1 /* linux/arch/arm/mach-exynos4/mct.c
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
6 * EXYNOS4 MCT(Multi-Core Timer) support
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/err.h>
17 #include <linux/clk.h>
18 #include <linux/clockchips.h>
19 #include <linux/cpu.h>
20 #include <linux/platform_device.h>
21 #include <linux/delay.h>
22 #include <linux/percpu.h>
24 #include <linux/of_irq.h>
25 #include <linux/of_address.h>
26 #include <linux/clocksource.h>
28 #include <asm/mach/time.h>
30 #define EXYNOS4_MCTREG(x) (x)
31 #define EXYNOS4_MCT_G_CNT_L EXYNOS4_MCTREG(0x100)
32 #define EXYNOS4_MCT_G_CNT_U EXYNOS4_MCTREG(0x104)
33 #define EXYNOS4_MCT_G_CNT_WSTAT EXYNOS4_MCTREG(0x110)
34 #define EXYNOS4_MCT_G_COMP0_L EXYNOS4_MCTREG(0x200)
35 #define EXYNOS4_MCT_G_COMP0_U EXYNOS4_MCTREG(0x204)
36 #define EXYNOS4_MCT_G_COMP0_ADD_INCR EXYNOS4_MCTREG(0x208)
37 #define EXYNOS4_MCT_G_TCON EXYNOS4_MCTREG(0x240)
38 #define EXYNOS4_MCT_G_INT_CSTAT EXYNOS4_MCTREG(0x244)
39 #define EXYNOS4_MCT_G_INT_ENB EXYNOS4_MCTREG(0x248)
40 #define EXYNOS4_MCT_G_WSTAT EXYNOS4_MCTREG(0x24C)
41 #define _EXYNOS4_MCT_L_BASE EXYNOS4_MCTREG(0x300)
42 #define EXYNOS4_MCT_L_BASE(x) (_EXYNOS4_MCT_L_BASE + (0x100 * x))
43 #define EXYNOS4_MCT_L_MASK (0xffffff00)
45 #define MCT_L_TCNTB_OFFSET (0x00)
46 #define MCT_L_ICNTB_OFFSET (0x08)
47 #define MCT_L_TCON_OFFSET (0x20)
48 #define MCT_L_INT_CSTAT_OFFSET (0x30)
49 #define MCT_L_INT_ENB_OFFSET (0x34)
50 #define MCT_L_WSTAT_OFFSET (0x40)
51 #define MCT_G_TCON_START (1 << 8)
52 #define MCT_G_TCON_COMP0_AUTO_INC (1 << 1)
53 #define MCT_G_TCON_COMP0_ENABLE (1 << 0)
54 #define MCT_L_TCON_INTERVAL_MODE (1 << 2)
55 #define MCT_L_TCON_INT_START (1 << 1)
56 #define MCT_L_TCON_TIMER_START (1 << 0)
58 #define TICK_BASE_CNT 1
81 static void __iomem
*reg_base
;
82 static unsigned long clk_rate
;
83 static unsigned int mct_int_type
;
84 static int mct_irqs
[MCT_NR_IRQS
];
86 struct mct_clock_event_device
{
87 struct clock_event_device evt
;
92 static void exynos4_mct_write(unsigned int value
, unsigned long offset
)
94 unsigned long stat_addr
;
98 __raw_writel(value
, reg_base
+ offset
);
100 if (likely(offset
>= EXYNOS4_MCT_L_BASE(0))) {
101 stat_addr
= (offset
& ~EXYNOS4_MCT_L_MASK
) + MCT_L_WSTAT_OFFSET
;
102 switch (offset
& EXYNOS4_MCT_L_MASK
) {
103 case MCT_L_TCON_OFFSET
:
104 mask
= 1 << 3; /* L_TCON write status */
106 case MCT_L_ICNTB_OFFSET
:
107 mask
= 1 << 1; /* L_ICNTB write status */
109 case MCT_L_TCNTB_OFFSET
:
110 mask
= 1 << 0; /* L_TCNTB write status */
117 case EXYNOS4_MCT_G_TCON
:
118 stat_addr
= EXYNOS4_MCT_G_WSTAT
;
119 mask
= 1 << 16; /* G_TCON write status */
121 case EXYNOS4_MCT_G_COMP0_L
:
122 stat_addr
= EXYNOS4_MCT_G_WSTAT
;
123 mask
= 1 << 0; /* G_COMP0_L write status */
125 case EXYNOS4_MCT_G_COMP0_U
:
126 stat_addr
= EXYNOS4_MCT_G_WSTAT
;
127 mask
= 1 << 1; /* G_COMP0_U write status */
129 case EXYNOS4_MCT_G_COMP0_ADD_INCR
:
130 stat_addr
= EXYNOS4_MCT_G_WSTAT
;
131 mask
= 1 << 2; /* G_COMP0_ADD_INCR w status */
133 case EXYNOS4_MCT_G_CNT_L
:
134 stat_addr
= EXYNOS4_MCT_G_CNT_WSTAT
;
135 mask
= 1 << 0; /* G_CNT_L write status */
137 case EXYNOS4_MCT_G_CNT_U
:
138 stat_addr
= EXYNOS4_MCT_G_CNT_WSTAT
;
139 mask
= 1 << 1; /* G_CNT_U write status */
146 /* Wait maximum 1 ms until written values are applied */
147 for (i
= 0; i
< loops_per_jiffy
/ 1000 * HZ
; i
++)
148 if (__raw_readl(reg_base
+ stat_addr
) & mask
) {
149 __raw_writel(mask
, reg_base
+ stat_addr
);
153 panic("MCT hangs after writing %d (offset:0x%lx)\n", value
, offset
);
156 /* Clocksource handling */
157 static void exynos4_mct_frc_start(u32 hi
, u32 lo
)
161 exynos4_mct_write(lo
, EXYNOS4_MCT_G_CNT_L
);
162 exynos4_mct_write(hi
, EXYNOS4_MCT_G_CNT_U
);
164 reg
= __raw_readl(reg_base
+ EXYNOS4_MCT_G_TCON
);
165 reg
|= MCT_G_TCON_START
;
166 exynos4_mct_write(reg
, EXYNOS4_MCT_G_TCON
);
169 static cycle_t
exynos4_frc_read(struct clocksource
*cs
)
172 u32 hi2
= __raw_readl(reg_base
+ EXYNOS4_MCT_G_CNT_U
);
176 lo
= __raw_readl(reg_base
+ EXYNOS4_MCT_G_CNT_L
);
177 hi2
= __raw_readl(reg_base
+ EXYNOS4_MCT_G_CNT_U
);
180 return ((cycle_t
)hi
<< 32) | lo
;
183 static void exynos4_frc_resume(struct clocksource
*cs
)
185 exynos4_mct_frc_start(0, 0);
188 struct clocksource mct_frc
= {
191 .read
= exynos4_frc_read
,
192 .mask
= CLOCKSOURCE_MASK(64),
193 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
194 .resume
= exynos4_frc_resume
,
197 static void __init
exynos4_clocksource_init(void)
199 exynos4_mct_frc_start(0, 0);
201 if (clocksource_register_hz(&mct_frc
, clk_rate
))
202 panic("%s: can't register clocksource\n", mct_frc
.name
);
205 static void exynos4_mct_comp0_stop(void)
209 tcon
= __raw_readl(reg_base
+ EXYNOS4_MCT_G_TCON
);
210 tcon
&= ~(MCT_G_TCON_COMP0_ENABLE
| MCT_G_TCON_COMP0_AUTO_INC
);
212 exynos4_mct_write(tcon
, EXYNOS4_MCT_G_TCON
);
213 exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB
);
216 static void exynos4_mct_comp0_start(enum clock_event_mode mode
,
217 unsigned long cycles
)
222 tcon
= __raw_readl(reg_base
+ EXYNOS4_MCT_G_TCON
);
224 if (mode
== CLOCK_EVT_MODE_PERIODIC
) {
225 tcon
|= MCT_G_TCON_COMP0_AUTO_INC
;
226 exynos4_mct_write(cycles
, EXYNOS4_MCT_G_COMP0_ADD_INCR
);
229 comp_cycle
= exynos4_frc_read(&mct_frc
) + cycles
;
230 exynos4_mct_write((u32
)comp_cycle
, EXYNOS4_MCT_G_COMP0_L
);
231 exynos4_mct_write((u32
)(comp_cycle
>> 32), EXYNOS4_MCT_G_COMP0_U
);
233 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB
);
235 tcon
|= MCT_G_TCON_COMP0_ENABLE
;
236 exynos4_mct_write(tcon
, EXYNOS4_MCT_G_TCON
);
239 static int exynos4_comp_set_next_event(unsigned long cycles
,
240 struct clock_event_device
*evt
)
242 exynos4_mct_comp0_start(evt
->mode
, cycles
);
247 static void exynos4_comp_set_mode(enum clock_event_mode mode
,
248 struct clock_event_device
*evt
)
250 unsigned long cycles_per_jiffy
;
251 exynos4_mct_comp0_stop();
254 case CLOCK_EVT_MODE_PERIODIC
:
256 (((unsigned long long) NSEC_PER_SEC
/ HZ
* evt
->mult
) >> evt
->shift
);
257 exynos4_mct_comp0_start(mode
, cycles_per_jiffy
);
260 case CLOCK_EVT_MODE_ONESHOT
:
261 case CLOCK_EVT_MODE_UNUSED
:
262 case CLOCK_EVT_MODE_SHUTDOWN
:
263 case CLOCK_EVT_MODE_RESUME
:
268 static struct clock_event_device mct_comp_device
= {
270 .features
= CLOCK_EVT_FEAT_PERIODIC
| CLOCK_EVT_FEAT_ONESHOT
,
272 .set_next_event
= exynos4_comp_set_next_event
,
273 .set_mode
= exynos4_comp_set_mode
,
276 static irqreturn_t
exynos4_mct_comp_isr(int irq
, void *dev_id
)
278 struct clock_event_device
*evt
= dev_id
;
280 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT
);
282 evt
->event_handler(evt
);
287 static struct irqaction mct_comp_event_irq
= {
288 .name
= "mct_comp_irq",
289 .flags
= IRQF_TIMER
| IRQF_IRQPOLL
,
290 .handler
= exynos4_mct_comp_isr
,
291 .dev_id
= &mct_comp_device
,
294 static void exynos4_clockevent_init(void)
296 mct_comp_device
.cpumask
= cpumask_of(0);
297 clockevents_config_and_register(&mct_comp_device
, clk_rate
,
299 setup_irq(mct_irqs
[MCT_G0_IRQ
], &mct_comp_event_irq
);
302 static DEFINE_PER_CPU(struct mct_clock_event_device
, percpu_mct_tick
);
304 /* Clock event handling */
305 static void exynos4_mct_tick_stop(struct mct_clock_event_device
*mevt
)
308 unsigned long mask
= MCT_L_TCON_INT_START
| MCT_L_TCON_TIMER_START
;
309 unsigned long offset
= mevt
->base
+ MCT_L_TCON_OFFSET
;
311 tmp
= __raw_readl(reg_base
+ offset
);
314 exynos4_mct_write(tmp
, offset
);
318 static void exynos4_mct_tick_start(unsigned long cycles
,
319 struct mct_clock_event_device
*mevt
)
323 exynos4_mct_tick_stop(mevt
);
325 tmp
= (1 << 31) | cycles
; /* MCT_L_UPDATE_ICNTB */
327 /* update interrupt count buffer */
328 exynos4_mct_write(tmp
, mevt
->base
+ MCT_L_ICNTB_OFFSET
);
330 /* enable MCT tick interrupt */
331 exynos4_mct_write(0x1, mevt
->base
+ MCT_L_INT_ENB_OFFSET
);
333 tmp
= __raw_readl(reg_base
+ mevt
->base
+ MCT_L_TCON_OFFSET
);
334 tmp
|= MCT_L_TCON_INT_START
| MCT_L_TCON_TIMER_START
|
335 MCT_L_TCON_INTERVAL_MODE
;
336 exynos4_mct_write(tmp
, mevt
->base
+ MCT_L_TCON_OFFSET
);
339 static int exynos4_tick_set_next_event(unsigned long cycles
,
340 struct clock_event_device
*evt
)
342 struct mct_clock_event_device
*mevt
= this_cpu_ptr(&percpu_mct_tick
);
344 exynos4_mct_tick_start(cycles
, mevt
);
349 static inline void exynos4_tick_set_mode(enum clock_event_mode mode
,
350 struct clock_event_device
*evt
)
352 struct mct_clock_event_device
*mevt
= this_cpu_ptr(&percpu_mct_tick
);
353 unsigned long cycles_per_jiffy
;
355 exynos4_mct_tick_stop(mevt
);
358 case CLOCK_EVT_MODE_PERIODIC
:
360 (((unsigned long long) NSEC_PER_SEC
/ HZ
* evt
->mult
) >> evt
->shift
);
361 exynos4_mct_tick_start(cycles_per_jiffy
, mevt
);
364 case CLOCK_EVT_MODE_ONESHOT
:
365 case CLOCK_EVT_MODE_UNUSED
:
366 case CLOCK_EVT_MODE_SHUTDOWN
:
367 case CLOCK_EVT_MODE_RESUME
:
372 static int exynos4_mct_tick_clear(struct mct_clock_event_device
*mevt
)
374 struct clock_event_device
*evt
= &mevt
->evt
;
377 * This is for supporting oneshot mode.
378 * Mct would generate interrupt periodically
379 * without explicit stopping.
381 if (evt
->mode
!= CLOCK_EVT_MODE_PERIODIC
)
382 exynos4_mct_tick_stop(mevt
);
384 /* Clear the MCT tick interrupt */
385 if (__raw_readl(reg_base
+ mevt
->base
+ MCT_L_INT_CSTAT_OFFSET
) & 1) {
386 exynos4_mct_write(0x1, mevt
->base
+ MCT_L_INT_CSTAT_OFFSET
);
393 static irqreturn_t
exynos4_mct_tick_isr(int irq
, void *dev_id
)
395 struct mct_clock_event_device
*mevt
= dev_id
;
396 struct clock_event_device
*evt
= &mevt
->evt
;
398 exynos4_mct_tick_clear(mevt
);
400 evt
->event_handler(evt
);
405 static int exynos4_local_timer_setup(struct clock_event_device
*evt
)
407 struct mct_clock_event_device
*mevt
;
408 unsigned int cpu
= smp_processor_id();
410 mevt
= container_of(evt
, struct mct_clock_event_device
, evt
);
412 mevt
->base
= EXYNOS4_MCT_L_BASE(cpu
);
413 sprintf(mevt
->name
, "mct_tick%d", cpu
);
415 evt
->name
= mevt
->name
;
416 evt
->cpumask
= cpumask_of(cpu
);
417 evt
->set_next_event
= exynos4_tick_set_next_event
;
418 evt
->set_mode
= exynos4_tick_set_mode
;
419 evt
->features
= CLOCK_EVT_FEAT_PERIODIC
| CLOCK_EVT_FEAT_ONESHOT
;
421 clockevents_config_and_register(evt
, clk_rate
/ (TICK_BASE_CNT
+ 1),
424 exynos4_mct_write(TICK_BASE_CNT
, mevt
->base
+ MCT_L_TCNTB_OFFSET
);
426 if (mct_int_type
== MCT_INT_SPI
) {
427 evt
->irq
= mct_irqs
[MCT_L0_IRQ
+ cpu
];
428 if (request_irq(evt
->irq
, exynos4_mct_tick_isr
,
429 IRQF_TIMER
| IRQF_NOBALANCING
,
431 pr_err("exynos-mct: cannot register IRQ %d\n",
436 enable_percpu_irq(mct_irqs
[MCT_L0_IRQ
], 0);
442 static void exynos4_local_timer_stop(struct clock_event_device
*evt
)
444 evt
->set_mode(CLOCK_EVT_MODE_UNUSED
, evt
);
445 if (mct_int_type
== MCT_INT_SPI
)
446 free_irq(evt
->irq
, this_cpu_ptr(&percpu_mct_tick
));
448 disable_percpu_irq(mct_irqs
[MCT_L0_IRQ
]);
451 static int exynos4_mct_cpu_notify(struct notifier_block
*self
,
452 unsigned long action
, void *hcpu
)
454 struct mct_clock_event_device
*mevt
;
458 * Grab cpu pointer in each case to avoid spurious
459 * preemptible warnings
461 switch (action
& ~CPU_TASKS_FROZEN
) {
463 mevt
= this_cpu_ptr(&percpu_mct_tick
);
464 exynos4_local_timer_setup(&mevt
->evt
);
467 cpu
= (unsigned long)hcpu
;
468 if (mct_int_type
== MCT_INT_SPI
)
469 irq_set_affinity(mct_irqs
[MCT_L0_IRQ
+ cpu
],
473 mevt
= this_cpu_ptr(&percpu_mct_tick
);
474 exynos4_local_timer_stop(&mevt
->evt
);
481 static struct notifier_block exynos4_mct_cpu_nb
= {
482 .notifier_call
= exynos4_mct_cpu_notify
,
485 static void __init
exynos4_timer_resources(struct device_node
*np
, void __iomem
*base
)
488 struct mct_clock_event_device
*mevt
= this_cpu_ptr(&percpu_mct_tick
);
489 struct clk
*mct_clk
, *tick_clk
;
491 tick_clk
= np
? of_clk_get_by_name(np
, "fin_pll") :
492 clk_get(NULL
, "fin_pll");
493 if (IS_ERR(tick_clk
))
494 panic("%s: unable to determine tick clock rate\n", __func__
);
495 clk_rate
= clk_get_rate(tick_clk
);
497 mct_clk
= np
? of_clk_get_by_name(np
, "mct") : clk_get(NULL
, "mct");
499 panic("%s: unable to retrieve mct clock instance\n", __func__
);
500 clk_prepare_enable(mct_clk
);
504 panic("%s: unable to ioremap mct address space\n", __func__
);
506 if (mct_int_type
== MCT_INT_PPI
) {
508 err
= request_percpu_irq(mct_irqs
[MCT_L0_IRQ
],
509 exynos4_mct_tick_isr
, "MCT",
511 WARN(err
, "MCT: can't request IRQ %d (%d)\n",
512 mct_irqs
[MCT_L0_IRQ
], err
);
514 irq_set_affinity(mct_irqs
[MCT_L0_IRQ
], cpumask_of(0));
517 err
= register_cpu_notifier(&exynos4_mct_cpu_nb
);
521 /* Immediately configure the timer on the boot CPU */
522 exynos4_local_timer_setup(&mevt
->evt
);
526 free_percpu_irq(mct_irqs
[MCT_L0_IRQ
], &percpu_mct_tick
);
529 void __init
mct_init(void __iomem
*base
, int irq_g0
, int irq_l0
, int irq_l1
)
531 mct_irqs
[MCT_G0_IRQ
] = irq_g0
;
532 mct_irqs
[MCT_L0_IRQ
] = irq_l0
;
533 mct_irqs
[MCT_L1_IRQ
] = irq_l1
;
534 mct_int_type
= MCT_INT_SPI
;
536 exynos4_timer_resources(NULL
, base
);
537 exynos4_clocksource_init();
538 exynos4_clockevent_init();
541 static void __init
mct_init_dt(struct device_node
*np
, unsigned int int_type
)
545 mct_int_type
= int_type
;
547 /* This driver uses only one global timer interrupt */
548 mct_irqs
[MCT_G0_IRQ
] = irq_of_parse_and_map(np
, MCT_G0_IRQ
);
551 * Find out the number of local irqs specified. The local
552 * timer irqs are specified after the four global timer
553 * irqs are specified.
556 nr_irqs
= of_irq_count(np
);
560 for (i
= MCT_L0_IRQ
; i
< nr_irqs
; i
++)
561 mct_irqs
[i
] = irq_of_parse_and_map(np
, i
);
563 exynos4_timer_resources(np
, of_iomap(np
, 0));
564 exynos4_clocksource_init();
565 exynos4_clockevent_init();
569 static void __init
mct_init_spi(struct device_node
*np
)
571 return mct_init_dt(np
, MCT_INT_SPI
);
574 static void __init
mct_init_ppi(struct device_node
*np
)
576 return mct_init_dt(np
, MCT_INT_PPI
);
578 CLOCKSOURCE_OF_DECLARE(exynos4210
, "samsung,exynos4210-mct", mct_init_spi
);
579 CLOCKSOURCE_OF_DECLARE(exynos4412
, "samsung,exynos4412-mct", mct_init_ppi
);