4 * Incoming and outgoing message routing for an IPMI interface.
6 * Author: MontaVista Software, Inc.
7 * Corey Minyard <minyard@mvista.com>
10 * Copyright 2002 MontaVista Software Inc.
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <linux/poll.h>
37 #include <linux/sched.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/mutex.h>
41 #include <linux/slab.h>
42 #include <linux/ipmi.h>
43 #include <linux/ipmi_smi.h>
44 #include <linux/notifier.h>
45 #include <linux/init.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/interrupt.h>
50 #define PFX "IPMI message handler: "
52 #define IPMI_DRIVER_VERSION "39.2"
54 static struct ipmi_recv_msg
*ipmi_alloc_recv_msg(void);
55 static int ipmi_init_msghandler(void);
56 static void smi_recv_tasklet(unsigned long);
57 static void handle_new_recv_msgs(ipmi_smi_t intf
);
59 static int initialized
;
62 static struct proc_dir_entry
*proc_ipmi_root
;
63 #endif /* CONFIG_PROC_FS */
65 /* Remain in auto-maintenance mode for this amount of time (in ms). */
66 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
68 #define MAX_EVENTS_IN_QUEUE 25
71 * Don't let a message sit in a queue forever, always time it with at lest
72 * the max message timer. This is in milliseconds.
74 #define MAX_MSG_TIMEOUT 60000
77 * The main "user" data structure.
80 struct list_head link
;
82 /* Set to "0" when the user is destroyed. */
87 /* The upper layer that handles receive messages. */
88 struct ipmi_user_hndl
*handler
;
91 /* The interface this user is bound to. */
94 /* Does this interface receive IPMI events? */
99 struct list_head link
;
107 * This is used to form a linked lised during mass deletion.
108 * Since this is in an RCU list, we cannot use the link above
109 * or change any data until the RCU period completes. So we
110 * use this next variable during mass deletion so we can have
111 * a list and don't have to wait and restart the search on
112 * every individual deletion of a command.
114 struct cmd_rcvr
*next
;
118 unsigned int inuse
: 1;
119 unsigned int broadcast
: 1;
121 unsigned long timeout
;
122 unsigned long orig_timeout
;
123 unsigned int retries_left
;
126 * To verify on an incoming send message response that this is
127 * the message that the response is for, we keep a sequence id
128 * and increment it every time we send a message.
133 * This is held so we can properly respond to the message on a
134 * timeout, and it is used to hold the temporary data for
135 * retransmission, too.
137 struct ipmi_recv_msg
*recv_msg
;
141 * Store the information in a msgid (long) to allow us to find a
142 * sequence table entry from the msgid.
144 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
146 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
148 seq = ((msgid >> 26) & 0x3f); \
149 seqid = (msgid & 0x3fffff); \
152 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
154 struct ipmi_channel
{
155 unsigned char medium
;
156 unsigned char protocol
;
159 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
160 * but may be changed by the user.
162 unsigned char address
;
165 * My LUN. This should generally stay the SMS LUN, but just in
171 #ifdef CONFIG_PROC_FS
172 struct ipmi_proc_entry
{
174 struct ipmi_proc_entry
*next
;
179 struct platform_device
*dev
;
180 struct ipmi_device_id id
;
181 unsigned char guid
[16];
184 struct kref refcount
;
186 /* bmc device attributes */
187 struct device_attribute device_id_attr
;
188 struct device_attribute provides_dev_sdrs_attr
;
189 struct device_attribute revision_attr
;
190 struct device_attribute firmware_rev_attr
;
191 struct device_attribute version_attr
;
192 struct device_attribute add_dev_support_attr
;
193 struct device_attribute manufacturer_id_attr
;
194 struct device_attribute product_id_attr
;
195 struct device_attribute guid_attr
;
196 struct device_attribute aux_firmware_rev_attr
;
200 * Various statistics for IPMI, these index stats[] in the ipmi_smi
203 enum ipmi_stat_indexes
{
204 /* Commands we got from the user that were invalid. */
205 IPMI_STAT_sent_invalid_commands
= 0,
207 /* Commands we sent to the MC. */
208 IPMI_STAT_sent_local_commands
,
210 /* Responses from the MC that were delivered to a user. */
211 IPMI_STAT_handled_local_responses
,
213 /* Responses from the MC that were not delivered to a user. */
214 IPMI_STAT_unhandled_local_responses
,
216 /* Commands we sent out to the IPMB bus. */
217 IPMI_STAT_sent_ipmb_commands
,
219 /* Commands sent on the IPMB that had errors on the SEND CMD */
220 IPMI_STAT_sent_ipmb_command_errs
,
222 /* Each retransmit increments this count. */
223 IPMI_STAT_retransmitted_ipmb_commands
,
226 * When a message times out (runs out of retransmits) this is
229 IPMI_STAT_timed_out_ipmb_commands
,
232 * This is like above, but for broadcasts. Broadcasts are
233 * *not* included in the above count (they are expected to
236 IPMI_STAT_timed_out_ipmb_broadcasts
,
238 /* Responses I have sent to the IPMB bus. */
239 IPMI_STAT_sent_ipmb_responses
,
241 /* The response was delivered to the user. */
242 IPMI_STAT_handled_ipmb_responses
,
244 /* The response had invalid data in it. */
245 IPMI_STAT_invalid_ipmb_responses
,
247 /* The response didn't have anyone waiting for it. */
248 IPMI_STAT_unhandled_ipmb_responses
,
250 /* Commands we sent out to the IPMB bus. */
251 IPMI_STAT_sent_lan_commands
,
253 /* Commands sent on the IPMB that had errors on the SEND CMD */
254 IPMI_STAT_sent_lan_command_errs
,
256 /* Each retransmit increments this count. */
257 IPMI_STAT_retransmitted_lan_commands
,
260 * When a message times out (runs out of retransmits) this is
263 IPMI_STAT_timed_out_lan_commands
,
265 /* Responses I have sent to the IPMB bus. */
266 IPMI_STAT_sent_lan_responses
,
268 /* The response was delivered to the user. */
269 IPMI_STAT_handled_lan_responses
,
271 /* The response had invalid data in it. */
272 IPMI_STAT_invalid_lan_responses
,
274 /* The response didn't have anyone waiting for it. */
275 IPMI_STAT_unhandled_lan_responses
,
277 /* The command was delivered to the user. */
278 IPMI_STAT_handled_commands
,
280 /* The command had invalid data in it. */
281 IPMI_STAT_invalid_commands
,
283 /* The command didn't have anyone waiting for it. */
284 IPMI_STAT_unhandled_commands
,
286 /* Invalid data in an event. */
287 IPMI_STAT_invalid_events
,
289 /* Events that were received with the proper format. */
292 /* Retransmissions on IPMB that failed. */
293 IPMI_STAT_dropped_rexmit_ipmb_commands
,
295 /* Retransmissions on LAN that failed. */
296 IPMI_STAT_dropped_rexmit_lan_commands
,
298 /* This *must* remain last, add new values above this. */
303 #define IPMI_IPMB_NUM_SEQ 64
304 #define IPMI_MAX_CHANNELS 16
306 /* What interface number are we? */
309 struct kref refcount
;
311 /* Used for a list of interfaces. */
312 struct list_head link
;
315 * The list of upper layers that are using me. seq_lock
318 struct list_head users
;
320 /* Information to supply to users. */
321 unsigned char ipmi_version_major
;
322 unsigned char ipmi_version_minor
;
324 /* Used for wake ups at startup. */
325 wait_queue_head_t waitq
;
327 struct bmc_device
*bmc
;
332 * This is the lower-layer's sender routine. Note that you
333 * must either be holding the ipmi_interfaces_mutex or be in
334 * an umpreemptible region to use this. You must fetch the
335 * value into a local variable and make sure it is not NULL.
337 struct ipmi_smi_handlers
*handlers
;
340 #ifdef CONFIG_PROC_FS
341 /* A list of proc entries for this interface. */
342 struct mutex proc_entry_lock
;
343 struct ipmi_proc_entry
*proc_entries
;
346 /* Driver-model device for the system interface. */
347 struct device
*si_dev
;
350 * A table of sequence numbers for this interface. We use the
351 * sequence numbers for IPMB messages that go out of the
352 * interface to match them up with their responses. A routine
353 * is called periodically to time the items in this list.
356 struct seq_table seq_table
[IPMI_IPMB_NUM_SEQ
];
360 * Messages queued for delivery. If delivery fails (out of memory
361 * for instance), They will stay in here to be processed later in a
362 * periodic timer interrupt. The tasklet is for handling received
363 * messages directly from the handler.
365 spinlock_t waiting_msgs_lock
;
366 struct list_head waiting_msgs
;
367 atomic_t watchdog_pretimeouts_to_deliver
;
368 struct tasklet_struct recv_tasklet
;
371 * The list of command receivers that are registered for commands
374 struct mutex cmd_rcvrs_mutex
;
375 struct list_head cmd_rcvrs
;
378 * Events that were queues because no one was there to receive
381 spinlock_t events_lock
; /* For dealing with event stuff. */
382 struct list_head waiting_events
;
383 unsigned int waiting_events_count
; /* How many events in queue? */
384 char delivering_events
;
385 char event_msg_printed
;
388 * The event receiver for my BMC, only really used at panic
389 * shutdown as a place to store this.
391 unsigned char event_receiver
;
392 unsigned char event_receiver_lun
;
393 unsigned char local_sel_device
;
394 unsigned char local_event_generator
;
396 /* For handling of maintenance mode. */
397 int maintenance_mode
;
398 int maintenance_mode_enable
;
399 int auto_maintenance_timeout
;
400 spinlock_t maintenance_mode_lock
; /* Used in a timer... */
403 * A cheap hack, if this is non-null and a message to an
404 * interface comes in with a NULL user, call this routine with
405 * it. Note that the message will still be freed by the
406 * caller. This only works on the system interface.
408 void (*null_user_handler
)(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
);
411 * When we are scanning the channels for an SMI, this will
412 * tell which channel we are scanning.
416 /* Channel information */
417 struct ipmi_channel channels
[IPMI_MAX_CHANNELS
];
420 struct proc_dir_entry
*proc_dir
;
421 char proc_dir_name
[10];
423 atomic_t stats
[IPMI_NUM_STATS
];
426 * run_to_completion duplicate of smb_info, smi_info
427 * and ipmi_serial_info structures. Used to decrease numbers of
428 * parameters passed by "low" level IPMI code.
430 int run_to_completion
;
432 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
435 * The driver model view of the IPMI messaging driver.
437 static struct platform_driver ipmidriver
= {
440 .bus
= &platform_bus_type
443 static DEFINE_MUTEX(ipmidriver_mutex
);
445 static LIST_HEAD(ipmi_interfaces
);
446 static DEFINE_MUTEX(ipmi_interfaces_mutex
);
449 * List of watchers that want to know when smi's are added and deleted.
451 static LIST_HEAD(smi_watchers
);
452 static DEFINE_MUTEX(smi_watchers_mutex
);
455 #define ipmi_inc_stat(intf, stat) \
456 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
457 #define ipmi_get_stat(intf, stat) \
458 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
460 static int is_lan_addr(struct ipmi_addr
*addr
)
462 return addr
->addr_type
== IPMI_LAN_ADDR_TYPE
;
465 static int is_ipmb_addr(struct ipmi_addr
*addr
)
467 return addr
->addr_type
== IPMI_IPMB_ADDR_TYPE
;
470 static int is_ipmb_bcast_addr(struct ipmi_addr
*addr
)
472 return addr
->addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
;
475 static void free_recv_msg_list(struct list_head
*q
)
477 struct ipmi_recv_msg
*msg
, *msg2
;
479 list_for_each_entry_safe(msg
, msg2
, q
, link
) {
480 list_del(&msg
->link
);
481 ipmi_free_recv_msg(msg
);
485 static void free_smi_msg_list(struct list_head
*q
)
487 struct ipmi_smi_msg
*msg
, *msg2
;
489 list_for_each_entry_safe(msg
, msg2
, q
, link
) {
490 list_del(&msg
->link
);
491 ipmi_free_smi_msg(msg
);
495 static void clean_up_interface_data(ipmi_smi_t intf
)
498 struct cmd_rcvr
*rcvr
, *rcvr2
;
499 struct list_head list
;
501 tasklet_kill(&intf
->recv_tasklet
);
503 free_smi_msg_list(&intf
->waiting_msgs
);
504 free_recv_msg_list(&intf
->waiting_events
);
507 * Wholesale remove all the entries from the list in the
508 * interface and wait for RCU to know that none are in use.
510 mutex_lock(&intf
->cmd_rcvrs_mutex
);
511 INIT_LIST_HEAD(&list
);
512 list_splice_init_rcu(&intf
->cmd_rcvrs
, &list
, synchronize_rcu
);
513 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
515 list_for_each_entry_safe(rcvr
, rcvr2
, &list
, link
)
518 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++) {
519 if ((intf
->seq_table
[i
].inuse
)
520 && (intf
->seq_table
[i
].recv_msg
))
521 ipmi_free_recv_msg(intf
->seq_table
[i
].recv_msg
);
525 static void intf_free(struct kref
*ref
)
527 ipmi_smi_t intf
= container_of(ref
, struct ipmi_smi
, refcount
);
529 clean_up_interface_data(intf
);
533 struct watcher_entry
{
536 struct list_head link
;
539 int ipmi_smi_watcher_register(struct ipmi_smi_watcher
*watcher
)
542 LIST_HEAD(to_deliver
);
543 struct watcher_entry
*e
, *e2
;
545 mutex_lock(&smi_watchers_mutex
);
547 mutex_lock(&ipmi_interfaces_mutex
);
549 /* Build a list of things to deliver. */
550 list_for_each_entry(intf
, &ipmi_interfaces
, link
) {
551 if (intf
->intf_num
== -1)
553 e
= kmalloc(sizeof(*e
), GFP_KERNEL
);
556 kref_get(&intf
->refcount
);
558 e
->intf_num
= intf
->intf_num
;
559 list_add_tail(&e
->link
, &to_deliver
);
562 /* We will succeed, so add it to the list. */
563 list_add(&watcher
->link
, &smi_watchers
);
565 mutex_unlock(&ipmi_interfaces_mutex
);
567 list_for_each_entry_safe(e
, e2
, &to_deliver
, link
) {
569 watcher
->new_smi(e
->intf_num
, e
->intf
->si_dev
);
570 kref_put(&e
->intf
->refcount
, intf_free
);
574 mutex_unlock(&smi_watchers_mutex
);
579 mutex_unlock(&ipmi_interfaces_mutex
);
580 mutex_unlock(&smi_watchers_mutex
);
581 list_for_each_entry_safe(e
, e2
, &to_deliver
, link
) {
583 kref_put(&e
->intf
->refcount
, intf_free
);
588 EXPORT_SYMBOL(ipmi_smi_watcher_register
);
590 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher
*watcher
)
592 mutex_lock(&smi_watchers_mutex
);
593 list_del(&(watcher
->link
));
594 mutex_unlock(&smi_watchers_mutex
);
597 EXPORT_SYMBOL(ipmi_smi_watcher_unregister
);
600 * Must be called with smi_watchers_mutex held.
603 call_smi_watchers(int i
, struct device
*dev
)
605 struct ipmi_smi_watcher
*w
;
607 list_for_each_entry(w
, &smi_watchers
, link
) {
608 if (try_module_get(w
->owner
)) {
610 module_put(w
->owner
);
616 ipmi_addr_equal(struct ipmi_addr
*addr1
, struct ipmi_addr
*addr2
)
618 if (addr1
->addr_type
!= addr2
->addr_type
)
621 if (addr1
->channel
!= addr2
->channel
)
624 if (addr1
->addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
) {
625 struct ipmi_system_interface_addr
*smi_addr1
626 = (struct ipmi_system_interface_addr
*) addr1
;
627 struct ipmi_system_interface_addr
*smi_addr2
628 = (struct ipmi_system_interface_addr
*) addr2
;
629 return (smi_addr1
->lun
== smi_addr2
->lun
);
632 if (is_ipmb_addr(addr1
) || is_ipmb_bcast_addr(addr1
)) {
633 struct ipmi_ipmb_addr
*ipmb_addr1
634 = (struct ipmi_ipmb_addr
*) addr1
;
635 struct ipmi_ipmb_addr
*ipmb_addr2
636 = (struct ipmi_ipmb_addr
*) addr2
;
638 return ((ipmb_addr1
->slave_addr
== ipmb_addr2
->slave_addr
)
639 && (ipmb_addr1
->lun
== ipmb_addr2
->lun
));
642 if (is_lan_addr(addr1
)) {
643 struct ipmi_lan_addr
*lan_addr1
644 = (struct ipmi_lan_addr
*) addr1
;
645 struct ipmi_lan_addr
*lan_addr2
646 = (struct ipmi_lan_addr
*) addr2
;
648 return ((lan_addr1
->remote_SWID
== lan_addr2
->remote_SWID
)
649 && (lan_addr1
->local_SWID
== lan_addr2
->local_SWID
)
650 && (lan_addr1
->session_handle
651 == lan_addr2
->session_handle
)
652 && (lan_addr1
->lun
== lan_addr2
->lun
));
658 int ipmi_validate_addr(struct ipmi_addr
*addr
, int len
)
660 if (len
< sizeof(struct ipmi_system_interface_addr
))
663 if (addr
->addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
) {
664 if (addr
->channel
!= IPMI_BMC_CHANNEL
)
669 if ((addr
->channel
== IPMI_BMC_CHANNEL
)
670 || (addr
->channel
>= IPMI_MAX_CHANNELS
)
671 || (addr
->channel
< 0))
674 if (is_ipmb_addr(addr
) || is_ipmb_bcast_addr(addr
)) {
675 if (len
< sizeof(struct ipmi_ipmb_addr
))
680 if (is_lan_addr(addr
)) {
681 if (len
< sizeof(struct ipmi_lan_addr
))
688 EXPORT_SYMBOL(ipmi_validate_addr
);
690 unsigned int ipmi_addr_length(int addr_type
)
692 if (addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
693 return sizeof(struct ipmi_system_interface_addr
);
695 if ((addr_type
== IPMI_IPMB_ADDR_TYPE
)
696 || (addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
))
697 return sizeof(struct ipmi_ipmb_addr
);
699 if (addr_type
== IPMI_LAN_ADDR_TYPE
)
700 return sizeof(struct ipmi_lan_addr
);
704 EXPORT_SYMBOL(ipmi_addr_length
);
706 static void deliver_response(struct ipmi_recv_msg
*msg
)
709 ipmi_smi_t intf
= msg
->user_msg_data
;
711 /* Special handling for NULL users. */
712 if (intf
->null_user_handler
) {
713 intf
->null_user_handler(intf
, msg
);
714 ipmi_inc_stat(intf
, handled_local_responses
);
716 /* No handler, so give up. */
717 ipmi_inc_stat(intf
, unhandled_local_responses
);
719 ipmi_free_recv_msg(msg
);
721 ipmi_user_t user
= msg
->user
;
722 user
->handler
->ipmi_recv_hndl(msg
, user
->handler_data
);
727 deliver_err_response(struct ipmi_recv_msg
*msg
, int err
)
729 msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
730 msg
->msg_data
[0] = err
;
731 msg
->msg
.netfn
|= 1; /* Convert to a response. */
732 msg
->msg
.data_len
= 1;
733 msg
->msg
.data
= msg
->msg_data
;
734 deliver_response(msg
);
738 * Find the next sequence number not being used and add the given
739 * message with the given timeout to the sequence table. This must be
740 * called with the interface's seq_lock held.
742 static int intf_next_seq(ipmi_smi_t intf
,
743 struct ipmi_recv_msg
*recv_msg
,
744 unsigned long timeout
,
753 for (i
= intf
->curr_seq
; (i
+1)%IPMI_IPMB_NUM_SEQ
!= intf
->curr_seq
;
754 i
= (i
+1)%IPMI_IPMB_NUM_SEQ
) {
755 if (!intf
->seq_table
[i
].inuse
)
759 if (!intf
->seq_table
[i
].inuse
) {
760 intf
->seq_table
[i
].recv_msg
= recv_msg
;
763 * Start with the maximum timeout, when the send response
764 * comes in we will start the real timer.
766 intf
->seq_table
[i
].timeout
= MAX_MSG_TIMEOUT
;
767 intf
->seq_table
[i
].orig_timeout
= timeout
;
768 intf
->seq_table
[i
].retries_left
= retries
;
769 intf
->seq_table
[i
].broadcast
= broadcast
;
770 intf
->seq_table
[i
].inuse
= 1;
771 intf
->seq_table
[i
].seqid
= NEXT_SEQID(intf
->seq_table
[i
].seqid
);
773 *seqid
= intf
->seq_table
[i
].seqid
;
774 intf
->curr_seq
= (i
+1)%IPMI_IPMB_NUM_SEQ
;
783 * Return the receive message for the given sequence number and
784 * release the sequence number so it can be reused. Some other data
785 * is passed in to be sure the message matches up correctly (to help
786 * guard against message coming in after their timeout and the
787 * sequence number being reused).
789 static int intf_find_seq(ipmi_smi_t intf
,
794 struct ipmi_addr
*addr
,
795 struct ipmi_recv_msg
**recv_msg
)
800 if (seq
>= IPMI_IPMB_NUM_SEQ
)
803 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
804 if (intf
->seq_table
[seq
].inuse
) {
805 struct ipmi_recv_msg
*msg
= intf
->seq_table
[seq
].recv_msg
;
807 if ((msg
->addr
.channel
== channel
) && (msg
->msg
.cmd
== cmd
)
808 && (msg
->msg
.netfn
== netfn
)
809 && (ipmi_addr_equal(addr
, &(msg
->addr
)))) {
811 intf
->seq_table
[seq
].inuse
= 0;
815 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
821 /* Start the timer for a specific sequence table entry. */
822 static int intf_start_seq_timer(ipmi_smi_t intf
,
831 GET_SEQ_FROM_MSGID(msgid
, seq
, seqid
);
833 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
835 * We do this verification because the user can be deleted
836 * while a message is outstanding.
838 if ((intf
->seq_table
[seq
].inuse
)
839 && (intf
->seq_table
[seq
].seqid
== seqid
)) {
840 struct seq_table
*ent
= &(intf
->seq_table
[seq
]);
841 ent
->timeout
= ent
->orig_timeout
;
844 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
849 /* Got an error for the send message for a specific sequence number. */
850 static int intf_err_seq(ipmi_smi_t intf
,
858 struct ipmi_recv_msg
*msg
= NULL
;
861 GET_SEQ_FROM_MSGID(msgid
, seq
, seqid
);
863 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
865 * We do this verification because the user can be deleted
866 * while a message is outstanding.
868 if ((intf
->seq_table
[seq
].inuse
)
869 && (intf
->seq_table
[seq
].seqid
== seqid
)) {
870 struct seq_table
*ent
= &(intf
->seq_table
[seq
]);
876 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
879 deliver_err_response(msg
, err
);
885 int ipmi_create_user(unsigned int if_num
,
886 struct ipmi_user_hndl
*handler
,
891 ipmi_user_t new_user
;
896 * There is no module usecount here, because it's not
897 * required. Since this can only be used by and called from
898 * other modules, they will implicitly use this module, and
899 * thus this can't be removed unless the other modules are
907 * Make sure the driver is actually initialized, this handles
908 * problems with initialization order.
911 rv
= ipmi_init_msghandler();
916 * The init code doesn't return an error if it was turned
917 * off, but it won't initialize. Check that.
923 new_user
= kmalloc(sizeof(*new_user
), GFP_KERNEL
);
927 mutex_lock(&ipmi_interfaces_mutex
);
928 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
929 if (intf
->intf_num
== if_num
)
932 /* Not found, return an error */
937 /* Note that each existing user holds a refcount to the interface. */
938 kref_get(&intf
->refcount
);
940 kref_init(&new_user
->refcount
);
941 new_user
->handler
= handler
;
942 new_user
->handler_data
= handler_data
;
943 new_user
->intf
= intf
;
944 new_user
->gets_events
= 0;
946 if (!try_module_get(intf
->handlers
->owner
)) {
951 if (intf
->handlers
->inc_usecount
) {
952 rv
= intf
->handlers
->inc_usecount(intf
->send_info
);
954 module_put(intf
->handlers
->owner
);
960 * Hold the lock so intf->handlers is guaranteed to be good
963 mutex_unlock(&ipmi_interfaces_mutex
);
966 spin_lock_irqsave(&intf
->seq_lock
, flags
);
967 list_add_rcu(&new_user
->link
, &intf
->users
);
968 spin_unlock_irqrestore(&intf
->seq_lock
, flags
);
973 kref_put(&intf
->refcount
, intf_free
);
975 mutex_unlock(&ipmi_interfaces_mutex
);
979 EXPORT_SYMBOL(ipmi_create_user
);
981 int ipmi_get_smi_info(int if_num
, struct ipmi_smi_info
*data
)
985 struct ipmi_smi_handlers
*handlers
;
987 mutex_lock(&ipmi_interfaces_mutex
);
988 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
989 if (intf
->intf_num
== if_num
)
992 /* Not found, return an error */
994 mutex_unlock(&ipmi_interfaces_mutex
);
998 handlers
= intf
->handlers
;
1000 if (handlers
->get_smi_info
)
1001 rv
= handlers
->get_smi_info(intf
->send_info
, data
);
1002 mutex_unlock(&ipmi_interfaces_mutex
);
1006 EXPORT_SYMBOL(ipmi_get_smi_info
);
1008 static void free_user(struct kref
*ref
)
1010 ipmi_user_t user
= container_of(ref
, struct ipmi_user
, refcount
);
1014 int ipmi_destroy_user(ipmi_user_t user
)
1016 ipmi_smi_t intf
= user
->intf
;
1018 unsigned long flags
;
1019 struct cmd_rcvr
*rcvr
;
1020 struct cmd_rcvr
*rcvrs
= NULL
;
1024 /* Remove the user from the interface's sequence table. */
1025 spin_lock_irqsave(&intf
->seq_lock
, flags
);
1026 list_del_rcu(&user
->link
);
1028 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++) {
1029 if (intf
->seq_table
[i
].inuse
1030 && (intf
->seq_table
[i
].recv_msg
->user
== user
)) {
1031 intf
->seq_table
[i
].inuse
= 0;
1032 ipmi_free_recv_msg(intf
->seq_table
[i
].recv_msg
);
1035 spin_unlock_irqrestore(&intf
->seq_lock
, flags
);
1038 * Remove the user from the command receiver's table. First
1039 * we build a list of everything (not using the standard link,
1040 * since other things may be using it till we do
1041 * synchronize_rcu()) then free everything in that list.
1043 mutex_lock(&intf
->cmd_rcvrs_mutex
);
1044 list_for_each_entry_rcu(rcvr
, &intf
->cmd_rcvrs
, link
) {
1045 if (rcvr
->user
== user
) {
1046 list_del_rcu(&rcvr
->link
);
1051 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
1059 mutex_lock(&ipmi_interfaces_mutex
);
1060 if (intf
->handlers
) {
1061 module_put(intf
->handlers
->owner
);
1062 if (intf
->handlers
->dec_usecount
)
1063 intf
->handlers
->dec_usecount(intf
->send_info
);
1065 mutex_unlock(&ipmi_interfaces_mutex
);
1067 kref_put(&intf
->refcount
, intf_free
);
1069 kref_put(&user
->refcount
, free_user
);
1073 EXPORT_SYMBOL(ipmi_destroy_user
);
1075 void ipmi_get_version(ipmi_user_t user
,
1076 unsigned char *major
,
1077 unsigned char *minor
)
1079 *major
= user
->intf
->ipmi_version_major
;
1080 *minor
= user
->intf
->ipmi_version_minor
;
1082 EXPORT_SYMBOL(ipmi_get_version
);
1084 int ipmi_set_my_address(ipmi_user_t user
,
1085 unsigned int channel
,
1086 unsigned char address
)
1088 if (channel
>= IPMI_MAX_CHANNELS
)
1090 user
->intf
->channels
[channel
].address
= address
;
1093 EXPORT_SYMBOL(ipmi_set_my_address
);
1095 int ipmi_get_my_address(ipmi_user_t user
,
1096 unsigned int channel
,
1097 unsigned char *address
)
1099 if (channel
>= IPMI_MAX_CHANNELS
)
1101 *address
= user
->intf
->channels
[channel
].address
;
1104 EXPORT_SYMBOL(ipmi_get_my_address
);
1106 int ipmi_set_my_LUN(ipmi_user_t user
,
1107 unsigned int channel
,
1110 if (channel
>= IPMI_MAX_CHANNELS
)
1112 user
->intf
->channels
[channel
].lun
= LUN
& 0x3;
1115 EXPORT_SYMBOL(ipmi_set_my_LUN
);
1117 int ipmi_get_my_LUN(ipmi_user_t user
,
1118 unsigned int channel
,
1119 unsigned char *address
)
1121 if (channel
>= IPMI_MAX_CHANNELS
)
1123 *address
= user
->intf
->channels
[channel
].lun
;
1126 EXPORT_SYMBOL(ipmi_get_my_LUN
);
1128 int ipmi_get_maintenance_mode(ipmi_user_t user
)
1131 unsigned long flags
;
1133 spin_lock_irqsave(&user
->intf
->maintenance_mode_lock
, flags
);
1134 mode
= user
->intf
->maintenance_mode
;
1135 spin_unlock_irqrestore(&user
->intf
->maintenance_mode_lock
, flags
);
1139 EXPORT_SYMBOL(ipmi_get_maintenance_mode
);
1141 static void maintenance_mode_update(ipmi_smi_t intf
)
1143 if (intf
->handlers
->set_maintenance_mode
)
1144 intf
->handlers
->set_maintenance_mode(
1145 intf
->send_info
, intf
->maintenance_mode_enable
);
1148 int ipmi_set_maintenance_mode(ipmi_user_t user
, int mode
)
1151 unsigned long flags
;
1152 ipmi_smi_t intf
= user
->intf
;
1154 spin_lock_irqsave(&intf
->maintenance_mode_lock
, flags
);
1155 if (intf
->maintenance_mode
!= mode
) {
1157 case IPMI_MAINTENANCE_MODE_AUTO
:
1158 intf
->maintenance_mode
= mode
;
1159 intf
->maintenance_mode_enable
1160 = (intf
->auto_maintenance_timeout
> 0);
1163 case IPMI_MAINTENANCE_MODE_OFF
:
1164 intf
->maintenance_mode
= mode
;
1165 intf
->maintenance_mode_enable
= 0;
1168 case IPMI_MAINTENANCE_MODE_ON
:
1169 intf
->maintenance_mode
= mode
;
1170 intf
->maintenance_mode_enable
= 1;
1178 maintenance_mode_update(intf
);
1181 spin_unlock_irqrestore(&intf
->maintenance_mode_lock
, flags
);
1185 EXPORT_SYMBOL(ipmi_set_maintenance_mode
);
1187 int ipmi_set_gets_events(ipmi_user_t user
, int val
)
1189 unsigned long flags
;
1190 ipmi_smi_t intf
= user
->intf
;
1191 struct ipmi_recv_msg
*msg
, *msg2
;
1192 struct list_head msgs
;
1194 INIT_LIST_HEAD(&msgs
);
1196 spin_lock_irqsave(&intf
->events_lock
, flags
);
1197 user
->gets_events
= val
;
1199 if (intf
->delivering_events
)
1201 * Another thread is delivering events for this, so
1202 * let it handle any new events.
1206 /* Deliver any queued events. */
1207 while (user
->gets_events
&& !list_empty(&intf
->waiting_events
)) {
1208 list_for_each_entry_safe(msg
, msg2
, &intf
->waiting_events
, link
)
1209 list_move_tail(&msg
->link
, &msgs
);
1210 intf
->waiting_events_count
= 0;
1211 if (intf
->event_msg_printed
) {
1212 printk(KERN_WARNING PFX
"Event queue no longer"
1214 intf
->event_msg_printed
= 0;
1217 intf
->delivering_events
= 1;
1218 spin_unlock_irqrestore(&intf
->events_lock
, flags
);
1220 list_for_each_entry_safe(msg
, msg2
, &msgs
, link
) {
1222 kref_get(&user
->refcount
);
1223 deliver_response(msg
);
1226 spin_lock_irqsave(&intf
->events_lock
, flags
);
1227 intf
->delivering_events
= 0;
1231 spin_unlock_irqrestore(&intf
->events_lock
, flags
);
1235 EXPORT_SYMBOL(ipmi_set_gets_events
);
1237 static struct cmd_rcvr
*find_cmd_rcvr(ipmi_smi_t intf
,
1238 unsigned char netfn
,
1242 struct cmd_rcvr
*rcvr
;
1244 list_for_each_entry_rcu(rcvr
, &intf
->cmd_rcvrs
, link
) {
1245 if ((rcvr
->netfn
== netfn
) && (rcvr
->cmd
== cmd
)
1246 && (rcvr
->chans
& (1 << chan
)))
1252 static int is_cmd_rcvr_exclusive(ipmi_smi_t intf
,
1253 unsigned char netfn
,
1257 struct cmd_rcvr
*rcvr
;
1259 list_for_each_entry_rcu(rcvr
, &intf
->cmd_rcvrs
, link
) {
1260 if ((rcvr
->netfn
== netfn
) && (rcvr
->cmd
== cmd
)
1261 && (rcvr
->chans
& chans
))
1267 int ipmi_register_for_cmd(ipmi_user_t user
,
1268 unsigned char netfn
,
1272 ipmi_smi_t intf
= user
->intf
;
1273 struct cmd_rcvr
*rcvr
;
1277 rcvr
= kmalloc(sizeof(*rcvr
), GFP_KERNEL
);
1281 rcvr
->netfn
= netfn
;
1282 rcvr
->chans
= chans
;
1285 mutex_lock(&intf
->cmd_rcvrs_mutex
);
1286 /* Make sure the command/netfn is not already registered. */
1287 if (!is_cmd_rcvr_exclusive(intf
, netfn
, cmd
, chans
)) {
1292 list_add_rcu(&rcvr
->link
, &intf
->cmd_rcvrs
);
1295 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
1301 EXPORT_SYMBOL(ipmi_register_for_cmd
);
1303 int ipmi_unregister_for_cmd(ipmi_user_t user
,
1304 unsigned char netfn
,
1308 ipmi_smi_t intf
= user
->intf
;
1309 struct cmd_rcvr
*rcvr
;
1310 struct cmd_rcvr
*rcvrs
= NULL
;
1311 int i
, rv
= -ENOENT
;
1313 mutex_lock(&intf
->cmd_rcvrs_mutex
);
1314 for (i
= 0; i
< IPMI_NUM_CHANNELS
; i
++) {
1315 if (((1 << i
) & chans
) == 0)
1317 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, i
);
1320 if (rcvr
->user
== user
) {
1322 rcvr
->chans
&= ~chans
;
1323 if (rcvr
->chans
== 0) {
1324 list_del_rcu(&rcvr
->link
);
1330 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
1339 EXPORT_SYMBOL(ipmi_unregister_for_cmd
);
1341 static unsigned char
1342 ipmb_checksum(unsigned char *data
, int size
)
1344 unsigned char csum
= 0;
1346 for (; size
> 0; size
--, data
++)
1352 static inline void format_ipmb_msg(struct ipmi_smi_msg
*smi_msg
,
1353 struct kernel_ipmi_msg
*msg
,
1354 struct ipmi_ipmb_addr
*ipmb_addr
,
1356 unsigned char ipmb_seq
,
1358 unsigned char source_address
,
1359 unsigned char source_lun
)
1363 /* Format the IPMB header data. */
1364 smi_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
1365 smi_msg
->data
[1] = IPMI_SEND_MSG_CMD
;
1366 smi_msg
->data
[2] = ipmb_addr
->channel
;
1368 smi_msg
->data
[3] = 0;
1369 smi_msg
->data
[i
+3] = ipmb_addr
->slave_addr
;
1370 smi_msg
->data
[i
+4] = (msg
->netfn
<< 2) | (ipmb_addr
->lun
& 0x3);
1371 smi_msg
->data
[i
+5] = ipmb_checksum(&(smi_msg
->data
[i
+3]), 2);
1372 smi_msg
->data
[i
+6] = source_address
;
1373 smi_msg
->data
[i
+7] = (ipmb_seq
<< 2) | source_lun
;
1374 smi_msg
->data
[i
+8] = msg
->cmd
;
1376 /* Now tack on the data to the message. */
1377 if (msg
->data_len
> 0)
1378 memcpy(&(smi_msg
->data
[i
+9]), msg
->data
,
1380 smi_msg
->data_size
= msg
->data_len
+ 9;
1382 /* Now calculate the checksum and tack it on. */
1383 smi_msg
->data
[i
+smi_msg
->data_size
]
1384 = ipmb_checksum(&(smi_msg
->data
[i
+6]),
1385 smi_msg
->data_size
-6);
1388 * Add on the checksum size and the offset from the
1391 smi_msg
->data_size
+= 1 + i
;
1393 smi_msg
->msgid
= msgid
;
1396 static inline void format_lan_msg(struct ipmi_smi_msg
*smi_msg
,
1397 struct kernel_ipmi_msg
*msg
,
1398 struct ipmi_lan_addr
*lan_addr
,
1400 unsigned char ipmb_seq
,
1401 unsigned char source_lun
)
1403 /* Format the IPMB header data. */
1404 smi_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
1405 smi_msg
->data
[1] = IPMI_SEND_MSG_CMD
;
1406 smi_msg
->data
[2] = lan_addr
->channel
;
1407 smi_msg
->data
[3] = lan_addr
->session_handle
;
1408 smi_msg
->data
[4] = lan_addr
->remote_SWID
;
1409 smi_msg
->data
[5] = (msg
->netfn
<< 2) | (lan_addr
->lun
& 0x3);
1410 smi_msg
->data
[6] = ipmb_checksum(&(smi_msg
->data
[4]), 2);
1411 smi_msg
->data
[7] = lan_addr
->local_SWID
;
1412 smi_msg
->data
[8] = (ipmb_seq
<< 2) | source_lun
;
1413 smi_msg
->data
[9] = msg
->cmd
;
1415 /* Now tack on the data to the message. */
1416 if (msg
->data_len
> 0)
1417 memcpy(&(smi_msg
->data
[10]), msg
->data
,
1419 smi_msg
->data_size
= msg
->data_len
+ 10;
1421 /* Now calculate the checksum and tack it on. */
1422 smi_msg
->data
[smi_msg
->data_size
]
1423 = ipmb_checksum(&(smi_msg
->data
[7]),
1424 smi_msg
->data_size
-7);
1427 * Add on the checksum size and the offset from the
1430 smi_msg
->data_size
+= 1;
1432 smi_msg
->msgid
= msgid
;
1436 * Separate from ipmi_request so that the user does not have to be
1437 * supplied in certain circumstances (mainly at panic time). If
1438 * messages are supplied, they will be freed, even if an error
1441 static int i_ipmi_request(ipmi_user_t user
,
1443 struct ipmi_addr
*addr
,
1445 struct kernel_ipmi_msg
*msg
,
1446 void *user_msg_data
,
1448 struct ipmi_recv_msg
*supplied_recv
,
1450 unsigned char source_address
,
1451 unsigned char source_lun
,
1453 unsigned int retry_time_ms
)
1456 struct ipmi_smi_msg
*smi_msg
;
1457 struct ipmi_recv_msg
*recv_msg
;
1458 unsigned long flags
;
1459 struct ipmi_smi_handlers
*handlers
;
1463 recv_msg
= supplied_recv
;
1465 recv_msg
= ipmi_alloc_recv_msg();
1466 if (recv_msg
== NULL
)
1469 recv_msg
->user_msg_data
= user_msg_data
;
1472 smi_msg
= (struct ipmi_smi_msg
*) supplied_smi
;
1474 smi_msg
= ipmi_alloc_smi_msg();
1475 if (smi_msg
== NULL
) {
1476 ipmi_free_recv_msg(recv_msg
);
1482 handlers
= intf
->handlers
;
1488 recv_msg
->user
= user
;
1490 kref_get(&user
->refcount
);
1491 recv_msg
->msgid
= msgid
;
1493 * Store the message to send in the receive message so timeout
1494 * responses can get the proper response data.
1496 recv_msg
->msg
= *msg
;
1498 if (addr
->addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
) {
1499 struct ipmi_system_interface_addr
*smi_addr
;
1501 if (msg
->netfn
& 1) {
1502 /* Responses are not allowed to the SMI. */
1507 smi_addr
= (struct ipmi_system_interface_addr
*) addr
;
1508 if (smi_addr
->lun
> 3) {
1509 ipmi_inc_stat(intf
, sent_invalid_commands
);
1514 memcpy(&recv_msg
->addr
, smi_addr
, sizeof(*smi_addr
));
1516 if ((msg
->netfn
== IPMI_NETFN_APP_REQUEST
)
1517 && ((msg
->cmd
== IPMI_SEND_MSG_CMD
)
1518 || (msg
->cmd
== IPMI_GET_MSG_CMD
)
1519 || (msg
->cmd
== IPMI_READ_EVENT_MSG_BUFFER_CMD
))) {
1521 * We don't let the user do these, since we manage
1522 * the sequence numbers.
1524 ipmi_inc_stat(intf
, sent_invalid_commands
);
1529 if (((msg
->netfn
== IPMI_NETFN_APP_REQUEST
)
1530 && ((msg
->cmd
== IPMI_COLD_RESET_CMD
)
1531 || (msg
->cmd
== IPMI_WARM_RESET_CMD
)))
1532 || (msg
->netfn
== IPMI_NETFN_FIRMWARE_REQUEST
)) {
1533 spin_lock_irqsave(&intf
->maintenance_mode_lock
, flags
);
1534 intf
->auto_maintenance_timeout
1535 = IPMI_MAINTENANCE_MODE_TIMEOUT
;
1536 if (!intf
->maintenance_mode
1537 && !intf
->maintenance_mode_enable
) {
1538 intf
->maintenance_mode_enable
= 1;
1539 maintenance_mode_update(intf
);
1541 spin_unlock_irqrestore(&intf
->maintenance_mode_lock
,
1545 if ((msg
->data_len
+ 2) > IPMI_MAX_MSG_LENGTH
) {
1546 ipmi_inc_stat(intf
, sent_invalid_commands
);
1551 smi_msg
->data
[0] = (msg
->netfn
<< 2) | (smi_addr
->lun
& 0x3);
1552 smi_msg
->data
[1] = msg
->cmd
;
1553 smi_msg
->msgid
= msgid
;
1554 smi_msg
->user_data
= recv_msg
;
1555 if (msg
->data_len
> 0)
1556 memcpy(&(smi_msg
->data
[2]), msg
->data
, msg
->data_len
);
1557 smi_msg
->data_size
= msg
->data_len
+ 2;
1558 ipmi_inc_stat(intf
, sent_local_commands
);
1559 } else if (is_ipmb_addr(addr
) || is_ipmb_bcast_addr(addr
)) {
1560 struct ipmi_ipmb_addr
*ipmb_addr
;
1561 unsigned char ipmb_seq
;
1565 if (addr
->channel
>= IPMI_MAX_CHANNELS
) {
1566 ipmi_inc_stat(intf
, sent_invalid_commands
);
1571 if (intf
->channels
[addr
->channel
].medium
1572 != IPMI_CHANNEL_MEDIUM_IPMB
) {
1573 ipmi_inc_stat(intf
, sent_invalid_commands
);
1579 if (addr
->addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
)
1580 retries
= 0; /* Don't retry broadcasts. */
1584 if (addr
->addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
) {
1586 * Broadcasts add a zero at the beginning of the
1587 * message, but otherwise is the same as an IPMB
1590 addr
->addr_type
= IPMI_IPMB_ADDR_TYPE
;
1595 /* Default to 1 second retries. */
1596 if (retry_time_ms
== 0)
1597 retry_time_ms
= 1000;
1600 * 9 for the header and 1 for the checksum, plus
1601 * possibly one for the broadcast.
1603 if ((msg
->data_len
+ 10 + broadcast
) > IPMI_MAX_MSG_LENGTH
) {
1604 ipmi_inc_stat(intf
, sent_invalid_commands
);
1609 ipmb_addr
= (struct ipmi_ipmb_addr
*) addr
;
1610 if (ipmb_addr
->lun
> 3) {
1611 ipmi_inc_stat(intf
, sent_invalid_commands
);
1616 memcpy(&recv_msg
->addr
, ipmb_addr
, sizeof(*ipmb_addr
));
1618 if (recv_msg
->msg
.netfn
& 0x1) {
1620 * It's a response, so use the user's sequence
1623 ipmi_inc_stat(intf
, sent_ipmb_responses
);
1624 format_ipmb_msg(smi_msg
, msg
, ipmb_addr
, msgid
,
1626 source_address
, source_lun
);
1629 * Save the receive message so we can use it
1630 * to deliver the response.
1632 smi_msg
->user_data
= recv_msg
;
1634 /* It's a command, so get a sequence for it. */
1636 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
1639 * Create a sequence number with a 1 second
1640 * timeout and 4 retries.
1642 rv
= intf_next_seq(intf
,
1651 * We have used up all the sequence numbers,
1652 * probably, so abort.
1654 spin_unlock_irqrestore(&(intf
->seq_lock
),
1659 ipmi_inc_stat(intf
, sent_ipmb_commands
);
1662 * Store the sequence number in the message,
1663 * so that when the send message response
1664 * comes back we can start the timer.
1666 format_ipmb_msg(smi_msg
, msg
, ipmb_addr
,
1667 STORE_SEQ_IN_MSGID(ipmb_seq
, seqid
),
1668 ipmb_seq
, broadcast
,
1669 source_address
, source_lun
);
1672 * Copy the message into the recv message data, so we
1673 * can retransmit it later if necessary.
1675 memcpy(recv_msg
->msg_data
, smi_msg
->data
,
1676 smi_msg
->data_size
);
1677 recv_msg
->msg
.data
= recv_msg
->msg_data
;
1678 recv_msg
->msg
.data_len
= smi_msg
->data_size
;
1681 * We don't unlock until here, because we need
1682 * to copy the completed message into the
1683 * recv_msg before we release the lock.
1684 * Otherwise, race conditions may bite us. I
1685 * know that's pretty paranoid, but I prefer
1688 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
1690 } else if (is_lan_addr(addr
)) {
1691 struct ipmi_lan_addr
*lan_addr
;
1692 unsigned char ipmb_seq
;
1695 if (addr
->channel
>= IPMI_MAX_CHANNELS
) {
1696 ipmi_inc_stat(intf
, sent_invalid_commands
);
1701 if ((intf
->channels
[addr
->channel
].medium
1702 != IPMI_CHANNEL_MEDIUM_8023LAN
)
1703 && (intf
->channels
[addr
->channel
].medium
1704 != IPMI_CHANNEL_MEDIUM_ASYNC
)) {
1705 ipmi_inc_stat(intf
, sent_invalid_commands
);
1712 /* Default to 1 second retries. */
1713 if (retry_time_ms
== 0)
1714 retry_time_ms
= 1000;
1716 /* 11 for the header and 1 for the checksum. */
1717 if ((msg
->data_len
+ 12) > IPMI_MAX_MSG_LENGTH
) {
1718 ipmi_inc_stat(intf
, sent_invalid_commands
);
1723 lan_addr
= (struct ipmi_lan_addr
*) addr
;
1724 if (lan_addr
->lun
> 3) {
1725 ipmi_inc_stat(intf
, sent_invalid_commands
);
1730 memcpy(&recv_msg
->addr
, lan_addr
, sizeof(*lan_addr
));
1732 if (recv_msg
->msg
.netfn
& 0x1) {
1734 * It's a response, so use the user's sequence
1737 ipmi_inc_stat(intf
, sent_lan_responses
);
1738 format_lan_msg(smi_msg
, msg
, lan_addr
, msgid
,
1742 * Save the receive message so we can use it
1743 * to deliver the response.
1745 smi_msg
->user_data
= recv_msg
;
1747 /* It's a command, so get a sequence for it. */
1749 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
1752 * Create a sequence number with a 1 second
1753 * timeout and 4 retries.
1755 rv
= intf_next_seq(intf
,
1764 * We have used up all the sequence numbers,
1765 * probably, so abort.
1767 spin_unlock_irqrestore(&(intf
->seq_lock
),
1772 ipmi_inc_stat(intf
, sent_lan_commands
);
1775 * Store the sequence number in the message,
1776 * so that when the send message response
1777 * comes back we can start the timer.
1779 format_lan_msg(smi_msg
, msg
, lan_addr
,
1780 STORE_SEQ_IN_MSGID(ipmb_seq
, seqid
),
1781 ipmb_seq
, source_lun
);
1784 * Copy the message into the recv message data, so we
1785 * can retransmit it later if necessary.
1787 memcpy(recv_msg
->msg_data
, smi_msg
->data
,
1788 smi_msg
->data_size
);
1789 recv_msg
->msg
.data
= recv_msg
->msg_data
;
1790 recv_msg
->msg
.data_len
= smi_msg
->data_size
;
1793 * We don't unlock until here, because we need
1794 * to copy the completed message into the
1795 * recv_msg before we release the lock.
1796 * Otherwise, race conditions may bite us. I
1797 * know that's pretty paranoid, but I prefer
1800 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
1803 /* Unknown address type. */
1804 ipmi_inc_stat(intf
, sent_invalid_commands
);
1812 for (m
= 0; m
< smi_msg
->data_size
; m
++)
1813 printk(" %2.2x", smi_msg
->data
[m
]);
1818 handlers
->sender(intf
->send_info
, smi_msg
, priority
);
1825 ipmi_free_smi_msg(smi_msg
);
1826 ipmi_free_recv_msg(recv_msg
);
1830 static int check_addr(ipmi_smi_t intf
,
1831 struct ipmi_addr
*addr
,
1832 unsigned char *saddr
,
1835 if (addr
->channel
>= IPMI_MAX_CHANNELS
)
1837 *lun
= intf
->channels
[addr
->channel
].lun
;
1838 *saddr
= intf
->channels
[addr
->channel
].address
;
1842 int ipmi_request_settime(ipmi_user_t user
,
1843 struct ipmi_addr
*addr
,
1845 struct kernel_ipmi_msg
*msg
,
1846 void *user_msg_data
,
1849 unsigned int retry_time_ms
)
1851 unsigned char saddr
= 0, lun
= 0;
1856 rv
= check_addr(user
->intf
, addr
, &saddr
, &lun
);
1859 return i_ipmi_request(user
,
1872 EXPORT_SYMBOL(ipmi_request_settime
);
1874 int ipmi_request_supply_msgs(ipmi_user_t user
,
1875 struct ipmi_addr
*addr
,
1877 struct kernel_ipmi_msg
*msg
,
1878 void *user_msg_data
,
1880 struct ipmi_recv_msg
*supplied_recv
,
1883 unsigned char saddr
= 0, lun
= 0;
1888 rv
= check_addr(user
->intf
, addr
, &saddr
, &lun
);
1891 return i_ipmi_request(user
,
1904 EXPORT_SYMBOL(ipmi_request_supply_msgs
);
1906 #ifdef CONFIG_PROC_FS
1907 static int smi_ipmb_proc_show(struct seq_file
*m
, void *v
)
1909 ipmi_smi_t intf
= m
->private;
1912 seq_printf(m
, "%x", intf
->channels
[0].address
);
1913 for (i
= 1; i
< IPMI_MAX_CHANNELS
; i
++)
1914 seq_printf(m
, " %x", intf
->channels
[i
].address
);
1915 return seq_putc(m
, '\n');
1918 static int smi_ipmb_proc_open(struct inode
*inode
, struct file
*file
)
1920 return single_open(file
, smi_ipmb_proc_show
, PDE_DATA(inode
));
1923 static const struct file_operations smi_ipmb_proc_ops
= {
1924 .open
= smi_ipmb_proc_open
,
1926 .llseek
= seq_lseek
,
1927 .release
= single_release
,
1930 static int smi_version_proc_show(struct seq_file
*m
, void *v
)
1932 ipmi_smi_t intf
= m
->private;
1934 return seq_printf(m
, "%u.%u\n",
1935 ipmi_version_major(&intf
->bmc
->id
),
1936 ipmi_version_minor(&intf
->bmc
->id
));
1939 static int smi_version_proc_open(struct inode
*inode
, struct file
*file
)
1941 return single_open(file
, smi_version_proc_show
, PDE_DATA(inode
));
1944 static const struct file_operations smi_version_proc_ops
= {
1945 .open
= smi_version_proc_open
,
1947 .llseek
= seq_lseek
,
1948 .release
= single_release
,
1951 static int smi_stats_proc_show(struct seq_file
*m
, void *v
)
1953 ipmi_smi_t intf
= m
->private;
1955 seq_printf(m
, "sent_invalid_commands: %u\n",
1956 ipmi_get_stat(intf
, sent_invalid_commands
));
1957 seq_printf(m
, "sent_local_commands: %u\n",
1958 ipmi_get_stat(intf
, sent_local_commands
));
1959 seq_printf(m
, "handled_local_responses: %u\n",
1960 ipmi_get_stat(intf
, handled_local_responses
));
1961 seq_printf(m
, "unhandled_local_responses: %u\n",
1962 ipmi_get_stat(intf
, unhandled_local_responses
));
1963 seq_printf(m
, "sent_ipmb_commands: %u\n",
1964 ipmi_get_stat(intf
, sent_ipmb_commands
));
1965 seq_printf(m
, "sent_ipmb_command_errs: %u\n",
1966 ipmi_get_stat(intf
, sent_ipmb_command_errs
));
1967 seq_printf(m
, "retransmitted_ipmb_commands: %u\n",
1968 ipmi_get_stat(intf
, retransmitted_ipmb_commands
));
1969 seq_printf(m
, "timed_out_ipmb_commands: %u\n",
1970 ipmi_get_stat(intf
, timed_out_ipmb_commands
));
1971 seq_printf(m
, "timed_out_ipmb_broadcasts: %u\n",
1972 ipmi_get_stat(intf
, timed_out_ipmb_broadcasts
));
1973 seq_printf(m
, "sent_ipmb_responses: %u\n",
1974 ipmi_get_stat(intf
, sent_ipmb_responses
));
1975 seq_printf(m
, "handled_ipmb_responses: %u\n",
1976 ipmi_get_stat(intf
, handled_ipmb_responses
));
1977 seq_printf(m
, "invalid_ipmb_responses: %u\n",
1978 ipmi_get_stat(intf
, invalid_ipmb_responses
));
1979 seq_printf(m
, "unhandled_ipmb_responses: %u\n",
1980 ipmi_get_stat(intf
, unhandled_ipmb_responses
));
1981 seq_printf(m
, "sent_lan_commands: %u\n",
1982 ipmi_get_stat(intf
, sent_lan_commands
));
1983 seq_printf(m
, "sent_lan_command_errs: %u\n",
1984 ipmi_get_stat(intf
, sent_lan_command_errs
));
1985 seq_printf(m
, "retransmitted_lan_commands: %u\n",
1986 ipmi_get_stat(intf
, retransmitted_lan_commands
));
1987 seq_printf(m
, "timed_out_lan_commands: %u\n",
1988 ipmi_get_stat(intf
, timed_out_lan_commands
));
1989 seq_printf(m
, "sent_lan_responses: %u\n",
1990 ipmi_get_stat(intf
, sent_lan_responses
));
1991 seq_printf(m
, "handled_lan_responses: %u\n",
1992 ipmi_get_stat(intf
, handled_lan_responses
));
1993 seq_printf(m
, "invalid_lan_responses: %u\n",
1994 ipmi_get_stat(intf
, invalid_lan_responses
));
1995 seq_printf(m
, "unhandled_lan_responses: %u\n",
1996 ipmi_get_stat(intf
, unhandled_lan_responses
));
1997 seq_printf(m
, "handled_commands: %u\n",
1998 ipmi_get_stat(intf
, handled_commands
));
1999 seq_printf(m
, "invalid_commands: %u\n",
2000 ipmi_get_stat(intf
, invalid_commands
));
2001 seq_printf(m
, "unhandled_commands: %u\n",
2002 ipmi_get_stat(intf
, unhandled_commands
));
2003 seq_printf(m
, "invalid_events: %u\n",
2004 ipmi_get_stat(intf
, invalid_events
));
2005 seq_printf(m
, "events: %u\n",
2006 ipmi_get_stat(intf
, events
));
2007 seq_printf(m
, "failed rexmit LAN msgs: %u\n",
2008 ipmi_get_stat(intf
, dropped_rexmit_lan_commands
));
2009 seq_printf(m
, "failed rexmit IPMB msgs: %u\n",
2010 ipmi_get_stat(intf
, dropped_rexmit_ipmb_commands
));
2014 static int smi_stats_proc_open(struct inode
*inode
, struct file
*file
)
2016 return single_open(file
, smi_stats_proc_show
, PDE_DATA(inode
));
2019 static const struct file_operations smi_stats_proc_ops
= {
2020 .open
= smi_stats_proc_open
,
2022 .llseek
= seq_lseek
,
2023 .release
= single_release
,
2025 #endif /* CONFIG_PROC_FS */
2027 int ipmi_smi_add_proc_entry(ipmi_smi_t smi
, char *name
,
2028 const struct file_operations
*proc_ops
,
2032 #ifdef CONFIG_PROC_FS
2033 struct proc_dir_entry
*file
;
2034 struct ipmi_proc_entry
*entry
;
2036 /* Create a list element. */
2037 entry
= kmalloc(sizeof(*entry
), GFP_KERNEL
);
2040 entry
->name
= kstrdup(name
, GFP_KERNEL
);
2046 file
= proc_create_data(name
, 0, smi
->proc_dir
, proc_ops
, data
);
2052 mutex_lock(&smi
->proc_entry_lock
);
2053 /* Stick it on the list. */
2054 entry
->next
= smi
->proc_entries
;
2055 smi
->proc_entries
= entry
;
2056 mutex_unlock(&smi
->proc_entry_lock
);
2058 #endif /* CONFIG_PROC_FS */
2062 EXPORT_SYMBOL(ipmi_smi_add_proc_entry
);
2064 static int add_proc_entries(ipmi_smi_t smi
, int num
)
2068 #ifdef CONFIG_PROC_FS
2069 sprintf(smi
->proc_dir_name
, "%d", num
);
2070 smi
->proc_dir
= proc_mkdir(smi
->proc_dir_name
, proc_ipmi_root
);
2075 rv
= ipmi_smi_add_proc_entry(smi
, "stats",
2076 &smi_stats_proc_ops
,
2080 rv
= ipmi_smi_add_proc_entry(smi
, "ipmb",
2085 rv
= ipmi_smi_add_proc_entry(smi
, "version",
2086 &smi_version_proc_ops
,
2088 #endif /* CONFIG_PROC_FS */
2093 static void remove_proc_entries(ipmi_smi_t smi
)
2095 #ifdef CONFIG_PROC_FS
2096 struct ipmi_proc_entry
*entry
;
2098 mutex_lock(&smi
->proc_entry_lock
);
2099 while (smi
->proc_entries
) {
2100 entry
= smi
->proc_entries
;
2101 smi
->proc_entries
= entry
->next
;
2103 remove_proc_entry(entry
->name
, smi
->proc_dir
);
2107 mutex_unlock(&smi
->proc_entry_lock
);
2108 remove_proc_entry(smi
->proc_dir_name
, proc_ipmi_root
);
2109 #endif /* CONFIG_PROC_FS */
2112 static int __find_bmc_guid(struct device
*dev
, void *data
)
2114 unsigned char *id
= data
;
2115 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2116 return memcmp(bmc
->guid
, id
, 16) == 0;
2119 static struct bmc_device
*ipmi_find_bmc_guid(struct device_driver
*drv
,
2120 unsigned char *guid
)
2124 dev
= driver_find_device(drv
, NULL
, guid
, __find_bmc_guid
);
2126 return dev_get_drvdata(dev
);
2131 struct prod_dev_id
{
2132 unsigned int product_id
;
2133 unsigned char device_id
;
2136 static int __find_bmc_prod_dev_id(struct device
*dev
, void *data
)
2138 struct prod_dev_id
*id
= data
;
2139 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2141 return (bmc
->id
.product_id
== id
->product_id
2142 && bmc
->id
.device_id
== id
->device_id
);
2145 static struct bmc_device
*ipmi_find_bmc_prod_dev_id(
2146 struct device_driver
*drv
,
2147 unsigned int product_id
, unsigned char device_id
)
2149 struct prod_dev_id id
= {
2150 .product_id
= product_id
,
2151 .device_id
= device_id
,
2155 dev
= driver_find_device(drv
, NULL
, &id
, __find_bmc_prod_dev_id
);
2157 return dev_get_drvdata(dev
);
2162 static ssize_t
device_id_show(struct device
*dev
,
2163 struct device_attribute
*attr
,
2166 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2168 return snprintf(buf
, 10, "%u\n", bmc
->id
.device_id
);
2171 static ssize_t
provides_dev_sdrs_show(struct device
*dev
,
2172 struct device_attribute
*attr
,
2175 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2177 return snprintf(buf
, 10, "%u\n",
2178 (bmc
->id
.device_revision
& 0x80) >> 7);
2181 static ssize_t
revision_show(struct device
*dev
, struct device_attribute
*attr
,
2184 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2186 return snprintf(buf
, 20, "%u\n",
2187 bmc
->id
.device_revision
& 0x0F);
2190 static ssize_t
firmware_rev_show(struct device
*dev
,
2191 struct device_attribute
*attr
,
2194 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2196 return snprintf(buf
, 20, "%u.%x\n", bmc
->id
.firmware_revision_1
,
2197 bmc
->id
.firmware_revision_2
);
2200 static ssize_t
ipmi_version_show(struct device
*dev
,
2201 struct device_attribute
*attr
,
2204 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2206 return snprintf(buf
, 20, "%u.%u\n",
2207 ipmi_version_major(&bmc
->id
),
2208 ipmi_version_minor(&bmc
->id
));
2211 static ssize_t
add_dev_support_show(struct device
*dev
,
2212 struct device_attribute
*attr
,
2215 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2217 return snprintf(buf
, 10, "0x%02x\n",
2218 bmc
->id
.additional_device_support
);
2221 static ssize_t
manufacturer_id_show(struct device
*dev
,
2222 struct device_attribute
*attr
,
2225 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2227 return snprintf(buf
, 20, "0x%6.6x\n", bmc
->id
.manufacturer_id
);
2230 static ssize_t
product_id_show(struct device
*dev
,
2231 struct device_attribute
*attr
,
2234 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2236 return snprintf(buf
, 10, "0x%4.4x\n", bmc
->id
.product_id
);
2239 static ssize_t
aux_firmware_rev_show(struct device
*dev
,
2240 struct device_attribute
*attr
,
2243 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2245 return snprintf(buf
, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2246 bmc
->id
.aux_firmware_revision
[3],
2247 bmc
->id
.aux_firmware_revision
[2],
2248 bmc
->id
.aux_firmware_revision
[1],
2249 bmc
->id
.aux_firmware_revision
[0]);
2252 static ssize_t
guid_show(struct device
*dev
, struct device_attribute
*attr
,
2255 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2257 return snprintf(buf
, 100, "%Lx%Lx\n",
2258 (long long) bmc
->guid
[0],
2259 (long long) bmc
->guid
[8]);
2262 static void remove_files(struct bmc_device
*bmc
)
2267 device_remove_file(&bmc
->dev
->dev
,
2268 &bmc
->device_id_attr
);
2269 device_remove_file(&bmc
->dev
->dev
,
2270 &bmc
->provides_dev_sdrs_attr
);
2271 device_remove_file(&bmc
->dev
->dev
,
2272 &bmc
->revision_attr
);
2273 device_remove_file(&bmc
->dev
->dev
,
2274 &bmc
->firmware_rev_attr
);
2275 device_remove_file(&bmc
->dev
->dev
,
2276 &bmc
->version_attr
);
2277 device_remove_file(&bmc
->dev
->dev
,
2278 &bmc
->add_dev_support_attr
);
2279 device_remove_file(&bmc
->dev
->dev
,
2280 &bmc
->manufacturer_id_attr
);
2281 device_remove_file(&bmc
->dev
->dev
,
2282 &bmc
->product_id_attr
);
2284 if (bmc
->id
.aux_firmware_revision_set
)
2285 device_remove_file(&bmc
->dev
->dev
,
2286 &bmc
->aux_firmware_rev_attr
);
2288 device_remove_file(&bmc
->dev
->dev
,
2293 cleanup_bmc_device(struct kref
*ref
)
2295 struct bmc_device
*bmc
;
2297 bmc
= container_of(ref
, struct bmc_device
, refcount
);
2300 platform_device_unregister(bmc
->dev
);
2304 static void ipmi_bmc_unregister(ipmi_smi_t intf
)
2306 struct bmc_device
*bmc
= intf
->bmc
;
2308 if (intf
->sysfs_name
) {
2309 sysfs_remove_link(&intf
->si_dev
->kobj
, intf
->sysfs_name
);
2310 kfree(intf
->sysfs_name
);
2311 intf
->sysfs_name
= NULL
;
2313 if (intf
->my_dev_name
) {
2314 sysfs_remove_link(&bmc
->dev
->dev
.kobj
, intf
->my_dev_name
);
2315 kfree(intf
->my_dev_name
);
2316 intf
->my_dev_name
= NULL
;
2319 mutex_lock(&ipmidriver_mutex
);
2320 kref_put(&bmc
->refcount
, cleanup_bmc_device
);
2322 mutex_unlock(&ipmidriver_mutex
);
2325 static int create_files(struct bmc_device
*bmc
)
2329 bmc
->device_id_attr
.attr
.name
= "device_id";
2330 bmc
->device_id_attr
.attr
.mode
= S_IRUGO
;
2331 bmc
->device_id_attr
.show
= device_id_show
;
2332 sysfs_attr_init(&bmc
->device_id_attr
.attr
);
2334 bmc
->provides_dev_sdrs_attr
.attr
.name
= "provides_device_sdrs";
2335 bmc
->provides_dev_sdrs_attr
.attr
.mode
= S_IRUGO
;
2336 bmc
->provides_dev_sdrs_attr
.show
= provides_dev_sdrs_show
;
2337 sysfs_attr_init(&bmc
->provides_dev_sdrs_attr
.attr
);
2339 bmc
->revision_attr
.attr
.name
= "revision";
2340 bmc
->revision_attr
.attr
.mode
= S_IRUGO
;
2341 bmc
->revision_attr
.show
= revision_show
;
2342 sysfs_attr_init(&bmc
->revision_attr
.attr
);
2344 bmc
->firmware_rev_attr
.attr
.name
= "firmware_revision";
2345 bmc
->firmware_rev_attr
.attr
.mode
= S_IRUGO
;
2346 bmc
->firmware_rev_attr
.show
= firmware_rev_show
;
2347 sysfs_attr_init(&bmc
->firmware_rev_attr
.attr
);
2349 bmc
->version_attr
.attr
.name
= "ipmi_version";
2350 bmc
->version_attr
.attr
.mode
= S_IRUGO
;
2351 bmc
->version_attr
.show
= ipmi_version_show
;
2352 sysfs_attr_init(&bmc
->version_attr
.attr
);
2354 bmc
->add_dev_support_attr
.attr
.name
= "additional_device_support";
2355 bmc
->add_dev_support_attr
.attr
.mode
= S_IRUGO
;
2356 bmc
->add_dev_support_attr
.show
= add_dev_support_show
;
2357 sysfs_attr_init(&bmc
->add_dev_support_attr
.attr
);
2359 bmc
->manufacturer_id_attr
.attr
.name
= "manufacturer_id";
2360 bmc
->manufacturer_id_attr
.attr
.mode
= S_IRUGO
;
2361 bmc
->manufacturer_id_attr
.show
= manufacturer_id_show
;
2362 sysfs_attr_init(&bmc
->manufacturer_id_attr
.attr
);
2364 bmc
->product_id_attr
.attr
.name
= "product_id";
2365 bmc
->product_id_attr
.attr
.mode
= S_IRUGO
;
2366 bmc
->product_id_attr
.show
= product_id_show
;
2367 sysfs_attr_init(&bmc
->product_id_attr
.attr
);
2369 bmc
->guid_attr
.attr
.name
= "guid";
2370 bmc
->guid_attr
.attr
.mode
= S_IRUGO
;
2371 bmc
->guid_attr
.show
= guid_show
;
2372 sysfs_attr_init(&bmc
->guid_attr
.attr
);
2374 bmc
->aux_firmware_rev_attr
.attr
.name
= "aux_firmware_revision";
2375 bmc
->aux_firmware_rev_attr
.attr
.mode
= S_IRUGO
;
2376 bmc
->aux_firmware_rev_attr
.show
= aux_firmware_rev_show
;
2377 sysfs_attr_init(&bmc
->aux_firmware_rev_attr
.attr
);
2379 err
= device_create_file(&bmc
->dev
->dev
,
2380 &bmc
->device_id_attr
);
2383 err
= device_create_file(&bmc
->dev
->dev
,
2384 &bmc
->provides_dev_sdrs_attr
);
2387 err
= device_create_file(&bmc
->dev
->dev
,
2388 &bmc
->revision_attr
);
2391 err
= device_create_file(&bmc
->dev
->dev
,
2392 &bmc
->firmware_rev_attr
);
2395 err
= device_create_file(&bmc
->dev
->dev
,
2396 &bmc
->version_attr
);
2399 err
= device_create_file(&bmc
->dev
->dev
,
2400 &bmc
->add_dev_support_attr
);
2403 err
= device_create_file(&bmc
->dev
->dev
,
2404 &bmc
->manufacturer_id_attr
);
2407 err
= device_create_file(&bmc
->dev
->dev
,
2408 &bmc
->product_id_attr
);
2411 if (bmc
->id
.aux_firmware_revision_set
) {
2412 err
= device_create_file(&bmc
->dev
->dev
,
2413 &bmc
->aux_firmware_rev_attr
);
2417 if (bmc
->guid_set
) {
2418 err
= device_create_file(&bmc
->dev
->dev
,
2427 if (bmc
->id
.aux_firmware_revision_set
)
2428 device_remove_file(&bmc
->dev
->dev
,
2429 &bmc
->aux_firmware_rev_attr
);
2431 device_remove_file(&bmc
->dev
->dev
,
2432 &bmc
->product_id_attr
);
2434 device_remove_file(&bmc
->dev
->dev
,
2435 &bmc
->manufacturer_id_attr
);
2437 device_remove_file(&bmc
->dev
->dev
,
2438 &bmc
->add_dev_support_attr
);
2440 device_remove_file(&bmc
->dev
->dev
,
2441 &bmc
->version_attr
);
2443 device_remove_file(&bmc
->dev
->dev
,
2444 &bmc
->firmware_rev_attr
);
2446 device_remove_file(&bmc
->dev
->dev
,
2447 &bmc
->revision_attr
);
2449 device_remove_file(&bmc
->dev
->dev
,
2450 &bmc
->provides_dev_sdrs_attr
);
2452 device_remove_file(&bmc
->dev
->dev
,
2453 &bmc
->device_id_attr
);
2458 static int ipmi_bmc_register(ipmi_smi_t intf
, int ifnum
,
2459 const char *sysfs_name
)
2462 struct bmc_device
*bmc
= intf
->bmc
;
2463 struct bmc_device
*old_bmc
;
2467 mutex_lock(&ipmidriver_mutex
);
2470 * Try to find if there is an bmc_device struct
2471 * representing the interfaced BMC already
2474 old_bmc
= ipmi_find_bmc_guid(&ipmidriver
.driver
, bmc
->guid
);
2476 old_bmc
= ipmi_find_bmc_prod_dev_id(&ipmidriver
.driver
,
2481 * If there is already an bmc_device, free the new one,
2482 * otherwise register the new BMC device
2486 intf
->bmc
= old_bmc
;
2489 kref_get(&bmc
->refcount
);
2490 mutex_unlock(&ipmidriver_mutex
);
2493 "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2494 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2495 bmc
->id
.manufacturer_id
,
2500 unsigned char orig_dev_id
= bmc
->id
.device_id
;
2501 int warn_printed
= 0;
2503 snprintf(name
, sizeof(name
),
2504 "ipmi_bmc.%4.4x", bmc
->id
.product_id
);
2506 while (ipmi_find_bmc_prod_dev_id(&ipmidriver
.driver
,
2508 bmc
->id
.device_id
)) {
2509 if (!warn_printed
) {
2510 printk(KERN_WARNING PFX
2511 "This machine has two different BMCs"
2512 " with the same product id and device"
2513 " id. This is an error in the"
2514 " firmware, but incrementing the"
2515 " device id to work around the problem."
2516 " Prod ID = 0x%x, Dev ID = 0x%x\n",
2517 bmc
->id
.product_id
, bmc
->id
.device_id
);
2520 bmc
->id
.device_id
++; /* Wraps at 255 */
2521 if (bmc
->id
.device_id
== orig_dev_id
) {
2523 "Out of device ids!\n");
2528 bmc
->dev
= platform_device_alloc(name
, bmc
->id
.device_id
);
2530 mutex_unlock(&ipmidriver_mutex
);
2533 " Unable to allocate platform device\n");
2536 bmc
->dev
->dev
.driver
= &ipmidriver
.driver
;
2537 dev_set_drvdata(&bmc
->dev
->dev
, bmc
);
2538 kref_init(&bmc
->refcount
);
2540 rv
= platform_device_add(bmc
->dev
);
2541 mutex_unlock(&ipmidriver_mutex
);
2543 platform_device_put(bmc
->dev
);
2547 " Unable to register bmc device: %d\n",
2550 * Don't go to out_err, you can only do that if
2551 * the device is registered already.
2556 rv
= create_files(bmc
);
2558 mutex_lock(&ipmidriver_mutex
);
2559 platform_device_unregister(bmc
->dev
);
2560 mutex_unlock(&ipmidriver_mutex
);
2565 dev_info(intf
->si_dev
, "Found new BMC (man_id: 0x%6.6x, "
2566 "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2567 bmc
->id
.manufacturer_id
,
2573 * create symlink from system interface device to bmc device
2576 intf
->sysfs_name
= kstrdup(sysfs_name
, GFP_KERNEL
);
2577 if (!intf
->sysfs_name
) {
2580 "ipmi_msghandler: allocate link to BMC: %d\n",
2585 rv
= sysfs_create_link(&intf
->si_dev
->kobj
,
2586 &bmc
->dev
->dev
.kobj
, intf
->sysfs_name
);
2588 kfree(intf
->sysfs_name
);
2589 intf
->sysfs_name
= NULL
;
2591 "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2596 size
= snprintf(dummy
, 0, "ipmi%d", ifnum
);
2597 intf
->my_dev_name
= kmalloc(size
+1, GFP_KERNEL
);
2598 if (!intf
->my_dev_name
) {
2599 kfree(intf
->sysfs_name
);
2600 intf
->sysfs_name
= NULL
;
2603 "ipmi_msghandler: allocate link from BMC: %d\n",
2607 snprintf(intf
->my_dev_name
, size
+1, "ipmi%d", ifnum
);
2609 rv
= sysfs_create_link(&bmc
->dev
->dev
.kobj
, &intf
->si_dev
->kobj
,
2612 kfree(intf
->sysfs_name
);
2613 intf
->sysfs_name
= NULL
;
2614 kfree(intf
->my_dev_name
);
2615 intf
->my_dev_name
= NULL
;
2618 " Unable to create symlink to bmc: %d\n",
2626 ipmi_bmc_unregister(intf
);
2631 send_guid_cmd(ipmi_smi_t intf
, int chan
)
2633 struct kernel_ipmi_msg msg
;
2634 struct ipmi_system_interface_addr si
;
2636 si
.addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
2637 si
.channel
= IPMI_BMC_CHANNEL
;
2640 msg
.netfn
= IPMI_NETFN_APP_REQUEST
;
2641 msg
.cmd
= IPMI_GET_DEVICE_GUID_CMD
;
2644 return i_ipmi_request(NULL
,
2646 (struct ipmi_addr
*) &si
,
2653 intf
->channels
[0].address
,
2654 intf
->channels
[0].lun
,
2659 guid_handler(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
2661 if ((msg
->addr
.addr_type
!= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
2662 || (msg
->msg
.netfn
!= IPMI_NETFN_APP_RESPONSE
)
2663 || (msg
->msg
.cmd
!= IPMI_GET_DEVICE_GUID_CMD
))
2667 if (msg
->msg
.data
[0] != 0) {
2668 /* Error from getting the GUID, the BMC doesn't have one. */
2669 intf
->bmc
->guid_set
= 0;
2673 if (msg
->msg
.data_len
< 17) {
2674 intf
->bmc
->guid_set
= 0;
2675 printk(KERN_WARNING PFX
2676 "guid_handler: The GUID response from the BMC was too"
2677 " short, it was %d but should have been 17. Assuming"
2678 " GUID is not available.\n",
2683 memcpy(intf
->bmc
->guid
, msg
->msg
.data
, 16);
2684 intf
->bmc
->guid_set
= 1;
2686 wake_up(&intf
->waitq
);
2690 get_guid(ipmi_smi_t intf
)
2694 intf
->bmc
->guid_set
= 0x2;
2695 intf
->null_user_handler
= guid_handler
;
2696 rv
= send_guid_cmd(intf
, 0);
2698 /* Send failed, no GUID available. */
2699 intf
->bmc
->guid_set
= 0;
2700 wait_event(intf
->waitq
, intf
->bmc
->guid_set
!= 2);
2701 intf
->null_user_handler
= NULL
;
2705 send_channel_info_cmd(ipmi_smi_t intf
, int chan
)
2707 struct kernel_ipmi_msg msg
;
2708 unsigned char data
[1];
2709 struct ipmi_system_interface_addr si
;
2711 si
.addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
2712 si
.channel
= IPMI_BMC_CHANNEL
;
2715 msg
.netfn
= IPMI_NETFN_APP_REQUEST
;
2716 msg
.cmd
= IPMI_GET_CHANNEL_INFO_CMD
;
2720 return i_ipmi_request(NULL
,
2722 (struct ipmi_addr
*) &si
,
2729 intf
->channels
[0].address
,
2730 intf
->channels
[0].lun
,
2735 channel_handler(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
2740 if ((msg
->addr
.addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
2741 && (msg
->msg
.netfn
== IPMI_NETFN_APP_RESPONSE
)
2742 && (msg
->msg
.cmd
== IPMI_GET_CHANNEL_INFO_CMD
)) {
2743 /* It's the one we want */
2744 if (msg
->msg
.data
[0] != 0) {
2745 /* Got an error from the channel, just go on. */
2747 if (msg
->msg
.data
[0] == IPMI_INVALID_COMMAND_ERR
) {
2749 * If the MC does not support this
2750 * command, that is legal. We just
2751 * assume it has one IPMB at channel
2754 intf
->channels
[0].medium
2755 = IPMI_CHANNEL_MEDIUM_IPMB
;
2756 intf
->channels
[0].protocol
2757 = IPMI_CHANNEL_PROTOCOL_IPMB
;
2760 intf
->curr_channel
= IPMI_MAX_CHANNELS
;
2761 wake_up(&intf
->waitq
);
2766 if (msg
->msg
.data_len
< 4) {
2767 /* Message not big enough, just go on. */
2770 chan
= intf
->curr_channel
;
2771 intf
->channels
[chan
].medium
= msg
->msg
.data
[2] & 0x7f;
2772 intf
->channels
[chan
].protocol
= msg
->msg
.data
[3] & 0x1f;
2775 intf
->curr_channel
++;
2776 if (intf
->curr_channel
>= IPMI_MAX_CHANNELS
)
2777 wake_up(&intf
->waitq
);
2779 rv
= send_channel_info_cmd(intf
, intf
->curr_channel
);
2782 /* Got an error somehow, just give up. */
2783 intf
->curr_channel
= IPMI_MAX_CHANNELS
;
2784 wake_up(&intf
->waitq
);
2786 printk(KERN_WARNING PFX
2787 "Error sending channel information: %d\n",
2795 static void ipmi_poll(ipmi_smi_t intf
)
2797 if (intf
->handlers
->poll
)
2798 intf
->handlers
->poll(intf
->send_info
);
2799 /* In case something came in */
2800 handle_new_recv_msgs(intf
);
2803 void ipmi_poll_interface(ipmi_user_t user
)
2805 ipmi_poll(user
->intf
);
2807 EXPORT_SYMBOL(ipmi_poll_interface
);
2809 int ipmi_register_smi(struct ipmi_smi_handlers
*handlers
,
2811 struct ipmi_device_id
*device_id
,
2812 struct device
*si_dev
,
2813 const char *sysfs_name
,
2814 unsigned char slave_addr
)
2820 struct list_head
*link
;
2823 * Make sure the driver is actually initialized, this handles
2824 * problems with initialization order.
2827 rv
= ipmi_init_msghandler();
2831 * The init code doesn't return an error if it was turned
2832 * off, but it won't initialize. Check that.
2838 intf
= kzalloc(sizeof(*intf
), GFP_KERNEL
);
2842 intf
->ipmi_version_major
= ipmi_version_major(device_id
);
2843 intf
->ipmi_version_minor
= ipmi_version_minor(device_id
);
2845 intf
->bmc
= kzalloc(sizeof(*intf
->bmc
), GFP_KERNEL
);
2850 intf
->intf_num
= -1; /* Mark it invalid for now. */
2851 kref_init(&intf
->refcount
);
2852 intf
->bmc
->id
= *device_id
;
2853 intf
->si_dev
= si_dev
;
2854 for (j
= 0; j
< IPMI_MAX_CHANNELS
; j
++) {
2855 intf
->channels
[j
].address
= IPMI_BMC_SLAVE_ADDR
;
2856 intf
->channels
[j
].lun
= 2;
2858 if (slave_addr
!= 0)
2859 intf
->channels
[0].address
= slave_addr
;
2860 INIT_LIST_HEAD(&intf
->users
);
2861 intf
->handlers
= handlers
;
2862 intf
->send_info
= send_info
;
2863 spin_lock_init(&intf
->seq_lock
);
2864 for (j
= 0; j
< IPMI_IPMB_NUM_SEQ
; j
++) {
2865 intf
->seq_table
[j
].inuse
= 0;
2866 intf
->seq_table
[j
].seqid
= 0;
2869 #ifdef CONFIG_PROC_FS
2870 mutex_init(&intf
->proc_entry_lock
);
2872 spin_lock_init(&intf
->waiting_msgs_lock
);
2873 INIT_LIST_HEAD(&intf
->waiting_msgs
);
2874 tasklet_init(&intf
->recv_tasklet
,
2876 (unsigned long) intf
);
2877 atomic_set(&intf
->watchdog_pretimeouts_to_deliver
, 0);
2878 spin_lock_init(&intf
->events_lock
);
2879 INIT_LIST_HEAD(&intf
->waiting_events
);
2880 intf
->waiting_events_count
= 0;
2881 mutex_init(&intf
->cmd_rcvrs_mutex
);
2882 spin_lock_init(&intf
->maintenance_mode_lock
);
2883 INIT_LIST_HEAD(&intf
->cmd_rcvrs
);
2884 init_waitqueue_head(&intf
->waitq
);
2885 for (i
= 0; i
< IPMI_NUM_STATS
; i
++)
2886 atomic_set(&intf
->stats
[i
], 0);
2888 intf
->proc_dir
= NULL
;
2890 mutex_lock(&smi_watchers_mutex
);
2891 mutex_lock(&ipmi_interfaces_mutex
);
2892 /* Look for a hole in the numbers. */
2894 link
= &ipmi_interfaces
;
2895 list_for_each_entry_rcu(tintf
, &ipmi_interfaces
, link
) {
2896 if (tintf
->intf_num
!= i
) {
2897 link
= &tintf
->link
;
2902 /* Add the new interface in numeric order. */
2904 list_add_rcu(&intf
->link
, &ipmi_interfaces
);
2906 list_add_tail_rcu(&intf
->link
, link
);
2908 rv
= handlers
->start_processing(send_info
, intf
);
2914 if ((intf
->ipmi_version_major
> 1)
2915 || ((intf
->ipmi_version_major
== 1)
2916 && (intf
->ipmi_version_minor
>= 5))) {
2918 * Start scanning the channels to see what is
2921 intf
->null_user_handler
= channel_handler
;
2922 intf
->curr_channel
= 0;
2923 rv
= send_channel_info_cmd(intf
, 0);
2927 /* Wait for the channel info to be read. */
2928 wait_event(intf
->waitq
,
2929 intf
->curr_channel
>= IPMI_MAX_CHANNELS
);
2930 intf
->null_user_handler
= NULL
;
2932 /* Assume a single IPMB channel at zero. */
2933 intf
->channels
[0].medium
= IPMI_CHANNEL_MEDIUM_IPMB
;
2934 intf
->channels
[0].protocol
= IPMI_CHANNEL_PROTOCOL_IPMB
;
2935 intf
->curr_channel
= IPMI_MAX_CHANNELS
;
2939 rv
= add_proc_entries(intf
, i
);
2941 rv
= ipmi_bmc_register(intf
, i
, sysfs_name
);
2946 remove_proc_entries(intf
);
2947 intf
->handlers
= NULL
;
2948 list_del_rcu(&intf
->link
);
2949 mutex_unlock(&ipmi_interfaces_mutex
);
2950 mutex_unlock(&smi_watchers_mutex
);
2952 kref_put(&intf
->refcount
, intf_free
);
2955 * Keep memory order straight for RCU readers. Make
2956 * sure everything else is committed to memory before
2957 * setting intf_num to mark the interface valid.
2961 mutex_unlock(&ipmi_interfaces_mutex
);
2962 /* After this point the interface is legal to use. */
2963 call_smi_watchers(i
, intf
->si_dev
);
2964 mutex_unlock(&smi_watchers_mutex
);
2969 EXPORT_SYMBOL(ipmi_register_smi
);
2971 static void cleanup_smi_msgs(ipmi_smi_t intf
)
2974 struct seq_table
*ent
;
2976 /* No need for locks, the interface is down. */
2977 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++) {
2978 ent
= &(intf
->seq_table
[i
]);
2981 deliver_err_response(ent
->recv_msg
, IPMI_ERR_UNSPECIFIED
);
2985 int ipmi_unregister_smi(ipmi_smi_t intf
)
2987 struct ipmi_smi_watcher
*w
;
2988 int intf_num
= intf
->intf_num
;
2990 ipmi_bmc_unregister(intf
);
2992 mutex_lock(&smi_watchers_mutex
);
2993 mutex_lock(&ipmi_interfaces_mutex
);
2994 intf
->intf_num
= -1;
2995 intf
->handlers
= NULL
;
2996 list_del_rcu(&intf
->link
);
2997 mutex_unlock(&ipmi_interfaces_mutex
);
3000 cleanup_smi_msgs(intf
);
3002 remove_proc_entries(intf
);
3005 * Call all the watcher interfaces to tell them that
3006 * an interface is gone.
3008 list_for_each_entry(w
, &smi_watchers
, link
)
3009 w
->smi_gone(intf_num
);
3010 mutex_unlock(&smi_watchers_mutex
);
3012 kref_put(&intf
->refcount
, intf_free
);
3015 EXPORT_SYMBOL(ipmi_unregister_smi
);
3017 static int handle_ipmb_get_msg_rsp(ipmi_smi_t intf
,
3018 struct ipmi_smi_msg
*msg
)
3020 struct ipmi_ipmb_addr ipmb_addr
;
3021 struct ipmi_recv_msg
*recv_msg
;
3024 * This is 11, not 10, because the response must contain a
3027 if (msg
->rsp_size
< 11) {
3028 /* Message not big enough, just ignore it. */
3029 ipmi_inc_stat(intf
, invalid_ipmb_responses
);
3033 if (msg
->rsp
[2] != 0) {
3034 /* An error getting the response, just ignore it. */
3038 ipmb_addr
.addr_type
= IPMI_IPMB_ADDR_TYPE
;
3039 ipmb_addr
.slave_addr
= msg
->rsp
[6];
3040 ipmb_addr
.channel
= msg
->rsp
[3] & 0x0f;
3041 ipmb_addr
.lun
= msg
->rsp
[7] & 3;
3044 * It's a response from a remote entity. Look up the sequence
3045 * number and handle the response.
3047 if (intf_find_seq(intf
,
3051 (msg
->rsp
[4] >> 2) & (~1),
3052 (struct ipmi_addr
*) &(ipmb_addr
),
3055 * We were unable to find the sequence number,
3056 * so just nuke the message.
3058 ipmi_inc_stat(intf
, unhandled_ipmb_responses
);
3062 memcpy(recv_msg
->msg_data
,
3066 * The other fields matched, so no need to set them, except
3067 * for netfn, which needs to be the response that was
3068 * returned, not the request value.
3070 recv_msg
->msg
.netfn
= msg
->rsp
[4] >> 2;
3071 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3072 recv_msg
->msg
.data_len
= msg
->rsp_size
- 10;
3073 recv_msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
3074 ipmi_inc_stat(intf
, handled_ipmb_responses
);
3075 deliver_response(recv_msg
);
3080 static int handle_ipmb_get_msg_cmd(ipmi_smi_t intf
,
3081 struct ipmi_smi_msg
*msg
)
3083 struct cmd_rcvr
*rcvr
;
3085 unsigned char netfn
;
3088 ipmi_user_t user
= NULL
;
3089 struct ipmi_ipmb_addr
*ipmb_addr
;
3090 struct ipmi_recv_msg
*recv_msg
;
3091 struct ipmi_smi_handlers
*handlers
;
3093 if (msg
->rsp_size
< 10) {
3094 /* Message not big enough, just ignore it. */
3095 ipmi_inc_stat(intf
, invalid_commands
);
3099 if (msg
->rsp
[2] != 0) {
3100 /* An error getting the response, just ignore it. */
3104 netfn
= msg
->rsp
[4] >> 2;
3106 chan
= msg
->rsp
[3] & 0xf;
3109 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, chan
);
3112 kref_get(&user
->refcount
);
3118 /* We didn't find a user, deliver an error response. */
3119 ipmi_inc_stat(intf
, unhandled_commands
);
3121 msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
3122 msg
->data
[1] = IPMI_SEND_MSG_CMD
;
3123 msg
->data
[2] = msg
->rsp
[3];
3124 msg
->data
[3] = msg
->rsp
[6];
3125 msg
->data
[4] = ((netfn
+ 1) << 2) | (msg
->rsp
[7] & 0x3);
3126 msg
->data
[5] = ipmb_checksum(&(msg
->data
[3]), 2);
3127 msg
->data
[6] = intf
->channels
[msg
->rsp
[3] & 0xf].address
;
3129 msg
->data
[7] = (msg
->rsp
[7] & 0xfc) | (msg
->rsp
[4] & 0x3);
3130 msg
->data
[8] = msg
->rsp
[8]; /* cmd */
3131 msg
->data
[9] = IPMI_INVALID_CMD_COMPLETION_CODE
;
3132 msg
->data
[10] = ipmb_checksum(&(msg
->data
[6]), 4);
3133 msg
->data_size
= 11;
3138 printk("Invalid command:");
3139 for (m
= 0; m
< msg
->data_size
; m
++)
3140 printk(" %2.2x", msg
->data
[m
]);
3145 handlers
= intf
->handlers
;
3147 handlers
->sender(intf
->send_info
, msg
, 0);
3149 * We used the message, so return the value
3150 * that causes it to not be freed or
3157 /* Deliver the message to the user. */
3158 ipmi_inc_stat(intf
, handled_commands
);
3160 recv_msg
= ipmi_alloc_recv_msg();
3163 * We couldn't allocate memory for the
3164 * message, so requeue it for handling
3168 kref_put(&user
->refcount
, free_user
);
3170 /* Extract the source address from the data. */
3171 ipmb_addr
= (struct ipmi_ipmb_addr
*) &recv_msg
->addr
;
3172 ipmb_addr
->addr_type
= IPMI_IPMB_ADDR_TYPE
;
3173 ipmb_addr
->slave_addr
= msg
->rsp
[6];
3174 ipmb_addr
->lun
= msg
->rsp
[7] & 3;
3175 ipmb_addr
->channel
= msg
->rsp
[3] & 0xf;
3178 * Extract the rest of the message information
3179 * from the IPMB header.
3181 recv_msg
->user
= user
;
3182 recv_msg
->recv_type
= IPMI_CMD_RECV_TYPE
;
3183 recv_msg
->msgid
= msg
->rsp
[7] >> 2;
3184 recv_msg
->msg
.netfn
= msg
->rsp
[4] >> 2;
3185 recv_msg
->msg
.cmd
= msg
->rsp
[8];
3186 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3189 * We chop off 10, not 9 bytes because the checksum
3190 * at the end also needs to be removed.
3192 recv_msg
->msg
.data_len
= msg
->rsp_size
- 10;
3193 memcpy(recv_msg
->msg_data
,
3195 msg
->rsp_size
- 10);
3196 deliver_response(recv_msg
);
3203 static int handle_lan_get_msg_rsp(ipmi_smi_t intf
,
3204 struct ipmi_smi_msg
*msg
)
3206 struct ipmi_lan_addr lan_addr
;
3207 struct ipmi_recv_msg
*recv_msg
;
3211 * This is 13, not 12, because the response must contain a
3214 if (msg
->rsp_size
< 13) {
3215 /* Message not big enough, just ignore it. */
3216 ipmi_inc_stat(intf
, invalid_lan_responses
);
3220 if (msg
->rsp
[2] != 0) {
3221 /* An error getting the response, just ignore it. */
3225 lan_addr
.addr_type
= IPMI_LAN_ADDR_TYPE
;
3226 lan_addr
.session_handle
= msg
->rsp
[4];
3227 lan_addr
.remote_SWID
= msg
->rsp
[8];
3228 lan_addr
.local_SWID
= msg
->rsp
[5];
3229 lan_addr
.channel
= msg
->rsp
[3] & 0x0f;
3230 lan_addr
.privilege
= msg
->rsp
[3] >> 4;
3231 lan_addr
.lun
= msg
->rsp
[9] & 3;
3234 * It's a response from a remote entity. Look up the sequence
3235 * number and handle the response.
3237 if (intf_find_seq(intf
,
3241 (msg
->rsp
[6] >> 2) & (~1),
3242 (struct ipmi_addr
*) &(lan_addr
),
3245 * We were unable to find the sequence number,
3246 * so just nuke the message.
3248 ipmi_inc_stat(intf
, unhandled_lan_responses
);
3252 memcpy(recv_msg
->msg_data
,
3254 msg
->rsp_size
- 11);
3256 * The other fields matched, so no need to set them, except
3257 * for netfn, which needs to be the response that was
3258 * returned, not the request value.
3260 recv_msg
->msg
.netfn
= msg
->rsp
[6] >> 2;
3261 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3262 recv_msg
->msg
.data_len
= msg
->rsp_size
- 12;
3263 recv_msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
3264 ipmi_inc_stat(intf
, handled_lan_responses
);
3265 deliver_response(recv_msg
);
3270 static int handle_lan_get_msg_cmd(ipmi_smi_t intf
,
3271 struct ipmi_smi_msg
*msg
)
3273 struct cmd_rcvr
*rcvr
;
3275 unsigned char netfn
;
3278 ipmi_user_t user
= NULL
;
3279 struct ipmi_lan_addr
*lan_addr
;
3280 struct ipmi_recv_msg
*recv_msg
;
3282 if (msg
->rsp_size
< 12) {
3283 /* Message not big enough, just ignore it. */
3284 ipmi_inc_stat(intf
, invalid_commands
);
3288 if (msg
->rsp
[2] != 0) {
3289 /* An error getting the response, just ignore it. */
3293 netfn
= msg
->rsp
[6] >> 2;
3295 chan
= msg
->rsp
[3] & 0xf;
3298 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, chan
);
3301 kref_get(&user
->refcount
);
3307 /* We didn't find a user, just give up. */
3308 ipmi_inc_stat(intf
, unhandled_commands
);
3311 * Don't do anything with these messages, just allow
3316 /* Deliver the message to the user. */
3317 ipmi_inc_stat(intf
, handled_commands
);
3319 recv_msg
= ipmi_alloc_recv_msg();
3322 * We couldn't allocate memory for the
3323 * message, so requeue it for handling later.
3326 kref_put(&user
->refcount
, free_user
);
3328 /* Extract the source address from the data. */
3329 lan_addr
= (struct ipmi_lan_addr
*) &recv_msg
->addr
;
3330 lan_addr
->addr_type
= IPMI_LAN_ADDR_TYPE
;
3331 lan_addr
->session_handle
= msg
->rsp
[4];
3332 lan_addr
->remote_SWID
= msg
->rsp
[8];
3333 lan_addr
->local_SWID
= msg
->rsp
[5];
3334 lan_addr
->lun
= msg
->rsp
[9] & 3;
3335 lan_addr
->channel
= msg
->rsp
[3] & 0xf;
3336 lan_addr
->privilege
= msg
->rsp
[3] >> 4;
3339 * Extract the rest of the message information
3340 * from the IPMB header.
3342 recv_msg
->user
= user
;
3343 recv_msg
->recv_type
= IPMI_CMD_RECV_TYPE
;
3344 recv_msg
->msgid
= msg
->rsp
[9] >> 2;
3345 recv_msg
->msg
.netfn
= msg
->rsp
[6] >> 2;
3346 recv_msg
->msg
.cmd
= msg
->rsp
[10];
3347 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3350 * We chop off 12, not 11 bytes because the checksum
3351 * at the end also needs to be removed.
3353 recv_msg
->msg
.data_len
= msg
->rsp_size
- 12;
3354 memcpy(recv_msg
->msg_data
,
3356 msg
->rsp_size
- 12);
3357 deliver_response(recv_msg
);
3365 * This routine will handle "Get Message" command responses with
3366 * channels that use an OEM Medium. The message format belongs to
3367 * the OEM. See IPMI 2.0 specification, Chapter 6 and
3368 * Chapter 22, sections 22.6 and 22.24 for more details.
3370 static int handle_oem_get_msg_cmd(ipmi_smi_t intf
,
3371 struct ipmi_smi_msg
*msg
)
3373 struct cmd_rcvr
*rcvr
;
3375 unsigned char netfn
;
3378 ipmi_user_t user
= NULL
;
3379 struct ipmi_system_interface_addr
*smi_addr
;
3380 struct ipmi_recv_msg
*recv_msg
;
3383 * We expect the OEM SW to perform error checking
3384 * so we just do some basic sanity checks
3386 if (msg
->rsp_size
< 4) {
3387 /* Message not big enough, just ignore it. */
3388 ipmi_inc_stat(intf
, invalid_commands
);
3392 if (msg
->rsp
[2] != 0) {
3393 /* An error getting the response, just ignore it. */
3398 * This is an OEM Message so the OEM needs to know how
3399 * handle the message. We do no interpretation.
3401 netfn
= msg
->rsp
[0] >> 2;
3403 chan
= msg
->rsp
[3] & 0xf;
3406 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, chan
);
3409 kref_get(&user
->refcount
);
3415 /* We didn't find a user, just give up. */
3416 ipmi_inc_stat(intf
, unhandled_commands
);
3419 * Don't do anything with these messages, just allow
3425 /* Deliver the message to the user. */
3426 ipmi_inc_stat(intf
, handled_commands
);
3428 recv_msg
= ipmi_alloc_recv_msg();
3431 * We couldn't allocate memory for the
3432 * message, so requeue it for handling
3436 kref_put(&user
->refcount
, free_user
);
3439 * OEM Messages are expected to be delivered via
3440 * the system interface to SMS software. We might
3441 * need to visit this again depending on OEM
3444 smi_addr
= ((struct ipmi_system_interface_addr
*)
3446 smi_addr
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
3447 smi_addr
->channel
= IPMI_BMC_CHANNEL
;
3448 smi_addr
->lun
= msg
->rsp
[0] & 3;
3450 recv_msg
->user
= user
;
3451 recv_msg
->user_msg_data
= NULL
;
3452 recv_msg
->recv_type
= IPMI_OEM_RECV_TYPE
;
3453 recv_msg
->msg
.netfn
= msg
->rsp
[0] >> 2;
3454 recv_msg
->msg
.cmd
= msg
->rsp
[1];
3455 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3458 * The message starts at byte 4 which follows the
3459 * the Channel Byte in the "GET MESSAGE" command
3461 recv_msg
->msg
.data_len
= msg
->rsp_size
- 4;
3462 memcpy(recv_msg
->msg_data
,
3465 deliver_response(recv_msg
);
3472 static void copy_event_into_recv_msg(struct ipmi_recv_msg
*recv_msg
,
3473 struct ipmi_smi_msg
*msg
)
3475 struct ipmi_system_interface_addr
*smi_addr
;
3477 recv_msg
->msgid
= 0;
3478 smi_addr
= (struct ipmi_system_interface_addr
*) &(recv_msg
->addr
);
3479 smi_addr
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
3480 smi_addr
->channel
= IPMI_BMC_CHANNEL
;
3481 smi_addr
->lun
= msg
->rsp
[0] & 3;
3482 recv_msg
->recv_type
= IPMI_ASYNC_EVENT_RECV_TYPE
;
3483 recv_msg
->msg
.netfn
= msg
->rsp
[0] >> 2;
3484 recv_msg
->msg
.cmd
= msg
->rsp
[1];
3485 memcpy(recv_msg
->msg_data
, &(msg
->rsp
[3]), msg
->rsp_size
- 3);
3486 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3487 recv_msg
->msg
.data_len
= msg
->rsp_size
- 3;
3490 static int handle_read_event_rsp(ipmi_smi_t intf
,
3491 struct ipmi_smi_msg
*msg
)
3493 struct ipmi_recv_msg
*recv_msg
, *recv_msg2
;
3494 struct list_head msgs
;
3497 int deliver_count
= 0;
3498 unsigned long flags
;
3500 if (msg
->rsp_size
< 19) {
3501 /* Message is too small to be an IPMB event. */
3502 ipmi_inc_stat(intf
, invalid_events
);
3506 if (msg
->rsp
[2] != 0) {
3507 /* An error getting the event, just ignore it. */
3511 INIT_LIST_HEAD(&msgs
);
3513 spin_lock_irqsave(&intf
->events_lock
, flags
);
3515 ipmi_inc_stat(intf
, events
);
3518 * Allocate and fill in one message for every user that is
3522 list_for_each_entry_rcu(user
, &intf
->users
, link
) {
3523 if (!user
->gets_events
)
3526 recv_msg
= ipmi_alloc_recv_msg();
3529 list_for_each_entry_safe(recv_msg
, recv_msg2
, &msgs
,
3531 list_del(&recv_msg
->link
);
3532 ipmi_free_recv_msg(recv_msg
);
3535 * We couldn't allocate memory for the
3536 * message, so requeue it for handling
3545 copy_event_into_recv_msg(recv_msg
, msg
);
3546 recv_msg
->user
= user
;
3547 kref_get(&user
->refcount
);
3548 list_add_tail(&(recv_msg
->link
), &msgs
);
3552 if (deliver_count
) {
3553 /* Now deliver all the messages. */
3554 list_for_each_entry_safe(recv_msg
, recv_msg2
, &msgs
, link
) {
3555 list_del(&recv_msg
->link
);
3556 deliver_response(recv_msg
);
3558 } else if (intf
->waiting_events_count
< MAX_EVENTS_IN_QUEUE
) {
3560 * No one to receive the message, put it in queue if there's
3561 * not already too many things in the queue.
3563 recv_msg
= ipmi_alloc_recv_msg();
3566 * We couldn't allocate memory for the
3567 * message, so requeue it for handling
3574 copy_event_into_recv_msg(recv_msg
, msg
);
3575 list_add_tail(&(recv_msg
->link
), &(intf
->waiting_events
));
3576 intf
->waiting_events_count
++;
3577 } else if (!intf
->event_msg_printed
) {
3579 * There's too many things in the queue, discard this
3582 printk(KERN_WARNING PFX
"Event queue full, discarding"
3583 " incoming events\n");
3584 intf
->event_msg_printed
= 1;
3588 spin_unlock_irqrestore(&(intf
->events_lock
), flags
);
3593 static int handle_bmc_rsp(ipmi_smi_t intf
,
3594 struct ipmi_smi_msg
*msg
)
3596 struct ipmi_recv_msg
*recv_msg
;
3597 struct ipmi_user
*user
;
3599 recv_msg
= (struct ipmi_recv_msg
*) msg
->user_data
;
3600 if (recv_msg
== NULL
) {
3602 "IPMI message received with no owner. This\n"
3603 "could be because of a malformed message, or\n"
3604 "because of a hardware error. Contact your\n"
3605 "hardware vender for assistance\n");
3609 user
= recv_msg
->user
;
3610 /* Make sure the user still exists. */
3611 if (user
&& !user
->valid
) {
3612 /* The user for the message went away, so give up. */
3613 ipmi_inc_stat(intf
, unhandled_local_responses
);
3614 ipmi_free_recv_msg(recv_msg
);
3616 struct ipmi_system_interface_addr
*smi_addr
;
3618 ipmi_inc_stat(intf
, handled_local_responses
);
3619 recv_msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
3620 recv_msg
->msgid
= msg
->msgid
;
3621 smi_addr
= ((struct ipmi_system_interface_addr
*)
3623 smi_addr
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
3624 smi_addr
->channel
= IPMI_BMC_CHANNEL
;
3625 smi_addr
->lun
= msg
->rsp
[0] & 3;
3626 recv_msg
->msg
.netfn
= msg
->rsp
[0] >> 2;
3627 recv_msg
->msg
.cmd
= msg
->rsp
[1];
3628 memcpy(recv_msg
->msg_data
,
3631 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3632 recv_msg
->msg
.data_len
= msg
->rsp_size
- 2;
3633 deliver_response(recv_msg
);
3640 * Handle a received message. Return 1 if the message should be requeued,
3641 * 0 if the message should be freed, or -1 if the message should not
3642 * be freed or requeued.
3644 static int handle_one_recv_msg(ipmi_smi_t intf
,
3645 struct ipmi_smi_msg
*msg
)
3653 for (m
= 0; m
< msg
->rsp_size
; m
++)
3654 printk(" %2.2x", msg
->rsp
[m
]);
3657 if (msg
->rsp_size
< 2) {
3658 /* Message is too small to be correct. */
3659 printk(KERN_WARNING PFX
"BMC returned to small a message"
3660 " for netfn %x cmd %x, got %d bytes\n",
3661 (msg
->data
[0] >> 2) | 1, msg
->data
[1], msg
->rsp_size
);
3663 /* Generate an error response for the message. */
3664 msg
->rsp
[0] = msg
->data
[0] | (1 << 2);
3665 msg
->rsp
[1] = msg
->data
[1];
3666 msg
->rsp
[2] = IPMI_ERR_UNSPECIFIED
;
3668 } else if (((msg
->rsp
[0] >> 2) != ((msg
->data
[0] >> 2) | 1))
3669 || (msg
->rsp
[1] != msg
->data
[1])) {
3671 * The NetFN and Command in the response is not even
3672 * marginally correct.
3674 printk(KERN_WARNING PFX
"BMC returned incorrect response,"
3675 " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3676 (msg
->data
[0] >> 2) | 1, msg
->data
[1],
3677 msg
->rsp
[0] >> 2, msg
->rsp
[1]);
3679 /* Generate an error response for the message. */
3680 msg
->rsp
[0] = msg
->data
[0] | (1 << 2);
3681 msg
->rsp
[1] = msg
->data
[1];
3682 msg
->rsp
[2] = IPMI_ERR_UNSPECIFIED
;
3686 if ((msg
->rsp
[0] == ((IPMI_NETFN_APP_REQUEST
|1) << 2))
3687 && (msg
->rsp
[1] == IPMI_SEND_MSG_CMD
)
3688 && (msg
->user_data
!= NULL
)) {
3690 * It's a response to a response we sent. For this we
3691 * deliver a send message response to the user.
3693 struct ipmi_recv_msg
*recv_msg
= msg
->user_data
;
3696 if (msg
->rsp_size
< 2)
3697 /* Message is too small to be correct. */
3700 chan
= msg
->data
[2] & 0x0f;
3701 if (chan
>= IPMI_MAX_CHANNELS
)
3702 /* Invalid channel number */
3708 /* Make sure the user still exists. */
3709 if (!recv_msg
->user
|| !recv_msg
->user
->valid
)
3712 recv_msg
->recv_type
= IPMI_RESPONSE_RESPONSE_TYPE
;
3713 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3714 recv_msg
->msg
.data_len
= 1;
3715 recv_msg
->msg_data
[0] = msg
->rsp
[2];
3716 deliver_response(recv_msg
);
3717 } else if ((msg
->rsp
[0] == ((IPMI_NETFN_APP_REQUEST
|1) << 2))
3718 && (msg
->rsp
[1] == IPMI_GET_MSG_CMD
)) {
3719 /* It's from the receive queue. */
3720 chan
= msg
->rsp
[3] & 0xf;
3721 if (chan
>= IPMI_MAX_CHANNELS
) {
3722 /* Invalid channel number */
3728 * We need to make sure the channels have been initialized.
3729 * The channel_handler routine will set the "curr_channel"
3730 * equal to or greater than IPMI_MAX_CHANNELS when all the
3731 * channels for this interface have been initialized.
3733 if (intf
->curr_channel
< IPMI_MAX_CHANNELS
) {
3734 requeue
= 0; /* Throw the message away */
3738 switch (intf
->channels
[chan
].medium
) {
3739 case IPMI_CHANNEL_MEDIUM_IPMB
:
3740 if (msg
->rsp
[4] & 0x04) {
3742 * It's a response, so find the
3743 * requesting message and send it up.
3745 requeue
= handle_ipmb_get_msg_rsp(intf
, msg
);
3748 * It's a command to the SMS from some other
3749 * entity. Handle that.
3751 requeue
= handle_ipmb_get_msg_cmd(intf
, msg
);
3755 case IPMI_CHANNEL_MEDIUM_8023LAN
:
3756 case IPMI_CHANNEL_MEDIUM_ASYNC
:
3757 if (msg
->rsp
[6] & 0x04) {
3759 * It's a response, so find the
3760 * requesting message and send it up.
3762 requeue
= handle_lan_get_msg_rsp(intf
, msg
);
3765 * It's a command to the SMS from some other
3766 * entity. Handle that.
3768 requeue
= handle_lan_get_msg_cmd(intf
, msg
);
3773 /* Check for OEM Channels. Clients had better
3774 register for these commands. */
3775 if ((intf
->channels
[chan
].medium
3776 >= IPMI_CHANNEL_MEDIUM_OEM_MIN
)
3777 && (intf
->channels
[chan
].medium
3778 <= IPMI_CHANNEL_MEDIUM_OEM_MAX
)) {
3779 requeue
= handle_oem_get_msg_cmd(intf
, msg
);
3782 * We don't handle the channel type, so just
3789 } else if ((msg
->rsp
[0] == ((IPMI_NETFN_APP_REQUEST
|1) << 2))
3790 && (msg
->rsp
[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD
)) {
3791 /* It's an asynchronous event. */
3792 requeue
= handle_read_event_rsp(intf
, msg
);
3794 /* It's a response from the local BMC. */
3795 requeue
= handle_bmc_rsp(intf
, msg
);
3803 * If there are messages in the queue or pretimeouts, handle them.
3805 static void handle_new_recv_msgs(ipmi_smi_t intf
)
3807 struct ipmi_smi_msg
*smi_msg
;
3808 unsigned long flags
= 0;
3810 int run_to_completion
= intf
->run_to_completion
;
3812 /* See if any waiting messages need to be processed. */
3813 if (!run_to_completion
)
3814 spin_lock_irqsave(&intf
->waiting_msgs_lock
, flags
);
3815 while (!list_empty(&intf
->waiting_msgs
)) {
3816 smi_msg
= list_entry(intf
->waiting_msgs
.next
,
3817 struct ipmi_smi_msg
, link
);
3818 list_del(&smi_msg
->link
);
3819 if (!run_to_completion
)
3820 spin_unlock_irqrestore(&intf
->waiting_msgs_lock
, flags
);
3821 rv
= handle_one_recv_msg(intf
, smi_msg
);
3822 if (!run_to_completion
)
3823 spin_lock_irqsave(&intf
->waiting_msgs_lock
, flags
);
3825 /* Message handled */
3826 ipmi_free_smi_msg(smi_msg
);
3827 } else if (rv
< 0) {
3828 /* Fatal error on the message, del but don't free. */
3831 * To preserve message order, quit if we
3832 * can't handle a message.
3834 list_add(&smi_msg
->link
, &intf
->waiting_msgs
);
3838 if (!run_to_completion
)
3839 spin_unlock_irqrestore(&intf
->waiting_msgs_lock
, flags
);
3842 * If the pretimout count is non-zero, decrement one from it and
3843 * deliver pretimeouts to all the users.
3845 if (atomic_add_unless(&intf
->watchdog_pretimeouts_to_deliver
, -1, 0)) {
3849 list_for_each_entry_rcu(user
, &intf
->users
, link
) {
3850 if (user
->handler
->ipmi_watchdog_pretimeout
)
3851 user
->handler
->ipmi_watchdog_pretimeout(
3852 user
->handler_data
);
3858 static void smi_recv_tasklet(unsigned long val
)
3860 handle_new_recv_msgs((ipmi_smi_t
) val
);
3863 /* Handle a new message from the lower layer. */
3864 void ipmi_smi_msg_received(ipmi_smi_t intf
,
3865 struct ipmi_smi_msg
*msg
)
3867 unsigned long flags
= 0; /* keep us warning-free. */
3868 int run_to_completion
;
3871 if ((msg
->data_size
>= 2)
3872 && (msg
->data
[0] == (IPMI_NETFN_APP_REQUEST
<< 2))
3873 && (msg
->data
[1] == IPMI_SEND_MSG_CMD
)
3874 && (msg
->user_data
== NULL
)) {
3876 * This is the local response to a command send, start
3877 * the timer for these. The user_data will not be
3878 * NULL if this is a response send, and we will let
3879 * response sends just go through.
3883 * Check for errors, if we get certain errors (ones
3884 * that mean basically we can try again later), we
3885 * ignore them and start the timer. Otherwise we
3886 * report the error immediately.
3888 if ((msg
->rsp_size
>= 3) && (msg
->rsp
[2] != 0)
3889 && (msg
->rsp
[2] != IPMI_NODE_BUSY_ERR
)
3890 && (msg
->rsp
[2] != IPMI_LOST_ARBITRATION_ERR
)
3891 && (msg
->rsp
[2] != IPMI_BUS_ERR
)
3892 && (msg
->rsp
[2] != IPMI_NAK_ON_WRITE_ERR
)) {
3893 int chan
= msg
->rsp
[3] & 0xf;
3895 /* Got an error sending the message, handle it. */
3896 if (chan
>= IPMI_MAX_CHANNELS
)
3897 ; /* This shouldn't happen */
3898 else if ((intf
->channels
[chan
].medium
3899 == IPMI_CHANNEL_MEDIUM_8023LAN
)
3900 || (intf
->channels
[chan
].medium
3901 == IPMI_CHANNEL_MEDIUM_ASYNC
))
3902 ipmi_inc_stat(intf
, sent_lan_command_errs
);
3904 ipmi_inc_stat(intf
, sent_ipmb_command_errs
);
3905 intf_err_seq(intf
, msg
->msgid
, msg
->rsp
[2]);
3907 /* The message was sent, start the timer. */
3908 intf_start_seq_timer(intf
, msg
->msgid
);
3910 ipmi_free_smi_msg(msg
);
3915 * To preserve message order, if the list is not empty, we
3916 * tack this message onto the end of the list.
3918 run_to_completion
= intf
->run_to_completion
;
3919 if (!run_to_completion
)
3920 spin_lock_irqsave(&intf
->waiting_msgs_lock
, flags
);
3921 list_add_tail(&msg
->link
, &intf
->waiting_msgs
);
3922 if (!run_to_completion
)
3923 spin_unlock_irqrestore(&intf
->waiting_msgs_lock
, flags
);
3925 tasklet_schedule(&intf
->recv_tasklet
);
3929 EXPORT_SYMBOL(ipmi_smi_msg_received
);
3931 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf
)
3933 atomic_set(&intf
->watchdog_pretimeouts_to_deliver
, 1);
3934 tasklet_schedule(&intf
->recv_tasklet
);
3936 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout
);
3938 static struct ipmi_smi_msg
*
3939 smi_from_recv_msg(ipmi_smi_t intf
, struct ipmi_recv_msg
*recv_msg
,
3940 unsigned char seq
, long seqid
)
3942 struct ipmi_smi_msg
*smi_msg
= ipmi_alloc_smi_msg();
3945 * If we can't allocate the message, then just return, we
3946 * get 4 retries, so this should be ok.
3950 memcpy(smi_msg
->data
, recv_msg
->msg
.data
, recv_msg
->msg
.data_len
);
3951 smi_msg
->data_size
= recv_msg
->msg
.data_len
;
3952 smi_msg
->msgid
= STORE_SEQ_IN_MSGID(seq
, seqid
);
3958 for (m
= 0; m
< smi_msg
->data_size
; m
++)
3959 printk(" %2.2x", smi_msg
->data
[m
]);
3966 static void check_msg_timeout(ipmi_smi_t intf
, struct seq_table
*ent
,
3967 struct list_head
*timeouts
, long timeout_period
,
3968 int slot
, unsigned long *flags
)
3970 struct ipmi_recv_msg
*msg
;
3971 struct ipmi_smi_handlers
*handlers
;
3973 if (intf
->intf_num
== -1)
3979 ent
->timeout
-= timeout_period
;
3980 if (ent
->timeout
> 0)
3983 if (ent
->retries_left
== 0) {
3984 /* The message has used all its retries. */
3986 msg
= ent
->recv_msg
;
3987 list_add_tail(&msg
->link
, timeouts
);
3989 ipmi_inc_stat(intf
, timed_out_ipmb_broadcasts
);
3990 else if (is_lan_addr(&ent
->recv_msg
->addr
))
3991 ipmi_inc_stat(intf
, timed_out_lan_commands
);
3993 ipmi_inc_stat(intf
, timed_out_ipmb_commands
);
3995 struct ipmi_smi_msg
*smi_msg
;
3996 /* More retries, send again. */
3999 * Start with the max timer, set to normal timer after
4000 * the message is sent.
4002 ent
->timeout
= MAX_MSG_TIMEOUT
;
4003 ent
->retries_left
--;
4004 smi_msg
= smi_from_recv_msg(intf
, ent
->recv_msg
, slot
,
4007 if (is_lan_addr(&ent
->recv_msg
->addr
))
4009 dropped_rexmit_lan_commands
);
4012 dropped_rexmit_ipmb_commands
);
4016 spin_unlock_irqrestore(&intf
->seq_lock
, *flags
);
4019 * Send the new message. We send with a zero
4020 * priority. It timed out, I doubt time is that
4021 * critical now, and high priority messages are really
4022 * only for messages to the local MC, which don't get
4025 handlers
= intf
->handlers
;
4027 if (is_lan_addr(&ent
->recv_msg
->addr
))
4029 retransmitted_lan_commands
);
4032 retransmitted_ipmb_commands
);
4034 intf
->handlers
->sender(intf
->send_info
,
4037 ipmi_free_smi_msg(smi_msg
);
4039 spin_lock_irqsave(&intf
->seq_lock
, *flags
);
4043 static void ipmi_timeout_handler(long timeout_period
)
4046 struct list_head timeouts
;
4047 struct ipmi_recv_msg
*msg
, *msg2
;
4048 unsigned long flags
;
4052 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4053 tasklet_schedule(&intf
->recv_tasklet
);
4056 * Go through the seq table and find any messages that
4057 * have timed out, putting them in the timeouts
4060 INIT_LIST_HEAD(&timeouts
);
4061 spin_lock_irqsave(&intf
->seq_lock
, flags
);
4062 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++)
4063 check_msg_timeout(intf
, &(intf
->seq_table
[i
]),
4064 &timeouts
, timeout_period
, i
,
4066 spin_unlock_irqrestore(&intf
->seq_lock
, flags
);
4068 list_for_each_entry_safe(msg
, msg2
, &timeouts
, link
)
4069 deliver_err_response(msg
, IPMI_TIMEOUT_COMPLETION_CODE
);
4072 * Maintenance mode handling. Check the timeout
4073 * optimistically before we claim the lock. It may
4074 * mean a timeout gets missed occasionally, but that
4075 * only means the timeout gets extended by one period
4076 * in that case. No big deal, and it avoids the lock
4079 if (intf
->auto_maintenance_timeout
> 0) {
4080 spin_lock_irqsave(&intf
->maintenance_mode_lock
, flags
);
4081 if (intf
->auto_maintenance_timeout
> 0) {
4082 intf
->auto_maintenance_timeout
4084 if (!intf
->maintenance_mode
4085 && (intf
->auto_maintenance_timeout
<= 0)) {
4086 intf
->maintenance_mode_enable
= 0;
4087 maintenance_mode_update(intf
);
4090 spin_unlock_irqrestore(&intf
->maintenance_mode_lock
,
4097 static void ipmi_request_event(void)
4100 struct ipmi_smi_handlers
*handlers
;
4104 * Called from the timer, no need to check if handlers is
4107 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4108 /* No event requests when in maintenance mode. */
4109 if (intf
->maintenance_mode_enable
)
4112 handlers
= intf
->handlers
;
4114 handlers
->request_events(intf
->send_info
);
4119 static struct timer_list ipmi_timer
;
4121 /* Call every ~1000 ms. */
4122 #define IPMI_TIMEOUT_TIME 1000
4124 /* How many jiffies does it take to get to the timeout time. */
4125 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000)
4128 * Request events from the queue every second (this is the number of
4129 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the
4130 * future, IPMI will add a way to know immediately if an event is in
4131 * the queue and this silliness can go away.
4133 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
4135 static atomic_t stop_operation
;
4136 static unsigned int ticks_to_req_ev
= IPMI_REQUEST_EV_TIME
;
4138 static void ipmi_timeout(unsigned long data
)
4140 if (atomic_read(&stop_operation
))
4144 if (ticks_to_req_ev
== 0) {
4145 ipmi_request_event();
4146 ticks_to_req_ev
= IPMI_REQUEST_EV_TIME
;
4149 ipmi_timeout_handler(IPMI_TIMEOUT_TIME
);
4151 mod_timer(&ipmi_timer
, jiffies
+ IPMI_TIMEOUT_JIFFIES
);
4155 static atomic_t smi_msg_inuse_count
= ATOMIC_INIT(0);
4156 static atomic_t recv_msg_inuse_count
= ATOMIC_INIT(0);
4158 /* FIXME - convert these to slabs. */
4159 static void free_smi_msg(struct ipmi_smi_msg
*msg
)
4161 atomic_dec(&smi_msg_inuse_count
);
4165 struct ipmi_smi_msg
*ipmi_alloc_smi_msg(void)
4167 struct ipmi_smi_msg
*rv
;
4168 rv
= kmalloc(sizeof(struct ipmi_smi_msg
), GFP_ATOMIC
);
4170 rv
->done
= free_smi_msg
;
4171 rv
->user_data
= NULL
;
4172 atomic_inc(&smi_msg_inuse_count
);
4176 EXPORT_SYMBOL(ipmi_alloc_smi_msg
);
4178 static void free_recv_msg(struct ipmi_recv_msg
*msg
)
4180 atomic_dec(&recv_msg_inuse_count
);
4184 static struct ipmi_recv_msg
*ipmi_alloc_recv_msg(void)
4186 struct ipmi_recv_msg
*rv
;
4188 rv
= kmalloc(sizeof(struct ipmi_recv_msg
), GFP_ATOMIC
);
4191 rv
->done
= free_recv_msg
;
4192 atomic_inc(&recv_msg_inuse_count
);
4197 void ipmi_free_recv_msg(struct ipmi_recv_msg
*msg
)
4200 kref_put(&msg
->user
->refcount
, free_user
);
4203 EXPORT_SYMBOL(ipmi_free_recv_msg
);
4205 #ifdef CONFIG_IPMI_PANIC_EVENT
4207 static atomic_t panic_done_count
= ATOMIC_INIT(0);
4209 static void dummy_smi_done_handler(struct ipmi_smi_msg
*msg
)
4211 atomic_dec(&panic_done_count
);
4214 static void dummy_recv_done_handler(struct ipmi_recv_msg
*msg
)
4216 atomic_dec(&panic_done_count
);
4220 * Inside a panic, send a message and wait for a response.
4222 static void ipmi_panic_request_and_wait(ipmi_smi_t intf
,
4223 struct ipmi_addr
*addr
,
4224 struct kernel_ipmi_msg
*msg
)
4226 struct ipmi_smi_msg smi_msg
;
4227 struct ipmi_recv_msg recv_msg
;
4230 smi_msg
.done
= dummy_smi_done_handler
;
4231 recv_msg
.done
= dummy_recv_done_handler
;
4232 atomic_add(2, &panic_done_count
);
4233 rv
= i_ipmi_request(NULL
,
4242 intf
->channels
[0].address
,
4243 intf
->channels
[0].lun
,
4244 0, 1); /* Don't retry, and don't wait. */
4246 atomic_sub(2, &panic_done_count
);
4247 while (atomic_read(&panic_done_count
) != 0)
4251 #ifdef CONFIG_IPMI_PANIC_STRING
4252 static void event_receiver_fetcher(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
4254 if ((msg
->addr
.addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
4255 && (msg
->msg
.netfn
== IPMI_NETFN_SENSOR_EVENT_RESPONSE
)
4256 && (msg
->msg
.cmd
== IPMI_GET_EVENT_RECEIVER_CMD
)
4257 && (msg
->msg
.data
[0] == IPMI_CC_NO_ERROR
)) {
4258 /* A get event receiver command, save it. */
4259 intf
->event_receiver
= msg
->msg
.data
[1];
4260 intf
->event_receiver_lun
= msg
->msg
.data
[2] & 0x3;
4264 static void device_id_fetcher(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
4266 if ((msg
->addr
.addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
4267 && (msg
->msg
.netfn
== IPMI_NETFN_APP_RESPONSE
)
4268 && (msg
->msg
.cmd
== IPMI_GET_DEVICE_ID_CMD
)
4269 && (msg
->msg
.data
[0] == IPMI_CC_NO_ERROR
)) {
4271 * A get device id command, save if we are an event
4272 * receiver or generator.
4274 intf
->local_sel_device
= (msg
->msg
.data
[6] >> 2) & 1;
4275 intf
->local_event_generator
= (msg
->msg
.data
[6] >> 5) & 1;
4280 static void send_panic_events(char *str
)
4282 struct kernel_ipmi_msg msg
;
4284 unsigned char data
[16];
4285 struct ipmi_system_interface_addr
*si
;
4286 struct ipmi_addr addr
;
4288 si
= (struct ipmi_system_interface_addr
*) &addr
;
4289 si
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
4290 si
->channel
= IPMI_BMC_CHANNEL
;
4293 /* Fill in an event telling that we have failed. */
4294 msg
.netfn
= 0x04; /* Sensor or Event. */
4295 msg
.cmd
= 2; /* Platform event command. */
4298 data
[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4299 data
[1] = 0x03; /* This is for IPMI 1.0. */
4300 data
[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4301 data
[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4302 data
[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4305 * Put a few breadcrumbs in. Hopefully later we can add more things
4306 * to make the panic events more useful.
4314 /* For every registered interface, send the event. */
4315 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4316 if (!intf
->handlers
)
4317 /* Interface is not ready. */
4320 intf
->run_to_completion
= 1;
4321 /* Send the event announcing the panic. */
4322 intf
->handlers
->set_run_to_completion(intf
->send_info
, 1);
4323 ipmi_panic_request_and_wait(intf
, &addr
, &msg
);
4326 #ifdef CONFIG_IPMI_PANIC_STRING
4328 * On every interface, dump a bunch of OEM event holding the
4334 /* For every registered interface, send the event. */
4335 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4337 struct ipmi_ipmb_addr
*ipmb
;
4340 if (intf
->intf_num
== -1)
4341 /* Interface was not ready yet. */
4345 * intf_num is used as an marker to tell if the
4346 * interface is valid. Thus we need a read barrier to
4347 * make sure data fetched before checking intf_num
4353 * First job here is to figure out where to send the
4354 * OEM events. There's no way in IPMI to send OEM
4355 * events using an event send command, so we have to
4356 * find the SEL to put them in and stick them in
4360 /* Get capabilities from the get device id. */
4361 intf
->local_sel_device
= 0;
4362 intf
->local_event_generator
= 0;
4363 intf
->event_receiver
= 0;
4365 /* Request the device info from the local MC. */
4366 msg
.netfn
= IPMI_NETFN_APP_REQUEST
;
4367 msg
.cmd
= IPMI_GET_DEVICE_ID_CMD
;
4370 intf
->null_user_handler
= device_id_fetcher
;
4371 ipmi_panic_request_and_wait(intf
, &addr
, &msg
);
4373 if (intf
->local_event_generator
) {
4374 /* Request the event receiver from the local MC. */
4375 msg
.netfn
= IPMI_NETFN_SENSOR_EVENT_REQUEST
;
4376 msg
.cmd
= IPMI_GET_EVENT_RECEIVER_CMD
;
4379 intf
->null_user_handler
= event_receiver_fetcher
;
4380 ipmi_panic_request_and_wait(intf
, &addr
, &msg
);
4382 intf
->null_user_handler
= NULL
;
4385 * Validate the event receiver. The low bit must not
4386 * be 1 (it must be a valid IPMB address), it cannot
4387 * be zero, and it must not be my address.
4389 if (((intf
->event_receiver
& 1) == 0)
4390 && (intf
->event_receiver
!= 0)
4391 && (intf
->event_receiver
!= intf
->channels
[0].address
)) {
4393 * The event receiver is valid, send an IPMB
4396 ipmb
= (struct ipmi_ipmb_addr
*) &addr
;
4397 ipmb
->addr_type
= IPMI_IPMB_ADDR_TYPE
;
4398 ipmb
->channel
= 0; /* FIXME - is this right? */
4399 ipmb
->lun
= intf
->event_receiver_lun
;
4400 ipmb
->slave_addr
= intf
->event_receiver
;
4401 } else if (intf
->local_sel_device
) {
4403 * The event receiver was not valid (or was
4404 * me), but I am an SEL device, just dump it
4407 si
= (struct ipmi_system_interface_addr
*) &addr
;
4408 si
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
4409 si
->channel
= IPMI_BMC_CHANNEL
;
4412 continue; /* No where to send the event. */
4414 msg
.netfn
= IPMI_NETFN_STORAGE_REQUEST
; /* Storage. */
4415 msg
.cmd
= IPMI_ADD_SEL_ENTRY_CMD
;
4421 int size
= strlen(p
);
4427 data
[2] = 0xf0; /* OEM event without timestamp. */
4428 data
[3] = intf
->channels
[0].address
;
4429 data
[4] = j
++; /* sequence # */
4431 * Always give 11 bytes, so strncpy will fill
4432 * it with zeroes for me.
4434 strncpy(data
+5, p
, 11);
4437 ipmi_panic_request_and_wait(intf
, &addr
, &msg
);
4440 #endif /* CONFIG_IPMI_PANIC_STRING */
4442 #endif /* CONFIG_IPMI_PANIC_EVENT */
4444 static int has_panicked
;
4446 static int panic_event(struct notifier_block
*this,
4447 unsigned long event
,
4456 /* For every registered interface, set it to run to completion. */
4457 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4458 if (!intf
->handlers
)
4459 /* Interface is not ready. */
4462 intf
->run_to_completion
= 1;
4463 intf
->handlers
->set_run_to_completion(intf
->send_info
, 1);
4466 #ifdef CONFIG_IPMI_PANIC_EVENT
4467 send_panic_events(ptr
);
4473 static struct notifier_block panic_block
= {
4474 .notifier_call
= panic_event
,
4476 .priority
= 200 /* priority: INT_MAX >= x >= 0 */
4479 static int ipmi_init_msghandler(void)
4486 rv
= driver_register(&ipmidriver
.driver
);
4488 printk(KERN_ERR PFX
"Could not register IPMI driver\n");
4492 printk(KERN_INFO
"ipmi message handler version "
4493 IPMI_DRIVER_VERSION
"\n");
4495 #ifdef CONFIG_PROC_FS
4496 proc_ipmi_root
= proc_mkdir("ipmi", NULL
);
4497 if (!proc_ipmi_root
) {
4498 printk(KERN_ERR PFX
"Unable to create IPMI proc dir");
4502 #endif /* CONFIG_PROC_FS */
4504 setup_timer(&ipmi_timer
, ipmi_timeout
, 0);
4505 mod_timer(&ipmi_timer
, jiffies
+ IPMI_TIMEOUT_JIFFIES
);
4507 atomic_notifier_chain_register(&panic_notifier_list
, &panic_block
);
4514 static int __init
ipmi_init_msghandler_mod(void)
4516 ipmi_init_msghandler();
4520 static void __exit
cleanup_ipmi(void)
4527 atomic_notifier_chain_unregister(&panic_notifier_list
, &panic_block
);
4530 * This can't be called if any interfaces exist, so no worry
4531 * about shutting down the interfaces.
4535 * Tell the timer to stop, then wait for it to stop. This
4536 * avoids problems with race conditions removing the timer
4539 atomic_inc(&stop_operation
);
4540 del_timer_sync(&ipmi_timer
);
4542 #ifdef CONFIG_PROC_FS
4543 proc_remove(proc_ipmi_root
);
4544 #endif /* CONFIG_PROC_FS */
4546 driver_unregister(&ipmidriver
.driver
);
4550 /* Check for buffer leaks. */
4551 count
= atomic_read(&smi_msg_inuse_count
);
4553 printk(KERN_WARNING PFX
"SMI message count %d at exit\n",
4555 count
= atomic_read(&recv_msg_inuse_count
);
4557 printk(KERN_WARNING PFX
"recv message count %d at exit\n",
4560 module_exit(cleanup_ipmi
);
4562 module_init(ipmi_init_msghandler_mod
);
4563 MODULE_LICENSE("GPL");
4564 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4565 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4567 MODULE_VERSION(IPMI_DRIVER_VERSION
);