PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / clocksource / cadence_ttc_timer.c
blob63f176de0d0228c63ba58f606d21afd98cdc5e9e
1 /*
2 * This file contains driver for the Cadence Triple Timer Counter Rev 06
4 * Copyright (C) 2011-2013 Xilinx
6 * based on arch/mips/kernel/time.c timer driver
8 * This software is licensed under the terms of the GNU General Public
9 * License version 2, as published by the Free Software Foundation, and
10 * may be copied, distributed, and modified under those terms.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #include <linux/clk.h>
19 #include <linux/interrupt.h>
20 #include <linux/clockchips.h>
21 #include <linux/of_address.h>
22 #include <linux/of_irq.h>
23 #include <linux/slab.h>
24 #include <linux/sched_clock.h>
27 * This driver configures the 2 16-bit count-up timers as follows:
29 * T1: Timer 1, clocksource for generic timekeeping
30 * T2: Timer 2, clockevent source for hrtimers
31 * T3: Timer 3, <unused>
33 * The input frequency to the timer module for emulation is 2.5MHz which is
34 * common to all the timer channels (T1, T2, and T3). With a pre-scaler of 32,
35 * the timers are clocked at 78.125KHz (12.8 us resolution).
37 * The input frequency to the timer module in silicon is configurable and
38 * obtained from device tree. The pre-scaler of 32 is used.
42 * Timer Register Offset Definitions of Timer 1, Increment base address by 4
43 * and use same offsets for Timer 2
45 #define TTC_CLK_CNTRL_OFFSET 0x00 /* Clock Control Reg, RW */
46 #define TTC_CNT_CNTRL_OFFSET 0x0C /* Counter Control Reg, RW */
47 #define TTC_COUNT_VAL_OFFSET 0x18 /* Counter Value Reg, RO */
48 #define TTC_INTR_VAL_OFFSET 0x24 /* Interval Count Reg, RW */
49 #define TTC_ISR_OFFSET 0x54 /* Interrupt Status Reg, RO */
50 #define TTC_IER_OFFSET 0x60 /* Interrupt Enable Reg, RW */
52 #define TTC_CNT_CNTRL_DISABLE_MASK 0x1
54 #define TTC_CLK_CNTRL_CSRC_MASK (1 << 5) /* clock source */
57 * Setup the timers to use pre-scaling, using a fixed value for now that will
58 * work across most input frequency, but it may need to be more dynamic
60 #define PRESCALE_EXPONENT 11 /* 2 ^ PRESCALE_EXPONENT = PRESCALE */
61 #define PRESCALE 2048 /* The exponent must match this */
62 #define CLK_CNTRL_PRESCALE ((PRESCALE_EXPONENT - 1) << 1)
63 #define CLK_CNTRL_PRESCALE_EN 1
64 #define CNT_CNTRL_RESET (1 << 4)
66 /**
67 * struct ttc_timer - This definition defines local timer structure
69 * @base_addr: Base address of timer
70 * @freq: Timer input clock frequency
71 * @clk: Associated clock source
72 * @clk_rate_change_nb Notifier block for clock rate changes
74 struct ttc_timer {
75 void __iomem *base_addr;
76 unsigned long freq;
77 struct clk *clk;
78 struct notifier_block clk_rate_change_nb;
81 #define to_ttc_timer(x) \
82 container_of(x, struct ttc_timer, clk_rate_change_nb)
84 struct ttc_timer_clocksource {
85 struct ttc_timer ttc;
86 struct clocksource cs;
89 #define to_ttc_timer_clksrc(x) \
90 container_of(x, struct ttc_timer_clocksource, cs)
92 struct ttc_timer_clockevent {
93 struct ttc_timer ttc;
94 struct clock_event_device ce;
97 #define to_ttc_timer_clkevent(x) \
98 container_of(x, struct ttc_timer_clockevent, ce)
100 static void __iomem *ttc_sched_clock_val_reg;
103 * ttc_set_interval - Set the timer interval value
105 * @timer: Pointer to the timer instance
106 * @cycles: Timer interval ticks
108 static void ttc_set_interval(struct ttc_timer *timer,
109 unsigned long cycles)
111 u32 ctrl_reg;
113 /* Disable the counter, set the counter value and re-enable counter */
114 ctrl_reg = __raw_readl(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
115 ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
116 __raw_writel(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
118 __raw_writel(cycles, timer->base_addr + TTC_INTR_VAL_OFFSET);
121 * Reset the counter (0x10) so that it starts from 0, one-shot
122 * mode makes this needed for timing to be right.
124 ctrl_reg |= CNT_CNTRL_RESET;
125 ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
126 __raw_writel(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
130 * ttc_clock_event_interrupt - Clock event timer interrupt handler
132 * @irq: IRQ number of the Timer
133 * @dev_id: void pointer to the ttc_timer instance
135 * returns: Always IRQ_HANDLED - success
137 static irqreturn_t ttc_clock_event_interrupt(int irq, void *dev_id)
139 struct ttc_timer_clockevent *ttce = dev_id;
140 struct ttc_timer *timer = &ttce->ttc;
142 /* Acknowledge the interrupt and call event handler */
143 __raw_readl(timer->base_addr + TTC_ISR_OFFSET);
145 ttce->ce.event_handler(&ttce->ce);
147 return IRQ_HANDLED;
151 * __ttc_clocksource_read - Reads the timer counter register
153 * returns: Current timer counter register value
155 static cycle_t __ttc_clocksource_read(struct clocksource *cs)
157 struct ttc_timer *timer = &to_ttc_timer_clksrc(cs)->ttc;
159 return (cycle_t)__raw_readl(timer->base_addr +
160 TTC_COUNT_VAL_OFFSET);
163 static u64 notrace ttc_sched_clock_read(void)
165 return __raw_readl(ttc_sched_clock_val_reg);
169 * ttc_set_next_event - Sets the time interval for next event
171 * @cycles: Timer interval ticks
172 * @evt: Address of clock event instance
174 * returns: Always 0 - success
176 static int ttc_set_next_event(unsigned long cycles,
177 struct clock_event_device *evt)
179 struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
180 struct ttc_timer *timer = &ttce->ttc;
182 ttc_set_interval(timer, cycles);
183 return 0;
187 * ttc_set_mode - Sets the mode of timer
189 * @mode: Mode to be set
190 * @evt: Address of clock event instance
192 static void ttc_set_mode(enum clock_event_mode mode,
193 struct clock_event_device *evt)
195 struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
196 struct ttc_timer *timer = &ttce->ttc;
197 u32 ctrl_reg;
199 switch (mode) {
200 case CLOCK_EVT_MODE_PERIODIC:
201 ttc_set_interval(timer, DIV_ROUND_CLOSEST(ttce->ttc.freq,
202 PRESCALE * HZ));
203 break;
204 case CLOCK_EVT_MODE_ONESHOT:
205 case CLOCK_EVT_MODE_UNUSED:
206 case CLOCK_EVT_MODE_SHUTDOWN:
207 ctrl_reg = __raw_readl(timer->base_addr +
208 TTC_CNT_CNTRL_OFFSET);
209 ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
210 __raw_writel(ctrl_reg,
211 timer->base_addr + TTC_CNT_CNTRL_OFFSET);
212 break;
213 case CLOCK_EVT_MODE_RESUME:
214 ctrl_reg = __raw_readl(timer->base_addr +
215 TTC_CNT_CNTRL_OFFSET);
216 ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
217 __raw_writel(ctrl_reg,
218 timer->base_addr + TTC_CNT_CNTRL_OFFSET);
219 break;
223 static int ttc_rate_change_clocksource_cb(struct notifier_block *nb,
224 unsigned long event, void *data)
226 struct clk_notifier_data *ndata = data;
227 struct ttc_timer *ttc = to_ttc_timer(nb);
228 struct ttc_timer_clocksource *ttccs = container_of(ttc,
229 struct ttc_timer_clocksource, ttc);
231 switch (event) {
232 case POST_RATE_CHANGE:
234 * Do whatever is necessary to maintain a proper time base
236 * I cannot find a way to adjust the currently used clocksource
237 * to the new frequency. __clocksource_updatefreq_hz() sounds
238 * good, but does not work. Not sure what's that missing.
240 * This approach works, but triggers two clocksource switches.
241 * The first after unregister to clocksource jiffies. And
242 * another one after the register to the newly registered timer.
244 * Alternatively we could 'waste' another HW timer to ping pong
245 * between clock sources. That would also use one register and
246 * one unregister call, but only trigger one clocksource switch
247 * for the cost of another HW timer used by the OS.
249 clocksource_unregister(&ttccs->cs);
250 clocksource_register_hz(&ttccs->cs,
251 ndata->new_rate / PRESCALE);
252 /* fall through */
253 case PRE_RATE_CHANGE:
254 case ABORT_RATE_CHANGE:
255 default:
256 return NOTIFY_DONE;
260 static void __init ttc_setup_clocksource(struct clk *clk, void __iomem *base)
262 struct ttc_timer_clocksource *ttccs;
263 int err;
265 ttccs = kzalloc(sizeof(*ttccs), GFP_KERNEL);
266 if (WARN_ON(!ttccs))
267 return;
269 ttccs->ttc.clk = clk;
271 err = clk_prepare_enable(ttccs->ttc.clk);
272 if (WARN_ON(err)) {
273 kfree(ttccs);
274 return;
277 ttccs->ttc.freq = clk_get_rate(ttccs->ttc.clk);
279 ttccs->ttc.clk_rate_change_nb.notifier_call =
280 ttc_rate_change_clocksource_cb;
281 ttccs->ttc.clk_rate_change_nb.next = NULL;
282 if (clk_notifier_register(ttccs->ttc.clk,
283 &ttccs->ttc.clk_rate_change_nb))
284 pr_warn("Unable to register clock notifier.\n");
286 ttccs->ttc.base_addr = base;
287 ttccs->cs.name = "ttc_clocksource";
288 ttccs->cs.rating = 200;
289 ttccs->cs.read = __ttc_clocksource_read;
290 ttccs->cs.mask = CLOCKSOURCE_MASK(16);
291 ttccs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
294 * Setup the clock source counter to be an incrementing counter
295 * with no interrupt and it rolls over at 0xFFFF. Pre-scale
296 * it by 32 also. Let it start running now.
298 __raw_writel(0x0, ttccs->ttc.base_addr + TTC_IER_OFFSET);
299 __raw_writel(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
300 ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
301 __raw_writel(CNT_CNTRL_RESET,
302 ttccs->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
304 err = clocksource_register_hz(&ttccs->cs, ttccs->ttc.freq / PRESCALE);
305 if (WARN_ON(err)) {
306 kfree(ttccs);
307 return;
310 ttc_sched_clock_val_reg = base + TTC_COUNT_VAL_OFFSET;
311 sched_clock_register(ttc_sched_clock_read, 16, ttccs->ttc.freq / PRESCALE);
314 static int ttc_rate_change_clockevent_cb(struct notifier_block *nb,
315 unsigned long event, void *data)
317 struct clk_notifier_data *ndata = data;
318 struct ttc_timer *ttc = to_ttc_timer(nb);
319 struct ttc_timer_clockevent *ttcce = container_of(ttc,
320 struct ttc_timer_clockevent, ttc);
322 switch (event) {
323 case POST_RATE_CHANGE:
325 unsigned long flags;
328 * clockevents_update_freq should be called with IRQ disabled on
329 * the CPU the timer provides events for. The timer we use is
330 * common to both CPUs, not sure if we need to run on both
331 * cores.
333 local_irq_save(flags);
334 clockevents_update_freq(&ttcce->ce,
335 ndata->new_rate / PRESCALE);
336 local_irq_restore(flags);
338 /* update cached frequency */
339 ttc->freq = ndata->new_rate;
341 /* fall through */
343 case PRE_RATE_CHANGE:
344 case ABORT_RATE_CHANGE:
345 default:
346 return NOTIFY_DONE;
350 static void __init ttc_setup_clockevent(struct clk *clk,
351 void __iomem *base, u32 irq)
353 struct ttc_timer_clockevent *ttcce;
354 int err;
356 ttcce = kzalloc(sizeof(*ttcce), GFP_KERNEL);
357 if (WARN_ON(!ttcce))
358 return;
360 ttcce->ttc.clk = clk;
362 err = clk_prepare_enable(ttcce->ttc.clk);
363 if (WARN_ON(err)) {
364 kfree(ttcce);
365 return;
368 ttcce->ttc.clk_rate_change_nb.notifier_call =
369 ttc_rate_change_clockevent_cb;
370 ttcce->ttc.clk_rate_change_nb.next = NULL;
371 if (clk_notifier_register(ttcce->ttc.clk,
372 &ttcce->ttc.clk_rate_change_nb))
373 pr_warn("Unable to register clock notifier.\n");
374 ttcce->ttc.freq = clk_get_rate(ttcce->ttc.clk);
376 ttcce->ttc.base_addr = base;
377 ttcce->ce.name = "ttc_clockevent";
378 ttcce->ce.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
379 ttcce->ce.set_next_event = ttc_set_next_event;
380 ttcce->ce.set_mode = ttc_set_mode;
381 ttcce->ce.rating = 200;
382 ttcce->ce.irq = irq;
383 ttcce->ce.cpumask = cpu_possible_mask;
386 * Setup the clock event timer to be an interval timer which
387 * is prescaled by 32 using the interval interrupt. Leave it
388 * disabled for now.
390 __raw_writel(0x23, ttcce->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
391 __raw_writel(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
392 ttcce->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
393 __raw_writel(0x1, ttcce->ttc.base_addr + TTC_IER_OFFSET);
395 err = request_irq(irq, ttc_clock_event_interrupt,
396 IRQF_TIMER, ttcce->ce.name, ttcce);
397 if (WARN_ON(err)) {
398 kfree(ttcce);
399 return;
402 clockevents_config_and_register(&ttcce->ce,
403 ttcce->ttc.freq / PRESCALE, 1, 0xfffe);
407 * ttc_timer_init - Initialize the timer
409 * Initializes the timer hardware and register the clock source and clock event
410 * timers with Linux kernal timer framework
412 static void __init ttc_timer_init(struct device_node *timer)
414 unsigned int irq;
415 void __iomem *timer_baseaddr;
416 struct clk *clk_cs, *clk_ce;
417 static int initialized;
418 int clksel;
420 if (initialized)
421 return;
423 initialized = 1;
426 * Get the 1st Triple Timer Counter (TTC) block from the device tree
427 * and use it. Note that the event timer uses the interrupt and it's the
428 * 2nd TTC hence the irq_of_parse_and_map(,1)
430 timer_baseaddr = of_iomap(timer, 0);
431 if (!timer_baseaddr) {
432 pr_err("ERROR: invalid timer base address\n");
433 BUG();
436 irq = irq_of_parse_and_map(timer, 1);
437 if (irq <= 0) {
438 pr_err("ERROR: invalid interrupt number\n");
439 BUG();
442 clksel = __raw_readl(timer_baseaddr + TTC_CLK_CNTRL_OFFSET);
443 clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
444 clk_cs = of_clk_get(timer, clksel);
445 if (IS_ERR(clk_cs)) {
446 pr_err("ERROR: timer input clock not found\n");
447 BUG();
450 clksel = __raw_readl(timer_baseaddr + 4 + TTC_CLK_CNTRL_OFFSET);
451 clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
452 clk_ce = of_clk_get(timer, clksel);
453 if (IS_ERR(clk_ce)) {
454 pr_err("ERROR: timer input clock not found\n");
455 BUG();
458 ttc_setup_clocksource(clk_cs, timer_baseaddr);
459 ttc_setup_clockevent(clk_ce, timer_baseaddr + 4, irq);
461 pr_info("%s #0 at %p, irq=%d\n", timer->name, timer_baseaddr, irq);
464 CLOCKSOURCE_OF_DECLARE(ttc, "cdns,ttc", ttc_timer_init);