iwlagn: allocate resources for TX BA session in transport
[linux/fpc-iii.git] / fs / namespace.c
blob22bfe8273c680b441f43a0191c7bd0e805a51ec2
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/percpu.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/cpumask.h>
21 #include <linux/module.h>
22 #include <linux/sysfs.h>
23 #include <linux/seq_file.h>
24 #include <linux/mnt_namespace.h>
25 #include <linux/namei.h>
26 #include <linux/nsproxy.h>
27 #include <linux/security.h>
28 #include <linux/mount.h>
29 #include <linux/ramfs.h>
30 #include <linux/log2.h>
31 #include <linux/idr.h>
32 #include <linux/fs_struct.h>
33 #include <linux/fsnotify.h>
34 #include <asm/uaccess.h>
35 #include <asm/unistd.h>
36 #include "pnode.h"
37 #include "internal.h"
39 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
40 #define HASH_SIZE (1UL << HASH_SHIFT)
42 static int event;
43 static DEFINE_IDA(mnt_id_ida);
44 static DEFINE_IDA(mnt_group_ida);
45 static DEFINE_SPINLOCK(mnt_id_lock);
46 static int mnt_id_start = 0;
47 static int mnt_group_start = 1;
49 static struct list_head *mount_hashtable __read_mostly;
50 static struct kmem_cache *mnt_cache __read_mostly;
51 static struct rw_semaphore namespace_sem;
53 /* /sys/fs */
54 struct kobject *fs_kobj;
55 EXPORT_SYMBOL_GPL(fs_kobj);
58 * vfsmount lock may be taken for read to prevent changes to the
59 * vfsmount hash, ie. during mountpoint lookups or walking back
60 * up the tree.
62 * It should be taken for write in all cases where the vfsmount
63 * tree or hash is modified or when a vfsmount structure is modified.
65 DEFINE_BRLOCK(vfsmount_lock);
67 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
69 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
70 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
71 tmp = tmp + (tmp >> HASH_SHIFT);
72 return tmp & (HASH_SIZE - 1);
75 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
78 * allocation is serialized by namespace_sem, but we need the spinlock to
79 * serialize with freeing.
81 static int mnt_alloc_id(struct vfsmount *mnt)
83 int res;
85 retry:
86 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
87 spin_lock(&mnt_id_lock);
88 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
89 if (!res)
90 mnt_id_start = mnt->mnt_id + 1;
91 spin_unlock(&mnt_id_lock);
92 if (res == -EAGAIN)
93 goto retry;
95 return res;
98 static void mnt_free_id(struct vfsmount *mnt)
100 int id = mnt->mnt_id;
101 spin_lock(&mnt_id_lock);
102 ida_remove(&mnt_id_ida, id);
103 if (mnt_id_start > id)
104 mnt_id_start = id;
105 spin_unlock(&mnt_id_lock);
109 * Allocate a new peer group ID
111 * mnt_group_ida is protected by namespace_sem
113 static int mnt_alloc_group_id(struct vfsmount *mnt)
115 int res;
117 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
118 return -ENOMEM;
120 res = ida_get_new_above(&mnt_group_ida,
121 mnt_group_start,
122 &mnt->mnt_group_id);
123 if (!res)
124 mnt_group_start = mnt->mnt_group_id + 1;
126 return res;
130 * Release a peer group ID
132 void mnt_release_group_id(struct vfsmount *mnt)
134 int id = mnt->mnt_group_id;
135 ida_remove(&mnt_group_ida, id);
136 if (mnt_group_start > id)
137 mnt_group_start = id;
138 mnt->mnt_group_id = 0;
142 * vfsmount lock must be held for read
144 static inline void mnt_add_count(struct vfsmount *mnt, int n)
146 #ifdef CONFIG_SMP
147 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
148 #else
149 preempt_disable();
150 mnt->mnt_count += n;
151 preempt_enable();
152 #endif
155 static inline void mnt_set_count(struct vfsmount *mnt, int n)
157 #ifdef CONFIG_SMP
158 this_cpu_write(mnt->mnt_pcp->mnt_count, n);
159 #else
160 mnt->mnt_count = n;
161 #endif
165 * vfsmount lock must be held for read
167 static inline void mnt_inc_count(struct vfsmount *mnt)
169 mnt_add_count(mnt, 1);
173 * vfsmount lock must be held for read
175 static inline void mnt_dec_count(struct vfsmount *mnt)
177 mnt_add_count(mnt, -1);
181 * vfsmount lock must be held for write
183 unsigned int mnt_get_count(struct vfsmount *mnt)
185 #ifdef CONFIG_SMP
186 unsigned int count = 0;
187 int cpu;
189 for_each_possible_cpu(cpu) {
190 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
193 return count;
194 #else
195 return mnt->mnt_count;
196 #endif
199 static struct vfsmount *alloc_vfsmnt(const char *name)
201 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
202 if (mnt) {
203 int err;
205 err = mnt_alloc_id(mnt);
206 if (err)
207 goto out_free_cache;
209 if (name) {
210 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
211 if (!mnt->mnt_devname)
212 goto out_free_id;
215 #ifdef CONFIG_SMP
216 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
217 if (!mnt->mnt_pcp)
218 goto out_free_devname;
220 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
221 #else
222 mnt->mnt_count = 1;
223 mnt->mnt_writers = 0;
224 #endif
226 INIT_LIST_HEAD(&mnt->mnt_hash);
227 INIT_LIST_HEAD(&mnt->mnt_child);
228 INIT_LIST_HEAD(&mnt->mnt_mounts);
229 INIT_LIST_HEAD(&mnt->mnt_list);
230 INIT_LIST_HEAD(&mnt->mnt_expire);
231 INIT_LIST_HEAD(&mnt->mnt_share);
232 INIT_LIST_HEAD(&mnt->mnt_slave_list);
233 INIT_LIST_HEAD(&mnt->mnt_slave);
234 #ifdef CONFIG_FSNOTIFY
235 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
236 #endif
238 return mnt;
240 #ifdef CONFIG_SMP
241 out_free_devname:
242 kfree(mnt->mnt_devname);
243 #endif
244 out_free_id:
245 mnt_free_id(mnt);
246 out_free_cache:
247 kmem_cache_free(mnt_cache, mnt);
248 return NULL;
252 * Most r/o checks on a fs are for operations that take
253 * discrete amounts of time, like a write() or unlink().
254 * We must keep track of when those operations start
255 * (for permission checks) and when they end, so that
256 * we can determine when writes are able to occur to
257 * a filesystem.
260 * __mnt_is_readonly: check whether a mount is read-only
261 * @mnt: the mount to check for its write status
263 * This shouldn't be used directly ouside of the VFS.
264 * It does not guarantee that the filesystem will stay
265 * r/w, just that it is right *now*. This can not and
266 * should not be used in place of IS_RDONLY(inode).
267 * mnt_want/drop_write() will _keep_ the filesystem
268 * r/w.
270 int __mnt_is_readonly(struct vfsmount *mnt)
272 if (mnt->mnt_flags & MNT_READONLY)
273 return 1;
274 if (mnt->mnt_sb->s_flags & MS_RDONLY)
275 return 1;
276 return 0;
278 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
280 static inline void mnt_inc_writers(struct vfsmount *mnt)
282 #ifdef CONFIG_SMP
283 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
284 #else
285 mnt->mnt_writers++;
286 #endif
289 static inline void mnt_dec_writers(struct vfsmount *mnt)
291 #ifdef CONFIG_SMP
292 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
293 #else
294 mnt->mnt_writers--;
295 #endif
298 static unsigned int mnt_get_writers(struct vfsmount *mnt)
300 #ifdef CONFIG_SMP
301 unsigned int count = 0;
302 int cpu;
304 for_each_possible_cpu(cpu) {
305 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
308 return count;
309 #else
310 return mnt->mnt_writers;
311 #endif
315 * Most r/o checks on a fs are for operations that take
316 * discrete amounts of time, like a write() or unlink().
317 * We must keep track of when those operations start
318 * (for permission checks) and when they end, so that
319 * we can determine when writes are able to occur to
320 * a filesystem.
323 * mnt_want_write - get write access to a mount
324 * @mnt: the mount on which to take a write
326 * This tells the low-level filesystem that a write is
327 * about to be performed to it, and makes sure that
328 * writes are allowed before returning success. When
329 * the write operation is finished, mnt_drop_write()
330 * must be called. This is effectively a refcount.
332 int mnt_want_write(struct vfsmount *mnt)
334 int ret = 0;
336 preempt_disable();
337 mnt_inc_writers(mnt);
339 * The store to mnt_inc_writers must be visible before we pass
340 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
341 * incremented count after it has set MNT_WRITE_HOLD.
343 smp_mb();
344 while (mnt->mnt_flags & MNT_WRITE_HOLD)
345 cpu_relax();
347 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
348 * be set to match its requirements. So we must not load that until
349 * MNT_WRITE_HOLD is cleared.
351 smp_rmb();
352 if (__mnt_is_readonly(mnt)) {
353 mnt_dec_writers(mnt);
354 ret = -EROFS;
355 goto out;
357 out:
358 preempt_enable();
359 return ret;
361 EXPORT_SYMBOL_GPL(mnt_want_write);
364 * mnt_clone_write - get write access to a mount
365 * @mnt: the mount on which to take a write
367 * This is effectively like mnt_want_write, except
368 * it must only be used to take an extra write reference
369 * on a mountpoint that we already know has a write reference
370 * on it. This allows some optimisation.
372 * After finished, mnt_drop_write must be called as usual to
373 * drop the reference.
375 int mnt_clone_write(struct vfsmount *mnt)
377 /* superblock may be r/o */
378 if (__mnt_is_readonly(mnt))
379 return -EROFS;
380 preempt_disable();
381 mnt_inc_writers(mnt);
382 preempt_enable();
383 return 0;
385 EXPORT_SYMBOL_GPL(mnt_clone_write);
388 * mnt_want_write_file - get write access to a file's mount
389 * @file: the file who's mount on which to take a write
391 * This is like mnt_want_write, but it takes a file and can
392 * do some optimisations if the file is open for write already
394 int mnt_want_write_file(struct file *file)
396 struct inode *inode = file->f_dentry->d_inode;
397 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
398 return mnt_want_write(file->f_path.mnt);
399 else
400 return mnt_clone_write(file->f_path.mnt);
402 EXPORT_SYMBOL_GPL(mnt_want_write_file);
405 * mnt_drop_write - give up write access to a mount
406 * @mnt: the mount on which to give up write access
408 * Tells the low-level filesystem that we are done
409 * performing writes to it. Must be matched with
410 * mnt_want_write() call above.
412 void mnt_drop_write(struct vfsmount *mnt)
414 preempt_disable();
415 mnt_dec_writers(mnt);
416 preempt_enable();
418 EXPORT_SYMBOL_GPL(mnt_drop_write);
420 static int mnt_make_readonly(struct vfsmount *mnt)
422 int ret = 0;
424 br_write_lock(vfsmount_lock);
425 mnt->mnt_flags |= MNT_WRITE_HOLD;
427 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
428 * should be visible before we do.
430 smp_mb();
433 * With writers on hold, if this value is zero, then there are
434 * definitely no active writers (although held writers may subsequently
435 * increment the count, they'll have to wait, and decrement it after
436 * seeing MNT_READONLY).
438 * It is OK to have counter incremented on one CPU and decremented on
439 * another: the sum will add up correctly. The danger would be when we
440 * sum up each counter, if we read a counter before it is incremented,
441 * but then read another CPU's count which it has been subsequently
442 * decremented from -- we would see more decrements than we should.
443 * MNT_WRITE_HOLD protects against this scenario, because
444 * mnt_want_write first increments count, then smp_mb, then spins on
445 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
446 * we're counting up here.
448 if (mnt_get_writers(mnt) > 0)
449 ret = -EBUSY;
450 else
451 mnt->mnt_flags |= MNT_READONLY;
453 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
454 * that become unheld will see MNT_READONLY.
456 smp_wmb();
457 mnt->mnt_flags &= ~MNT_WRITE_HOLD;
458 br_write_unlock(vfsmount_lock);
459 return ret;
462 static void __mnt_unmake_readonly(struct vfsmount *mnt)
464 br_write_lock(vfsmount_lock);
465 mnt->mnt_flags &= ~MNT_READONLY;
466 br_write_unlock(vfsmount_lock);
469 static void free_vfsmnt(struct vfsmount *mnt)
471 kfree(mnt->mnt_devname);
472 mnt_free_id(mnt);
473 #ifdef CONFIG_SMP
474 free_percpu(mnt->mnt_pcp);
475 #endif
476 kmem_cache_free(mnt_cache, mnt);
480 * find the first or last mount at @dentry on vfsmount @mnt depending on
481 * @dir. If @dir is set return the first mount else return the last mount.
482 * vfsmount_lock must be held for read or write.
484 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
485 int dir)
487 struct list_head *head = mount_hashtable + hash(mnt, dentry);
488 struct list_head *tmp = head;
489 struct vfsmount *p, *found = NULL;
491 for (;;) {
492 tmp = dir ? tmp->next : tmp->prev;
493 p = NULL;
494 if (tmp == head)
495 break;
496 p = list_entry(tmp, struct vfsmount, mnt_hash);
497 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
498 found = p;
499 break;
502 return found;
506 * lookup_mnt increments the ref count before returning
507 * the vfsmount struct.
509 struct vfsmount *lookup_mnt(struct path *path)
511 struct vfsmount *child_mnt;
513 br_read_lock(vfsmount_lock);
514 if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
515 mntget(child_mnt);
516 br_read_unlock(vfsmount_lock);
517 return child_mnt;
520 static inline int check_mnt(struct vfsmount *mnt)
522 return mnt->mnt_ns == current->nsproxy->mnt_ns;
526 * vfsmount lock must be held for write
528 static void touch_mnt_namespace(struct mnt_namespace *ns)
530 if (ns) {
531 ns->event = ++event;
532 wake_up_interruptible(&ns->poll);
537 * vfsmount lock must be held for write
539 static void __touch_mnt_namespace(struct mnt_namespace *ns)
541 if (ns && ns->event != event) {
542 ns->event = event;
543 wake_up_interruptible(&ns->poll);
548 * Clear dentry's mounted state if it has no remaining mounts.
549 * vfsmount_lock must be held for write.
551 static void dentry_reset_mounted(struct vfsmount *mnt, struct dentry *dentry)
553 unsigned u;
555 for (u = 0; u < HASH_SIZE; u++) {
556 struct vfsmount *p;
558 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
559 if (p->mnt_mountpoint == dentry)
560 return;
563 spin_lock(&dentry->d_lock);
564 dentry->d_flags &= ~DCACHE_MOUNTED;
565 spin_unlock(&dentry->d_lock);
569 * vfsmount lock must be held for write
571 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
573 old_path->dentry = mnt->mnt_mountpoint;
574 old_path->mnt = mnt->mnt_parent;
575 mnt->mnt_parent = mnt;
576 mnt->mnt_mountpoint = mnt->mnt_root;
577 list_del_init(&mnt->mnt_child);
578 list_del_init(&mnt->mnt_hash);
579 dentry_reset_mounted(old_path->mnt, old_path->dentry);
583 * vfsmount lock must be held for write
585 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
586 struct vfsmount *child_mnt)
588 child_mnt->mnt_parent = mntget(mnt);
589 child_mnt->mnt_mountpoint = dget(dentry);
590 spin_lock(&dentry->d_lock);
591 dentry->d_flags |= DCACHE_MOUNTED;
592 spin_unlock(&dentry->d_lock);
596 * vfsmount lock must be held for write
598 static void attach_mnt(struct vfsmount *mnt, struct path *path)
600 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
601 list_add_tail(&mnt->mnt_hash, mount_hashtable +
602 hash(path->mnt, path->dentry));
603 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
606 static inline void __mnt_make_longterm(struct vfsmount *mnt)
608 #ifdef CONFIG_SMP
609 atomic_inc(&mnt->mnt_longterm);
610 #endif
613 /* needs vfsmount lock for write */
614 static inline void __mnt_make_shortterm(struct vfsmount *mnt)
616 #ifdef CONFIG_SMP
617 atomic_dec(&mnt->mnt_longterm);
618 #endif
622 * vfsmount lock must be held for write
624 static void commit_tree(struct vfsmount *mnt)
626 struct vfsmount *parent = mnt->mnt_parent;
627 struct vfsmount *m;
628 LIST_HEAD(head);
629 struct mnt_namespace *n = parent->mnt_ns;
631 BUG_ON(parent == mnt);
633 list_add_tail(&head, &mnt->mnt_list);
634 list_for_each_entry(m, &head, mnt_list) {
635 m->mnt_ns = n;
636 __mnt_make_longterm(m);
639 list_splice(&head, n->list.prev);
641 list_add_tail(&mnt->mnt_hash, mount_hashtable +
642 hash(parent, mnt->mnt_mountpoint));
643 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
644 touch_mnt_namespace(n);
647 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
649 struct list_head *next = p->mnt_mounts.next;
650 if (next == &p->mnt_mounts) {
651 while (1) {
652 if (p == root)
653 return NULL;
654 next = p->mnt_child.next;
655 if (next != &p->mnt_parent->mnt_mounts)
656 break;
657 p = p->mnt_parent;
660 return list_entry(next, struct vfsmount, mnt_child);
663 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
665 struct list_head *prev = p->mnt_mounts.prev;
666 while (prev != &p->mnt_mounts) {
667 p = list_entry(prev, struct vfsmount, mnt_child);
668 prev = p->mnt_mounts.prev;
670 return p;
673 struct vfsmount *
674 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
676 struct vfsmount *mnt;
677 struct dentry *root;
679 if (!type)
680 return ERR_PTR(-ENODEV);
682 mnt = alloc_vfsmnt(name);
683 if (!mnt)
684 return ERR_PTR(-ENOMEM);
686 if (flags & MS_KERNMOUNT)
687 mnt->mnt_flags = MNT_INTERNAL;
689 root = mount_fs(type, flags, name, data);
690 if (IS_ERR(root)) {
691 free_vfsmnt(mnt);
692 return ERR_CAST(root);
695 mnt->mnt_root = root;
696 mnt->mnt_sb = root->d_sb;
697 mnt->mnt_mountpoint = mnt->mnt_root;
698 mnt->mnt_parent = mnt;
699 return mnt;
701 EXPORT_SYMBOL_GPL(vfs_kern_mount);
703 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
704 int flag)
706 struct super_block *sb = old->mnt_sb;
707 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
709 if (mnt) {
710 if (flag & (CL_SLAVE | CL_PRIVATE))
711 mnt->mnt_group_id = 0; /* not a peer of original */
712 else
713 mnt->mnt_group_id = old->mnt_group_id;
715 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
716 int err = mnt_alloc_group_id(mnt);
717 if (err)
718 goto out_free;
721 mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD;
722 atomic_inc(&sb->s_active);
723 mnt->mnt_sb = sb;
724 mnt->mnt_root = dget(root);
725 mnt->mnt_mountpoint = mnt->mnt_root;
726 mnt->mnt_parent = mnt;
728 if (flag & CL_SLAVE) {
729 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
730 mnt->mnt_master = old;
731 CLEAR_MNT_SHARED(mnt);
732 } else if (!(flag & CL_PRIVATE)) {
733 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
734 list_add(&mnt->mnt_share, &old->mnt_share);
735 if (IS_MNT_SLAVE(old))
736 list_add(&mnt->mnt_slave, &old->mnt_slave);
737 mnt->mnt_master = old->mnt_master;
739 if (flag & CL_MAKE_SHARED)
740 set_mnt_shared(mnt);
742 /* stick the duplicate mount on the same expiry list
743 * as the original if that was on one */
744 if (flag & CL_EXPIRE) {
745 if (!list_empty(&old->mnt_expire))
746 list_add(&mnt->mnt_expire, &old->mnt_expire);
749 return mnt;
751 out_free:
752 free_vfsmnt(mnt);
753 return NULL;
756 static inline void mntfree(struct vfsmount *mnt)
758 struct super_block *sb = mnt->mnt_sb;
761 * This probably indicates that somebody messed
762 * up a mnt_want/drop_write() pair. If this
763 * happens, the filesystem was probably unable
764 * to make r/w->r/o transitions.
767 * The locking used to deal with mnt_count decrement provides barriers,
768 * so mnt_get_writers() below is safe.
770 WARN_ON(mnt_get_writers(mnt));
771 fsnotify_vfsmount_delete(mnt);
772 dput(mnt->mnt_root);
773 free_vfsmnt(mnt);
774 deactivate_super(sb);
777 static void mntput_no_expire(struct vfsmount *mnt)
779 put_again:
780 #ifdef CONFIG_SMP
781 br_read_lock(vfsmount_lock);
782 if (likely(atomic_read(&mnt->mnt_longterm))) {
783 mnt_dec_count(mnt);
784 br_read_unlock(vfsmount_lock);
785 return;
787 br_read_unlock(vfsmount_lock);
789 br_write_lock(vfsmount_lock);
790 mnt_dec_count(mnt);
791 if (mnt_get_count(mnt)) {
792 br_write_unlock(vfsmount_lock);
793 return;
795 #else
796 mnt_dec_count(mnt);
797 if (likely(mnt_get_count(mnt)))
798 return;
799 br_write_lock(vfsmount_lock);
800 #endif
801 if (unlikely(mnt->mnt_pinned)) {
802 mnt_add_count(mnt, mnt->mnt_pinned + 1);
803 mnt->mnt_pinned = 0;
804 br_write_unlock(vfsmount_lock);
805 acct_auto_close_mnt(mnt);
806 goto put_again;
808 br_write_unlock(vfsmount_lock);
809 mntfree(mnt);
812 void mntput(struct vfsmount *mnt)
814 if (mnt) {
815 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
816 if (unlikely(mnt->mnt_expiry_mark))
817 mnt->mnt_expiry_mark = 0;
818 mntput_no_expire(mnt);
821 EXPORT_SYMBOL(mntput);
823 struct vfsmount *mntget(struct vfsmount *mnt)
825 if (mnt)
826 mnt_inc_count(mnt);
827 return mnt;
829 EXPORT_SYMBOL(mntget);
831 void mnt_pin(struct vfsmount *mnt)
833 br_write_lock(vfsmount_lock);
834 mnt->mnt_pinned++;
835 br_write_unlock(vfsmount_lock);
837 EXPORT_SYMBOL(mnt_pin);
839 void mnt_unpin(struct vfsmount *mnt)
841 br_write_lock(vfsmount_lock);
842 if (mnt->mnt_pinned) {
843 mnt_inc_count(mnt);
844 mnt->mnt_pinned--;
846 br_write_unlock(vfsmount_lock);
848 EXPORT_SYMBOL(mnt_unpin);
850 static inline void mangle(struct seq_file *m, const char *s)
852 seq_escape(m, s, " \t\n\\");
856 * Simple .show_options callback for filesystems which don't want to
857 * implement more complex mount option showing.
859 * See also save_mount_options().
861 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
863 const char *options;
865 rcu_read_lock();
866 options = rcu_dereference(mnt->mnt_sb->s_options);
868 if (options != NULL && options[0]) {
869 seq_putc(m, ',');
870 mangle(m, options);
872 rcu_read_unlock();
874 return 0;
876 EXPORT_SYMBOL(generic_show_options);
879 * If filesystem uses generic_show_options(), this function should be
880 * called from the fill_super() callback.
882 * The .remount_fs callback usually needs to be handled in a special
883 * way, to make sure, that previous options are not overwritten if the
884 * remount fails.
886 * Also note, that if the filesystem's .remount_fs function doesn't
887 * reset all options to their default value, but changes only newly
888 * given options, then the displayed options will not reflect reality
889 * any more.
891 void save_mount_options(struct super_block *sb, char *options)
893 BUG_ON(sb->s_options);
894 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
896 EXPORT_SYMBOL(save_mount_options);
898 void replace_mount_options(struct super_block *sb, char *options)
900 char *old = sb->s_options;
901 rcu_assign_pointer(sb->s_options, options);
902 if (old) {
903 synchronize_rcu();
904 kfree(old);
907 EXPORT_SYMBOL(replace_mount_options);
909 #ifdef CONFIG_PROC_FS
910 /* iterator */
911 static void *m_start(struct seq_file *m, loff_t *pos)
913 struct proc_mounts *p = m->private;
915 down_read(&namespace_sem);
916 return seq_list_start(&p->ns->list, *pos);
919 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
921 struct proc_mounts *p = m->private;
923 return seq_list_next(v, &p->ns->list, pos);
926 static void m_stop(struct seq_file *m, void *v)
928 up_read(&namespace_sem);
931 int mnt_had_events(struct proc_mounts *p)
933 struct mnt_namespace *ns = p->ns;
934 int res = 0;
936 br_read_lock(vfsmount_lock);
937 if (p->m.poll_event != ns->event) {
938 p->m.poll_event = ns->event;
939 res = 1;
941 br_read_unlock(vfsmount_lock);
943 return res;
946 struct proc_fs_info {
947 int flag;
948 const char *str;
951 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
953 static const struct proc_fs_info fs_info[] = {
954 { MS_SYNCHRONOUS, ",sync" },
955 { MS_DIRSYNC, ",dirsync" },
956 { MS_MANDLOCK, ",mand" },
957 { 0, NULL }
959 const struct proc_fs_info *fs_infop;
961 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
962 if (sb->s_flags & fs_infop->flag)
963 seq_puts(m, fs_infop->str);
966 return security_sb_show_options(m, sb);
969 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
971 static const struct proc_fs_info mnt_info[] = {
972 { MNT_NOSUID, ",nosuid" },
973 { MNT_NODEV, ",nodev" },
974 { MNT_NOEXEC, ",noexec" },
975 { MNT_NOATIME, ",noatime" },
976 { MNT_NODIRATIME, ",nodiratime" },
977 { MNT_RELATIME, ",relatime" },
978 { 0, NULL }
980 const struct proc_fs_info *fs_infop;
982 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
983 if (mnt->mnt_flags & fs_infop->flag)
984 seq_puts(m, fs_infop->str);
988 static void show_type(struct seq_file *m, struct super_block *sb)
990 mangle(m, sb->s_type->name);
991 if (sb->s_subtype && sb->s_subtype[0]) {
992 seq_putc(m, '.');
993 mangle(m, sb->s_subtype);
997 static int show_vfsmnt(struct seq_file *m, void *v)
999 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1000 int err = 0;
1001 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1003 if (mnt->mnt_sb->s_op->show_devname) {
1004 err = mnt->mnt_sb->s_op->show_devname(m, mnt);
1005 if (err)
1006 goto out;
1007 } else {
1008 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
1010 seq_putc(m, ' ');
1011 seq_path(m, &mnt_path, " \t\n\\");
1012 seq_putc(m, ' ');
1013 show_type(m, mnt->mnt_sb);
1014 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
1015 err = show_sb_opts(m, mnt->mnt_sb);
1016 if (err)
1017 goto out;
1018 show_mnt_opts(m, mnt);
1019 if (mnt->mnt_sb->s_op->show_options)
1020 err = mnt->mnt_sb->s_op->show_options(m, mnt);
1021 seq_puts(m, " 0 0\n");
1022 out:
1023 return err;
1026 const struct seq_operations mounts_op = {
1027 .start = m_start,
1028 .next = m_next,
1029 .stop = m_stop,
1030 .show = show_vfsmnt
1033 static int show_mountinfo(struct seq_file *m, void *v)
1035 struct proc_mounts *p = m->private;
1036 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1037 struct super_block *sb = mnt->mnt_sb;
1038 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1039 struct path root = p->root;
1040 int err = 0;
1042 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
1043 MAJOR(sb->s_dev), MINOR(sb->s_dev));
1044 if (sb->s_op->show_path)
1045 err = sb->s_op->show_path(m, mnt);
1046 else
1047 seq_dentry(m, mnt->mnt_root, " \t\n\\");
1048 if (err)
1049 goto out;
1050 seq_putc(m, ' ');
1051 seq_path_root(m, &mnt_path, &root, " \t\n\\");
1052 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
1054 * Mountpoint is outside root, discard that one. Ugly,
1055 * but less so than trying to do that in iterator in a
1056 * race-free way (due to renames).
1058 return SEQ_SKIP;
1060 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
1061 show_mnt_opts(m, mnt);
1063 /* Tagged fields ("foo:X" or "bar") */
1064 if (IS_MNT_SHARED(mnt))
1065 seq_printf(m, " shared:%i", mnt->mnt_group_id);
1066 if (IS_MNT_SLAVE(mnt)) {
1067 int master = mnt->mnt_master->mnt_group_id;
1068 int dom = get_dominating_id(mnt, &p->root);
1069 seq_printf(m, " master:%i", master);
1070 if (dom && dom != master)
1071 seq_printf(m, " propagate_from:%i", dom);
1073 if (IS_MNT_UNBINDABLE(mnt))
1074 seq_puts(m, " unbindable");
1076 /* Filesystem specific data */
1077 seq_puts(m, " - ");
1078 show_type(m, sb);
1079 seq_putc(m, ' ');
1080 if (sb->s_op->show_devname)
1081 err = sb->s_op->show_devname(m, mnt);
1082 else
1083 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
1084 if (err)
1085 goto out;
1086 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
1087 err = show_sb_opts(m, sb);
1088 if (err)
1089 goto out;
1090 if (sb->s_op->show_options)
1091 err = sb->s_op->show_options(m, mnt);
1092 seq_putc(m, '\n');
1093 out:
1094 return err;
1097 const struct seq_operations mountinfo_op = {
1098 .start = m_start,
1099 .next = m_next,
1100 .stop = m_stop,
1101 .show = show_mountinfo,
1104 static int show_vfsstat(struct seq_file *m, void *v)
1106 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1107 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1108 int err = 0;
1110 /* device */
1111 if (mnt->mnt_sb->s_op->show_devname) {
1112 err = mnt->mnt_sb->s_op->show_devname(m, mnt);
1113 } else {
1114 if (mnt->mnt_devname) {
1115 seq_puts(m, "device ");
1116 mangle(m, mnt->mnt_devname);
1117 } else
1118 seq_puts(m, "no device");
1121 /* mount point */
1122 seq_puts(m, " mounted on ");
1123 seq_path(m, &mnt_path, " \t\n\\");
1124 seq_putc(m, ' ');
1126 /* file system type */
1127 seq_puts(m, "with fstype ");
1128 show_type(m, mnt->mnt_sb);
1130 /* optional statistics */
1131 if (mnt->mnt_sb->s_op->show_stats) {
1132 seq_putc(m, ' ');
1133 if (!err)
1134 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
1137 seq_putc(m, '\n');
1138 return err;
1141 const struct seq_operations mountstats_op = {
1142 .start = m_start,
1143 .next = m_next,
1144 .stop = m_stop,
1145 .show = show_vfsstat,
1147 #endif /* CONFIG_PROC_FS */
1150 * may_umount_tree - check if a mount tree is busy
1151 * @mnt: root of mount tree
1153 * This is called to check if a tree of mounts has any
1154 * open files, pwds, chroots or sub mounts that are
1155 * busy.
1157 int may_umount_tree(struct vfsmount *mnt)
1159 int actual_refs = 0;
1160 int minimum_refs = 0;
1161 struct vfsmount *p;
1163 /* write lock needed for mnt_get_count */
1164 br_write_lock(vfsmount_lock);
1165 for (p = mnt; p; p = next_mnt(p, mnt)) {
1166 actual_refs += mnt_get_count(p);
1167 minimum_refs += 2;
1169 br_write_unlock(vfsmount_lock);
1171 if (actual_refs > minimum_refs)
1172 return 0;
1174 return 1;
1177 EXPORT_SYMBOL(may_umount_tree);
1180 * may_umount - check if a mount point is busy
1181 * @mnt: root of mount
1183 * This is called to check if a mount point has any
1184 * open files, pwds, chroots or sub mounts. If the
1185 * mount has sub mounts this will return busy
1186 * regardless of whether the sub mounts are busy.
1188 * Doesn't take quota and stuff into account. IOW, in some cases it will
1189 * give false negatives. The main reason why it's here is that we need
1190 * a non-destructive way to look for easily umountable filesystems.
1192 int may_umount(struct vfsmount *mnt)
1194 int ret = 1;
1195 down_read(&namespace_sem);
1196 br_write_lock(vfsmount_lock);
1197 if (propagate_mount_busy(mnt, 2))
1198 ret = 0;
1199 br_write_unlock(vfsmount_lock);
1200 up_read(&namespace_sem);
1201 return ret;
1204 EXPORT_SYMBOL(may_umount);
1206 void release_mounts(struct list_head *head)
1208 struct vfsmount *mnt;
1209 while (!list_empty(head)) {
1210 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
1211 list_del_init(&mnt->mnt_hash);
1212 if (mnt->mnt_parent != mnt) {
1213 struct dentry *dentry;
1214 struct vfsmount *m;
1216 br_write_lock(vfsmount_lock);
1217 dentry = mnt->mnt_mountpoint;
1218 m = mnt->mnt_parent;
1219 mnt->mnt_mountpoint = mnt->mnt_root;
1220 mnt->mnt_parent = mnt;
1221 m->mnt_ghosts--;
1222 br_write_unlock(vfsmount_lock);
1223 dput(dentry);
1224 mntput(m);
1226 mntput(mnt);
1231 * vfsmount lock must be held for write
1232 * namespace_sem must be held for write
1234 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1236 LIST_HEAD(tmp_list);
1237 struct vfsmount *p;
1239 for (p = mnt; p; p = next_mnt(p, mnt))
1240 list_move(&p->mnt_hash, &tmp_list);
1242 if (propagate)
1243 propagate_umount(&tmp_list);
1245 list_for_each_entry(p, &tmp_list, mnt_hash) {
1246 list_del_init(&p->mnt_expire);
1247 list_del_init(&p->mnt_list);
1248 __touch_mnt_namespace(p->mnt_ns);
1249 p->mnt_ns = NULL;
1250 __mnt_make_shortterm(p);
1251 list_del_init(&p->mnt_child);
1252 if (p->mnt_parent != p) {
1253 p->mnt_parent->mnt_ghosts++;
1254 dentry_reset_mounted(p->mnt_parent, p->mnt_mountpoint);
1256 change_mnt_propagation(p, MS_PRIVATE);
1258 list_splice(&tmp_list, kill);
1261 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1263 static int do_umount(struct vfsmount *mnt, int flags)
1265 struct super_block *sb = mnt->mnt_sb;
1266 int retval;
1267 LIST_HEAD(umount_list);
1269 retval = security_sb_umount(mnt, flags);
1270 if (retval)
1271 return retval;
1274 * Allow userspace to request a mountpoint be expired rather than
1275 * unmounting unconditionally. Unmount only happens if:
1276 * (1) the mark is already set (the mark is cleared by mntput())
1277 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1279 if (flags & MNT_EXPIRE) {
1280 if (mnt == current->fs->root.mnt ||
1281 flags & (MNT_FORCE | MNT_DETACH))
1282 return -EINVAL;
1285 * probably don't strictly need the lock here if we examined
1286 * all race cases, but it's a slowpath.
1288 br_write_lock(vfsmount_lock);
1289 if (mnt_get_count(mnt) != 2) {
1290 br_write_unlock(vfsmount_lock);
1291 return -EBUSY;
1293 br_write_unlock(vfsmount_lock);
1295 if (!xchg(&mnt->mnt_expiry_mark, 1))
1296 return -EAGAIN;
1300 * If we may have to abort operations to get out of this
1301 * mount, and they will themselves hold resources we must
1302 * allow the fs to do things. In the Unix tradition of
1303 * 'Gee thats tricky lets do it in userspace' the umount_begin
1304 * might fail to complete on the first run through as other tasks
1305 * must return, and the like. Thats for the mount program to worry
1306 * about for the moment.
1309 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1310 sb->s_op->umount_begin(sb);
1314 * No sense to grab the lock for this test, but test itself looks
1315 * somewhat bogus. Suggestions for better replacement?
1316 * Ho-hum... In principle, we might treat that as umount + switch
1317 * to rootfs. GC would eventually take care of the old vfsmount.
1318 * Actually it makes sense, especially if rootfs would contain a
1319 * /reboot - static binary that would close all descriptors and
1320 * call reboot(9). Then init(8) could umount root and exec /reboot.
1322 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1324 * Special case for "unmounting" root ...
1325 * we just try to remount it readonly.
1327 down_write(&sb->s_umount);
1328 if (!(sb->s_flags & MS_RDONLY))
1329 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1330 up_write(&sb->s_umount);
1331 return retval;
1334 down_write(&namespace_sem);
1335 br_write_lock(vfsmount_lock);
1336 event++;
1338 if (!(flags & MNT_DETACH))
1339 shrink_submounts(mnt, &umount_list);
1341 retval = -EBUSY;
1342 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1343 if (!list_empty(&mnt->mnt_list))
1344 umount_tree(mnt, 1, &umount_list);
1345 retval = 0;
1347 br_write_unlock(vfsmount_lock);
1348 up_write(&namespace_sem);
1349 release_mounts(&umount_list);
1350 return retval;
1354 * Now umount can handle mount points as well as block devices.
1355 * This is important for filesystems which use unnamed block devices.
1357 * We now support a flag for forced unmount like the other 'big iron'
1358 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1361 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1363 struct path path;
1364 int retval;
1365 int lookup_flags = 0;
1367 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1368 return -EINVAL;
1370 if (!(flags & UMOUNT_NOFOLLOW))
1371 lookup_flags |= LOOKUP_FOLLOW;
1373 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1374 if (retval)
1375 goto out;
1376 retval = -EINVAL;
1377 if (path.dentry != path.mnt->mnt_root)
1378 goto dput_and_out;
1379 if (!check_mnt(path.mnt))
1380 goto dput_and_out;
1382 retval = -EPERM;
1383 if (!capable(CAP_SYS_ADMIN))
1384 goto dput_and_out;
1386 retval = do_umount(path.mnt, flags);
1387 dput_and_out:
1388 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1389 dput(path.dentry);
1390 mntput_no_expire(path.mnt);
1391 out:
1392 return retval;
1395 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1398 * The 2.0 compatible umount. No flags.
1400 SYSCALL_DEFINE1(oldumount, char __user *, name)
1402 return sys_umount(name, 0);
1405 #endif
1407 static int mount_is_safe(struct path *path)
1409 if (capable(CAP_SYS_ADMIN))
1410 return 0;
1411 return -EPERM;
1412 #ifdef notyet
1413 if (S_ISLNK(path->dentry->d_inode->i_mode))
1414 return -EPERM;
1415 if (path->dentry->d_inode->i_mode & S_ISVTX) {
1416 if (current_uid() != path->dentry->d_inode->i_uid)
1417 return -EPERM;
1419 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1420 return -EPERM;
1421 return 0;
1422 #endif
1425 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1426 int flag)
1428 struct vfsmount *res, *p, *q, *r, *s;
1429 struct path path;
1431 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1432 return NULL;
1434 res = q = clone_mnt(mnt, dentry, flag);
1435 if (!q)
1436 goto Enomem;
1437 q->mnt_mountpoint = mnt->mnt_mountpoint;
1439 p = mnt;
1440 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1441 if (!is_subdir(r->mnt_mountpoint, dentry))
1442 continue;
1444 for (s = r; s; s = next_mnt(s, r)) {
1445 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1446 s = skip_mnt_tree(s);
1447 continue;
1449 while (p != s->mnt_parent) {
1450 p = p->mnt_parent;
1451 q = q->mnt_parent;
1453 p = s;
1454 path.mnt = q;
1455 path.dentry = p->mnt_mountpoint;
1456 q = clone_mnt(p, p->mnt_root, flag);
1457 if (!q)
1458 goto Enomem;
1459 br_write_lock(vfsmount_lock);
1460 list_add_tail(&q->mnt_list, &res->mnt_list);
1461 attach_mnt(q, &path);
1462 br_write_unlock(vfsmount_lock);
1465 return res;
1466 Enomem:
1467 if (res) {
1468 LIST_HEAD(umount_list);
1469 br_write_lock(vfsmount_lock);
1470 umount_tree(res, 0, &umount_list);
1471 br_write_unlock(vfsmount_lock);
1472 release_mounts(&umount_list);
1474 return NULL;
1477 struct vfsmount *collect_mounts(struct path *path)
1479 struct vfsmount *tree;
1480 down_write(&namespace_sem);
1481 tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1482 up_write(&namespace_sem);
1483 return tree;
1486 void drop_collected_mounts(struct vfsmount *mnt)
1488 LIST_HEAD(umount_list);
1489 down_write(&namespace_sem);
1490 br_write_lock(vfsmount_lock);
1491 umount_tree(mnt, 0, &umount_list);
1492 br_write_unlock(vfsmount_lock);
1493 up_write(&namespace_sem);
1494 release_mounts(&umount_list);
1497 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1498 struct vfsmount *root)
1500 struct vfsmount *mnt;
1501 int res = f(root, arg);
1502 if (res)
1503 return res;
1504 list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1505 res = f(mnt, arg);
1506 if (res)
1507 return res;
1509 return 0;
1512 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1514 struct vfsmount *p;
1516 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1517 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1518 mnt_release_group_id(p);
1522 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1524 struct vfsmount *p;
1526 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1527 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1528 int err = mnt_alloc_group_id(p);
1529 if (err) {
1530 cleanup_group_ids(mnt, p);
1531 return err;
1536 return 0;
1540 * @source_mnt : mount tree to be attached
1541 * @nd : place the mount tree @source_mnt is attached
1542 * @parent_nd : if non-null, detach the source_mnt from its parent and
1543 * store the parent mount and mountpoint dentry.
1544 * (done when source_mnt is moved)
1546 * NOTE: in the table below explains the semantics when a source mount
1547 * of a given type is attached to a destination mount of a given type.
1548 * ---------------------------------------------------------------------------
1549 * | BIND MOUNT OPERATION |
1550 * |**************************************************************************
1551 * | source-->| shared | private | slave | unbindable |
1552 * | dest | | | | |
1553 * | | | | | | |
1554 * | v | | | | |
1555 * |**************************************************************************
1556 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1557 * | | | | | |
1558 * |non-shared| shared (+) | private | slave (*) | invalid |
1559 * ***************************************************************************
1560 * A bind operation clones the source mount and mounts the clone on the
1561 * destination mount.
1563 * (++) the cloned mount is propagated to all the mounts in the propagation
1564 * tree of the destination mount and the cloned mount is added to
1565 * the peer group of the source mount.
1566 * (+) the cloned mount is created under the destination mount and is marked
1567 * as shared. The cloned mount is added to the peer group of the source
1568 * mount.
1569 * (+++) the mount is propagated to all the mounts in the propagation tree
1570 * of the destination mount and the cloned mount is made slave
1571 * of the same master as that of the source mount. The cloned mount
1572 * is marked as 'shared and slave'.
1573 * (*) the cloned mount is made a slave of the same master as that of the
1574 * source mount.
1576 * ---------------------------------------------------------------------------
1577 * | MOVE MOUNT OPERATION |
1578 * |**************************************************************************
1579 * | source-->| shared | private | slave | unbindable |
1580 * | dest | | | | |
1581 * | | | | | | |
1582 * | v | | | | |
1583 * |**************************************************************************
1584 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1585 * | | | | | |
1586 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1587 * ***************************************************************************
1589 * (+) the mount is moved to the destination. And is then propagated to
1590 * all the mounts in the propagation tree of the destination mount.
1591 * (+*) the mount is moved to the destination.
1592 * (+++) the mount is moved to the destination and is then propagated to
1593 * all the mounts belonging to the destination mount's propagation tree.
1594 * the mount is marked as 'shared and slave'.
1595 * (*) the mount continues to be a slave at the new location.
1597 * if the source mount is a tree, the operations explained above is
1598 * applied to each mount in the tree.
1599 * Must be called without spinlocks held, since this function can sleep
1600 * in allocations.
1602 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1603 struct path *path, struct path *parent_path)
1605 LIST_HEAD(tree_list);
1606 struct vfsmount *dest_mnt = path->mnt;
1607 struct dentry *dest_dentry = path->dentry;
1608 struct vfsmount *child, *p;
1609 int err;
1611 if (IS_MNT_SHARED(dest_mnt)) {
1612 err = invent_group_ids(source_mnt, true);
1613 if (err)
1614 goto out;
1616 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1617 if (err)
1618 goto out_cleanup_ids;
1620 br_write_lock(vfsmount_lock);
1622 if (IS_MNT_SHARED(dest_mnt)) {
1623 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1624 set_mnt_shared(p);
1626 if (parent_path) {
1627 detach_mnt(source_mnt, parent_path);
1628 attach_mnt(source_mnt, path);
1629 touch_mnt_namespace(parent_path->mnt->mnt_ns);
1630 } else {
1631 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1632 commit_tree(source_mnt);
1635 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1636 list_del_init(&child->mnt_hash);
1637 commit_tree(child);
1639 br_write_unlock(vfsmount_lock);
1641 return 0;
1643 out_cleanup_ids:
1644 if (IS_MNT_SHARED(dest_mnt))
1645 cleanup_group_ids(source_mnt, NULL);
1646 out:
1647 return err;
1650 static int lock_mount(struct path *path)
1652 struct vfsmount *mnt;
1653 retry:
1654 mutex_lock(&path->dentry->d_inode->i_mutex);
1655 if (unlikely(cant_mount(path->dentry))) {
1656 mutex_unlock(&path->dentry->d_inode->i_mutex);
1657 return -ENOENT;
1659 down_write(&namespace_sem);
1660 mnt = lookup_mnt(path);
1661 if (likely(!mnt))
1662 return 0;
1663 up_write(&namespace_sem);
1664 mutex_unlock(&path->dentry->d_inode->i_mutex);
1665 path_put(path);
1666 path->mnt = mnt;
1667 path->dentry = dget(mnt->mnt_root);
1668 goto retry;
1671 static void unlock_mount(struct path *path)
1673 up_write(&namespace_sem);
1674 mutex_unlock(&path->dentry->d_inode->i_mutex);
1677 static int graft_tree(struct vfsmount *mnt, struct path *path)
1679 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1680 return -EINVAL;
1682 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1683 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1684 return -ENOTDIR;
1686 if (d_unlinked(path->dentry))
1687 return -ENOENT;
1689 return attach_recursive_mnt(mnt, path, NULL);
1693 * Sanity check the flags to change_mnt_propagation.
1696 static int flags_to_propagation_type(int flags)
1698 int type = flags & ~(MS_REC | MS_SILENT);
1700 /* Fail if any non-propagation flags are set */
1701 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1702 return 0;
1703 /* Only one propagation flag should be set */
1704 if (!is_power_of_2(type))
1705 return 0;
1706 return type;
1710 * recursively change the type of the mountpoint.
1712 static int do_change_type(struct path *path, int flag)
1714 struct vfsmount *m, *mnt = path->mnt;
1715 int recurse = flag & MS_REC;
1716 int type;
1717 int err = 0;
1719 if (!capable(CAP_SYS_ADMIN))
1720 return -EPERM;
1722 if (path->dentry != path->mnt->mnt_root)
1723 return -EINVAL;
1725 type = flags_to_propagation_type(flag);
1726 if (!type)
1727 return -EINVAL;
1729 down_write(&namespace_sem);
1730 if (type == MS_SHARED) {
1731 err = invent_group_ids(mnt, recurse);
1732 if (err)
1733 goto out_unlock;
1736 br_write_lock(vfsmount_lock);
1737 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1738 change_mnt_propagation(m, type);
1739 br_write_unlock(vfsmount_lock);
1741 out_unlock:
1742 up_write(&namespace_sem);
1743 return err;
1747 * do loopback mount.
1749 static int do_loopback(struct path *path, char *old_name,
1750 int recurse)
1752 LIST_HEAD(umount_list);
1753 struct path old_path;
1754 struct vfsmount *mnt = NULL;
1755 int err = mount_is_safe(path);
1756 if (err)
1757 return err;
1758 if (!old_name || !*old_name)
1759 return -EINVAL;
1760 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1761 if (err)
1762 return err;
1764 err = lock_mount(path);
1765 if (err)
1766 goto out;
1768 err = -EINVAL;
1769 if (IS_MNT_UNBINDABLE(old_path.mnt))
1770 goto out2;
1772 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1773 goto out2;
1775 err = -ENOMEM;
1776 if (recurse)
1777 mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
1778 else
1779 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
1781 if (!mnt)
1782 goto out2;
1784 err = graft_tree(mnt, path);
1785 if (err) {
1786 br_write_lock(vfsmount_lock);
1787 umount_tree(mnt, 0, &umount_list);
1788 br_write_unlock(vfsmount_lock);
1790 out2:
1791 unlock_mount(path);
1792 release_mounts(&umount_list);
1793 out:
1794 path_put(&old_path);
1795 return err;
1798 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1800 int error = 0;
1801 int readonly_request = 0;
1803 if (ms_flags & MS_RDONLY)
1804 readonly_request = 1;
1805 if (readonly_request == __mnt_is_readonly(mnt))
1806 return 0;
1808 if (readonly_request)
1809 error = mnt_make_readonly(mnt);
1810 else
1811 __mnt_unmake_readonly(mnt);
1812 return error;
1816 * change filesystem flags. dir should be a physical root of filesystem.
1817 * If you've mounted a non-root directory somewhere and want to do remount
1818 * on it - tough luck.
1820 static int do_remount(struct path *path, int flags, int mnt_flags,
1821 void *data)
1823 int err;
1824 struct super_block *sb = path->mnt->mnt_sb;
1826 if (!capable(CAP_SYS_ADMIN))
1827 return -EPERM;
1829 if (!check_mnt(path->mnt))
1830 return -EINVAL;
1832 if (path->dentry != path->mnt->mnt_root)
1833 return -EINVAL;
1835 err = security_sb_remount(sb, data);
1836 if (err)
1837 return err;
1839 down_write(&sb->s_umount);
1840 if (flags & MS_BIND)
1841 err = change_mount_flags(path->mnt, flags);
1842 else
1843 err = do_remount_sb(sb, flags, data, 0);
1844 if (!err) {
1845 br_write_lock(vfsmount_lock);
1846 mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
1847 path->mnt->mnt_flags = mnt_flags;
1848 br_write_unlock(vfsmount_lock);
1850 up_write(&sb->s_umount);
1851 if (!err) {
1852 br_write_lock(vfsmount_lock);
1853 touch_mnt_namespace(path->mnt->mnt_ns);
1854 br_write_unlock(vfsmount_lock);
1856 return err;
1859 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1861 struct vfsmount *p;
1862 for (p = mnt; p; p = next_mnt(p, mnt)) {
1863 if (IS_MNT_UNBINDABLE(p))
1864 return 1;
1866 return 0;
1869 static int do_move_mount(struct path *path, char *old_name)
1871 struct path old_path, parent_path;
1872 struct vfsmount *p;
1873 int err = 0;
1874 if (!capable(CAP_SYS_ADMIN))
1875 return -EPERM;
1876 if (!old_name || !*old_name)
1877 return -EINVAL;
1878 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1879 if (err)
1880 return err;
1882 err = lock_mount(path);
1883 if (err < 0)
1884 goto out;
1886 err = -EINVAL;
1887 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1888 goto out1;
1890 if (d_unlinked(path->dentry))
1891 goto out1;
1893 err = -EINVAL;
1894 if (old_path.dentry != old_path.mnt->mnt_root)
1895 goto out1;
1897 if (old_path.mnt == old_path.mnt->mnt_parent)
1898 goto out1;
1900 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1901 S_ISDIR(old_path.dentry->d_inode->i_mode))
1902 goto out1;
1904 * Don't move a mount residing in a shared parent.
1906 if (old_path.mnt->mnt_parent &&
1907 IS_MNT_SHARED(old_path.mnt->mnt_parent))
1908 goto out1;
1910 * Don't move a mount tree containing unbindable mounts to a destination
1911 * mount which is shared.
1913 if (IS_MNT_SHARED(path->mnt) &&
1914 tree_contains_unbindable(old_path.mnt))
1915 goto out1;
1916 err = -ELOOP;
1917 for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1918 if (p == old_path.mnt)
1919 goto out1;
1921 err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
1922 if (err)
1923 goto out1;
1925 /* if the mount is moved, it should no longer be expire
1926 * automatically */
1927 list_del_init(&old_path.mnt->mnt_expire);
1928 out1:
1929 unlock_mount(path);
1930 out:
1931 if (!err)
1932 path_put(&parent_path);
1933 path_put(&old_path);
1934 return err;
1937 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1939 int err;
1940 const char *subtype = strchr(fstype, '.');
1941 if (subtype) {
1942 subtype++;
1943 err = -EINVAL;
1944 if (!subtype[0])
1945 goto err;
1946 } else
1947 subtype = "";
1949 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1950 err = -ENOMEM;
1951 if (!mnt->mnt_sb->s_subtype)
1952 goto err;
1953 return mnt;
1955 err:
1956 mntput(mnt);
1957 return ERR_PTR(err);
1960 struct vfsmount *
1961 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1963 struct file_system_type *type = get_fs_type(fstype);
1964 struct vfsmount *mnt;
1965 if (!type)
1966 return ERR_PTR(-ENODEV);
1967 mnt = vfs_kern_mount(type, flags, name, data);
1968 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1969 !mnt->mnt_sb->s_subtype)
1970 mnt = fs_set_subtype(mnt, fstype);
1971 put_filesystem(type);
1972 return mnt;
1974 EXPORT_SYMBOL_GPL(do_kern_mount);
1977 * add a mount into a namespace's mount tree
1979 static int do_add_mount(struct vfsmount *newmnt, struct path *path, int mnt_flags)
1981 int err;
1983 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1985 err = lock_mount(path);
1986 if (err)
1987 return err;
1989 err = -EINVAL;
1990 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1991 goto unlock;
1993 /* Refuse the same filesystem on the same mount point */
1994 err = -EBUSY;
1995 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1996 path->mnt->mnt_root == path->dentry)
1997 goto unlock;
1999 err = -EINVAL;
2000 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
2001 goto unlock;
2003 newmnt->mnt_flags = mnt_flags;
2004 err = graft_tree(newmnt, path);
2006 unlock:
2007 unlock_mount(path);
2008 return err;
2012 * create a new mount for userspace and request it to be added into the
2013 * namespace's tree
2015 static int do_new_mount(struct path *path, char *type, int flags,
2016 int mnt_flags, char *name, void *data)
2018 struct vfsmount *mnt;
2019 int err;
2021 if (!type)
2022 return -EINVAL;
2024 /* we need capabilities... */
2025 if (!capable(CAP_SYS_ADMIN))
2026 return -EPERM;
2028 mnt = do_kern_mount(type, flags, name, data);
2029 if (IS_ERR(mnt))
2030 return PTR_ERR(mnt);
2032 err = do_add_mount(mnt, path, mnt_flags);
2033 if (err)
2034 mntput(mnt);
2035 return err;
2038 int finish_automount(struct vfsmount *m, struct path *path)
2040 int err;
2041 /* The new mount record should have at least 2 refs to prevent it being
2042 * expired before we get a chance to add it
2044 BUG_ON(mnt_get_count(m) < 2);
2046 if (m->mnt_sb == path->mnt->mnt_sb &&
2047 m->mnt_root == path->dentry) {
2048 err = -ELOOP;
2049 goto fail;
2052 err = do_add_mount(m, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2053 if (!err)
2054 return 0;
2055 fail:
2056 /* remove m from any expiration list it may be on */
2057 if (!list_empty(&m->mnt_expire)) {
2058 down_write(&namespace_sem);
2059 br_write_lock(vfsmount_lock);
2060 list_del_init(&m->mnt_expire);
2061 br_write_unlock(vfsmount_lock);
2062 up_write(&namespace_sem);
2064 mntput(m);
2065 mntput(m);
2066 return err;
2070 * mnt_set_expiry - Put a mount on an expiration list
2071 * @mnt: The mount to list.
2072 * @expiry_list: The list to add the mount to.
2074 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2076 down_write(&namespace_sem);
2077 br_write_lock(vfsmount_lock);
2079 list_add_tail(&mnt->mnt_expire, expiry_list);
2081 br_write_unlock(vfsmount_lock);
2082 up_write(&namespace_sem);
2084 EXPORT_SYMBOL(mnt_set_expiry);
2087 * process a list of expirable mountpoints with the intent of discarding any
2088 * mountpoints that aren't in use and haven't been touched since last we came
2089 * here
2091 void mark_mounts_for_expiry(struct list_head *mounts)
2093 struct vfsmount *mnt, *next;
2094 LIST_HEAD(graveyard);
2095 LIST_HEAD(umounts);
2097 if (list_empty(mounts))
2098 return;
2100 down_write(&namespace_sem);
2101 br_write_lock(vfsmount_lock);
2103 /* extract from the expiration list every vfsmount that matches the
2104 * following criteria:
2105 * - only referenced by its parent vfsmount
2106 * - still marked for expiry (marked on the last call here; marks are
2107 * cleared by mntput())
2109 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2110 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2111 propagate_mount_busy(mnt, 1))
2112 continue;
2113 list_move(&mnt->mnt_expire, &graveyard);
2115 while (!list_empty(&graveyard)) {
2116 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
2117 touch_mnt_namespace(mnt->mnt_ns);
2118 umount_tree(mnt, 1, &umounts);
2120 br_write_unlock(vfsmount_lock);
2121 up_write(&namespace_sem);
2123 release_mounts(&umounts);
2126 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2129 * Ripoff of 'select_parent()'
2131 * search the list of submounts for a given mountpoint, and move any
2132 * shrinkable submounts to the 'graveyard' list.
2134 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
2136 struct vfsmount *this_parent = parent;
2137 struct list_head *next;
2138 int found = 0;
2140 repeat:
2141 next = this_parent->mnt_mounts.next;
2142 resume:
2143 while (next != &this_parent->mnt_mounts) {
2144 struct list_head *tmp = next;
2145 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
2147 next = tmp->next;
2148 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
2149 continue;
2151 * Descend a level if the d_mounts list is non-empty.
2153 if (!list_empty(&mnt->mnt_mounts)) {
2154 this_parent = mnt;
2155 goto repeat;
2158 if (!propagate_mount_busy(mnt, 1)) {
2159 list_move_tail(&mnt->mnt_expire, graveyard);
2160 found++;
2164 * All done at this level ... ascend and resume the search
2166 if (this_parent != parent) {
2167 next = this_parent->mnt_child.next;
2168 this_parent = this_parent->mnt_parent;
2169 goto resume;
2171 return found;
2175 * process a list of expirable mountpoints with the intent of discarding any
2176 * submounts of a specific parent mountpoint
2178 * vfsmount_lock must be held for write
2180 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
2182 LIST_HEAD(graveyard);
2183 struct vfsmount *m;
2185 /* extract submounts of 'mountpoint' from the expiration list */
2186 while (select_submounts(mnt, &graveyard)) {
2187 while (!list_empty(&graveyard)) {
2188 m = list_first_entry(&graveyard, struct vfsmount,
2189 mnt_expire);
2190 touch_mnt_namespace(m->mnt_ns);
2191 umount_tree(m, 1, umounts);
2197 * Some copy_from_user() implementations do not return the exact number of
2198 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2199 * Note that this function differs from copy_from_user() in that it will oops
2200 * on bad values of `to', rather than returning a short copy.
2202 static long exact_copy_from_user(void *to, const void __user * from,
2203 unsigned long n)
2205 char *t = to;
2206 const char __user *f = from;
2207 char c;
2209 if (!access_ok(VERIFY_READ, from, n))
2210 return n;
2212 while (n) {
2213 if (__get_user(c, f)) {
2214 memset(t, 0, n);
2215 break;
2217 *t++ = c;
2218 f++;
2219 n--;
2221 return n;
2224 int copy_mount_options(const void __user * data, unsigned long *where)
2226 int i;
2227 unsigned long page;
2228 unsigned long size;
2230 *where = 0;
2231 if (!data)
2232 return 0;
2234 if (!(page = __get_free_page(GFP_KERNEL)))
2235 return -ENOMEM;
2237 /* We only care that *some* data at the address the user
2238 * gave us is valid. Just in case, we'll zero
2239 * the remainder of the page.
2241 /* copy_from_user cannot cross TASK_SIZE ! */
2242 size = TASK_SIZE - (unsigned long)data;
2243 if (size > PAGE_SIZE)
2244 size = PAGE_SIZE;
2246 i = size - exact_copy_from_user((void *)page, data, size);
2247 if (!i) {
2248 free_page(page);
2249 return -EFAULT;
2251 if (i != PAGE_SIZE)
2252 memset((char *)page + i, 0, PAGE_SIZE - i);
2253 *where = page;
2254 return 0;
2257 int copy_mount_string(const void __user *data, char **where)
2259 char *tmp;
2261 if (!data) {
2262 *where = NULL;
2263 return 0;
2266 tmp = strndup_user(data, PAGE_SIZE);
2267 if (IS_ERR(tmp))
2268 return PTR_ERR(tmp);
2270 *where = tmp;
2271 return 0;
2275 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2276 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2278 * data is a (void *) that can point to any structure up to
2279 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2280 * information (or be NULL).
2282 * Pre-0.97 versions of mount() didn't have a flags word.
2283 * When the flags word was introduced its top half was required
2284 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2285 * Therefore, if this magic number is present, it carries no information
2286 * and must be discarded.
2288 long do_mount(char *dev_name, char *dir_name, char *type_page,
2289 unsigned long flags, void *data_page)
2291 struct path path;
2292 int retval = 0;
2293 int mnt_flags = 0;
2295 /* Discard magic */
2296 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2297 flags &= ~MS_MGC_MSK;
2299 /* Basic sanity checks */
2301 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2302 return -EINVAL;
2304 if (data_page)
2305 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2307 /* ... and get the mountpoint */
2308 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2309 if (retval)
2310 return retval;
2312 retval = security_sb_mount(dev_name, &path,
2313 type_page, flags, data_page);
2314 if (retval)
2315 goto dput_out;
2317 /* Default to relatime unless overriden */
2318 if (!(flags & MS_NOATIME))
2319 mnt_flags |= MNT_RELATIME;
2321 /* Separate the per-mountpoint flags */
2322 if (flags & MS_NOSUID)
2323 mnt_flags |= MNT_NOSUID;
2324 if (flags & MS_NODEV)
2325 mnt_flags |= MNT_NODEV;
2326 if (flags & MS_NOEXEC)
2327 mnt_flags |= MNT_NOEXEC;
2328 if (flags & MS_NOATIME)
2329 mnt_flags |= MNT_NOATIME;
2330 if (flags & MS_NODIRATIME)
2331 mnt_flags |= MNT_NODIRATIME;
2332 if (flags & MS_STRICTATIME)
2333 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2334 if (flags & MS_RDONLY)
2335 mnt_flags |= MNT_READONLY;
2337 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2338 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2339 MS_STRICTATIME);
2341 if (flags & MS_REMOUNT)
2342 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2343 data_page);
2344 else if (flags & MS_BIND)
2345 retval = do_loopback(&path, dev_name, flags & MS_REC);
2346 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2347 retval = do_change_type(&path, flags);
2348 else if (flags & MS_MOVE)
2349 retval = do_move_mount(&path, dev_name);
2350 else
2351 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2352 dev_name, data_page);
2353 dput_out:
2354 path_put(&path);
2355 return retval;
2358 static struct mnt_namespace *alloc_mnt_ns(void)
2360 struct mnt_namespace *new_ns;
2362 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2363 if (!new_ns)
2364 return ERR_PTR(-ENOMEM);
2365 atomic_set(&new_ns->count, 1);
2366 new_ns->root = NULL;
2367 INIT_LIST_HEAD(&new_ns->list);
2368 init_waitqueue_head(&new_ns->poll);
2369 new_ns->event = 0;
2370 return new_ns;
2373 void mnt_make_longterm(struct vfsmount *mnt)
2375 __mnt_make_longterm(mnt);
2378 void mnt_make_shortterm(struct vfsmount *mnt)
2380 #ifdef CONFIG_SMP
2381 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
2382 return;
2383 br_write_lock(vfsmount_lock);
2384 atomic_dec(&mnt->mnt_longterm);
2385 br_write_unlock(vfsmount_lock);
2386 #endif
2390 * Allocate a new namespace structure and populate it with contents
2391 * copied from the namespace of the passed in task structure.
2393 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2394 struct fs_struct *fs)
2396 struct mnt_namespace *new_ns;
2397 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2398 struct vfsmount *p, *q;
2400 new_ns = alloc_mnt_ns();
2401 if (IS_ERR(new_ns))
2402 return new_ns;
2404 down_write(&namespace_sem);
2405 /* First pass: copy the tree topology */
2406 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
2407 CL_COPY_ALL | CL_EXPIRE);
2408 if (!new_ns->root) {
2409 up_write(&namespace_sem);
2410 kfree(new_ns);
2411 return ERR_PTR(-ENOMEM);
2413 br_write_lock(vfsmount_lock);
2414 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
2415 br_write_unlock(vfsmount_lock);
2418 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2419 * as belonging to new namespace. We have already acquired a private
2420 * fs_struct, so tsk->fs->lock is not needed.
2422 p = mnt_ns->root;
2423 q = new_ns->root;
2424 while (p) {
2425 q->mnt_ns = new_ns;
2426 __mnt_make_longterm(q);
2427 if (fs) {
2428 if (p == fs->root.mnt) {
2429 fs->root.mnt = mntget(q);
2430 __mnt_make_longterm(q);
2431 mnt_make_shortterm(p);
2432 rootmnt = p;
2434 if (p == fs->pwd.mnt) {
2435 fs->pwd.mnt = mntget(q);
2436 __mnt_make_longterm(q);
2437 mnt_make_shortterm(p);
2438 pwdmnt = p;
2441 p = next_mnt(p, mnt_ns->root);
2442 q = next_mnt(q, new_ns->root);
2444 up_write(&namespace_sem);
2446 if (rootmnt)
2447 mntput(rootmnt);
2448 if (pwdmnt)
2449 mntput(pwdmnt);
2451 return new_ns;
2454 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2455 struct fs_struct *new_fs)
2457 struct mnt_namespace *new_ns;
2459 BUG_ON(!ns);
2460 get_mnt_ns(ns);
2462 if (!(flags & CLONE_NEWNS))
2463 return ns;
2465 new_ns = dup_mnt_ns(ns, new_fs);
2467 put_mnt_ns(ns);
2468 return new_ns;
2472 * create_mnt_ns - creates a private namespace and adds a root filesystem
2473 * @mnt: pointer to the new root filesystem mountpoint
2475 struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
2477 struct mnt_namespace *new_ns;
2479 new_ns = alloc_mnt_ns();
2480 if (!IS_ERR(new_ns)) {
2481 mnt->mnt_ns = new_ns;
2482 __mnt_make_longterm(mnt);
2483 new_ns->root = mnt;
2484 list_add(&new_ns->list, &new_ns->root->mnt_list);
2486 return new_ns;
2488 EXPORT_SYMBOL(create_mnt_ns);
2490 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2491 char __user *, type, unsigned long, flags, void __user *, data)
2493 int ret;
2494 char *kernel_type;
2495 char *kernel_dir;
2496 char *kernel_dev;
2497 unsigned long data_page;
2499 ret = copy_mount_string(type, &kernel_type);
2500 if (ret < 0)
2501 goto out_type;
2503 kernel_dir = getname(dir_name);
2504 if (IS_ERR(kernel_dir)) {
2505 ret = PTR_ERR(kernel_dir);
2506 goto out_dir;
2509 ret = copy_mount_string(dev_name, &kernel_dev);
2510 if (ret < 0)
2511 goto out_dev;
2513 ret = copy_mount_options(data, &data_page);
2514 if (ret < 0)
2515 goto out_data;
2517 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2518 (void *) data_page);
2520 free_page(data_page);
2521 out_data:
2522 kfree(kernel_dev);
2523 out_dev:
2524 putname(kernel_dir);
2525 out_dir:
2526 kfree(kernel_type);
2527 out_type:
2528 return ret;
2532 * pivot_root Semantics:
2533 * Moves the root file system of the current process to the directory put_old,
2534 * makes new_root as the new root file system of the current process, and sets
2535 * root/cwd of all processes which had them on the current root to new_root.
2537 * Restrictions:
2538 * The new_root and put_old must be directories, and must not be on the
2539 * same file system as the current process root. The put_old must be
2540 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2541 * pointed to by put_old must yield the same directory as new_root. No other
2542 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2544 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2545 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2546 * in this situation.
2548 * Notes:
2549 * - we don't move root/cwd if they are not at the root (reason: if something
2550 * cared enough to change them, it's probably wrong to force them elsewhere)
2551 * - it's okay to pick a root that isn't the root of a file system, e.g.
2552 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2553 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2554 * first.
2556 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2557 const char __user *, put_old)
2559 struct vfsmount *tmp;
2560 struct path new, old, parent_path, root_parent, root;
2561 int error;
2563 if (!capable(CAP_SYS_ADMIN))
2564 return -EPERM;
2566 error = user_path_dir(new_root, &new);
2567 if (error)
2568 goto out0;
2570 error = user_path_dir(put_old, &old);
2571 if (error)
2572 goto out1;
2574 error = security_sb_pivotroot(&old, &new);
2575 if (error)
2576 goto out2;
2578 get_fs_root(current->fs, &root);
2579 error = lock_mount(&old);
2580 if (error)
2581 goto out3;
2583 error = -EINVAL;
2584 if (IS_MNT_SHARED(old.mnt) ||
2585 IS_MNT_SHARED(new.mnt->mnt_parent) ||
2586 IS_MNT_SHARED(root.mnt->mnt_parent))
2587 goto out4;
2588 if (!check_mnt(root.mnt) || !check_mnt(new.mnt))
2589 goto out4;
2590 error = -ENOENT;
2591 if (d_unlinked(new.dentry))
2592 goto out4;
2593 if (d_unlinked(old.dentry))
2594 goto out4;
2595 error = -EBUSY;
2596 if (new.mnt == root.mnt ||
2597 old.mnt == root.mnt)
2598 goto out4; /* loop, on the same file system */
2599 error = -EINVAL;
2600 if (root.mnt->mnt_root != root.dentry)
2601 goto out4; /* not a mountpoint */
2602 if (root.mnt->mnt_parent == root.mnt)
2603 goto out4; /* not attached */
2604 if (new.mnt->mnt_root != new.dentry)
2605 goto out4; /* not a mountpoint */
2606 if (new.mnt->mnt_parent == new.mnt)
2607 goto out4; /* not attached */
2608 /* make sure we can reach put_old from new_root */
2609 tmp = old.mnt;
2610 if (tmp != new.mnt) {
2611 for (;;) {
2612 if (tmp->mnt_parent == tmp)
2613 goto out4; /* already mounted on put_old */
2614 if (tmp->mnt_parent == new.mnt)
2615 break;
2616 tmp = tmp->mnt_parent;
2618 if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
2619 goto out4;
2620 } else if (!is_subdir(old.dentry, new.dentry))
2621 goto out4;
2622 br_write_lock(vfsmount_lock);
2623 detach_mnt(new.mnt, &parent_path);
2624 detach_mnt(root.mnt, &root_parent);
2625 /* mount old root on put_old */
2626 attach_mnt(root.mnt, &old);
2627 /* mount new_root on / */
2628 attach_mnt(new.mnt, &root_parent);
2629 touch_mnt_namespace(current->nsproxy->mnt_ns);
2630 br_write_unlock(vfsmount_lock);
2631 chroot_fs_refs(&root, &new);
2632 error = 0;
2633 out4:
2634 unlock_mount(&old);
2635 if (!error) {
2636 path_put(&root_parent);
2637 path_put(&parent_path);
2639 out3:
2640 path_put(&root);
2641 out2:
2642 path_put(&old);
2643 out1:
2644 path_put(&new);
2645 out0:
2646 return error;
2649 static void __init init_mount_tree(void)
2651 struct vfsmount *mnt;
2652 struct mnt_namespace *ns;
2653 struct path root;
2655 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2656 if (IS_ERR(mnt))
2657 panic("Can't create rootfs");
2659 ns = create_mnt_ns(mnt);
2660 if (IS_ERR(ns))
2661 panic("Can't allocate initial namespace");
2663 init_task.nsproxy->mnt_ns = ns;
2664 get_mnt_ns(ns);
2666 root.mnt = ns->root;
2667 root.dentry = ns->root->mnt_root;
2669 set_fs_pwd(current->fs, &root);
2670 set_fs_root(current->fs, &root);
2673 void __init mnt_init(void)
2675 unsigned u;
2676 int err;
2678 init_rwsem(&namespace_sem);
2680 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2681 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2683 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2685 if (!mount_hashtable)
2686 panic("Failed to allocate mount hash table\n");
2688 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2690 for (u = 0; u < HASH_SIZE; u++)
2691 INIT_LIST_HEAD(&mount_hashtable[u]);
2693 br_lock_init(vfsmount_lock);
2695 err = sysfs_init();
2696 if (err)
2697 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2698 __func__, err);
2699 fs_kobj = kobject_create_and_add("fs", NULL);
2700 if (!fs_kobj)
2701 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2702 init_rootfs();
2703 init_mount_tree();
2706 void put_mnt_ns(struct mnt_namespace *ns)
2708 LIST_HEAD(umount_list);
2710 if (!atomic_dec_and_test(&ns->count))
2711 return;
2712 down_write(&namespace_sem);
2713 br_write_lock(vfsmount_lock);
2714 umount_tree(ns->root, 0, &umount_list);
2715 br_write_unlock(vfsmount_lock);
2716 up_write(&namespace_sem);
2717 release_mounts(&umount_list);
2718 kfree(ns);
2720 EXPORT_SYMBOL(put_mnt_ns);
2722 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2724 struct vfsmount *mnt;
2725 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2726 if (!IS_ERR(mnt)) {
2728 * it is a longterm mount, don't release mnt until
2729 * we unmount before file sys is unregistered
2731 mnt_make_longterm(mnt);
2733 return mnt;
2735 EXPORT_SYMBOL_GPL(kern_mount_data);
2737 void kern_unmount(struct vfsmount *mnt)
2739 /* release long term mount so mount point can be released */
2740 if (!IS_ERR_OR_NULL(mnt)) {
2741 mnt_make_shortterm(mnt);
2742 mntput(mnt);
2745 EXPORT_SYMBOL(kern_unmount);