2 * linux/drivers/clocksource/arm_arch_timer.c
4 * Copyright (C) 2011 ARM Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/interrupt.h>
19 #include <linux/of_irq.h>
20 #include <linux/of_address.h>
22 #include <linux/slab.h>
23 #include <linux/sched_clock.h>
25 #include <asm/arch_timer.h>
28 #include <clocksource/arm_arch_timer.h>
31 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
33 #define CNTVCT_LO 0x08
34 #define CNTVCT_HI 0x0c
36 #define CNTP_TVAL 0x28
38 #define CNTV_TVAL 0x38
41 #define ARCH_CP15_TIMER BIT(0)
42 #define ARCH_MEM_TIMER BIT(1)
43 static unsigned arch_timers_present __initdata
;
45 static void __iomem
*arch_counter_base
;
49 struct clock_event_device evt
;
52 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
54 static u32 arch_timer_rate
;
64 static int arch_timer_ppi
[MAX_TIMER_PPI
];
66 static struct clock_event_device __percpu
*arch_timer_evt
;
68 static bool arch_timer_use_virtual
= true;
69 static bool arch_timer_mem_use_virtual
;
72 * Architected system timer support.
75 static __always_inline
76 void arch_timer_reg_write(int access
, enum arch_timer_reg reg
, u32 val
,
77 struct clock_event_device
*clk
)
79 if (access
== ARCH_TIMER_MEM_PHYS_ACCESS
) {
80 struct arch_timer
*timer
= to_arch_timer(clk
);
82 case ARCH_TIMER_REG_CTRL
:
83 writel_relaxed(val
, timer
->base
+ CNTP_CTL
);
85 case ARCH_TIMER_REG_TVAL
:
86 writel_relaxed(val
, timer
->base
+ CNTP_TVAL
);
89 } else if (access
== ARCH_TIMER_MEM_VIRT_ACCESS
) {
90 struct arch_timer
*timer
= to_arch_timer(clk
);
92 case ARCH_TIMER_REG_CTRL
:
93 writel_relaxed(val
, timer
->base
+ CNTV_CTL
);
95 case ARCH_TIMER_REG_TVAL
:
96 writel_relaxed(val
, timer
->base
+ CNTV_TVAL
);
100 arch_timer_reg_write_cp15(access
, reg
, val
);
104 static __always_inline
105 u32
arch_timer_reg_read(int access
, enum arch_timer_reg reg
,
106 struct clock_event_device
*clk
)
110 if (access
== ARCH_TIMER_MEM_PHYS_ACCESS
) {
111 struct arch_timer
*timer
= to_arch_timer(clk
);
113 case ARCH_TIMER_REG_CTRL
:
114 val
= readl_relaxed(timer
->base
+ CNTP_CTL
);
116 case ARCH_TIMER_REG_TVAL
:
117 val
= readl_relaxed(timer
->base
+ CNTP_TVAL
);
120 } else if (access
== ARCH_TIMER_MEM_VIRT_ACCESS
) {
121 struct arch_timer
*timer
= to_arch_timer(clk
);
123 case ARCH_TIMER_REG_CTRL
:
124 val
= readl_relaxed(timer
->base
+ CNTV_CTL
);
126 case ARCH_TIMER_REG_TVAL
:
127 val
= readl_relaxed(timer
->base
+ CNTV_TVAL
);
131 val
= arch_timer_reg_read_cp15(access
, reg
);
137 static __always_inline irqreturn_t
timer_handler(const int access
,
138 struct clock_event_device
*evt
)
142 ctrl
= arch_timer_reg_read(access
, ARCH_TIMER_REG_CTRL
, evt
);
143 if (ctrl
& ARCH_TIMER_CTRL_IT_STAT
) {
144 ctrl
|= ARCH_TIMER_CTRL_IT_MASK
;
145 arch_timer_reg_write(access
, ARCH_TIMER_REG_CTRL
, ctrl
, evt
);
146 evt
->event_handler(evt
);
153 static irqreturn_t
arch_timer_handler_virt(int irq
, void *dev_id
)
155 struct clock_event_device
*evt
= dev_id
;
157 return timer_handler(ARCH_TIMER_VIRT_ACCESS
, evt
);
160 static irqreturn_t
arch_timer_handler_phys(int irq
, void *dev_id
)
162 struct clock_event_device
*evt
= dev_id
;
164 return timer_handler(ARCH_TIMER_PHYS_ACCESS
, evt
);
167 static irqreturn_t
arch_timer_handler_phys_mem(int irq
, void *dev_id
)
169 struct clock_event_device
*evt
= dev_id
;
171 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS
, evt
);
174 static irqreturn_t
arch_timer_handler_virt_mem(int irq
, void *dev_id
)
176 struct clock_event_device
*evt
= dev_id
;
178 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS
, evt
);
181 static __always_inline
void timer_set_mode(const int access
, int mode
,
182 struct clock_event_device
*clk
)
186 case CLOCK_EVT_MODE_UNUSED
:
187 case CLOCK_EVT_MODE_SHUTDOWN
:
188 ctrl
= arch_timer_reg_read(access
, ARCH_TIMER_REG_CTRL
, clk
);
189 ctrl
&= ~ARCH_TIMER_CTRL_ENABLE
;
190 arch_timer_reg_write(access
, ARCH_TIMER_REG_CTRL
, ctrl
, clk
);
197 static void arch_timer_set_mode_virt(enum clock_event_mode mode
,
198 struct clock_event_device
*clk
)
200 timer_set_mode(ARCH_TIMER_VIRT_ACCESS
, mode
, clk
);
203 static void arch_timer_set_mode_phys(enum clock_event_mode mode
,
204 struct clock_event_device
*clk
)
206 timer_set_mode(ARCH_TIMER_PHYS_ACCESS
, mode
, clk
);
209 static void arch_timer_set_mode_virt_mem(enum clock_event_mode mode
,
210 struct clock_event_device
*clk
)
212 timer_set_mode(ARCH_TIMER_MEM_VIRT_ACCESS
, mode
, clk
);
215 static void arch_timer_set_mode_phys_mem(enum clock_event_mode mode
,
216 struct clock_event_device
*clk
)
218 timer_set_mode(ARCH_TIMER_MEM_PHYS_ACCESS
, mode
, clk
);
221 static __always_inline
void set_next_event(const int access
, unsigned long evt
,
222 struct clock_event_device
*clk
)
225 ctrl
= arch_timer_reg_read(access
, ARCH_TIMER_REG_CTRL
, clk
);
226 ctrl
|= ARCH_TIMER_CTRL_ENABLE
;
227 ctrl
&= ~ARCH_TIMER_CTRL_IT_MASK
;
228 arch_timer_reg_write(access
, ARCH_TIMER_REG_TVAL
, evt
, clk
);
229 arch_timer_reg_write(access
, ARCH_TIMER_REG_CTRL
, ctrl
, clk
);
232 static int arch_timer_set_next_event_virt(unsigned long evt
,
233 struct clock_event_device
*clk
)
235 set_next_event(ARCH_TIMER_VIRT_ACCESS
, evt
, clk
);
239 static int arch_timer_set_next_event_phys(unsigned long evt
,
240 struct clock_event_device
*clk
)
242 set_next_event(ARCH_TIMER_PHYS_ACCESS
, evt
, clk
);
246 static int arch_timer_set_next_event_virt_mem(unsigned long evt
,
247 struct clock_event_device
*clk
)
249 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS
, evt
, clk
);
253 static int arch_timer_set_next_event_phys_mem(unsigned long evt
,
254 struct clock_event_device
*clk
)
256 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS
, evt
, clk
);
260 static void __arch_timer_setup(unsigned type
,
261 struct clock_event_device
*clk
)
263 clk
->features
= CLOCK_EVT_FEAT_ONESHOT
;
265 if (type
== ARCH_CP15_TIMER
) {
266 clk
->features
|= CLOCK_EVT_FEAT_C3STOP
;
267 clk
->name
= "arch_sys_timer";
269 clk
->cpumask
= cpumask_of(smp_processor_id());
270 if (arch_timer_use_virtual
) {
271 clk
->irq
= arch_timer_ppi
[VIRT_PPI
];
272 clk
->set_mode
= arch_timer_set_mode_virt
;
273 clk
->set_next_event
= arch_timer_set_next_event_virt
;
275 clk
->irq
= arch_timer_ppi
[PHYS_SECURE_PPI
];
276 clk
->set_mode
= arch_timer_set_mode_phys
;
277 clk
->set_next_event
= arch_timer_set_next_event_phys
;
280 clk
->name
= "arch_mem_timer";
282 clk
->cpumask
= cpu_all_mask
;
283 if (arch_timer_mem_use_virtual
) {
284 clk
->set_mode
= arch_timer_set_mode_virt_mem
;
285 clk
->set_next_event
=
286 arch_timer_set_next_event_virt_mem
;
288 clk
->set_mode
= arch_timer_set_mode_phys_mem
;
289 clk
->set_next_event
=
290 arch_timer_set_next_event_phys_mem
;
294 clk
->set_mode(CLOCK_EVT_MODE_SHUTDOWN
, clk
);
296 clockevents_config_and_register(clk
, arch_timer_rate
, 0xf, 0x7fffffff);
299 static void arch_timer_configure_evtstream(void)
301 int evt_stream_div
, pos
;
303 /* Find the closest power of two to the divisor */
304 evt_stream_div
= arch_timer_rate
/ ARCH_TIMER_EVT_STREAM_FREQ
;
305 pos
= fls(evt_stream_div
);
306 if (pos
> 1 && !(evt_stream_div
& (1 << (pos
- 2))))
308 /* enable event stream */
309 arch_timer_evtstrm_enable(min(pos
, 15));
312 static int arch_timer_setup(struct clock_event_device
*clk
)
314 __arch_timer_setup(ARCH_CP15_TIMER
, clk
);
316 if (arch_timer_use_virtual
)
317 enable_percpu_irq(arch_timer_ppi
[VIRT_PPI
], 0);
319 enable_percpu_irq(arch_timer_ppi
[PHYS_SECURE_PPI
], 0);
320 if (arch_timer_ppi
[PHYS_NONSECURE_PPI
])
321 enable_percpu_irq(arch_timer_ppi
[PHYS_NONSECURE_PPI
], 0);
324 arch_counter_set_user_access();
325 if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM
))
326 arch_timer_configure_evtstream();
332 arch_timer_detect_rate(void __iomem
*cntbase
, struct device_node
*np
)
334 /* Who has more than one independent system counter? */
338 /* Try to determine the frequency from the device tree or CNTFRQ */
339 if (of_property_read_u32(np
, "clock-frequency", &arch_timer_rate
)) {
341 arch_timer_rate
= readl_relaxed(cntbase
+ CNTFRQ
);
343 arch_timer_rate
= arch_timer_get_cntfrq();
346 /* Check the timer frequency. */
347 if (arch_timer_rate
== 0)
348 pr_warn("Architected timer frequency not available\n");
351 static void arch_timer_banner(unsigned type
)
353 pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
354 type
& ARCH_CP15_TIMER
? "cp15" : "",
355 type
== (ARCH_CP15_TIMER
| ARCH_MEM_TIMER
) ? " and " : "",
356 type
& ARCH_MEM_TIMER
? "mmio" : "",
357 (unsigned long)arch_timer_rate
/ 1000000,
358 (unsigned long)(arch_timer_rate
/ 10000) % 100,
359 type
& ARCH_CP15_TIMER
?
360 arch_timer_use_virtual
? "virt" : "phys" :
362 type
== (ARCH_CP15_TIMER
| ARCH_MEM_TIMER
) ? "/" : "",
363 type
& ARCH_MEM_TIMER
?
364 arch_timer_mem_use_virtual
? "virt" : "phys" :
368 u32
arch_timer_get_rate(void)
370 return arch_timer_rate
;
373 static u64
arch_counter_get_cntvct_mem(void)
375 u32 vct_lo
, vct_hi
, tmp_hi
;
378 vct_hi
= readl_relaxed(arch_counter_base
+ CNTVCT_HI
);
379 vct_lo
= readl_relaxed(arch_counter_base
+ CNTVCT_LO
);
380 tmp_hi
= readl_relaxed(arch_counter_base
+ CNTVCT_HI
);
381 } while (vct_hi
!= tmp_hi
);
383 return ((u64
) vct_hi
<< 32) | vct_lo
;
387 * Default to cp15 based access because arm64 uses this function for
388 * sched_clock() before DT is probed and the cp15 method is guaranteed
389 * to exist on arm64. arm doesn't use this before DT is probed so even
390 * if we don't have the cp15 accessors we won't have a problem.
392 u64 (*arch_timer_read_counter
)(void) = arch_counter_get_cntvct
;
394 static cycle_t
arch_counter_read(struct clocksource
*cs
)
396 return arch_timer_read_counter();
399 static cycle_t
arch_counter_read_cc(const struct cyclecounter
*cc
)
401 return arch_timer_read_counter();
404 static struct clocksource clocksource_counter
= {
405 .name
= "arch_sys_counter",
407 .read
= arch_counter_read
,
408 .mask
= CLOCKSOURCE_MASK(56),
409 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
| CLOCK_SOURCE_SUSPEND_NONSTOP
,
412 static struct cyclecounter cyclecounter
= {
413 .read
= arch_counter_read_cc
,
414 .mask
= CLOCKSOURCE_MASK(56),
417 static struct timecounter timecounter
;
419 struct timecounter
*arch_timer_get_timecounter(void)
424 static void __init
arch_counter_register(unsigned type
)
428 /* Register the CP15 based counter if we have one */
429 if (type
& ARCH_CP15_TIMER
)
430 arch_timer_read_counter
= arch_counter_get_cntvct
;
432 arch_timer_read_counter
= arch_counter_get_cntvct_mem
;
434 start_count
= arch_timer_read_counter();
435 clocksource_register_hz(&clocksource_counter
, arch_timer_rate
);
436 cyclecounter
.mult
= clocksource_counter
.mult
;
437 cyclecounter
.shift
= clocksource_counter
.shift
;
438 timecounter_init(&timecounter
, &cyclecounter
, start_count
);
440 /* 56 bits minimum, so we assume worst case rollover */
441 sched_clock_register(arch_timer_read_counter
, 56, arch_timer_rate
);
444 static void arch_timer_stop(struct clock_event_device
*clk
)
446 pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
447 clk
->irq
, smp_processor_id());
449 if (arch_timer_use_virtual
)
450 disable_percpu_irq(arch_timer_ppi
[VIRT_PPI
]);
452 disable_percpu_irq(arch_timer_ppi
[PHYS_SECURE_PPI
]);
453 if (arch_timer_ppi
[PHYS_NONSECURE_PPI
])
454 disable_percpu_irq(arch_timer_ppi
[PHYS_NONSECURE_PPI
]);
457 clk
->set_mode(CLOCK_EVT_MODE_UNUSED
, clk
);
460 static int arch_timer_cpu_notify(struct notifier_block
*self
,
461 unsigned long action
, void *hcpu
)
464 * Grab cpu pointer in each case to avoid spurious
465 * preemptible warnings
467 switch (action
& ~CPU_TASKS_FROZEN
) {
469 arch_timer_setup(this_cpu_ptr(arch_timer_evt
));
472 arch_timer_stop(this_cpu_ptr(arch_timer_evt
));
479 static struct notifier_block arch_timer_cpu_nb
= {
480 .notifier_call
= arch_timer_cpu_notify
,
484 static unsigned int saved_cntkctl
;
485 static int arch_timer_cpu_pm_notify(struct notifier_block
*self
,
486 unsigned long action
, void *hcpu
)
488 if (action
== CPU_PM_ENTER
)
489 saved_cntkctl
= arch_timer_get_cntkctl();
490 else if (action
== CPU_PM_ENTER_FAILED
|| action
== CPU_PM_EXIT
)
491 arch_timer_set_cntkctl(saved_cntkctl
);
495 static struct notifier_block arch_timer_cpu_pm_notifier
= {
496 .notifier_call
= arch_timer_cpu_pm_notify
,
499 static int __init
arch_timer_cpu_pm_init(void)
501 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier
);
504 static int __init
arch_timer_cpu_pm_init(void)
510 static int __init
arch_timer_register(void)
515 arch_timer_evt
= alloc_percpu(struct clock_event_device
);
516 if (!arch_timer_evt
) {
521 if (arch_timer_use_virtual
) {
522 ppi
= arch_timer_ppi
[VIRT_PPI
];
523 err
= request_percpu_irq(ppi
, arch_timer_handler_virt
,
524 "arch_timer", arch_timer_evt
);
526 ppi
= arch_timer_ppi
[PHYS_SECURE_PPI
];
527 err
= request_percpu_irq(ppi
, arch_timer_handler_phys
,
528 "arch_timer", arch_timer_evt
);
529 if (!err
&& arch_timer_ppi
[PHYS_NONSECURE_PPI
]) {
530 ppi
= arch_timer_ppi
[PHYS_NONSECURE_PPI
];
531 err
= request_percpu_irq(ppi
, arch_timer_handler_phys
,
532 "arch_timer", arch_timer_evt
);
534 free_percpu_irq(arch_timer_ppi
[PHYS_SECURE_PPI
],
540 pr_err("arch_timer: can't register interrupt %d (%d)\n",
545 err
= register_cpu_notifier(&arch_timer_cpu_nb
);
549 err
= arch_timer_cpu_pm_init();
551 goto out_unreg_notify
;
553 /* Immediately configure the timer on the boot CPU */
554 arch_timer_setup(this_cpu_ptr(arch_timer_evt
));
559 unregister_cpu_notifier(&arch_timer_cpu_nb
);
561 if (arch_timer_use_virtual
)
562 free_percpu_irq(arch_timer_ppi
[VIRT_PPI
], arch_timer_evt
);
564 free_percpu_irq(arch_timer_ppi
[PHYS_SECURE_PPI
],
566 if (arch_timer_ppi
[PHYS_NONSECURE_PPI
])
567 free_percpu_irq(arch_timer_ppi
[PHYS_NONSECURE_PPI
],
572 free_percpu(arch_timer_evt
);
577 static int __init
arch_timer_mem_register(void __iomem
*base
, unsigned int irq
)
581 struct arch_timer
*t
;
583 t
= kzalloc(sizeof(*t
), GFP_KERNEL
);
589 __arch_timer_setup(ARCH_MEM_TIMER
, &t
->evt
);
591 if (arch_timer_mem_use_virtual
)
592 func
= arch_timer_handler_virt_mem
;
594 func
= arch_timer_handler_phys_mem
;
596 ret
= request_irq(irq
, func
, IRQF_TIMER
, "arch_mem_timer", &t
->evt
);
598 pr_err("arch_timer: Failed to request mem timer irq\n");
605 static const struct of_device_id arch_timer_of_match
[] __initconst
= {
606 { .compatible
= "arm,armv7-timer", },
607 { .compatible
= "arm,armv8-timer", },
611 static const struct of_device_id arch_timer_mem_of_match
[] __initconst
= {
612 { .compatible
= "arm,armv7-timer-mem", },
616 static void __init
arch_timer_common_init(void)
618 unsigned mask
= ARCH_CP15_TIMER
| ARCH_MEM_TIMER
;
620 /* Wait until both nodes are probed if we have two timers */
621 if ((arch_timers_present
& mask
) != mask
) {
622 if (of_find_matching_node(NULL
, arch_timer_mem_of_match
) &&
623 !(arch_timers_present
& ARCH_MEM_TIMER
))
625 if (of_find_matching_node(NULL
, arch_timer_of_match
) &&
626 !(arch_timers_present
& ARCH_CP15_TIMER
))
630 arch_timer_banner(arch_timers_present
);
631 arch_counter_register(arch_timers_present
);
632 arch_timer_arch_init();
635 static void __init
arch_timer_init(struct device_node
*np
)
639 if (arch_timers_present
& ARCH_CP15_TIMER
) {
640 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
644 arch_timers_present
|= ARCH_CP15_TIMER
;
645 for (i
= PHYS_SECURE_PPI
; i
< MAX_TIMER_PPI
; i
++)
646 arch_timer_ppi
[i
] = irq_of_parse_and_map(np
, i
);
647 arch_timer_detect_rate(NULL
, np
);
650 * If HYP mode is available, we know that the physical timer
651 * has been configured to be accessible from PL1. Use it, so
652 * that a guest can use the virtual timer instead.
654 * If no interrupt provided for virtual timer, we'll have to
655 * stick to the physical timer. It'd better be accessible...
657 if (is_hyp_mode_available() || !arch_timer_ppi
[VIRT_PPI
]) {
658 arch_timer_use_virtual
= false;
660 if (!arch_timer_ppi
[PHYS_SECURE_PPI
] ||
661 !arch_timer_ppi
[PHYS_NONSECURE_PPI
]) {
662 pr_warn("arch_timer: No interrupt available, giving up\n");
667 arch_timer_register();
668 arch_timer_common_init();
670 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer
, "arm,armv7-timer", arch_timer_init
);
671 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer
, "arm,armv8-timer", arch_timer_init
);
673 static void __init
arch_timer_mem_init(struct device_node
*np
)
675 struct device_node
*frame
, *best_frame
= NULL
;
676 void __iomem
*cntctlbase
, *base
;
680 arch_timers_present
|= ARCH_MEM_TIMER
;
681 cntctlbase
= of_iomap(np
, 0);
683 pr_err("arch_timer: Can't find CNTCTLBase\n");
687 cnttidr
= readl_relaxed(cntctlbase
+ CNTTIDR
);
691 * Try to find a virtual capable frame. Otherwise fall back to a
692 * physical capable frame.
694 for_each_available_child_of_node(np
, frame
) {
697 if (of_property_read_u32(frame
, "frame-number", &n
)) {
698 pr_err("arch_timer: Missing frame-number\n");
699 of_node_put(best_frame
);
704 if (cnttidr
& CNTTIDR_VIRT(n
)) {
705 of_node_put(best_frame
);
707 arch_timer_mem_use_virtual
= true;
710 of_node_put(best_frame
);
711 best_frame
= of_node_get(frame
);
714 base
= arch_counter_base
= of_iomap(best_frame
, 0);
716 pr_err("arch_timer: Can't map frame's registers\n");
717 of_node_put(best_frame
);
721 if (arch_timer_mem_use_virtual
)
722 irq
= irq_of_parse_and_map(best_frame
, 1);
724 irq
= irq_of_parse_and_map(best_frame
, 0);
725 of_node_put(best_frame
);
727 pr_err("arch_timer: Frame missing %s irq",
728 arch_timer_mem_use_virtual
? "virt" : "phys");
732 arch_timer_detect_rate(base
, np
);
733 arch_timer_mem_register(base
, irq
);
734 arch_timer_common_init();
736 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem
, "arm,armv7-timer-mem",
737 arch_timer_mem_init
);