount
->m_perag_tree
,
741 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
742 XFS_ICI_RECLAIM_TAG
);
743 spin_unlock(&ip
->i_mount
->m_perag_lock
);
745 /* schedule periodic background inode reclaim */
746 xfs_reclaim_work_queue(ip
->i_mount
);
748 trace_xfs_perag_set_reclaim(ip
->i_mount
, pag
->pag_agno
,
751 pag
->pag_ici_reclaimable
++;
755 * We set the inode flag atomically with the radix tree tag.
756 * Once we get tag lookups on the radix tree, this inode flag
760 xfs_inode_set_reclaim_tag(
763 struct xfs_mount
*mp
= ip
->i_mount
;
764 struct xfs_perag
*pag
;
766 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
767 spin_lock(&pag
->pag_ici_lock
);
768 spin_lock(&ip
->i_flags_lock
);
769 __xfs_inode_set_reclaim_tag(pag
, ip
);
770 __xfs_iflags_set(ip
, XFS_IRECLAIMABLE
);
771 spin_unlock(&ip
->i_flags_lock
);
772 spin_unlock(&pag
->pag_ici_lock
);
777 __xfs_inode_clear_reclaim(
781 pag
->pag_ici_reclaimable
--;
782 if (!pag
->pag_ici_reclaimable
) {
783 /* clear the reclaim tag from the perag radix tree */
784 spin_lock(&ip
->i_mount
->m_perag_lock
);
785 radix_tree_tag_clear(&ip
->i_mount
->m_perag_tree
,
786 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
787 XFS_ICI_RECLAIM_TAG
);
788 spin_unlock(&ip
->i_mount
->m_perag_lock
);
789 trace_xfs_perag_clear_reclaim(ip
->i_mount
, pag
->pag_agno
,
795 __xfs_inode_clear_reclaim_tag(
800 radix_tree_tag_clear(&pag
->pag_ici_root
,
801 XFS_INO_TO_AGINO(mp
, ip
->i_ino
), XFS_ICI_RECLAIM_TAG
);
802 __xfs_inode_clear_reclaim(pag
, ip
);
806 * Grab the inode for reclaim exclusively.
807 * Return 0 if we grabbed it, non-zero otherwise.
810 xfs_reclaim_inode_grab(
811 struct xfs_inode
*ip
,
814 ASSERT(rcu_read_lock_held());
816 /* quick check for stale RCU freed inode */
821 * If we are asked for non-blocking operation, do unlocked checks to
822 * see if the inode already is being flushed or in reclaim to avoid
825 if ((flags
& SYNC_TRYLOCK
) &&
826 __xfs_iflags_test(ip
, XFS_IFLOCK
| XFS_IRECLAIM
))
830 * The radix tree lock here protects a thread in xfs_iget from racing
831 * with us starting reclaim on the inode. Once we have the
832 * XFS_IRECLAIM flag set it will not touch us.
834 * Due to RCU lookup, we may find inodes that have been freed and only
835 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
836 * aren't candidates for reclaim at all, so we must check the
837 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
839 spin_lock(&ip
->i_flags_lock
);
840 if (!__xfs_iflags_test(ip
, XFS_IRECLAIMABLE
) ||
841 __xfs_iflags_test(ip
, XFS_IRECLAIM
)) {
842 /* not a reclaim candidate. */
843 spin_unlock(&ip
->i_flags_lock
);
846 __xfs_iflags_set(ip
, XFS_IRECLAIM
);
847 spin_unlock(&ip
->i_flags_lock
);
852 * Inodes in different states need to be treated differently. The following
853 * table lists the inode states and the reclaim actions necessary:
855 * inode state iflush ret required action
856 * --------------- ---------- ---------------
858 * shutdown EIO unpin and reclaim
859 * clean, unpinned 0 reclaim
860 * stale, unpinned 0 reclaim
861 * clean, pinned(*) 0 requeue
862 * stale, pinned EAGAIN requeue
863 * dirty, async - requeue
864 * dirty, sync 0 reclaim
866 * (*) dgc: I don't think the clean, pinned state is possible but it gets
867 * handled anyway given the order of checks implemented.
869 * Also, because we get the flush lock first, we know that any inode that has
870 * been flushed delwri has had the flush completed by the time we check that
871 * the inode is clean.
873 * Note that because the inode is flushed delayed write by AIL pushing, the
874 * flush lock may already be held here and waiting on it can result in very
875 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
876 * the caller should push the AIL first before trying to reclaim inodes to
877 * minimise the amount of time spent waiting. For background relaim, we only
878 * bother to reclaim clean inodes anyway.
880 * Hence the order of actions after gaining the locks should be:
882 * shutdown => unpin and reclaim
883 * pinned, async => requeue
884 * pinned, sync => unpin
887 * dirty, async => requeue
888 * dirty, sync => flush, wait and reclaim
892 struct xfs_inode
*ip
,
893 struct xfs_perag
*pag
,
896 struct xfs_buf
*bp
= NULL
;
901 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
902 if (!xfs_iflock_nowait(ip
)) {
903 if (!(sync_mode
& SYNC_WAIT
))
908 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
910 xfs_iflush_abort(ip
, false);
913 if (xfs_ipincount(ip
)) {
914 if (!(sync_mode
& SYNC_WAIT
))
918 if (xfs_iflags_test(ip
, XFS_ISTALE
))
920 if (xfs_inode_clean(ip
))
924 * Never flush out dirty data during non-blocking reclaim, as it would
925 * just contend with AIL pushing trying to do the same job.
927 if (!(sync_mode
& SYNC_WAIT
))
931 * Now we have an inode that needs flushing.
933 * Note that xfs_iflush will never block on the inode buffer lock, as
934 * xfs_ifree_cluster() can lock the inode buffer before it locks the
935 * ip->i_lock, and we are doing the exact opposite here. As a result,
936 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
937 * result in an ABBA deadlock with xfs_ifree_cluster().
939 * As xfs_ifree_cluser() must gather all inodes that are active in the
940 * cache to mark them stale, if we hit this case we don't actually want
941 * to do IO here - we want the inode marked stale so we can simply
942 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
943 * inode, back off and try again. Hopefully the next pass through will
944 * see the stale flag set on the inode.
946 error
= xfs_iflush(ip
, &bp
);
947 if (error
== EAGAIN
) {
948 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
949 /* backoff longer than in xfs_ifree_cluster */
955 error
= xfs_bwrite(bp
);
962 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
964 XFS_STATS_INC(xs_ig_reclaims
);
966 * Remove the inode from the per-AG radix tree.
968 * Because radix_tree_delete won't complain even if the item was never
969 * added to the tree assert that it's been there before to catch
970 * problems with the inode life time early on.
972 spin_lock(&pag
->pag_ici_lock
);
973 if (!radix_tree_delete(&pag
->pag_ici_root
,
974 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
)))
976 __xfs_inode_clear_reclaim(pag
, ip
);
977 spin_unlock(&pag
->pag_ici_lock
);
980 * Here we do an (almost) spurious inode lock in order to coordinate
981 * with inode cache radix tree lookups. This is because the lookup
982 * can reference the inodes in the cache without taking references.
984 * We make that OK here by ensuring that we wait until the inode is
985 * unlocked after the lookup before we go ahead and free it.
987 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
989 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
997 xfs_iflags_clear(ip
, XFS_IRECLAIM
);
998 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1000 * We could return EAGAIN here to make reclaim rescan the inode tree in
1001 * a short while. However, this just burns CPU time scanning the tree
1002 * waiting for IO to complete and the reclaim work never goes back to
1003 * the idle state. Instead, return 0 to let the next scheduled
1004 * background reclaim attempt to reclaim the inode again.
1010 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1011 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1012 * then a shut down during filesystem unmount reclaim walk leak all the
1013 * unreclaimed inodes.
1016 xfs_reclaim_inodes_ag(
1017 struct xfs_mount
*mp
,
1021 struct xfs_perag
*pag
;
1025 int trylock
= flags
& SYNC_TRYLOCK
;
1031 while ((pag
= xfs_perag_get_tag(mp
, ag
, XFS_ICI_RECLAIM_TAG
))) {
1032 unsigned long first_index
= 0;
1036 ag
= pag
->pag_agno
+ 1;
1039 if (!mutex_trylock(&pag
->pag_ici_reclaim_lock
)) {
1044 first_index
= pag
->pag_ici_reclaim_cursor
;
1046 mutex_lock(&pag
->pag_ici_reclaim_lock
);
1049 struct xfs_inode
*batch
[XFS_LOOKUP_BATCH
];
1053 nr_found
= radix_tree_gang_lookup_tag(
1055 (void **)batch
, first_index
,
1057 XFS_ICI_RECLAIM_TAG
);
1065 * Grab the inodes before we drop the lock. if we found
1066 * nothing, nr == 0 and the loop will be skipped.
1068 for (i
= 0; i
< nr_found
; i
++) {
1069 struct xfs_inode
*ip
= batch
[i
];
1071 if (done
|| xfs_reclaim_inode_grab(ip
, flags
))
1075 * Update the index for the next lookup. Catch
1076 * overflows into the next AG range which can
1077 * occur if we have inodes in the last block of
1078 * the AG and we are currently pointing to the
1081 * Because we may see inodes that are from the
1082 * wrong AG due to RCU freeing and
1083 * reallocation, only update the index if it
1084 * lies in this AG. It was a race that lead us
1085 * to see this inode, so another lookup from
1086 * the same index will not find it again.
1088 if (XFS_INO_TO_AGNO(mp
, ip
->i_ino
) !=
1091 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
+ 1);
1092 if (first_index
< XFS_INO_TO_AGINO(mp
, ip
->i_ino
))
1096 /* unlock now we've grabbed the inodes. */
1099 for (i
= 0; i
< nr_found
; i
++) {
1102 error
= xfs_reclaim_inode(batch
[i
], pag
, flags
);
1103 if (error
&& last_error
!= EFSCORRUPTED
)
1107 *nr_to_scan
-= XFS_LOOKUP_BATCH
;
1111 } while (nr_found
&& !done
&& *nr_to_scan
> 0);
1113 if (trylock
&& !done
)
1114 pag
->pag_ici_reclaim_cursor
= first_index
;
1116 pag
->pag_ici_reclaim_cursor
= 0;
1117 mutex_unlock(&pag
->pag_ici_reclaim_lock
);
1122 * if we skipped any AG, and we still have scan count remaining, do
1123 * another pass this time using blocking reclaim semantics (i.e
1124 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1125 * ensure that when we get more reclaimers than AGs we block rather
1126 * than spin trying to execute reclaim.
1128 if (skipped
&& (flags
& SYNC_WAIT
) && *nr_to_scan
> 0) {
1132 return XFS_ERROR(last_error
);
1140 int nr_to_scan
= INT_MAX
;
1142 return xfs_reclaim_inodes_ag(mp
, mode
, &nr_to_scan
);
1146 * Scan a certain number of inodes for reclaim.
1148 * When called we make sure that there is a background (fast) inode reclaim in
1149 * progress, while we will throttle the speed of reclaim via doing synchronous
1150 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1151 * them to be cleaned, which we hope will not be very long due to the
1152 * background walker having already kicked the IO off on those dirty inodes.
1155 xfs_reclaim_inodes_nr(
1156 struct xfs_mount
*mp
,
1159 /* kick background reclaimer and push the AIL */
1160 xfs_reclaim_work_queue(mp
);
1161 xfs_ail_push_all(mp
->m_ail
);
1163 return xfs_reclaim_inodes_ag(mp
, SYNC_TRYLOCK
| SYNC_WAIT
, &nr_to_scan
);
1167 * Return the number of reclaimable inodes in the filesystem for
1168 * the shrinker to determine how much to reclaim.
1171 xfs_reclaim_inodes_count(
1172 struct xfs_mount
*mp
)
1174 struct xfs_perag
*pag
;
1175 xfs_agnumber_t ag
= 0;
1176 int reclaimable
= 0;
1178 while ((pag
= xfs_perag_get_tag(mp
, ag
, XFS_ICI_RECLAIM_TAG
))) {
1179 ag
= pag
->pag_agno
+ 1;
1180 reclaimable
+= pag
->pag_ici_reclaimable
;
1188 struct xfs_inode
*ip
,
1189 struct xfs_eofblocks
*eofb
)
1191 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_UID
) &&
1192 !uid_eq(VFS_I(ip
)->i_uid
, eofb
->eof_uid
))
1195 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_GID
) &&
1196 !gid_eq(VFS_I(ip
)->i_gid
, eofb
->eof_gid
))
1199 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_PRID
) &&
1200 xfs_get_projid(ip
) != eofb
->eof_prid
)
1207 xfs_inode_free_eofblocks(
1208 struct xfs_inode
*ip
,
1213 struct xfs_eofblocks
*eofb
= args
;
1215 if (!xfs_can_free_eofblocks(ip
, false)) {
1216 /* inode could be preallocated or append-only */
1217 trace_xfs_inode_free_eofblocks_invalid(ip
);
1218 xfs_inode_clear_eofblocks_tag(ip
);
1223 * If the mapping is dirty the operation can block and wait for some
1224 * time. Unless we are waiting, skip it.
1226 if (!(flags
& SYNC_WAIT
) &&
1227 mapping_tagged(VFS_I(ip
)->i_mapping
, PAGECACHE_TAG_DIRTY
))
1231 if (!xfs_inode_match_id(ip
, eofb
))
1234 /* skip the inode if the file size is too small */
1235 if (eofb
->eof_flags
& XFS_EOF_FLAGS_MINFILESIZE
&&
1236 XFS_ISIZE(ip
) < eofb
->eof_min_file_size
)
1240 ret
= xfs_free_eofblocks(ip
->i_mount
, ip
, true);
1242 /* don't revisit the inode if we're not waiting */
1243 if (ret
== EAGAIN
&& !(flags
& SYNC_WAIT
))
1250 xfs_icache_free_eofblocks(
1251 struct xfs_mount
*mp
,
1252 struct xfs_eofblocks
*eofb
)
1254 int flags
= SYNC_TRYLOCK
;
1256 if (eofb
&& (eofb
->eof_flags
& XFS_EOF_FLAGS_SYNC
))
1259 return xfs_inode_ag_iterator_tag(mp
, xfs_inode_free_eofblocks
, flags
,
1260 eofb
, XFS_ICI_EOFBLOCKS_TAG
);
1264 xfs_inode_set_eofblocks_tag(
1267 struct xfs_mount
*mp
= ip
->i_mount
;
1268 struct xfs_perag
*pag
;
1271 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
1272 spin_lock(&pag
->pag_ici_lock
);
1273 trace_xfs_inode_set_eofblocks_tag(ip
);
1275 tagged
= radix_tree_tagged(&pag
->pag_ici_root
,
1276 XFS_ICI_EOFBLOCKS_TAG
);
1277 radix_tree_tag_set(&pag
->pag_ici_root
,
1278 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
),
1279 XFS_ICI_EOFBLOCKS_TAG
);
1281 /* propagate the eofblocks tag up into the perag radix tree */
1282 spin_lock(&ip
->i_mount
->m_perag_lock
);
1283 radix_tree_tag_set(&ip
->i_mount
->m_perag_tree
,
1284 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
1285 XFS_ICI_EOFBLOCKS_TAG
);
1286 spin_unlock(&ip
->i_mount
->m_perag_lock
);
1288 /* kick off background trimming */
1289 xfs_queue_eofblocks(ip
->i_mount
);
1291 trace_xfs_perag_set_eofblocks(ip
->i_mount
, pag
->pag_agno
,
1295 spin_unlock(&pag
->pag_ici_lock
);
1300 xfs_inode_clear_eofblocks_tag(
1303 struct xfs_mount
*mp
= ip
->i_mount
;
1304 struct xfs_perag
*pag
;
1306 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
1307 spin_lock(&pag
->pag_ici_lock
);
1308 trace_xfs_inode_clear_eofblocks_tag(ip
);
1310 radix_tree_tag_clear(&pag
->pag_ici_root
,
1311 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
),
1312 XFS_ICI_EOFBLOCKS_TAG
);
1313 if (!radix_tree_tagged(&pag
->pag_ici_root
, XFS_ICI_EOFBLOCKS_TAG
)) {
1314 /* clear the eofblocks tag from the perag radix tree */
1315 spin_lock(&ip
->i_mount
->m_perag_lock
);
1316 radix_tree_tag_clear(&ip
->i_mount
->m_perag_tree
,
1317 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
1318 XFS_ICI_EOFBLOCKS_TAG
);
1319 spin_unlock(&ip
->i_mount
->m_perag_lock
);
1320 trace_xfs_perag_clear_eofblocks(ip
->i_mount
, pag
->pag_agno
,
1324 spin_unlock(&pag
->pag_ici_lock
);