3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
120 #include <net/sock.h>
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
126 #include <trace/events/kmem.h>
128 #include "internal.h"
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
142 #ifdef CONFIG_DEBUG_SLAB
145 #define FORCED_DEBUG 1
149 #define FORCED_DEBUG 0
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t
;
166 typedef unsigned short freelist_idx_t
;
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
172 * true if a page was allocated from pfmemalloc reserves for network-based
175 static bool pfmemalloc_active __read_mostly
;
181 * - LIFO ordering, to hand out cache-warm objects from _alloc
182 * - reduce the number of linked list operations
183 * - reduce spinlock operations
185 * The limit is stored in the per-cpu structure to reduce the data cache
192 unsigned int batchcount
;
193 unsigned int touched
;
196 * Must have this definition in here for the proper
197 * alignment of array_cache. Also simplifies accessing
200 * Entries should not be directly dereferenced as
201 * entries belonging to slabs marked pfmemalloc will
202 * have the lower bits set SLAB_OBJ_PFMEMALLOC
206 #define SLAB_OBJ_PFMEMALLOC 1
207 static inline bool is_obj_pfmemalloc(void *objp
)
209 return (unsigned long)objp
& SLAB_OBJ_PFMEMALLOC
;
212 static inline void set_obj_pfmemalloc(void **objp
)
214 *objp
= (void *)((unsigned long)*objp
| SLAB_OBJ_PFMEMALLOC
);
218 static inline void clear_obj_pfmemalloc(void **objp
)
220 *objp
= (void *)((unsigned long)*objp
& ~SLAB_OBJ_PFMEMALLOC
);
224 * bootstrap: The caches do not work without cpuarrays anymore, but the
225 * cpuarrays are allocated from the generic caches...
227 #define BOOT_CPUCACHE_ENTRIES 1
228 struct arraycache_init
{
229 struct array_cache cache
;
230 void *entries
[BOOT_CPUCACHE_ENTRIES
];
234 * Need this for bootstrapping a per node allocator.
236 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
237 static struct kmem_cache_node __initdata init_kmem_cache_node
[NUM_INIT_LISTS
];
238 #define CACHE_CACHE 0
239 #define SIZE_AC MAX_NUMNODES
240 #define SIZE_NODE (2 * MAX_NUMNODES)
242 static int drain_freelist(struct kmem_cache
*cache
,
243 struct kmem_cache_node
*n
, int tofree
);
244 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
246 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
);
247 static void cache_reap(struct work_struct
*unused
);
249 static int slab_early_init
= 1;
251 #define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
252 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
254 static void kmem_cache_node_init(struct kmem_cache_node
*parent
)
256 INIT_LIST_HEAD(&parent
->slabs_full
);
257 INIT_LIST_HEAD(&parent
->slabs_partial
);
258 INIT_LIST_HEAD(&parent
->slabs_free
);
259 parent
->shared
= NULL
;
260 parent
->alien
= NULL
;
261 parent
->colour_next
= 0;
262 spin_lock_init(&parent
->list_lock
);
263 parent
->free_objects
= 0;
264 parent
->free_touched
= 0;
267 #define MAKE_LIST(cachep, listp, slab, nodeid) \
269 INIT_LIST_HEAD(listp); \
270 list_splice(&(cachep->node[nodeid]->slab), listp); \
273 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
275 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
276 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
277 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
280 #define CFLGS_OFF_SLAB (0x80000000UL)
281 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
282 #define OFF_SLAB_MIN_SIZE (max_t(size_t, PAGE_SIZE >> 5, KMALLOC_MIN_SIZE + 1))
284 #define BATCHREFILL_LIMIT 16
286 * Optimization question: fewer reaps means less probability for unnessary
287 * cpucache drain/refill cycles.
289 * OTOH the cpuarrays can contain lots of objects,
290 * which could lock up otherwise freeable slabs.
292 #define REAPTIMEOUT_AC (2*HZ)
293 #define REAPTIMEOUT_NODE (4*HZ)
296 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
297 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
298 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
299 #define STATS_INC_GROWN(x) ((x)->grown++)
300 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
301 #define STATS_SET_HIGH(x) \
303 if ((x)->num_active > (x)->high_mark) \
304 (x)->high_mark = (x)->num_active; \
306 #define STATS_INC_ERR(x) ((x)->errors++)
307 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
308 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
309 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
310 #define STATS_SET_FREEABLE(x, i) \
312 if ((x)->max_freeable < i) \
313 (x)->max_freeable = i; \
315 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
316 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
317 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
318 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
320 #define STATS_INC_ACTIVE(x) do { } while (0)
321 #define STATS_DEC_ACTIVE(x) do { } while (0)
322 #define STATS_INC_ALLOCED(x) do { } while (0)
323 #define STATS_INC_GROWN(x) do { } while (0)
324 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
325 #define STATS_SET_HIGH(x) do { } while (0)
326 #define STATS_INC_ERR(x) do { } while (0)
327 #define STATS_INC_NODEALLOCS(x) do { } while (0)
328 #define STATS_INC_NODEFREES(x) do { } while (0)
329 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
330 #define STATS_SET_FREEABLE(x, i) do { } while (0)
331 #define STATS_INC_ALLOCHIT(x) do { } while (0)
332 #define STATS_INC_ALLOCMISS(x) do { } while (0)
333 #define STATS_INC_FREEHIT(x) do { } while (0)
334 #define STATS_INC_FREEMISS(x) do { } while (0)
340 * memory layout of objects:
342 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
343 * the end of an object is aligned with the end of the real
344 * allocation. Catches writes behind the end of the allocation.
345 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
347 * cachep->obj_offset: The real object.
348 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
349 * cachep->size - 1* BYTES_PER_WORD: last caller address
350 * [BYTES_PER_WORD long]
352 static int obj_offset(struct kmem_cache
*cachep
)
354 return cachep
->obj_offset
;
357 static unsigned long long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
359 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
360 return (unsigned long long*) (objp
+ obj_offset(cachep
) -
361 sizeof(unsigned long long));
364 static unsigned long long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
366 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
367 if (cachep
->flags
& SLAB_STORE_USER
)
368 return (unsigned long long *)(objp
+ cachep
->size
-
369 sizeof(unsigned long long) -
371 return (unsigned long long *) (objp
+ cachep
->size
-
372 sizeof(unsigned long long));
375 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
377 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
378 return (void **)(objp
+ cachep
->size
- BYTES_PER_WORD
);
383 #define obj_offset(x) 0
384 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
385 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
386 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
390 #define OBJECT_FREE (0)
391 #define OBJECT_ACTIVE (1)
393 #ifdef CONFIG_DEBUG_SLAB_LEAK
395 static void set_obj_status(struct page
*page
, int idx
, int val
)
399 struct kmem_cache
*cachep
= page
->slab_cache
;
401 freelist_size
= cachep
->num
* sizeof(freelist_idx_t
);
402 status
= (char *)page
->freelist
+ freelist_size
;
406 static inline unsigned int get_obj_status(struct page
*page
, int idx
)
410 struct kmem_cache
*cachep
= page
->slab_cache
;
412 freelist_size
= cachep
->num
* sizeof(freelist_idx_t
);
413 status
= (char *)page
->freelist
+ freelist_size
;
419 static inline void set_obj_status(struct page
*page
, int idx
, int val
) {}
424 * Do not go above this order unless 0 objects fit into the slab or
425 * overridden on the command line.
427 #define SLAB_MAX_ORDER_HI 1
428 #define SLAB_MAX_ORDER_LO 0
429 static int slab_max_order
= SLAB_MAX_ORDER_LO
;
430 static bool slab_max_order_set __initdata
;
432 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
434 struct page
*page
= virt_to_head_page(obj
);
435 return page
->slab_cache
;
438 static inline void *index_to_obj(struct kmem_cache
*cache
, struct page
*page
,
441 return page
->s_mem
+ cache
->size
* idx
;
445 * We want to avoid an expensive divide : (offset / cache->size)
446 * Using the fact that size is a constant for a particular cache,
447 * we can replace (offset / cache->size) by
448 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
450 static inline unsigned int obj_to_index(const struct kmem_cache
*cache
,
451 const struct page
*page
, void *obj
)
453 u32 offset
= (obj
- page
->s_mem
);
454 return reciprocal_divide(offset
, cache
->reciprocal_buffer_size
);
457 static struct arraycache_init initarray_generic
=
458 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
460 /* internal cache of cache description objs */
461 static struct kmem_cache kmem_cache_boot
= {
463 .limit
= BOOT_CPUCACHE_ENTRIES
,
465 .size
= sizeof(struct kmem_cache
),
466 .name
= "kmem_cache",
469 #define BAD_ALIEN_MAGIC 0x01020304ul
471 #ifdef CONFIG_LOCKDEP
474 * Slab sometimes uses the kmalloc slabs to store the slab headers
475 * for other slabs "off slab".
476 * The locking for this is tricky in that it nests within the locks
477 * of all other slabs in a few places; to deal with this special
478 * locking we put on-slab caches into a separate lock-class.
480 * We set lock class for alien array caches which are up during init.
481 * The lock annotation will be lost if all cpus of a node goes down and
482 * then comes back up during hotplug
484 static struct lock_class_key on_slab_l3_key
;
485 static struct lock_class_key on_slab_alc_key
;
487 static struct lock_class_key debugobj_l3_key
;
488 static struct lock_class_key debugobj_alc_key
;
490 static void slab_set_lock_classes(struct kmem_cache
*cachep
,
491 struct lock_class_key
*l3_key
, struct lock_class_key
*alc_key
,
494 struct array_cache
**alc
;
495 struct kmem_cache_node
*n
;
502 lockdep_set_class(&n
->list_lock
, l3_key
);
505 * FIXME: This check for BAD_ALIEN_MAGIC
506 * should go away when common slab code is taught to
507 * work even without alien caches.
508 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
509 * for alloc_alien_cache,
511 if (!alc
|| (unsigned long)alc
== BAD_ALIEN_MAGIC
)
515 lockdep_set_class(&alc
[r
]->lock
, alc_key
);
519 static void slab_set_debugobj_lock_classes_node(struct kmem_cache
*cachep
, int node
)
521 slab_set_lock_classes(cachep
, &debugobj_l3_key
, &debugobj_alc_key
, node
);
524 static void slab_set_debugobj_lock_classes(struct kmem_cache
*cachep
)
528 for_each_online_node(node
)
529 slab_set_debugobj_lock_classes_node(cachep
, node
);
532 static void init_node_lock_keys(int q
)
539 for (i
= 1; i
<= KMALLOC_SHIFT_HIGH
; i
++) {
540 struct kmem_cache_node
*n
;
541 struct kmem_cache
*cache
= kmalloc_caches
[i
];
547 if (!n
|| OFF_SLAB(cache
))
550 slab_set_lock_classes(cache
, &on_slab_l3_key
,
551 &on_slab_alc_key
, q
);
555 static void on_slab_lock_classes_node(struct kmem_cache
*cachep
, int q
)
557 if (!cachep
->node
[q
])
560 slab_set_lock_classes(cachep
, &on_slab_l3_key
,
561 &on_slab_alc_key
, q
);
564 static inline void on_slab_lock_classes(struct kmem_cache
*cachep
)
568 VM_BUG_ON(OFF_SLAB(cachep
));
570 on_slab_lock_classes_node(cachep
, node
);
573 static inline void init_lock_keys(void)
578 init_node_lock_keys(node
);
581 static void init_node_lock_keys(int q
)
585 static inline void init_lock_keys(void)
589 static inline void on_slab_lock_classes(struct kmem_cache
*cachep
)
593 static inline void on_slab_lock_classes_node(struct kmem_cache
*cachep
, int node
)
597 static void slab_set_debugobj_lock_classes_node(struct kmem_cache
*cachep
, int node
)
601 static void slab_set_debugobj_lock_classes(struct kmem_cache
*cachep
)
606 static DEFINE_PER_CPU(struct delayed_work
, slab_reap_work
);
608 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
610 return cachep
->array
[smp_processor_id()];
613 static size_t calculate_freelist_size(int nr_objs
, size_t align
)
615 size_t freelist_size
;
617 freelist_size
= nr_objs
* sizeof(freelist_idx_t
);
618 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK
))
619 freelist_size
+= nr_objs
* sizeof(char);
622 freelist_size
= ALIGN(freelist_size
, align
);
624 return freelist_size
;
627 static int calculate_nr_objs(size_t slab_size
, size_t buffer_size
,
628 size_t idx_size
, size_t align
)
631 size_t remained_size
;
632 size_t freelist_size
;
635 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK
))
636 extra_space
= sizeof(char);
638 * Ignore padding for the initial guess. The padding
639 * is at most @align-1 bytes, and @buffer_size is at
640 * least @align. In the worst case, this result will
641 * be one greater than the number of objects that fit
642 * into the memory allocation when taking the padding
645 nr_objs
= slab_size
/ (buffer_size
+ idx_size
+ extra_space
);
648 * This calculated number will be either the right
649 * amount, or one greater than what we want.
651 remained_size
= slab_size
- nr_objs
* buffer_size
;
652 freelist_size
= calculate_freelist_size(nr_objs
, align
);
653 if (remained_size
< freelist_size
)
660 * Calculate the number of objects and left-over bytes for a given buffer size.
662 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
663 size_t align
, int flags
, size_t *left_over
,
668 size_t slab_size
= PAGE_SIZE
<< gfporder
;
671 * The slab management structure can be either off the slab or
672 * on it. For the latter case, the memory allocated for a
675 * - One unsigned int for each object
676 * - Padding to respect alignment of @align
677 * - @buffer_size bytes for each object
679 * If the slab management structure is off the slab, then the
680 * alignment will already be calculated into the size. Because
681 * the slabs are all pages aligned, the objects will be at the
682 * correct alignment when allocated.
684 if (flags
& CFLGS_OFF_SLAB
) {
686 nr_objs
= slab_size
/ buffer_size
;
689 nr_objs
= calculate_nr_objs(slab_size
, buffer_size
,
690 sizeof(freelist_idx_t
), align
);
691 mgmt_size
= calculate_freelist_size(nr_objs
, align
);
694 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
698 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
700 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
703 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
704 function
, cachep
->name
, msg
);
706 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
711 * By default on NUMA we use alien caches to stage the freeing of
712 * objects allocated from other nodes. This causes massive memory
713 * inefficiencies when using fake NUMA setup to split memory into a
714 * large number of small nodes, so it can be disabled on the command
718 static int use_alien_caches __read_mostly
= 1;
719 static int __init
noaliencache_setup(char *s
)
721 use_alien_caches
= 0;
724 __setup("noaliencache", noaliencache_setup
);
726 static int __init
slab_max_order_setup(char *str
)
728 get_option(&str
, &slab_max_order
);
729 slab_max_order
= slab_max_order
< 0 ? 0 :
730 min(slab_max_order
, MAX_ORDER
- 1);
731 slab_max_order_set
= true;
735 __setup("slab_max_order=", slab_max_order_setup
);
739 * Special reaping functions for NUMA systems called from cache_reap().
740 * These take care of doing round robin flushing of alien caches (containing
741 * objects freed on different nodes from which they were allocated) and the
742 * flushing of remote pcps by calling drain_node_pages.
744 static DEFINE_PER_CPU(unsigned long, slab_reap_node
);
746 static void init_reap_node(int cpu
)
750 node
= next_node(cpu_to_mem(cpu
), node_online_map
);
751 if (node
== MAX_NUMNODES
)
752 node
= first_node(node_online_map
);
754 per_cpu(slab_reap_node
, cpu
) = node
;
757 static void next_reap_node(void)
759 int node
= __this_cpu_read(slab_reap_node
);
761 node
= next_node(node
, node_online_map
);
762 if (unlikely(node
>= MAX_NUMNODES
))
763 node
= first_node(node_online_map
);
764 __this_cpu_write(slab_reap_node
, node
);
768 #define init_reap_node(cpu) do { } while (0)
769 #define next_reap_node(void) do { } while (0)
773 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
774 * via the workqueue/eventd.
775 * Add the CPU number into the expiration time to minimize the possibility of
776 * the CPUs getting into lockstep and contending for the global cache chain
779 static void start_cpu_timer(int cpu
)
781 struct delayed_work
*reap_work
= &per_cpu(slab_reap_work
, cpu
);
784 * When this gets called from do_initcalls via cpucache_init(),
785 * init_workqueues() has already run, so keventd will be setup
788 if (keventd_up() && reap_work
->work
.func
== NULL
) {
790 INIT_DEFERRABLE_WORK(reap_work
, cache_reap
);
791 schedule_delayed_work_on(cpu
, reap_work
,
792 __round_jiffies_relative(HZ
, cpu
));
796 static struct array_cache
*alloc_arraycache(int node
, int entries
,
797 int batchcount
, gfp_t gfp
)
799 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
800 struct array_cache
*nc
= NULL
;
802 nc
= kmalloc_node(memsize
, gfp
, node
);
804 * The array_cache structures contain pointers to free object.
805 * However, when such objects are allocated or transferred to another
806 * cache the pointers are not cleared and they could be counted as
807 * valid references during a kmemleak scan. Therefore, kmemleak must
808 * not scan such objects.
810 kmemleak_no_scan(nc
);
814 nc
->batchcount
= batchcount
;
816 spin_lock_init(&nc
->lock
);
821 static inline bool is_slab_pfmemalloc(struct page
*page
)
823 return PageSlabPfmemalloc(page
);
826 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
827 static void recheck_pfmemalloc_active(struct kmem_cache
*cachep
,
828 struct array_cache
*ac
)
830 struct kmem_cache_node
*n
= cachep
->node
[numa_mem_id()];
834 if (!pfmemalloc_active
)
837 spin_lock_irqsave(&n
->list_lock
, flags
);
838 list_for_each_entry(page
, &n
->slabs_full
, lru
)
839 if (is_slab_pfmemalloc(page
))
842 list_for_each_entry(page
, &n
->slabs_partial
, lru
)
843 if (is_slab_pfmemalloc(page
))
846 list_for_each_entry(page
, &n
->slabs_free
, lru
)
847 if (is_slab_pfmemalloc(page
))
850 pfmemalloc_active
= false;
852 spin_unlock_irqrestore(&n
->list_lock
, flags
);
855 static void *__ac_get_obj(struct kmem_cache
*cachep
, struct array_cache
*ac
,
856 gfp_t flags
, bool force_refill
)
859 void *objp
= ac
->entry
[--ac
->avail
];
861 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
862 if (unlikely(is_obj_pfmemalloc(objp
))) {
863 struct kmem_cache_node
*n
;
865 if (gfp_pfmemalloc_allowed(flags
)) {
866 clear_obj_pfmemalloc(&objp
);
870 /* The caller cannot use PFMEMALLOC objects, find another one */
871 for (i
= 0; i
< ac
->avail
; i
++) {
872 /* If a !PFMEMALLOC object is found, swap them */
873 if (!is_obj_pfmemalloc(ac
->entry
[i
])) {
875 ac
->entry
[i
] = ac
->entry
[ac
->avail
];
876 ac
->entry
[ac
->avail
] = objp
;
882 * If there are empty slabs on the slabs_free list and we are
883 * being forced to refill the cache, mark this one !pfmemalloc.
885 n
= cachep
->node
[numa_mem_id()];
886 if (!list_empty(&n
->slabs_free
) && force_refill
) {
887 struct page
*page
= virt_to_head_page(objp
);
888 ClearPageSlabPfmemalloc(page
);
889 clear_obj_pfmemalloc(&objp
);
890 recheck_pfmemalloc_active(cachep
, ac
);
894 /* No !PFMEMALLOC objects available */
902 static inline void *ac_get_obj(struct kmem_cache
*cachep
,
903 struct array_cache
*ac
, gfp_t flags
, bool force_refill
)
907 if (unlikely(sk_memalloc_socks()))
908 objp
= __ac_get_obj(cachep
, ac
, flags
, force_refill
);
910 objp
= ac
->entry
[--ac
->avail
];
915 static void *__ac_put_obj(struct kmem_cache
*cachep
, struct array_cache
*ac
,
918 if (unlikely(pfmemalloc_active
)) {
919 /* Some pfmemalloc slabs exist, check if this is one */
920 struct page
*page
= virt_to_head_page(objp
);
921 if (PageSlabPfmemalloc(page
))
922 set_obj_pfmemalloc(&objp
);
928 static inline void ac_put_obj(struct kmem_cache
*cachep
, struct array_cache
*ac
,
931 if (unlikely(sk_memalloc_socks()))
932 objp
= __ac_put_obj(cachep
, ac
, objp
);
934 ac
->entry
[ac
->avail
++] = objp
;
938 * Transfer objects in one arraycache to another.
939 * Locking must be handled by the caller.
941 * Return the number of entries transferred.
943 static int transfer_objects(struct array_cache
*to
,
944 struct array_cache
*from
, unsigned int max
)
946 /* Figure out how many entries to transfer */
947 int nr
= min3(from
->avail
, max
, to
->limit
- to
->avail
);
952 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
962 #define drain_alien_cache(cachep, alien) do { } while (0)
963 #define reap_alien(cachep, n) do { } while (0)
965 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
967 return (struct array_cache
**)BAD_ALIEN_MAGIC
;
970 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
974 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
979 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
985 static inline void *____cache_alloc_node(struct kmem_cache
*cachep
,
986 gfp_t flags
, int nodeid
)
991 #else /* CONFIG_NUMA */
993 static void *____cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
994 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
996 static struct array_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
998 struct array_cache
**ac_ptr
;
999 int memsize
= sizeof(void *) * nr_node_ids
;
1004 ac_ptr
= kzalloc_node(memsize
, gfp
, node
);
1007 if (i
== node
|| !node_online(i
))
1009 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d, gfp
);
1011 for (i
--; i
>= 0; i
--)
1021 static void free_alien_cache(struct array_cache
**ac_ptr
)
1032 static void __drain_alien_cache(struct kmem_cache
*cachep
,
1033 struct array_cache
*ac
, int node
)
1035 struct kmem_cache_node
*n
= cachep
->node
[node
];
1038 spin_lock(&n
->list_lock
);
1040 * Stuff objects into the remote nodes shared array first.
1041 * That way we could avoid the overhead of putting the objects
1042 * into the free lists and getting them back later.
1045 transfer_objects(n
->shared
, ac
, ac
->limit
);
1047 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
1049 spin_unlock(&n
->list_lock
);
1054 * Called from cache_reap() to regularly drain alien caches round robin.
1056 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_cache_node
*n
)
1058 int node
= __this_cpu_read(slab_reap_node
);
1061 struct array_cache
*ac
= n
->alien
[node
];
1063 if (ac
&& ac
->avail
&& spin_trylock_irq(&ac
->lock
)) {
1064 __drain_alien_cache(cachep
, ac
, node
);
1065 spin_unlock_irq(&ac
->lock
);
1070 static void drain_alien_cache(struct kmem_cache
*cachep
,
1071 struct array_cache
**alien
)
1074 struct array_cache
*ac
;
1075 unsigned long flags
;
1077 for_each_online_node(i
) {
1080 spin_lock_irqsave(&ac
->lock
, flags
);
1081 __drain_alien_cache(cachep
, ac
, i
);
1082 spin_unlock_irqrestore(&ac
->lock
, flags
);
1087 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1089 int nodeid
= page_to_nid(virt_to_page(objp
));
1090 struct kmem_cache_node
*n
;
1091 struct array_cache
*alien
= NULL
;
1094 node
= numa_mem_id();
1097 * Make sure we are not freeing a object from another node to the array
1098 * cache on this cpu.
1100 if (likely(nodeid
== node
))
1103 n
= cachep
->node
[node
];
1104 STATS_INC_NODEFREES(cachep
);
1105 if (n
->alien
&& n
->alien
[nodeid
]) {
1106 alien
= n
->alien
[nodeid
];
1107 spin_lock(&alien
->lock
);
1108 if (unlikely(alien
->avail
== alien
->limit
)) {
1109 STATS_INC_ACOVERFLOW(cachep
);
1110 __drain_alien_cache(cachep
, alien
, nodeid
);
1112 ac_put_obj(cachep
, alien
, objp
);
1113 spin_unlock(&alien
->lock
);
1115 spin_lock(&(cachep
->node
[nodeid
])->list_lock
);
1116 free_block(cachep
, &objp
, 1, nodeid
);
1117 spin_unlock(&(cachep
->node
[nodeid
])->list_lock
);
1124 * Allocates and initializes node for a node on each slab cache, used for
1125 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
1126 * will be allocated off-node since memory is not yet online for the new node.
1127 * When hotplugging memory or a cpu, existing node are not replaced if
1130 * Must hold slab_mutex.
1132 static int init_cache_node_node(int node
)
1134 struct kmem_cache
*cachep
;
1135 struct kmem_cache_node
*n
;
1136 const int memsize
= sizeof(struct kmem_cache_node
);
1138 list_for_each_entry(cachep
, &slab_caches
, list
) {
1140 * Set up the kmem_cache_node for cpu before we can
1141 * begin anything. Make sure some other cpu on this
1142 * node has not already allocated this
1144 if (!cachep
->node
[node
]) {
1145 n
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1148 kmem_cache_node_init(n
);
1149 n
->next_reap
= jiffies
+ REAPTIMEOUT_NODE
+
1150 ((unsigned long)cachep
) % REAPTIMEOUT_NODE
;
1153 * The kmem_cache_nodes don't come and go as CPUs
1154 * come and go. slab_mutex is sufficient
1157 cachep
->node
[node
] = n
;
1160 spin_lock_irq(&cachep
->node
[node
]->list_lock
);
1161 cachep
->node
[node
]->free_limit
=
1162 (1 + nr_cpus_node(node
)) *
1163 cachep
->batchcount
+ cachep
->num
;
1164 spin_unlock_irq(&cachep
->node
[node
]->list_lock
);
1169 static inline int slabs_tofree(struct kmem_cache
*cachep
,
1170 struct kmem_cache_node
*n
)
1172 return (n
->free_objects
+ cachep
->num
- 1) / cachep
->num
;
1175 static void cpuup_canceled(long cpu
)
1177 struct kmem_cache
*cachep
;
1178 struct kmem_cache_node
*n
= NULL
;
1179 int node
= cpu_to_mem(cpu
);
1180 const struct cpumask
*mask
= cpumask_of_node(node
);
1182 list_for_each_entry(cachep
, &slab_caches
, list
) {
1183 struct array_cache
*nc
;
1184 struct array_cache
*shared
;
1185 struct array_cache
**alien
;
1187 /* cpu is dead; no one can alloc from it. */
1188 nc
= cachep
->array
[cpu
];
1189 cachep
->array
[cpu
] = NULL
;
1190 n
= cachep
->node
[node
];
1193 goto free_array_cache
;
1195 spin_lock_irq(&n
->list_lock
);
1197 /* Free limit for this kmem_cache_node */
1198 n
->free_limit
-= cachep
->batchcount
;
1200 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1202 if (!cpumask_empty(mask
)) {
1203 spin_unlock_irq(&n
->list_lock
);
1204 goto free_array_cache
;
1209 free_block(cachep
, shared
->entry
,
1210 shared
->avail
, node
);
1217 spin_unlock_irq(&n
->list_lock
);
1221 drain_alien_cache(cachep
, alien
);
1222 free_alien_cache(alien
);
1228 * In the previous loop, all the objects were freed to
1229 * the respective cache's slabs, now we can go ahead and
1230 * shrink each nodelist to its limit.
1232 list_for_each_entry(cachep
, &slab_caches
, list
) {
1233 n
= cachep
->node
[node
];
1236 drain_freelist(cachep
, n
, slabs_tofree(cachep
, n
));
1240 static int cpuup_prepare(long cpu
)
1242 struct kmem_cache
*cachep
;
1243 struct kmem_cache_node
*n
= NULL
;
1244 int node
= cpu_to_mem(cpu
);
1248 * We need to do this right in the beginning since
1249 * alloc_arraycache's are going to use this list.
1250 * kmalloc_node allows us to add the slab to the right
1251 * kmem_cache_node and not this cpu's kmem_cache_node
1253 err
= init_cache_node_node(node
);
1258 * Now we can go ahead with allocating the shared arrays and
1261 list_for_each_entry(cachep
, &slab_caches
, list
) {
1262 struct array_cache
*nc
;
1263 struct array_cache
*shared
= NULL
;
1264 struct array_cache
**alien
= NULL
;
1266 nc
= alloc_arraycache(node
, cachep
->limit
,
1267 cachep
->batchcount
, GFP_KERNEL
);
1270 if (cachep
->shared
) {
1271 shared
= alloc_arraycache(node
,
1272 cachep
->shared
* cachep
->batchcount
,
1273 0xbaadf00d, GFP_KERNEL
);
1279 if (use_alien_caches
) {
1280 alien
= alloc_alien_cache(node
, cachep
->limit
, GFP_KERNEL
);
1287 cachep
->array
[cpu
] = nc
;
1288 n
= cachep
->node
[node
];
1291 spin_lock_irq(&n
->list_lock
);
1294 * We are serialised from CPU_DEAD or
1295 * CPU_UP_CANCELLED by the cpucontrol lock
1306 spin_unlock_irq(&n
->list_lock
);
1308 free_alien_cache(alien
);
1309 if (cachep
->flags
& SLAB_DEBUG_OBJECTS
)
1310 slab_set_debugobj_lock_classes_node(cachep
, node
);
1311 else if (!OFF_SLAB(cachep
) &&
1312 !(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
1313 on_slab_lock_classes_node(cachep
, node
);
1315 init_node_lock_keys(node
);
1319 cpuup_canceled(cpu
);
1323 static int cpuup_callback(struct notifier_block
*nfb
,
1324 unsigned long action
, void *hcpu
)
1326 long cpu
= (long)hcpu
;
1330 case CPU_UP_PREPARE
:
1331 case CPU_UP_PREPARE_FROZEN
:
1332 mutex_lock(&slab_mutex
);
1333 err
= cpuup_prepare(cpu
);
1334 mutex_unlock(&slab_mutex
);
1337 case CPU_ONLINE_FROZEN
:
1338 start_cpu_timer(cpu
);
1340 #ifdef CONFIG_HOTPLUG_CPU
1341 case CPU_DOWN_PREPARE
:
1342 case CPU_DOWN_PREPARE_FROZEN
:
1344 * Shutdown cache reaper. Note that the slab_mutex is
1345 * held so that if cache_reap() is invoked it cannot do
1346 * anything expensive but will only modify reap_work
1347 * and reschedule the timer.
1349 cancel_delayed_work_sync(&per_cpu(slab_reap_work
, cpu
));
1350 /* Now the cache_reaper is guaranteed to be not running. */
1351 per_cpu(slab_reap_work
, cpu
).work
.func
= NULL
;
1353 case CPU_DOWN_FAILED
:
1354 case CPU_DOWN_FAILED_FROZEN
:
1355 start_cpu_timer(cpu
);
1358 case CPU_DEAD_FROZEN
:
1360 * Even if all the cpus of a node are down, we don't free the
1361 * kmem_cache_node of any cache. This to avoid a race between
1362 * cpu_down, and a kmalloc allocation from another cpu for
1363 * memory from the node of the cpu going down. The node
1364 * structure is usually allocated from kmem_cache_create() and
1365 * gets destroyed at kmem_cache_destroy().
1369 case CPU_UP_CANCELED
:
1370 case CPU_UP_CANCELED_FROZEN
:
1371 mutex_lock(&slab_mutex
);
1372 cpuup_canceled(cpu
);
1373 mutex_unlock(&slab_mutex
);
1376 return notifier_from_errno(err
);
1379 static struct notifier_block cpucache_notifier
= {
1380 &cpuup_callback
, NULL
, 0
1383 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1385 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1386 * Returns -EBUSY if all objects cannot be drained so that the node is not
1389 * Must hold slab_mutex.
1391 static int __meminit
drain_cache_node_node(int node
)
1393 struct kmem_cache
*cachep
;
1396 list_for_each_entry(cachep
, &slab_caches
, list
) {
1397 struct kmem_cache_node
*n
;
1399 n
= cachep
->node
[node
];
1403 drain_freelist(cachep
, n
, slabs_tofree(cachep
, n
));
1405 if (!list_empty(&n
->slabs_full
) ||
1406 !list_empty(&n
->slabs_partial
)) {
1414 static int __meminit
slab_memory_callback(struct notifier_block
*self
,
1415 unsigned long action
, void *arg
)
1417 struct memory_notify
*mnb
= arg
;
1421 nid
= mnb
->status_change_nid
;
1426 case MEM_GOING_ONLINE
:
1427 mutex_lock(&slab_mutex
);
1428 ret
= init_cache_node_node(nid
);
1429 mutex_unlock(&slab_mutex
);
1431 case MEM_GOING_OFFLINE
:
1432 mutex_lock(&slab_mutex
);
1433 ret
= drain_cache_node_node(nid
);
1434 mutex_unlock(&slab_mutex
);
1438 case MEM_CANCEL_ONLINE
:
1439 case MEM_CANCEL_OFFLINE
:
1443 return notifier_from_errno(ret
);
1445 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1448 * swap the static kmem_cache_node with kmalloced memory
1450 static void __init
init_list(struct kmem_cache
*cachep
, struct kmem_cache_node
*list
,
1453 struct kmem_cache_node
*ptr
;
1455 ptr
= kmalloc_node(sizeof(struct kmem_cache_node
), GFP_NOWAIT
, nodeid
);
1458 memcpy(ptr
, list
, sizeof(struct kmem_cache_node
));
1460 * Do not assume that spinlocks can be initialized via memcpy:
1462 spin_lock_init(&ptr
->list_lock
);
1464 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1465 cachep
->node
[nodeid
] = ptr
;
1469 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1470 * size of kmem_cache_node.
1472 static void __init
set_up_node(struct kmem_cache
*cachep
, int index
)
1476 for_each_online_node(node
) {
1477 cachep
->node
[node
] = &init_kmem_cache_node
[index
+ node
];
1478 cachep
->node
[node
]->next_reap
= jiffies
+
1480 ((unsigned long)cachep
) % REAPTIMEOUT_NODE
;
1485 * The memory after the last cpu cache pointer is used for the
1488 static void setup_node_pointer(struct kmem_cache
*cachep
)
1490 cachep
->node
= (struct kmem_cache_node
**)&cachep
->array
[nr_cpu_ids
];
1494 * Initialisation. Called after the page allocator have been initialised and
1495 * before smp_init().
1497 void __init
kmem_cache_init(void)
1501 BUILD_BUG_ON(sizeof(((struct page
*)NULL
)->lru
) <
1502 sizeof(struct rcu_head
));
1503 kmem_cache
= &kmem_cache_boot
;
1504 setup_node_pointer(kmem_cache
);
1506 if (num_possible_nodes() == 1)
1507 use_alien_caches
= 0;
1509 for (i
= 0; i
< NUM_INIT_LISTS
; i
++)
1510 kmem_cache_node_init(&init_kmem_cache_node
[i
]);
1512 set_up_node(kmem_cache
, CACHE_CACHE
);
1515 * Fragmentation resistance on low memory - only use bigger
1516 * page orders on machines with more than 32MB of memory if
1517 * not overridden on the command line.
1519 if (!slab_max_order_set
&& totalram_pages
> (32 << 20) >> PAGE_SHIFT
)
1520 slab_max_order
= SLAB_MAX_ORDER_HI
;
1522 /* Bootstrap is tricky, because several objects are allocated
1523 * from caches that do not exist yet:
1524 * 1) initialize the kmem_cache cache: it contains the struct
1525 * kmem_cache structures of all caches, except kmem_cache itself:
1526 * kmem_cache is statically allocated.
1527 * Initially an __init data area is used for the head array and the
1528 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1529 * array at the end of the bootstrap.
1530 * 2) Create the first kmalloc cache.
1531 * The struct kmem_cache for the new cache is allocated normally.
1532 * An __init data area is used for the head array.
1533 * 3) Create the remaining kmalloc caches, with minimally sized
1535 * 4) Replace the __init data head arrays for kmem_cache and the first
1536 * kmalloc cache with kmalloc allocated arrays.
1537 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1538 * the other cache's with kmalloc allocated memory.
1539 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1542 /* 1) create the kmem_cache */
1545 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1547 create_boot_cache(kmem_cache
, "kmem_cache",
1548 offsetof(struct kmem_cache
, array
[nr_cpu_ids
]) +
1549 nr_node_ids
* sizeof(struct kmem_cache_node
*),
1550 SLAB_HWCACHE_ALIGN
);
1551 list_add(&kmem_cache
->list
, &slab_caches
);
1553 /* 2+3) create the kmalloc caches */
1556 * Initialize the caches that provide memory for the array cache and the
1557 * kmem_cache_node structures first. Without this, further allocations will
1561 kmalloc_caches
[INDEX_AC
] = create_kmalloc_cache("kmalloc-ac",
1562 kmalloc_size(INDEX_AC
), ARCH_KMALLOC_FLAGS
);
1564 if (INDEX_AC
!= INDEX_NODE
)
1565 kmalloc_caches
[INDEX_NODE
] =
1566 create_kmalloc_cache("kmalloc-node",
1567 kmalloc_size(INDEX_NODE
), ARCH_KMALLOC_FLAGS
);
1569 slab_early_init
= 0;
1571 /* 4) Replace the bootstrap head arrays */
1573 struct array_cache
*ptr
;
1575 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_NOWAIT
);
1577 memcpy(ptr
, cpu_cache_get(kmem_cache
),
1578 sizeof(struct arraycache_init
));
1580 * Do not assume that spinlocks can be initialized via memcpy:
1582 spin_lock_init(&ptr
->lock
);
1584 kmem_cache
->array
[smp_processor_id()] = ptr
;
1586 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_NOWAIT
);
1588 BUG_ON(cpu_cache_get(kmalloc_caches
[INDEX_AC
])
1589 != &initarray_generic
.cache
);
1590 memcpy(ptr
, cpu_cache_get(kmalloc_caches
[INDEX_AC
]),
1591 sizeof(struct arraycache_init
));
1593 * Do not assume that spinlocks can be initialized via memcpy:
1595 spin_lock_init(&ptr
->lock
);
1597 kmalloc_caches
[INDEX_AC
]->array
[smp_processor_id()] = ptr
;
1599 /* 5) Replace the bootstrap kmem_cache_node */
1603 for_each_online_node(nid
) {
1604 init_list(kmem_cache
, &init_kmem_cache_node
[CACHE_CACHE
+ nid
], nid
);
1606 init_list(kmalloc_caches
[INDEX_AC
],
1607 &init_kmem_cache_node
[SIZE_AC
+ nid
], nid
);
1609 if (INDEX_AC
!= INDEX_NODE
) {
1610 init_list(kmalloc_caches
[INDEX_NODE
],
1611 &init_kmem_cache_node
[SIZE_NODE
+ nid
], nid
);
1616 create_kmalloc_caches(ARCH_KMALLOC_FLAGS
);
1619 void __init
kmem_cache_init_late(void)
1621 struct kmem_cache
*cachep
;
1625 /* 6) resize the head arrays to their final sizes */
1626 mutex_lock(&slab_mutex
);
1627 list_for_each_entry(cachep
, &slab_caches
, list
)
1628 if (enable_cpucache(cachep
, GFP_NOWAIT
))
1630 mutex_unlock(&slab_mutex
);
1632 /* Annotate slab for lockdep -- annotate the malloc caches */
1639 * Register a cpu startup notifier callback that initializes
1640 * cpu_cache_get for all new cpus
1642 register_cpu_notifier(&cpucache_notifier
);
1646 * Register a memory hotplug callback that initializes and frees
1649 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
1653 * The reap timers are started later, with a module init call: That part
1654 * of the kernel is not yet operational.
1658 static int __init
cpucache_init(void)
1663 * Register the timers that return unneeded pages to the page allocator
1665 for_each_online_cpu(cpu
)
1666 start_cpu_timer(cpu
);
1672 __initcall(cpucache_init
);
1674 static noinline
void
1675 slab_out_of_memory(struct kmem_cache
*cachep
, gfp_t gfpflags
, int nodeid
)
1678 struct kmem_cache_node
*n
;
1680 unsigned long flags
;
1682 static DEFINE_RATELIMIT_STATE(slab_oom_rs
, DEFAULT_RATELIMIT_INTERVAL
,
1683 DEFAULT_RATELIMIT_BURST
);
1685 if ((gfpflags
& __GFP_NOWARN
) || !__ratelimit(&slab_oom_rs
))
1689 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1691 printk(KERN_WARNING
" cache: %s, object size: %d, order: %d\n",
1692 cachep
->name
, cachep
->size
, cachep
->gfporder
);
1694 for_each_online_node(node
) {
1695 unsigned long active_objs
= 0, num_objs
= 0, free_objects
= 0;
1696 unsigned long active_slabs
= 0, num_slabs
= 0;
1698 n
= cachep
->node
[node
];
1702 spin_lock_irqsave(&n
->list_lock
, flags
);
1703 list_for_each_entry(page
, &n
->slabs_full
, lru
) {
1704 active_objs
+= cachep
->num
;
1707 list_for_each_entry(page
, &n
->slabs_partial
, lru
) {
1708 active_objs
+= page
->active
;
1711 list_for_each_entry(page
, &n
->slabs_free
, lru
)
1714 free_objects
+= n
->free_objects
;
1715 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1717 num_slabs
+= active_slabs
;
1718 num_objs
= num_slabs
* cachep
->num
;
1720 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1721 node
, active_slabs
, num_slabs
, active_objs
, num_objs
,
1728 * Interface to system's page allocator. No need to hold the cache-lock.
1730 * If we requested dmaable memory, we will get it. Even if we
1731 * did not request dmaable memory, we might get it, but that
1732 * would be relatively rare and ignorable.
1734 static struct page
*kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
,
1740 flags
|= cachep
->allocflags
;
1741 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1742 flags
|= __GFP_RECLAIMABLE
;
1744 if (memcg_charge_slab(cachep
, flags
, cachep
->gfporder
))
1747 page
= alloc_pages_exact_node(nodeid
, flags
| __GFP_NOTRACK
, cachep
->gfporder
);
1749 memcg_uncharge_slab(cachep
, cachep
->gfporder
);
1750 slab_out_of_memory(cachep
, flags
, nodeid
);
1754 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1755 if (unlikely(page
->pfmemalloc
))
1756 pfmemalloc_active
= true;
1758 nr_pages
= (1 << cachep
->gfporder
);
1759 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1760 add_zone_page_state(page_zone(page
),
1761 NR_SLAB_RECLAIMABLE
, nr_pages
);
1763 add_zone_page_state(page_zone(page
),
1764 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1765 __SetPageSlab(page
);
1766 if (page
->pfmemalloc
)
1767 SetPageSlabPfmemalloc(page
);
1769 if (kmemcheck_enabled
&& !(cachep
->flags
& SLAB_NOTRACK
)) {
1770 kmemcheck_alloc_shadow(page
, cachep
->gfporder
, flags
, nodeid
);
1773 kmemcheck_mark_uninitialized_pages(page
, nr_pages
);
1775 kmemcheck_mark_unallocated_pages(page
, nr_pages
);
1782 * Interface to system's page release.
1784 static void kmem_freepages(struct kmem_cache
*cachep
, struct page
*page
)
1786 const unsigned long nr_freed
= (1 << cachep
->gfporder
);
1788 kmemcheck_free_shadow(page
, cachep
->gfporder
);
1790 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1791 sub_zone_page_state(page_zone(page
),
1792 NR_SLAB_RECLAIMABLE
, nr_freed
);
1794 sub_zone_page_state(page_zone(page
),
1795 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1797 BUG_ON(!PageSlab(page
));
1798 __ClearPageSlabPfmemalloc(page
);
1799 __ClearPageSlab(page
);
1800 page_mapcount_reset(page
);
1801 page
->mapping
= NULL
;
1803 if (current
->reclaim_state
)
1804 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1805 __free_pages(page
, cachep
->gfporder
);
1806 memcg_uncharge_slab(cachep
, cachep
->gfporder
);
1809 static void kmem_rcu_free(struct rcu_head
*head
)
1811 struct kmem_cache
*cachep
;
1814 page
= container_of(head
, struct page
, rcu_head
);
1815 cachep
= page
->slab_cache
;
1817 kmem_freepages(cachep
, page
);
1822 #ifdef CONFIG_DEBUG_PAGEALLOC
1823 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1824 unsigned long caller
)
1826 int size
= cachep
->object_size
;
1828 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1830 if (size
< 5 * sizeof(unsigned long))
1833 *addr
++ = 0x12345678;
1835 *addr
++ = smp_processor_id();
1836 size
-= 3 * sizeof(unsigned long);
1838 unsigned long *sptr
= &caller
;
1839 unsigned long svalue
;
1841 while (!kstack_end(sptr
)) {
1843 if (kernel_text_address(svalue
)) {
1845 size
-= sizeof(unsigned long);
1846 if (size
<= sizeof(unsigned long))
1852 *addr
++ = 0x87654321;
1856 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1858 int size
= cachep
->object_size
;
1859 addr
= &((char *)addr
)[obj_offset(cachep
)];
1861 memset(addr
, val
, size
);
1862 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1865 static void dump_line(char *data
, int offset
, int limit
)
1868 unsigned char error
= 0;
1871 printk(KERN_ERR
"%03x: ", offset
);
1872 for (i
= 0; i
< limit
; i
++) {
1873 if (data
[offset
+ i
] != POISON_FREE
) {
1874 error
= data
[offset
+ i
];
1878 print_hex_dump(KERN_CONT
, "", 0, 16, 1,
1879 &data
[offset
], limit
, 1);
1881 if (bad_count
== 1) {
1882 error
^= POISON_FREE
;
1883 if (!(error
& (error
- 1))) {
1884 printk(KERN_ERR
"Single bit error detected. Probably "
1887 printk(KERN_ERR
"Run memtest86+ or a similar memory "
1890 printk(KERN_ERR
"Run a memory test tool.\n");
1899 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1904 if (cachep
->flags
& SLAB_RED_ZONE
) {
1905 printk(KERN_ERR
"Redzone: 0x%llx/0x%llx.\n",
1906 *dbg_redzone1(cachep
, objp
),
1907 *dbg_redzone2(cachep
, objp
));
1910 if (cachep
->flags
& SLAB_STORE_USER
) {
1911 printk(KERN_ERR
"Last user: [<%p>](%pSR)\n",
1912 *dbg_userword(cachep
, objp
),
1913 *dbg_userword(cachep
, objp
));
1915 realobj
= (char *)objp
+ obj_offset(cachep
);
1916 size
= cachep
->object_size
;
1917 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1920 if (i
+ limit
> size
)
1922 dump_line(realobj
, i
, limit
);
1926 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1932 realobj
= (char *)objp
+ obj_offset(cachep
);
1933 size
= cachep
->object_size
;
1935 for (i
= 0; i
< size
; i
++) {
1936 char exp
= POISON_FREE
;
1939 if (realobj
[i
] != exp
) {
1945 "Slab corruption (%s): %s start=%p, len=%d\n",
1946 print_tainted(), cachep
->name
, realobj
, size
);
1947 print_objinfo(cachep
, objp
, 0);
1949 /* Hexdump the affected line */
1952 if (i
+ limit
> size
)
1954 dump_line(realobj
, i
, limit
);
1957 /* Limit to 5 lines */
1963 /* Print some data about the neighboring objects, if they
1966 struct page
*page
= virt_to_head_page(objp
);
1969 objnr
= obj_to_index(cachep
, page
, objp
);
1971 objp
= index_to_obj(cachep
, page
, objnr
- 1);
1972 realobj
= (char *)objp
+ obj_offset(cachep
);
1973 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1975 print_objinfo(cachep
, objp
, 2);
1977 if (objnr
+ 1 < cachep
->num
) {
1978 objp
= index_to_obj(cachep
, page
, objnr
+ 1);
1979 realobj
= (char *)objp
+ obj_offset(cachep
);
1980 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1982 print_objinfo(cachep
, objp
, 2);
1989 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
,
1993 for (i
= 0; i
< cachep
->num
; i
++) {
1994 void *objp
= index_to_obj(cachep
, page
, i
);
1996 if (cachep
->flags
& SLAB_POISON
) {
1997 #ifdef CONFIG_DEBUG_PAGEALLOC
1998 if (cachep
->size
% PAGE_SIZE
== 0 &&
2000 kernel_map_pages(virt_to_page(objp
),
2001 cachep
->size
/ PAGE_SIZE
, 1);
2003 check_poison_obj(cachep
, objp
);
2005 check_poison_obj(cachep
, objp
);
2008 if (cachep
->flags
& SLAB_RED_ZONE
) {
2009 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2010 slab_error(cachep
, "start of a freed object "
2012 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2013 slab_error(cachep
, "end of a freed object "
2019 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
,
2026 * slab_destroy - destroy and release all objects in a slab
2027 * @cachep: cache pointer being destroyed
2028 * @page: page pointer being destroyed
2030 * Destroy all the objs in a slab, and release the mem back to the system.
2031 * Before calling the slab must have been unlinked from the cache. The
2032 * cache-lock is not held/needed.
2034 static void slab_destroy(struct kmem_cache
*cachep
, struct page
*page
)
2038 freelist
= page
->freelist
;
2039 slab_destroy_debugcheck(cachep
, page
);
2040 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
2041 struct rcu_head
*head
;
2044 * RCU free overloads the RCU head over the LRU.
2045 * slab_page has been overloeaded over the LRU,
2046 * however it is not used from now on so that
2047 * we can use it safely.
2049 head
= (void *)&page
->rcu_head
;
2050 call_rcu(head
, kmem_rcu_free
);
2053 kmem_freepages(cachep
, page
);
2057 * From now on, we don't use freelist
2058 * although actual page can be freed in rcu context
2060 if (OFF_SLAB(cachep
))
2061 kmem_cache_free(cachep
->freelist_cache
, freelist
);
2065 * calculate_slab_order - calculate size (page order) of slabs
2066 * @cachep: pointer to the cache that is being created
2067 * @size: size of objects to be created in this cache.
2068 * @align: required alignment for the objects.
2069 * @flags: slab allocation flags
2071 * Also calculates the number of objects per slab.
2073 * This could be made much more intelligent. For now, try to avoid using
2074 * high order pages for slabs. When the gfp() functions are more friendly
2075 * towards high-order requests, this should be changed.
2077 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
2078 size_t size
, size_t align
, unsigned long flags
)
2080 unsigned long offslab_limit
;
2081 size_t left_over
= 0;
2084 for (gfporder
= 0; gfporder
<= KMALLOC_MAX_ORDER
; gfporder
++) {
2088 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
2092 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
2093 if (num
> SLAB_OBJ_MAX_NUM
)
2096 if (flags
& CFLGS_OFF_SLAB
) {
2097 size_t freelist_size_per_obj
= sizeof(freelist_idx_t
);
2099 * Max number of objs-per-slab for caches which
2100 * use off-slab slabs. Needed to avoid a possible
2101 * looping condition in cache_grow().
2103 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK
))
2104 freelist_size_per_obj
+= sizeof(char);
2105 offslab_limit
= size
;
2106 offslab_limit
/= freelist_size_per_obj
;
2108 if (num
> offslab_limit
)
2112 /* Found something acceptable - save it away */
2114 cachep
->gfporder
= gfporder
;
2115 left_over
= remainder
;
2118 * A VFS-reclaimable slab tends to have most allocations
2119 * as GFP_NOFS and we really don't want to have to be allocating
2120 * higher-order pages when we are unable to shrink dcache.
2122 if (flags
& SLAB_RECLAIM_ACCOUNT
)
2126 * Large number of objects is good, but very large slabs are
2127 * currently bad for the gfp()s.
2129 if (gfporder
>= slab_max_order
)
2133 * Acceptable internal fragmentation?
2135 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
2141 static int __init_refok
setup_cpu_cache(struct kmem_cache
*cachep
, gfp_t gfp
)
2143 if (slab_state
>= FULL
)
2144 return enable_cpucache(cachep
, gfp
);
2146 if (slab_state
== DOWN
) {
2148 * Note: Creation of first cache (kmem_cache).
2149 * The setup_node is taken care
2150 * of by the caller of __kmem_cache_create
2152 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2153 slab_state
= PARTIAL
;
2154 } else if (slab_state
== PARTIAL
) {
2156 * Note: the second kmem_cache_create must create the cache
2157 * that's used by kmalloc(24), otherwise the creation of
2158 * further caches will BUG().
2160 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2163 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2164 * the second cache, then we need to set up all its node/,
2165 * otherwise the creation of further caches will BUG().
2167 set_up_node(cachep
, SIZE_AC
);
2168 if (INDEX_AC
== INDEX_NODE
)
2169 slab_state
= PARTIAL_NODE
;
2171 slab_state
= PARTIAL_ARRAYCACHE
;
2173 /* Remaining boot caches */
2174 cachep
->array
[smp_processor_id()] =
2175 kmalloc(sizeof(struct arraycache_init
), gfp
);
2177 if (slab_state
== PARTIAL_ARRAYCACHE
) {
2178 set_up_node(cachep
, SIZE_NODE
);
2179 slab_state
= PARTIAL_NODE
;
2182 for_each_online_node(node
) {
2183 cachep
->node
[node
] =
2184 kmalloc_node(sizeof(struct kmem_cache_node
),
2186 BUG_ON(!cachep
->node
[node
]);
2187 kmem_cache_node_init(cachep
->node
[node
]);
2191 cachep
->node
[numa_mem_id()]->next_reap
=
2192 jiffies
+ REAPTIMEOUT_NODE
+
2193 ((unsigned long)cachep
) % REAPTIMEOUT_NODE
;
2195 cpu_cache_get(cachep
)->avail
= 0;
2196 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
2197 cpu_cache_get(cachep
)->batchcount
= 1;
2198 cpu_cache_get(cachep
)->touched
= 0;
2199 cachep
->batchcount
= 1;
2200 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
2205 * __kmem_cache_create - Create a cache.
2206 * @cachep: cache management descriptor
2207 * @flags: SLAB flags
2209 * Returns a ptr to the cache on success, NULL on failure.
2210 * Cannot be called within a int, but can be interrupted.
2211 * The @ctor is run when new pages are allocated by the cache.
2215 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2216 * to catch references to uninitialised memory.
2218 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2219 * for buffer overruns.
2221 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2222 * cacheline. This can be beneficial if you're counting cycles as closely
2226 __kmem_cache_create (struct kmem_cache
*cachep
, unsigned long flags
)
2228 size_t left_over
, freelist_size
;
2229 size_t ralign
= BYTES_PER_WORD
;
2232 size_t size
= cachep
->size
;
2237 * Enable redzoning and last user accounting, except for caches with
2238 * large objects, if the increased size would increase the object size
2239 * above the next power of two: caches with object sizes just above a
2240 * power of two have a significant amount of internal fragmentation.
2242 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + REDZONE_ALIGN
+
2243 2 * sizeof(unsigned long long)))
2244 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2245 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2246 flags
|= SLAB_POISON
;
2248 if (flags
& SLAB_DESTROY_BY_RCU
)
2249 BUG_ON(flags
& SLAB_POISON
);
2253 * Check that size is in terms of words. This is needed to avoid
2254 * unaligned accesses for some archs when redzoning is used, and makes
2255 * sure any on-slab bufctl's are also correctly aligned.
2257 if (size
& (BYTES_PER_WORD
- 1)) {
2258 size
+= (BYTES_PER_WORD
- 1);
2259 size
&= ~(BYTES_PER_WORD
- 1);
2262 if (flags
& SLAB_RED_ZONE
) {
2263 ralign
= REDZONE_ALIGN
;
2264 /* If redzoning, ensure that the second redzone is suitably
2265 * aligned, by adjusting the object size accordingly. */
2266 size
+= REDZONE_ALIGN
- 1;
2267 size
&= ~(REDZONE_ALIGN
- 1);
2270 /* 3) caller mandated alignment */
2271 if (ralign
< cachep
->align
) {
2272 ralign
= cachep
->align
;
2274 /* disable debug if necessary */
2275 if (ralign
> __alignof__(unsigned long long))
2276 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2280 cachep
->align
= ralign
;
2282 if (slab_is_available())
2287 setup_node_pointer(cachep
);
2291 * Both debugging options require word-alignment which is calculated
2294 if (flags
& SLAB_RED_ZONE
) {
2295 /* add space for red zone words */
2296 cachep
->obj_offset
+= sizeof(unsigned long long);
2297 size
+= 2 * sizeof(unsigned long long);
2299 if (flags
& SLAB_STORE_USER
) {
2300 /* user store requires one word storage behind the end of
2301 * the real object. But if the second red zone needs to be
2302 * aligned to 64 bits, we must allow that much space.
2304 if (flags
& SLAB_RED_ZONE
)
2305 size
+= REDZONE_ALIGN
;
2307 size
+= BYTES_PER_WORD
;
2309 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2311 * To activate debug pagealloc, off-slab management is necessary
2312 * requirement. In early phase of initialization, small sized slab
2313 * doesn't get initialized so it would not be possible. So, we need
2314 * to check size >= 256. It guarantees that all necessary small
2315 * sized slab is initialized in current slab initialization sequence.
2317 if (!slab_early_init
&& size
>= kmalloc_size(INDEX_NODE
) &&
2318 size
>= 256 && cachep
->object_size
> cache_line_size() &&
2319 ALIGN(size
, cachep
->align
) < PAGE_SIZE
) {
2320 cachep
->obj_offset
+= PAGE_SIZE
- ALIGN(size
, cachep
->align
);
2327 * Determine if the slab management is 'on' or 'off' slab.
2328 * (bootstrapping cannot cope with offslab caches so don't do
2329 * it too early on. Always use on-slab management when
2330 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2332 if (size
>= OFF_SLAB_MIN_SIZE
&& !slab_early_init
&&
2333 !(flags
& SLAB_NOLEAKTRACE
))
2335 * Size is large, assume best to place the slab management obj
2336 * off-slab (should allow better packing of objs).
2338 flags
|= CFLGS_OFF_SLAB
;
2340 size
= ALIGN(size
, cachep
->align
);
2342 * We should restrict the number of objects in a slab to implement
2343 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2345 if (FREELIST_BYTE_INDEX
&& size
< SLAB_OBJ_MIN_SIZE
)
2346 size
= ALIGN(SLAB_OBJ_MIN_SIZE
, cachep
->align
);
2348 left_over
= calculate_slab_order(cachep
, size
, cachep
->align
, flags
);
2353 freelist_size
= calculate_freelist_size(cachep
->num
, cachep
->align
);
2356 * If the slab has been placed off-slab, and we have enough space then
2357 * move it on-slab. This is at the expense of any extra colouring.
2359 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= freelist_size
) {
2360 flags
&= ~CFLGS_OFF_SLAB
;
2361 left_over
-= freelist_size
;
2364 if (flags
& CFLGS_OFF_SLAB
) {
2365 /* really off slab. No need for manual alignment */
2366 freelist_size
= calculate_freelist_size(cachep
->num
, 0);
2368 #ifdef CONFIG_PAGE_POISONING
2369 /* If we're going to use the generic kernel_map_pages()
2370 * poisoning, then it's going to smash the contents of
2371 * the redzone and userword anyhow, so switch them off.
2373 if (size
% PAGE_SIZE
== 0 && flags
& SLAB_POISON
)
2374 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2378 cachep
->colour_off
= cache_line_size();
2379 /* Offset must be a multiple of the alignment. */
2380 if (cachep
->colour_off
< cachep
->align
)
2381 cachep
->colour_off
= cachep
->align
;
2382 cachep
->colour
= left_over
/ cachep
->colour_off
;
2383 cachep
->freelist_size
= freelist_size
;
2384 cachep
->flags
= flags
;
2385 cachep
->allocflags
= __GFP_COMP
;
2386 if (CONFIG_ZONE_DMA_FLAG
&& (flags
& SLAB_CACHE_DMA
))
2387 cachep
->allocflags
|= GFP_DMA
;
2388 cachep
->size
= size
;
2389 cachep
->reciprocal_buffer_size
= reciprocal_value(size
);
2391 if (flags
& CFLGS_OFF_SLAB
) {
2392 cachep
->freelist_cache
= kmalloc_slab(freelist_size
, 0u);
2394 * This is a possibility for one of the kmalloc_{dma,}_caches.
2395 * But since we go off slab only for object size greater than
2396 * OFF_SLAB_MIN_SIZE, and kmalloc_{dma,}_caches get created
2397 * in ascending order,this should not happen at all.
2398 * But leave a BUG_ON for some lucky dude.
2400 BUG_ON(ZERO_OR_NULL_PTR(cachep
->freelist_cache
));
2403 err
= setup_cpu_cache(cachep
, gfp
);
2405 __kmem_cache_shutdown(cachep
);
2409 if (flags
& SLAB_DEBUG_OBJECTS
) {
2411 * Would deadlock through slab_destroy()->call_rcu()->
2412 * debug_object_activate()->kmem_cache_alloc().
2414 WARN_ON_ONCE(flags
& SLAB_DESTROY_BY_RCU
);
2416 slab_set_debugobj_lock_classes(cachep
);
2417 } else if (!OFF_SLAB(cachep
) && !(flags
& SLAB_DESTROY_BY_RCU
))
2418 on_slab_lock_classes(cachep
);
2424 static void check_irq_off(void)
2426 BUG_ON(!irqs_disabled());
2429 static void check_irq_on(void)
2431 BUG_ON(irqs_disabled());
2434 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2438 assert_spin_locked(&cachep
->node
[numa_mem_id()]->list_lock
);
2442 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2446 assert_spin_locked(&cachep
->node
[node
]->list_lock
);
2451 #define check_irq_off() do { } while(0)
2452 #define check_irq_on() do { } while(0)
2453 #define check_spinlock_acquired(x) do { } while(0)
2454 #define check_spinlock_acquired_node(x, y) do { } while(0)
2457 static void drain_array(struct kmem_cache
*cachep
, struct kmem_cache_node
*n
,
2458 struct array_cache
*ac
,
2459 int force
, int node
);
2461 static void do_drain(void *arg
)
2463 struct kmem_cache
*cachep
= arg
;
2464 struct array_cache
*ac
;
2465 int node
= numa_mem_id();
2468 ac
= cpu_cache_get(cachep
);
2469 spin_lock(&cachep
->node
[node
]->list_lock
);
2470 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2471 spin_unlock(&cachep
->node
[node
]->list_lock
);
2475 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2477 struct kmem_cache_node
*n
;
2480 on_each_cpu(do_drain
, cachep
, 1);
2482 for_each_online_node(node
) {
2483 n
= cachep
->node
[node
];
2485 drain_alien_cache(cachep
, n
->alien
);
2488 for_each_online_node(node
) {
2489 n
= cachep
->node
[node
];
2491 drain_array(cachep
, n
, n
->shared
, 1, node
);
2496 * Remove slabs from the list of free slabs.
2497 * Specify the number of slabs to drain in tofree.
2499 * Returns the actual number of slabs released.
2501 static int drain_freelist(struct kmem_cache
*cache
,
2502 struct kmem_cache_node
*n
, int tofree
)
2504 struct list_head
*p
;
2509 while (nr_freed
< tofree
&& !list_empty(&n
->slabs_free
)) {
2511 spin_lock_irq(&n
->list_lock
);
2512 p
= n
->slabs_free
.prev
;
2513 if (p
== &n
->slabs_free
) {
2514 spin_unlock_irq(&n
->list_lock
);
2518 page
= list_entry(p
, struct page
, lru
);
2520 BUG_ON(page
->active
);
2522 list_del(&page
->lru
);
2524 * Safe to drop the lock. The slab is no longer linked
2527 n
->free_objects
-= cache
->num
;
2528 spin_unlock_irq(&n
->list_lock
);
2529 slab_destroy(cache
, page
);
2536 int __kmem_cache_shrink(struct kmem_cache
*cachep
)
2539 struct kmem_cache_node
*n
;
2541 drain_cpu_caches(cachep
);
2544 for_each_online_node(i
) {
2545 n
= cachep
->node
[i
];
2549 drain_freelist(cachep
, n
, slabs_tofree(cachep
, n
));
2551 ret
+= !list_empty(&n
->slabs_full
) ||
2552 !list_empty(&n
->slabs_partial
);
2554 return (ret
? 1 : 0);
2557 int __kmem_cache_shutdown(struct kmem_cache
*cachep
)
2560 struct kmem_cache_node
*n
;
2561 int rc
= __kmem_cache_shrink(cachep
);
2566 for_each_online_cpu(i
)
2567 kfree(cachep
->array
[i
]);
2569 /* NUMA: free the node structures */
2570 for_each_online_node(i
) {
2571 n
= cachep
->node
[i
];
2574 free_alien_cache(n
->alien
);
2582 * Get the memory for a slab management obj.
2584 * For a slab cache when the slab descriptor is off-slab, the
2585 * slab descriptor can't come from the same cache which is being created,
2586 * Because if it is the case, that means we defer the creation of
2587 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2588 * And we eventually call down to __kmem_cache_create(), which
2589 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2590 * This is a "chicken-and-egg" problem.
2592 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2593 * which are all initialized during kmem_cache_init().
2595 static void *alloc_slabmgmt(struct kmem_cache
*cachep
,
2596 struct page
*page
, int colour_off
,
2597 gfp_t local_flags
, int nodeid
)
2600 void *addr
= page_address(page
);
2602 if (OFF_SLAB(cachep
)) {
2603 /* Slab management obj is off-slab. */
2604 freelist
= kmem_cache_alloc_node(cachep
->freelist_cache
,
2605 local_flags
, nodeid
);
2609 freelist
= addr
+ colour_off
;
2610 colour_off
+= cachep
->freelist_size
;
2613 page
->s_mem
= addr
+ colour_off
;
2617 static inline freelist_idx_t
get_free_obj(struct page
*page
, unsigned int idx
)
2619 return ((freelist_idx_t
*)page
->freelist
)[idx
];
2622 static inline void set_free_obj(struct page
*page
,
2623 unsigned int idx
, freelist_idx_t val
)
2625 ((freelist_idx_t
*)(page
->freelist
))[idx
] = val
;
2628 static void cache_init_objs(struct kmem_cache
*cachep
,
2633 for (i
= 0; i
< cachep
->num
; i
++) {
2634 void *objp
= index_to_obj(cachep
, page
, i
);
2636 /* need to poison the objs? */
2637 if (cachep
->flags
& SLAB_POISON
)
2638 poison_obj(cachep
, objp
, POISON_FREE
);
2639 if (cachep
->flags
& SLAB_STORE_USER
)
2640 *dbg_userword(cachep
, objp
) = NULL
;
2642 if (cachep
->flags
& SLAB_RED_ZONE
) {
2643 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2644 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2647 * Constructors are not allowed to allocate memory from the same
2648 * cache which they are a constructor for. Otherwise, deadlock.
2649 * They must also be threaded.
2651 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2652 cachep
->ctor(objp
+ obj_offset(cachep
));
2654 if (cachep
->flags
& SLAB_RED_ZONE
) {
2655 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2656 slab_error(cachep
, "constructor overwrote the"
2657 " end of an object");
2658 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2659 slab_error(cachep
, "constructor overwrote the"
2660 " start of an object");
2662 if ((cachep
->size
% PAGE_SIZE
) == 0 &&
2663 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2664 kernel_map_pages(virt_to_page(objp
),
2665 cachep
->size
/ PAGE_SIZE
, 0);
2670 set_obj_status(page
, i
, OBJECT_FREE
);
2671 set_free_obj(page
, i
, i
);
2675 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2677 if (CONFIG_ZONE_DMA_FLAG
) {
2678 if (flags
& GFP_DMA
)
2679 BUG_ON(!(cachep
->allocflags
& GFP_DMA
));
2681 BUG_ON(cachep
->allocflags
& GFP_DMA
);
2685 static void *slab_get_obj(struct kmem_cache
*cachep
, struct page
*page
,
2690 objp
= index_to_obj(cachep
, page
, get_free_obj(page
, page
->active
));
2693 WARN_ON(page_to_nid(virt_to_page(objp
)) != nodeid
);
2699 static void slab_put_obj(struct kmem_cache
*cachep
, struct page
*page
,
2700 void *objp
, int nodeid
)
2702 unsigned int objnr
= obj_to_index(cachep
, page
, objp
);
2706 /* Verify that the slab belongs to the intended node */
2707 WARN_ON(page_to_nid(virt_to_page(objp
)) != nodeid
);
2709 /* Verify double free bug */
2710 for (i
= page
->active
; i
< cachep
->num
; i
++) {
2711 if (get_free_obj(page
, i
) == objnr
) {
2712 printk(KERN_ERR
"slab: double free detected in cache "
2713 "'%s', objp %p\n", cachep
->name
, objp
);
2719 set_free_obj(page
, page
->active
, objnr
);
2723 * Map pages beginning at addr to the given cache and slab. This is required
2724 * for the slab allocator to be able to lookup the cache and slab of a
2725 * virtual address for kfree, ksize, and slab debugging.
2727 static void slab_map_pages(struct kmem_cache
*cache
, struct page
*page
,
2730 page
->slab_cache
= cache
;
2731 page
->freelist
= freelist
;
2735 * Grow (by 1) the number of slabs within a cache. This is called by
2736 * kmem_cache_alloc() when there are no active objs left in a cache.
2738 static int cache_grow(struct kmem_cache
*cachep
,
2739 gfp_t flags
, int nodeid
, struct page
*page
)
2744 struct kmem_cache_node
*n
;
2747 * Be lazy and only check for valid flags here, keeping it out of the
2748 * critical path in kmem_cache_alloc().
2750 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
2751 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
2753 /* Take the node list lock to change the colour_next on this node */
2755 n
= cachep
->node
[nodeid
];
2756 spin_lock(&n
->list_lock
);
2758 /* Get colour for the slab, and cal the next value. */
2759 offset
= n
->colour_next
;
2761 if (n
->colour_next
>= cachep
->colour
)
2763 spin_unlock(&n
->list_lock
);
2765 offset
*= cachep
->colour_off
;
2767 if (local_flags
& __GFP_WAIT
)
2771 * The test for missing atomic flag is performed here, rather than
2772 * the more obvious place, simply to reduce the critical path length
2773 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2774 * will eventually be caught here (where it matters).
2776 kmem_flagcheck(cachep
, flags
);
2779 * Get mem for the objs. Attempt to allocate a physical page from
2783 page
= kmem_getpages(cachep
, local_flags
, nodeid
);
2787 /* Get slab management. */
2788 freelist
= alloc_slabmgmt(cachep
, page
, offset
,
2789 local_flags
& ~GFP_CONSTRAINT_MASK
, nodeid
);
2793 slab_map_pages(cachep
, page
, freelist
);
2795 cache_init_objs(cachep
, page
);
2797 if (local_flags
& __GFP_WAIT
)
2798 local_irq_disable();
2800 spin_lock(&n
->list_lock
);
2802 /* Make slab active. */
2803 list_add_tail(&page
->lru
, &(n
->slabs_free
));
2804 STATS_INC_GROWN(cachep
);
2805 n
->free_objects
+= cachep
->num
;
2806 spin_unlock(&n
->list_lock
);
2809 kmem_freepages(cachep
, page
);
2811 if (local_flags
& __GFP_WAIT
)
2812 local_irq_disable();
2819 * Perform extra freeing checks:
2820 * - detect bad pointers.
2821 * - POISON/RED_ZONE checking
2823 static void kfree_debugcheck(const void *objp
)
2825 if (!virt_addr_valid(objp
)) {
2826 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2827 (unsigned long)objp
);
2832 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2834 unsigned long long redzone1
, redzone2
;
2836 redzone1
= *dbg_redzone1(cache
, obj
);
2837 redzone2
= *dbg_redzone2(cache
, obj
);
2842 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2845 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2846 slab_error(cache
, "double free detected");
2848 slab_error(cache
, "memory outside object was overwritten");
2850 printk(KERN_ERR
"%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2851 obj
, redzone1
, redzone2
);
2854 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2855 unsigned long caller
)
2860 BUG_ON(virt_to_cache(objp
) != cachep
);
2862 objp
-= obj_offset(cachep
);
2863 kfree_debugcheck(objp
);
2864 page
= virt_to_head_page(objp
);
2866 if (cachep
->flags
& SLAB_RED_ZONE
) {
2867 verify_redzone_free(cachep
, objp
);
2868 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2869 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2871 if (cachep
->flags
& SLAB_STORE_USER
)
2872 *dbg_userword(cachep
, objp
) = (void *)caller
;
2874 objnr
= obj_to_index(cachep
, page
, objp
);
2876 BUG_ON(objnr
>= cachep
->num
);
2877 BUG_ON(objp
!= index_to_obj(cachep
, page
, objnr
));
2879 set_obj_status(page
, objnr
, OBJECT_FREE
);
2880 if (cachep
->flags
& SLAB_POISON
) {
2881 #ifdef CONFIG_DEBUG_PAGEALLOC
2882 if ((cachep
->size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
2883 store_stackinfo(cachep
, objp
, caller
);
2884 kernel_map_pages(virt_to_page(objp
),
2885 cachep
->size
/ PAGE_SIZE
, 0);
2887 poison_obj(cachep
, objp
, POISON_FREE
);
2890 poison_obj(cachep
, objp
, POISON_FREE
);
2897 #define kfree_debugcheck(x) do { } while(0)
2898 #define cache_free_debugcheck(x,objp,z) (objp)
2901 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
,
2905 struct kmem_cache_node
*n
;
2906 struct array_cache
*ac
;
2910 node
= numa_mem_id();
2911 if (unlikely(force_refill
))
2914 ac
= cpu_cache_get(cachep
);
2915 batchcount
= ac
->batchcount
;
2916 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
2918 * If there was little recent activity on this cache, then
2919 * perform only a partial refill. Otherwise we could generate
2922 batchcount
= BATCHREFILL_LIMIT
;
2924 n
= cachep
->node
[node
];
2926 BUG_ON(ac
->avail
> 0 || !n
);
2927 spin_lock(&n
->list_lock
);
2929 /* See if we can refill from the shared array */
2930 if (n
->shared
&& transfer_objects(ac
, n
->shared
, batchcount
)) {
2931 n
->shared
->touched
= 1;
2935 while (batchcount
> 0) {
2936 struct list_head
*entry
;
2938 /* Get slab alloc is to come from. */
2939 entry
= n
->slabs_partial
.next
;
2940 if (entry
== &n
->slabs_partial
) {
2941 n
->free_touched
= 1;
2942 entry
= n
->slabs_free
.next
;
2943 if (entry
== &n
->slabs_free
)
2947 page
= list_entry(entry
, struct page
, lru
);
2948 check_spinlock_acquired(cachep
);
2951 * The slab was either on partial or free list so
2952 * there must be at least one object available for
2955 BUG_ON(page
->active
>= cachep
->num
);
2957 while (page
->active
< cachep
->num
&& batchcount
--) {
2958 STATS_INC_ALLOCED(cachep
);
2959 STATS_INC_ACTIVE(cachep
);
2960 STATS_SET_HIGH(cachep
);
2962 ac_put_obj(cachep
, ac
, slab_get_obj(cachep
, page
,
2966 /* move slabp to correct slabp list: */
2967 list_del(&page
->lru
);
2968 if (page
->active
== cachep
->num
)
2969 list_add(&page
->lru
, &n
->slabs_full
);
2971 list_add(&page
->lru
, &n
->slabs_partial
);
2975 n
->free_objects
-= ac
->avail
;
2977 spin_unlock(&n
->list_lock
);
2979 if (unlikely(!ac
->avail
)) {
2982 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, node
, NULL
);
2984 /* cache_grow can reenable interrupts, then ac could change. */
2985 ac
= cpu_cache_get(cachep
);
2986 node
= numa_mem_id();
2988 /* no objects in sight? abort */
2989 if (!x
&& (ac
->avail
== 0 || force_refill
))
2992 if (!ac
->avail
) /* objects refilled by interrupt? */
2997 return ac_get_obj(cachep
, ac
, flags
, force_refill
);
3000 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
3003 might_sleep_if(flags
& __GFP_WAIT
);
3005 kmem_flagcheck(cachep
, flags
);
3010 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
3011 gfp_t flags
, void *objp
, unsigned long caller
)
3017 if (cachep
->flags
& SLAB_POISON
) {
3018 #ifdef CONFIG_DEBUG_PAGEALLOC
3019 if ((cachep
->size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
3020 kernel_map_pages(virt_to_page(objp
),
3021 cachep
->size
/ PAGE_SIZE
, 1);
3023 check_poison_obj(cachep
, objp
);
3025 check_poison_obj(cachep
, objp
);
3027 poison_obj(cachep
, objp
, POISON_INUSE
);
3029 if (cachep
->flags
& SLAB_STORE_USER
)
3030 *dbg_userword(cachep
, objp
) = (void *)caller
;
3032 if (cachep
->flags
& SLAB_RED_ZONE
) {
3033 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
3034 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
3035 slab_error(cachep
, "double free, or memory outside"
3036 " object was overwritten");
3038 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3039 objp
, *dbg_redzone1(cachep
, objp
),
3040 *dbg_redzone2(cachep
, objp
));
3042 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
3043 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
3046 page
= virt_to_head_page(objp
);
3047 set_obj_status(page
, obj_to_index(cachep
, page
, objp
), OBJECT_ACTIVE
);
3048 objp
+= obj_offset(cachep
);
3049 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
)
3051 if (ARCH_SLAB_MINALIGN
&&
3052 ((unsigned long)objp
& (ARCH_SLAB_MINALIGN
-1))) {
3053 printk(KERN_ERR
"0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3054 objp
, (int)ARCH_SLAB_MINALIGN
);
3059 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3062 static bool slab_should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3064 if (cachep
== kmem_cache
)
3067 return should_failslab(cachep
->object_size
, flags
, cachep
->flags
);
3070 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3073 struct array_cache
*ac
;
3074 bool force_refill
= false;
3078 ac
= cpu_cache_get(cachep
);
3079 if (likely(ac
->avail
)) {
3081 objp
= ac_get_obj(cachep
, ac
, flags
, false);
3084 * Allow for the possibility all avail objects are not allowed
3085 * by the current flags
3088 STATS_INC_ALLOCHIT(cachep
);
3091 force_refill
= true;
3094 STATS_INC_ALLOCMISS(cachep
);
3095 objp
= cache_alloc_refill(cachep
, flags
, force_refill
);
3097 * the 'ac' may be updated by cache_alloc_refill(),
3098 * and kmemleak_erase() requires its correct value.
3100 ac
= cpu_cache_get(cachep
);
3104 * To avoid a false negative, if an object that is in one of the
3105 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3106 * treat the array pointers as a reference to the object.
3109 kmemleak_erase(&ac
->entry
[ac
->avail
]);
3115 * Try allocating on another node if PF_SPREAD_SLAB is a mempolicy is set.
3117 * If we are in_interrupt, then process context, including cpusets and
3118 * mempolicy, may not apply and should not be used for allocation policy.
3120 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3122 int nid_alloc
, nid_here
;
3124 if (in_interrupt() || (flags
& __GFP_THISNODE
))
3126 nid_alloc
= nid_here
= numa_mem_id();
3127 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3128 nid_alloc
= cpuset_slab_spread_node();
3129 else if (current
->mempolicy
)
3130 nid_alloc
= mempolicy_slab_node();
3131 if (nid_alloc
!= nid_here
)
3132 return ____cache_alloc_node(cachep
, flags
, nid_alloc
);
3137 * Fallback function if there was no memory available and no objects on a
3138 * certain node and fall back is permitted. First we scan all the
3139 * available node for available objects. If that fails then we
3140 * perform an allocation without specifying a node. This allows the page
3141 * allocator to do its reclaim / fallback magic. We then insert the
3142 * slab into the proper nodelist and then allocate from it.
3144 static void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3146 struct zonelist
*zonelist
;
3150 enum zone_type high_zoneidx
= gfp_zone(flags
);
3153 unsigned int cpuset_mems_cookie
;
3155 if (flags
& __GFP_THISNODE
)
3158 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
3161 cpuset_mems_cookie
= read_mems_allowed_begin();
3162 zonelist
= node_zonelist(mempolicy_slab_node(), flags
);
3166 * Look through allowed nodes for objects available
3167 * from existing per node queues.
3169 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
3170 nid
= zone_to_nid(zone
);
3172 if (cpuset_zone_allowed_hardwall(zone
, flags
) &&
3174 cache
->node
[nid
]->free_objects
) {
3175 obj
= ____cache_alloc_node(cache
,
3176 flags
| GFP_THISNODE
, nid
);
3184 * This allocation will be performed within the constraints
3185 * of the current cpuset / memory policy requirements.
3186 * We may trigger various forms of reclaim on the allowed
3187 * set and go into memory reserves if necessary.
3191 if (local_flags
& __GFP_WAIT
)
3193 kmem_flagcheck(cache
, flags
);
3194 page
= kmem_getpages(cache
, local_flags
, numa_mem_id());
3195 if (local_flags
& __GFP_WAIT
)
3196 local_irq_disable();
3199 * Insert into the appropriate per node queues
3201 nid
= page_to_nid(page
);
3202 if (cache_grow(cache
, flags
, nid
, page
)) {
3203 obj
= ____cache_alloc_node(cache
,
3204 flags
| GFP_THISNODE
, nid
);
3207 * Another processor may allocate the
3208 * objects in the slab since we are
3209 * not holding any locks.
3213 /* cache_grow already freed obj */
3219 if (unlikely(!obj
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
3225 * A interface to enable slab creation on nodeid
3227 static void *____cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3230 struct list_head
*entry
;
3232 struct kmem_cache_node
*n
;
3236 VM_BUG_ON(nodeid
< 0 || nodeid
>= MAX_NUMNODES
);
3237 n
= cachep
->node
[nodeid
];
3242 spin_lock(&n
->list_lock
);
3243 entry
= n
->slabs_partial
.next
;
3244 if (entry
== &n
->slabs_partial
) {
3245 n
->free_touched
= 1;
3246 entry
= n
->slabs_free
.next
;
3247 if (entry
== &n
->slabs_free
)
3251 page
= list_entry(entry
, struct page
, lru
);
3252 check_spinlock_acquired_node(cachep
, nodeid
);
3254 STATS_INC_NODEALLOCS(cachep
);
3255 STATS_INC_ACTIVE(cachep
);
3256 STATS_SET_HIGH(cachep
);
3258 BUG_ON(page
->active
== cachep
->num
);
3260 obj
= slab_get_obj(cachep
, page
, nodeid
);
3262 /* move slabp to correct slabp list: */
3263 list_del(&page
->lru
);
3265 if (page
->active
== cachep
->num
)
3266 list_add(&page
->lru
, &n
->slabs_full
);
3268 list_add(&page
->lru
, &n
->slabs_partial
);
3270 spin_unlock(&n
->list_lock
);
3274 spin_unlock(&n
->list_lock
);
3275 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, nodeid
, NULL
);
3279 return fallback_alloc(cachep
, flags
);
3285 static __always_inline
void *
3286 slab_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
,
3287 unsigned long caller
)
3289 unsigned long save_flags
;
3291 int slab_node
= numa_mem_id();
3293 flags
&= gfp_allowed_mask
;
3295 lockdep_trace_alloc(flags
);
3297 if (slab_should_failslab(cachep
, flags
))
3300 cachep
= memcg_kmem_get_cache(cachep
, flags
);
3302 cache_alloc_debugcheck_before(cachep
, flags
);
3303 local_irq_save(save_flags
);
3305 if (nodeid
== NUMA_NO_NODE
)
3308 if (unlikely(!cachep
->node
[nodeid
])) {
3309 /* Node not bootstrapped yet */
3310 ptr
= fallback_alloc(cachep
, flags
);
3314 if (nodeid
== slab_node
) {
3316 * Use the locally cached objects if possible.
3317 * However ____cache_alloc does not allow fallback
3318 * to other nodes. It may fail while we still have
3319 * objects on other nodes available.
3321 ptr
= ____cache_alloc(cachep
, flags
);
3325 /* ___cache_alloc_node can fall back to other nodes */
3326 ptr
= ____cache_alloc_node(cachep
, flags
, nodeid
);
3328 local_irq_restore(save_flags
);
3329 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, caller
);
3330 kmemleak_alloc_recursive(ptr
, cachep
->object_size
, 1, cachep
->flags
,
3334 kmemcheck_slab_alloc(cachep
, flags
, ptr
, cachep
->object_size
);
3335 if (unlikely(flags
& __GFP_ZERO
))
3336 memset(ptr
, 0, cachep
->object_size
);
3342 static __always_inline
void *
3343 __do_cache_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3347 if (current
->mempolicy
|| unlikely(current
->flags
& PF_SPREAD_SLAB
)) {
3348 objp
= alternate_node_alloc(cache
, flags
);
3352 objp
= ____cache_alloc(cache
, flags
);
3355 * We may just have run out of memory on the local node.
3356 * ____cache_alloc_node() knows how to locate memory on other nodes
3359 objp
= ____cache_alloc_node(cache
, flags
, numa_mem_id());
3366 static __always_inline
void *
3367 __do_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3369 return ____cache_alloc(cachep
, flags
);
3372 #endif /* CONFIG_NUMA */
3374 static __always_inline
void *
3375 slab_alloc(struct kmem_cache
*cachep
, gfp_t flags
, unsigned long caller
)
3377 unsigned long save_flags
;
3380 flags
&= gfp_allowed_mask
;
3382 lockdep_trace_alloc(flags
);
3384 if (slab_should_failslab(cachep
, flags
))
3387 cachep
= memcg_kmem_get_cache(cachep
, flags
);
3389 cache_alloc_debugcheck_before(cachep
, flags
);
3390 local_irq_save(save_flags
);
3391 objp
= __do_cache_alloc(cachep
, flags
);
3392 local_irq_restore(save_flags
);
3393 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, caller
);
3394 kmemleak_alloc_recursive(objp
, cachep
->object_size
, 1, cachep
->flags
,
3399 kmemcheck_slab_alloc(cachep
, flags
, objp
, cachep
->object_size
);
3400 if (unlikely(flags
& __GFP_ZERO
))
3401 memset(objp
, 0, cachep
->object_size
);
3408 * Caller needs to acquire correct kmem_cache_node's list_lock
3410 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
3414 struct kmem_cache_node
*n
;
3416 for (i
= 0; i
< nr_objects
; i
++) {
3420 clear_obj_pfmemalloc(&objpp
[i
]);
3423 page
= virt_to_head_page(objp
);
3424 n
= cachep
->node
[node
];
3425 list_del(&page
->lru
);
3426 check_spinlock_acquired_node(cachep
, node
);
3427 slab_put_obj(cachep
, page
, objp
, node
);
3428 STATS_DEC_ACTIVE(cachep
);
3431 /* fixup slab chains */
3432 if (page
->active
== 0) {
3433 if (n
->free_objects
> n
->free_limit
) {
3434 n
->free_objects
-= cachep
->num
;
3435 /* No need to drop any previously held
3436 * lock here, even if we have a off-slab slab
3437 * descriptor it is guaranteed to come from
3438 * a different cache, refer to comments before
3441 slab_destroy(cachep
, page
);
3443 list_add(&page
->lru
, &n
->slabs_free
);
3446 /* Unconditionally move a slab to the end of the
3447 * partial list on free - maximum time for the
3448 * other objects to be freed, too.
3450 list_add_tail(&page
->lru
, &n
->slabs_partial
);
3455 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3458 struct kmem_cache_node
*n
;
3459 int node
= numa_mem_id();
3461 batchcount
= ac
->batchcount
;
3463 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3466 n
= cachep
->node
[node
];
3467 spin_lock(&n
->list_lock
);
3469 struct array_cache
*shared_array
= n
->shared
;
3470 int max
= shared_array
->limit
- shared_array
->avail
;
3472 if (batchcount
> max
)
3474 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3475 ac
->entry
, sizeof(void *) * batchcount
);
3476 shared_array
->avail
+= batchcount
;
3481 free_block(cachep
, ac
->entry
, batchcount
, node
);
3486 struct list_head
*p
;
3488 p
= n
->slabs_free
.next
;
3489 while (p
!= &(n
->slabs_free
)) {
3492 page
= list_entry(p
, struct page
, lru
);
3493 BUG_ON(page
->active
);
3498 STATS_SET_FREEABLE(cachep
, i
);
3501 spin_unlock(&n
->list_lock
);
3502 ac
->avail
-= batchcount
;
3503 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3507 * Release an obj back to its cache. If the obj has a constructed state, it must
3508 * be in this state _before_ it is released. Called with disabled ints.
3510 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
,
3511 unsigned long caller
)
3513 struct array_cache
*ac
= cpu_cache_get(cachep
);
3516 kmemleak_free_recursive(objp
, cachep
->flags
);
3517 objp
= cache_free_debugcheck(cachep
, objp
, caller
);
3519 kmemcheck_slab_free(cachep
, objp
, cachep
->object_size
);
3522 * Skip calling cache_free_alien() when the platform is not numa.
3523 * This will avoid cache misses that happen while accessing slabp (which
3524 * is per page memory reference) to get nodeid. Instead use a global
3525 * variable to skip the call, which is mostly likely to be present in
3528 if (nr_online_nodes
> 1 && cache_free_alien(cachep
, objp
))
3531 if (likely(ac
->avail
< ac
->limit
)) {
3532 STATS_INC_FREEHIT(cachep
);
3534 STATS_INC_FREEMISS(cachep
);
3535 cache_flusharray(cachep
, ac
);
3538 ac_put_obj(cachep
, ac
, objp
);
3542 * kmem_cache_alloc - Allocate an object
3543 * @cachep: The cache to allocate from.
3544 * @flags: See kmalloc().
3546 * Allocate an object from this cache. The flags are only relevant
3547 * if the cache has no available objects.
3549 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3551 void *ret
= slab_alloc(cachep
, flags
, _RET_IP_
);
3553 trace_kmem_cache_alloc(_RET_IP_
, ret
,
3554 cachep
->object_size
, cachep
->size
, flags
);
3558 EXPORT_SYMBOL(kmem_cache_alloc
);
3560 #ifdef CONFIG_TRACING
3562 kmem_cache_alloc_trace(struct kmem_cache
*cachep
, gfp_t flags
, size_t size
)
3566 ret
= slab_alloc(cachep
, flags
, _RET_IP_
);
3568 trace_kmalloc(_RET_IP_
, ret
,
3569 size
, cachep
->size
, flags
);
3572 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
3577 * kmem_cache_alloc_node - Allocate an object on the specified node
3578 * @cachep: The cache to allocate from.
3579 * @flags: See kmalloc().
3580 * @nodeid: node number of the target node.
3582 * Identical to kmem_cache_alloc but it will allocate memory on the given
3583 * node, which can improve the performance for cpu bound structures.
3585 * Fallback to other node is possible if __GFP_THISNODE is not set.
3587 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3589 void *ret
= slab_alloc_node(cachep
, flags
, nodeid
, _RET_IP_
);
3591 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
3592 cachep
->object_size
, cachep
->size
,
3597 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3599 #ifdef CONFIG_TRACING
3600 void *kmem_cache_alloc_node_trace(struct kmem_cache
*cachep
,
3607 ret
= slab_alloc_node(cachep
, flags
, nodeid
, _RET_IP_
);
3609 trace_kmalloc_node(_RET_IP_
, ret
,
3614 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
3617 static __always_inline
void *
3618 __do_kmalloc_node(size_t size
, gfp_t flags
, int node
, unsigned long caller
)
3620 struct kmem_cache
*cachep
;
3622 cachep
= kmalloc_slab(size
, flags
);
3623 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3625 return kmem_cache_alloc_node_trace(cachep
, flags
, node
, size
);
3628 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3629 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3631 return __do_kmalloc_node(size
, flags
, node
, _RET_IP_
);
3633 EXPORT_SYMBOL(__kmalloc_node
);
3635 void *__kmalloc_node_track_caller(size_t size
, gfp_t flags
,
3636 int node
, unsigned long caller
)
3638 return __do_kmalloc_node(size
, flags
, node
, caller
);
3640 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
3642 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3644 return __do_kmalloc_node(size
, flags
, node
, 0);
3646 EXPORT_SYMBOL(__kmalloc_node
);
3647 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3648 #endif /* CONFIG_NUMA */
3651 * __do_kmalloc - allocate memory
3652 * @size: how many bytes of memory are required.
3653 * @flags: the type of memory to allocate (see kmalloc).
3654 * @caller: function caller for debug tracking of the caller
3656 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3657 unsigned long caller
)
3659 struct kmem_cache
*cachep
;
3662 cachep
= kmalloc_slab(size
, flags
);
3663 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3665 ret
= slab_alloc(cachep
, flags
, caller
);
3667 trace_kmalloc(caller
, ret
,
3668 size
, cachep
->size
, flags
);
3674 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3675 void *__kmalloc(size_t size
, gfp_t flags
)
3677 return __do_kmalloc(size
, flags
, _RET_IP_
);
3679 EXPORT_SYMBOL(__kmalloc
);
3681 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, unsigned long caller
)
3683 return __do_kmalloc(size
, flags
, caller
);
3685 EXPORT_SYMBOL(__kmalloc_track_caller
);
3688 void *__kmalloc(size_t size
, gfp_t flags
)
3690 return __do_kmalloc(size
, flags
, 0);
3692 EXPORT_SYMBOL(__kmalloc
);
3696 * kmem_cache_free - Deallocate an object
3697 * @cachep: The cache the allocation was from.
3698 * @objp: The previously allocated object.
3700 * Free an object which was previously allocated from this
3703 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3705 unsigned long flags
;
3706 cachep
= cache_from_obj(cachep
, objp
);
3710 local_irq_save(flags
);
3711 debug_check_no_locks_freed(objp
, cachep
->object_size
);
3712 if (!(cachep
->flags
& SLAB_DEBUG_OBJECTS
))
3713 debug_check_no_obj_freed(objp
, cachep
->object_size
);
3714 __cache_free(cachep
, objp
, _RET_IP_
);
3715 local_irq_restore(flags
);
3717 trace_kmem_cache_free(_RET_IP_
, objp
);
3719 EXPORT_SYMBOL(kmem_cache_free
);
3722 * kfree - free previously allocated memory
3723 * @objp: pointer returned by kmalloc.
3725 * If @objp is NULL, no operation is performed.
3727 * Don't free memory not originally allocated by kmalloc()
3728 * or you will run into trouble.
3730 void kfree(const void *objp
)
3732 struct kmem_cache
*c
;
3733 unsigned long flags
;
3735 trace_kfree(_RET_IP_
, objp
);
3737 if (unlikely(ZERO_OR_NULL_PTR(objp
)))
3739 local_irq_save(flags
);
3740 kfree_debugcheck(objp
);
3741 c
= virt_to_cache(objp
);
3742 debug_check_no_locks_freed(objp
, c
->object_size
);
3744 debug_check_no_obj_freed(objp
, c
->object_size
);
3745 __cache_free(c
, (void *)objp
, _RET_IP_
);
3746 local_irq_restore(flags
);
3748 EXPORT_SYMBOL(kfree
);
3751 * This initializes kmem_cache_node or resizes various caches for all nodes.
3753 static int alloc_kmem_cache_node(struct kmem_cache
*cachep
, gfp_t gfp
)
3756 struct kmem_cache_node
*n
;
3757 struct array_cache
*new_shared
;
3758 struct array_cache
**new_alien
= NULL
;
3760 for_each_online_node(node
) {
3762 if (use_alien_caches
) {
3763 new_alien
= alloc_alien_cache(node
, cachep
->limit
, gfp
);
3769 if (cachep
->shared
) {
3770 new_shared
= alloc_arraycache(node
,
3771 cachep
->shared
*cachep
->batchcount
,
3774 free_alien_cache(new_alien
);
3779 n
= cachep
->node
[node
];
3781 struct array_cache
*shared
= n
->shared
;
3783 spin_lock_irq(&n
->list_lock
);
3786 free_block(cachep
, shared
->entry
,
3787 shared
->avail
, node
);
3789 n
->shared
= new_shared
;
3791 n
->alien
= new_alien
;
3794 n
->free_limit
= (1 + nr_cpus_node(node
)) *
3795 cachep
->batchcount
+ cachep
->num
;
3796 spin_unlock_irq(&n
->list_lock
);
3798 free_alien_cache(new_alien
);
3801 n
= kmalloc_node(sizeof(struct kmem_cache_node
), gfp
, node
);
3803 free_alien_cache(new_alien
);
3808 kmem_cache_node_init(n
);
3809 n
->next_reap
= jiffies
+ REAPTIMEOUT_NODE
+
3810 ((unsigned long)cachep
) % REAPTIMEOUT_NODE
;
3811 n
->shared
= new_shared
;
3812 n
->alien
= new_alien
;
3813 n
->free_limit
= (1 + nr_cpus_node(node
)) *
3814 cachep
->batchcount
+ cachep
->num
;
3815 cachep
->node
[node
] = n
;
3820 if (!cachep
->list
.next
) {
3821 /* Cache is not active yet. Roll back what we did */
3824 if (cachep
->node
[node
]) {
3825 n
= cachep
->node
[node
];
3828 free_alien_cache(n
->alien
);
3830 cachep
->node
[node
] = NULL
;
3838 struct ccupdate_struct
{
3839 struct kmem_cache
*cachep
;
3840 struct array_cache
*new[0];
3843 static void do_ccupdate_local(void *info
)
3845 struct ccupdate_struct
*new = info
;
3846 struct array_cache
*old
;
3849 old
= cpu_cache_get(new->cachep
);
3851 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
3852 new->new[smp_processor_id()] = old
;
3855 /* Always called with the slab_mutex held */
3856 static int __do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3857 int batchcount
, int shared
, gfp_t gfp
)
3859 struct ccupdate_struct
*new;
3862 new = kzalloc(sizeof(*new) + nr_cpu_ids
* sizeof(struct array_cache
*),
3867 for_each_online_cpu(i
) {
3868 new->new[i
] = alloc_arraycache(cpu_to_mem(i
), limit
,
3871 for (i
--; i
>= 0; i
--)
3877 new->cachep
= cachep
;
3879 on_each_cpu(do_ccupdate_local
, (void *)new, 1);
3882 cachep
->batchcount
= batchcount
;
3883 cachep
->limit
= limit
;
3884 cachep
->shared
= shared
;
3886 for_each_online_cpu(i
) {
3887 struct array_cache
*ccold
= new->new[i
];
3890 spin_lock_irq(&cachep
->node
[cpu_to_mem(i
)]->list_lock
);
3891 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_mem(i
));
3892 spin_unlock_irq(&cachep
->node
[cpu_to_mem(i
)]->list_lock
);
3896 return alloc_kmem_cache_node(cachep
, gfp
);
3899 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3900 int batchcount
, int shared
, gfp_t gfp
)
3903 struct kmem_cache
*c
= NULL
;
3906 ret
= __do_tune_cpucache(cachep
, limit
, batchcount
, shared
, gfp
);
3908 if (slab_state
< FULL
)
3911 if ((ret
< 0) || !is_root_cache(cachep
))
3914 VM_BUG_ON(!mutex_is_locked(&slab_mutex
));
3915 for_each_memcg_cache_index(i
) {
3916 c
= cache_from_memcg_idx(cachep
, i
);
3918 /* return value determined by the parent cache only */
3919 __do_tune_cpucache(c
, limit
, batchcount
, shared
, gfp
);
3925 /* Called with slab_mutex held always */
3926 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
)
3933 if (!is_root_cache(cachep
)) {
3934 struct kmem_cache
*root
= memcg_root_cache(cachep
);
3935 limit
= root
->limit
;
3936 shared
= root
->shared
;
3937 batchcount
= root
->batchcount
;
3940 if (limit
&& shared
&& batchcount
)
3943 * The head array serves three purposes:
3944 * - create a LIFO ordering, i.e. return objects that are cache-warm
3945 * - reduce the number of spinlock operations.
3946 * - reduce the number of linked list operations on the slab and
3947 * bufctl chains: array operations are cheaper.
3948 * The numbers are guessed, we should auto-tune as described by
3951 if (cachep
->size
> 131072)
3953 else if (cachep
->size
> PAGE_SIZE
)
3955 else if (cachep
->size
> 1024)
3957 else if (cachep
->size
> 256)
3963 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3964 * allocation behaviour: Most allocs on one cpu, most free operations
3965 * on another cpu. For these cases, an efficient object passing between
3966 * cpus is necessary. This is provided by a shared array. The array
3967 * replaces Bonwick's magazine layer.
3968 * On uniprocessor, it's functionally equivalent (but less efficient)
3969 * to a larger limit. Thus disabled by default.
3972 if (cachep
->size
<= PAGE_SIZE
&& num_possible_cpus() > 1)
3977 * With debugging enabled, large batchcount lead to excessively long
3978 * periods with disabled local interrupts. Limit the batchcount
3983 batchcount
= (limit
+ 1) / 2;
3985 err
= do_tune_cpucache(cachep
, limit
, batchcount
, shared
, gfp
);
3987 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
3988 cachep
->name
, -err
);
3993 * Drain an array if it contains any elements taking the node lock only if
3994 * necessary. Note that the node listlock also protects the array_cache
3995 * if drain_array() is used on the shared array.
3997 static void drain_array(struct kmem_cache
*cachep
, struct kmem_cache_node
*n
,
3998 struct array_cache
*ac
, int force
, int node
)
4002 if (!ac
|| !ac
->avail
)
4004 if (ac
->touched
&& !force
) {
4007 spin_lock_irq(&n
->list_lock
);
4009 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
4010 if (tofree
> ac
->avail
)
4011 tofree
= (ac
->avail
+ 1) / 2;
4012 free_block(cachep
, ac
->entry
, tofree
, node
);
4013 ac
->avail
-= tofree
;
4014 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
4015 sizeof(void *) * ac
->avail
);
4017 spin_unlock_irq(&n
->list_lock
);
4022 * cache_reap - Reclaim memory from caches.
4023 * @w: work descriptor
4025 * Called from workqueue/eventd every few seconds.
4027 * - clear the per-cpu caches for this CPU.
4028 * - return freeable pages to the main free memory pool.
4030 * If we cannot acquire the cache chain mutex then just give up - we'll try
4031 * again on the next iteration.
4033 static void cache_reap(struct work_struct
*w
)
4035 struct kmem_cache
*searchp
;
4036 struct kmem_cache_node
*n
;
4037 int node
= numa_mem_id();
4038 struct delayed_work
*work
= to_delayed_work(w
);
4040 if (!mutex_trylock(&slab_mutex
))
4041 /* Give up. Setup the next iteration. */
4044 list_for_each_entry(searchp
, &slab_caches
, list
) {
4048 * We only take the node lock if absolutely necessary and we
4049 * have established with reasonable certainty that
4050 * we can do some work if the lock was obtained.
4052 n
= searchp
->node
[node
];
4054 reap_alien(searchp
, n
);
4056 drain_array(searchp
, n
, cpu_cache_get(searchp
), 0, node
);
4059 * These are racy checks but it does not matter
4060 * if we skip one check or scan twice.
4062 if (time_after(n
->next_reap
, jiffies
))
4065 n
->next_reap
= jiffies
+ REAPTIMEOUT_NODE
;
4067 drain_array(searchp
, n
, n
->shared
, 0, node
);
4069 if (n
->free_touched
)
4070 n
->free_touched
= 0;
4074 freed
= drain_freelist(searchp
, n
, (n
->free_limit
+
4075 5 * searchp
->num
- 1) / (5 * searchp
->num
));
4076 STATS_ADD_REAPED(searchp
, freed
);
4082 mutex_unlock(&slab_mutex
);
4085 /* Set up the next iteration */
4086 schedule_delayed_work(work
, round_jiffies_relative(REAPTIMEOUT_AC
));
4089 #ifdef CONFIG_SLABINFO
4090 void get_slabinfo(struct kmem_cache
*cachep
, struct slabinfo
*sinfo
)
4093 unsigned long active_objs
;
4094 unsigned long num_objs
;
4095 unsigned long active_slabs
= 0;
4096 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
4100 struct kmem_cache_node
*n
;
4104 for_each_online_node(node
) {
4105 n
= cachep
->node
[node
];
4110 spin_lock_irq(&n
->list_lock
);
4112 list_for_each_entry(page
, &n
->slabs_full
, lru
) {
4113 if (page
->active
!= cachep
->num
&& !error
)
4114 error
= "slabs_full accounting error";
4115 active_objs
+= cachep
->num
;
4118 list_for_each_entry(page
, &n
->slabs_partial
, lru
) {
4119 if (page
->active
== cachep
->num
&& !error
)
4120 error
= "slabs_partial accounting error";
4121 if (!page
->active
&& !error
)
4122 error
= "slabs_partial accounting error";
4123 active_objs
+= page
->active
;
4126 list_for_each_entry(page
, &n
->slabs_free
, lru
) {
4127 if (page
->active
&& !error
)
4128 error
= "slabs_free accounting error";
4131 free_objects
+= n
->free_objects
;
4133 shared_avail
+= n
->shared
->avail
;
4135 spin_unlock_irq(&n
->list_lock
);
4137 num_slabs
+= active_slabs
;
4138 num_objs
= num_slabs
* cachep
->num
;
4139 if (num_objs
- active_objs
!= free_objects
&& !error
)
4140 error
= "free_objects accounting error";
4142 name
= cachep
->name
;
4144 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
4146 sinfo
->active_objs
= active_objs
;
4147 sinfo
->num_objs
= num_objs
;
4148 sinfo
->active_slabs
= active_slabs
;
4149 sinfo
->num_slabs
= num_slabs
;
4150 sinfo
->shared_avail
= shared_avail
;
4151 sinfo
->limit
= cachep
->limit
;
4152 sinfo
->batchcount
= cachep
->batchcount
;
4153 sinfo
->shared
= cachep
->shared
;
4154 sinfo
->objects_per_slab
= cachep
->num
;
4155 sinfo
->cache_order
= cachep
->gfporder
;
4158 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*cachep
)
4162 unsigned long high
= cachep
->high_mark
;
4163 unsigned long allocs
= cachep
->num_allocations
;
4164 unsigned long grown
= cachep
->grown
;
4165 unsigned long reaped
= cachep
->reaped
;
4166 unsigned long errors
= cachep
->errors
;
4167 unsigned long max_freeable
= cachep
->max_freeable
;
4168 unsigned long node_allocs
= cachep
->node_allocs
;
4169 unsigned long node_frees
= cachep
->node_frees
;
4170 unsigned long overflows
= cachep
->node_overflow
;
4172 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu "
4173 "%4lu %4lu %4lu %4lu %4lu",
4174 allocs
, high
, grown
,
4175 reaped
, errors
, max_freeable
, node_allocs
,
4176 node_frees
, overflows
);
4180 unsigned long allochit
= atomic_read(&cachep
->allochit
);
4181 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4182 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4183 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4185 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4186 allochit
, allocmiss
, freehit
, freemiss
);
4191 #define MAX_SLABINFO_WRITE 128
4193 * slabinfo_write - Tuning for the slab allocator
4195 * @buffer: user buffer
4196 * @count: data length
4199 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
4200 size_t count
, loff_t
*ppos
)
4202 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4203 int limit
, batchcount
, shared
, res
;
4204 struct kmem_cache
*cachep
;
4206 if (count
> MAX_SLABINFO_WRITE
)
4208 if (copy_from_user(&kbuf
, buffer
, count
))
4210 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4212 tmp
= strchr(kbuf
, ' ');
4217 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4220 /* Find the cache in the chain of caches. */
4221 mutex_lock(&slab_mutex
);
4223 list_for_each_entry(cachep
, &slab_caches
, list
) {
4224 if (!strcmp(cachep
->name
, kbuf
)) {
4225 if (limit
< 1 || batchcount
< 1 ||
4226 batchcount
> limit
|| shared
< 0) {
4229 res
= do_tune_cpucache(cachep
, limit
,
4236 mutex_unlock(&slab_mutex
);
4242 #ifdef CONFIG_DEBUG_SLAB_LEAK
4244 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
4246 mutex_lock(&slab_mutex
);
4247 return seq_list_start(&slab_caches
, *pos
);
4250 static inline int add_caller(unsigned long *n
, unsigned long v
)
4260 unsigned long *q
= p
+ 2 * i
;
4274 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4280 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
,
4288 for (i
= 0, p
= page
->s_mem
; i
< c
->num
; i
++, p
+= c
->size
) {
4289 if (get_obj_status(page
, i
) != OBJECT_ACTIVE
)
4292 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4297 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4299 #ifdef CONFIG_KALLSYMS
4300 unsigned long offset
, size
;
4301 char modname
[MODULE_NAME_LEN
], name
[KSYM_NAME_LEN
];
4303 if (lookup_symbol_attrs(address
, &size
, &offset
, modname
, name
) == 0) {
4304 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4306 seq_printf(m
, " [%s]", modname
);
4310 seq_printf(m
, "%p", (void *)address
);
4313 static int leaks_show(struct seq_file
*m
, void *p
)
4315 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, list
);
4317 struct kmem_cache_node
*n
;
4319 unsigned long *x
= m
->private;
4323 if (!(cachep
->flags
& SLAB_STORE_USER
))
4325 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4328 /* OK, we can do it */
4332 for_each_online_node(node
) {
4333 n
= cachep
->node
[node
];
4338 spin_lock_irq(&n
->list_lock
);
4340 list_for_each_entry(page
, &n
->slabs_full
, lru
)
4341 handle_slab(x
, cachep
, page
);
4342 list_for_each_entry(page
, &n
->slabs_partial
, lru
)
4343 handle_slab(x
, cachep
, page
);
4344 spin_unlock_irq(&n
->list_lock
);
4346 name
= cachep
->name
;
4348 /* Increase the buffer size */
4349 mutex_unlock(&slab_mutex
);
4350 m
->private = kzalloc(x
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4352 /* Too bad, we are really out */
4354 mutex_lock(&slab_mutex
);
4357 *(unsigned long *)m
->private = x
[0] * 2;
4359 mutex_lock(&slab_mutex
);
4360 /* Now make sure this entry will be retried */
4364 for (i
= 0; i
< x
[1]; i
++) {
4365 seq_printf(m
, "%s: %lu ", name
, x
[2*i
+3]);
4366 show_symbol(m
, x
[2*i
+2]);
4373 static const struct seq_operations slabstats_op
= {
4374 .start
= leaks_start
,
4380 static int slabstats_open(struct inode
*inode
, struct file
*file
)
4382 unsigned long *n
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
4385 ret
= seq_open(file
, &slabstats_op
);
4387 struct seq_file
*m
= file
->private_data
;
4388 *n
= PAGE_SIZE
/ (2 * sizeof(unsigned long));
4397 static const struct file_operations proc_slabstats_operations
= {
4398 .open
= slabstats_open
,
4400 .llseek
= seq_lseek
,
4401 .release
= seq_release_private
,
4405 static int __init
slab_proc_init(void)
4407 #ifdef CONFIG_DEBUG_SLAB_LEAK
4408 proc_create("slab_allocators", 0, NULL
, &proc_slabstats_operations
);
4412 module_init(slab_proc_init
);
4416 * ksize - get the actual amount of memory allocated for a given object
4417 * @objp: Pointer to the object
4419 * kmalloc may internally round up allocations and return more memory
4420 * than requested. ksize() can be used to determine the actual amount of
4421 * memory allocated. The caller may use this additional memory, even though
4422 * a smaller amount of memory was initially specified with the kmalloc call.
4423 * The caller must guarantee that objp points to a valid object previously
4424 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4425 * must not be freed during the duration of the call.
4427 size_t ksize(const void *objp
)
4430 if (unlikely(objp
== ZERO_SIZE_PTR
))
4433 return virt_to_cache(objp
)->object_size
;
4435 EXPORT_SYMBOL(ksize
);