PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / cpufreq / acpi-cpufreq.c
blob18448a7e9f8654e1560d2ec7eb354dd85ba094f4
1 /*
2 * acpi-cpufreq.c - ACPI Processor P-States Driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <linux/slab.h>
38 #include <linux/acpi.h>
39 #include <linux/io.h>
40 #include <linux/delay.h>
41 #include <linux/uaccess.h>
43 #include <acpi/processor.h>
45 #include <asm/msr.h>
46 #include <asm/processor.h>
47 #include <asm/cpufeature.h>
49 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
50 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
51 MODULE_LICENSE("GPL");
53 #define PFX "acpi-cpufreq: "
55 enum {
56 UNDEFINED_CAPABLE = 0,
57 SYSTEM_INTEL_MSR_CAPABLE,
58 SYSTEM_AMD_MSR_CAPABLE,
59 SYSTEM_IO_CAPABLE,
62 #define INTEL_MSR_RANGE (0xffff)
63 #define AMD_MSR_RANGE (0x7)
65 #define MSR_K7_HWCR_CPB_DIS (1ULL << 25)
67 struct acpi_cpufreq_data {
68 struct acpi_processor_performance *acpi_data;
69 struct cpufreq_frequency_table *freq_table;
70 unsigned int resume;
71 unsigned int cpu_feature;
72 cpumask_var_t freqdomain_cpus;
75 static DEFINE_PER_CPU(struct acpi_cpufreq_data *, acfreq_data);
77 /* acpi_perf_data is a pointer to percpu data. */
78 static struct acpi_processor_performance __percpu *acpi_perf_data;
80 static struct cpufreq_driver acpi_cpufreq_driver;
82 static unsigned int acpi_pstate_strict;
83 static struct msr __percpu *msrs;
85 static bool boost_state(unsigned int cpu)
87 u32 lo, hi;
88 u64 msr;
90 switch (boot_cpu_data.x86_vendor) {
91 case X86_VENDOR_INTEL:
92 rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
93 msr = lo | ((u64)hi << 32);
94 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
95 case X86_VENDOR_AMD:
96 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
97 msr = lo | ((u64)hi << 32);
98 return !(msr & MSR_K7_HWCR_CPB_DIS);
100 return false;
103 static void boost_set_msrs(bool enable, const struct cpumask *cpumask)
105 u32 cpu;
106 u32 msr_addr;
107 u64 msr_mask;
109 switch (boot_cpu_data.x86_vendor) {
110 case X86_VENDOR_INTEL:
111 msr_addr = MSR_IA32_MISC_ENABLE;
112 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
113 break;
114 case X86_VENDOR_AMD:
115 msr_addr = MSR_K7_HWCR;
116 msr_mask = MSR_K7_HWCR_CPB_DIS;
117 break;
118 default:
119 return;
122 rdmsr_on_cpus(cpumask, msr_addr, msrs);
124 for_each_cpu(cpu, cpumask) {
125 struct msr *reg = per_cpu_ptr(msrs, cpu);
126 if (enable)
127 reg->q &= ~msr_mask;
128 else
129 reg->q |= msr_mask;
132 wrmsr_on_cpus(cpumask, msr_addr, msrs);
135 static int _store_boost(int val)
137 get_online_cpus();
138 boost_set_msrs(val, cpu_online_mask);
139 put_online_cpus();
140 pr_debug("Core Boosting %sabled.\n", val ? "en" : "dis");
142 return 0;
145 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
147 struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
149 return cpufreq_show_cpus(data->freqdomain_cpus, buf);
152 cpufreq_freq_attr_ro(freqdomain_cpus);
154 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
155 static ssize_t store_boost(const char *buf, size_t count)
157 int ret;
158 unsigned long val = 0;
160 if (!acpi_cpufreq_driver.boost_supported)
161 return -EINVAL;
163 ret = kstrtoul(buf, 10, &val);
164 if (ret || (val > 1))
165 return -EINVAL;
167 _store_boost((int) val);
169 return count;
172 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
173 size_t count)
175 return store_boost(buf, count);
178 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
180 return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
183 cpufreq_freq_attr_rw(cpb);
184 #endif
186 static int check_est_cpu(unsigned int cpuid)
188 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
190 return cpu_has(cpu, X86_FEATURE_EST);
193 static int check_amd_hwpstate_cpu(unsigned int cpuid)
195 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
197 return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
200 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
202 struct acpi_processor_performance *perf;
203 int i;
205 perf = data->acpi_data;
207 for (i = 0; i < perf->state_count; i++) {
208 if (value == perf->states[i].status)
209 return data->freq_table[i].frequency;
211 return 0;
214 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
216 int i;
217 struct acpi_processor_performance *perf;
219 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
220 msr &= AMD_MSR_RANGE;
221 else
222 msr &= INTEL_MSR_RANGE;
224 perf = data->acpi_data;
226 for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
227 if (msr == perf->states[data->freq_table[i].driver_data].status)
228 return data->freq_table[i].frequency;
230 return data->freq_table[0].frequency;
233 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
235 switch (data->cpu_feature) {
236 case SYSTEM_INTEL_MSR_CAPABLE:
237 case SYSTEM_AMD_MSR_CAPABLE:
238 return extract_msr(val, data);
239 case SYSTEM_IO_CAPABLE:
240 return extract_io(val, data);
241 default:
242 return 0;
246 struct msr_addr {
247 u32 reg;
250 struct io_addr {
251 u16 port;
252 u8 bit_width;
255 struct drv_cmd {
256 unsigned int type;
257 const struct cpumask *mask;
258 union {
259 struct msr_addr msr;
260 struct io_addr io;
261 } addr;
262 u32 val;
265 /* Called via smp_call_function_single(), on the target CPU */
266 static void do_drv_read(void *_cmd)
268 struct drv_cmd *cmd = _cmd;
269 u32 h;
271 switch (cmd->type) {
272 case SYSTEM_INTEL_MSR_CAPABLE:
273 case SYSTEM_AMD_MSR_CAPABLE:
274 rdmsr(cmd->addr.msr.reg, cmd->val, h);
275 break;
276 case SYSTEM_IO_CAPABLE:
277 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
278 &cmd->val,
279 (u32)cmd->addr.io.bit_width);
280 break;
281 default:
282 break;
286 /* Called via smp_call_function_many(), on the target CPUs */
287 static void do_drv_write(void *_cmd)
289 struct drv_cmd *cmd = _cmd;
290 u32 lo, hi;
292 switch (cmd->type) {
293 case SYSTEM_INTEL_MSR_CAPABLE:
294 rdmsr(cmd->addr.msr.reg, lo, hi);
295 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
296 wrmsr(cmd->addr.msr.reg, lo, hi);
297 break;
298 case SYSTEM_AMD_MSR_CAPABLE:
299 wrmsr(cmd->addr.msr.reg, cmd->val, 0);
300 break;
301 case SYSTEM_IO_CAPABLE:
302 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
303 cmd->val,
304 (u32)cmd->addr.io.bit_width);
305 break;
306 default:
307 break;
311 static void drv_read(struct drv_cmd *cmd)
313 int err;
314 cmd->val = 0;
316 err = smp_call_function_any(cmd->mask, do_drv_read, cmd, 1);
317 WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */
320 static void drv_write(struct drv_cmd *cmd)
322 int this_cpu;
324 this_cpu = get_cpu();
325 if (cpumask_test_cpu(this_cpu, cmd->mask))
326 do_drv_write(cmd);
327 smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
328 put_cpu();
331 static u32 get_cur_val(const struct cpumask *mask)
333 struct acpi_processor_performance *perf;
334 struct drv_cmd cmd;
336 if (unlikely(cpumask_empty(mask)))
337 return 0;
339 switch (per_cpu(acfreq_data, cpumask_first(mask))->cpu_feature) {
340 case SYSTEM_INTEL_MSR_CAPABLE:
341 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
342 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
343 break;
344 case SYSTEM_AMD_MSR_CAPABLE:
345 cmd.type = SYSTEM_AMD_MSR_CAPABLE;
346 cmd.addr.msr.reg = MSR_AMD_PERF_CTL;
347 break;
348 case SYSTEM_IO_CAPABLE:
349 cmd.type = SYSTEM_IO_CAPABLE;
350 perf = per_cpu(acfreq_data, cpumask_first(mask))->acpi_data;
351 cmd.addr.io.port = perf->control_register.address;
352 cmd.addr.io.bit_width = perf->control_register.bit_width;
353 break;
354 default:
355 return 0;
358 cmd.mask = mask;
359 drv_read(&cmd);
361 pr_debug("get_cur_val = %u\n", cmd.val);
363 return cmd.val;
366 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
368 struct acpi_cpufreq_data *data = per_cpu(acfreq_data, cpu);
369 unsigned int freq;
370 unsigned int cached_freq;
372 pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
374 if (unlikely(data == NULL ||
375 data->acpi_data == NULL || data->freq_table == NULL)) {
376 return 0;
379 cached_freq = data->freq_table[data->acpi_data->state].frequency;
380 freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
381 if (freq != cached_freq) {
383 * The dreaded BIOS frequency change behind our back.
384 * Force set the frequency on next target call.
386 data->resume = 1;
389 pr_debug("cur freq = %u\n", freq);
391 return freq;
394 static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
395 struct acpi_cpufreq_data *data)
397 unsigned int cur_freq;
398 unsigned int i;
400 for (i = 0; i < 100; i++) {
401 cur_freq = extract_freq(get_cur_val(mask), data);
402 if (cur_freq == freq)
403 return 1;
404 udelay(10);
406 return 0;
409 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
410 unsigned int index)
412 struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
413 struct acpi_processor_performance *perf;
414 struct drv_cmd cmd;
415 unsigned int next_perf_state = 0; /* Index into perf table */
416 int result = 0;
418 if (unlikely(data == NULL ||
419 data->acpi_data == NULL || data->freq_table == NULL)) {
420 return -ENODEV;
423 perf = data->acpi_data;
424 next_perf_state = data->freq_table[index].driver_data;
425 if (perf->state == next_perf_state) {
426 if (unlikely(data->resume)) {
427 pr_debug("Called after resume, resetting to P%d\n",
428 next_perf_state);
429 data->resume = 0;
430 } else {
431 pr_debug("Already at target state (P%d)\n",
432 next_perf_state);
433 goto out;
437 switch (data->cpu_feature) {
438 case SYSTEM_INTEL_MSR_CAPABLE:
439 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
440 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
441 cmd.val = (u32) perf->states[next_perf_state].control;
442 break;
443 case SYSTEM_AMD_MSR_CAPABLE:
444 cmd.type = SYSTEM_AMD_MSR_CAPABLE;
445 cmd.addr.msr.reg = MSR_AMD_PERF_CTL;
446 cmd.val = (u32) perf->states[next_perf_state].control;
447 break;
448 case SYSTEM_IO_CAPABLE:
449 cmd.type = SYSTEM_IO_CAPABLE;
450 cmd.addr.io.port = perf->control_register.address;
451 cmd.addr.io.bit_width = perf->control_register.bit_width;
452 cmd.val = (u32) perf->states[next_perf_state].control;
453 break;
454 default:
455 result = -ENODEV;
456 goto out;
459 /* cpufreq holds the hotplug lock, so we are safe from here on */
460 if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
461 cmd.mask = policy->cpus;
462 else
463 cmd.mask = cpumask_of(policy->cpu);
465 drv_write(&cmd);
467 if (acpi_pstate_strict) {
468 if (!check_freqs(cmd.mask, data->freq_table[index].frequency,
469 data)) {
470 pr_debug("acpi_cpufreq_target failed (%d)\n",
471 policy->cpu);
472 result = -EAGAIN;
476 if (!result)
477 perf->state = next_perf_state;
479 out:
480 return result;
483 static unsigned long
484 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
486 struct acpi_processor_performance *perf = data->acpi_data;
488 if (cpu_khz) {
489 /* search the closest match to cpu_khz */
490 unsigned int i;
491 unsigned long freq;
492 unsigned long freqn = perf->states[0].core_frequency * 1000;
494 for (i = 0; i < (perf->state_count-1); i++) {
495 freq = freqn;
496 freqn = perf->states[i+1].core_frequency * 1000;
497 if ((2 * cpu_khz) > (freqn + freq)) {
498 perf->state = i;
499 return freq;
502 perf->state = perf->state_count-1;
503 return freqn;
504 } else {
505 /* assume CPU is at P0... */
506 perf->state = 0;
507 return perf->states[0].core_frequency * 1000;
511 static void free_acpi_perf_data(void)
513 unsigned int i;
515 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
516 for_each_possible_cpu(i)
517 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
518 ->shared_cpu_map);
519 free_percpu(acpi_perf_data);
522 static int boost_notify(struct notifier_block *nb, unsigned long action,
523 void *hcpu)
525 unsigned cpu = (long)hcpu;
526 const struct cpumask *cpumask;
528 cpumask = get_cpu_mask(cpu);
531 * Clear the boost-disable bit on the CPU_DOWN path so that
532 * this cpu cannot block the remaining ones from boosting. On
533 * the CPU_UP path we simply keep the boost-disable flag in
534 * sync with the current global state.
537 switch (action) {
538 case CPU_UP_PREPARE:
539 case CPU_UP_PREPARE_FROZEN:
540 boost_set_msrs(acpi_cpufreq_driver.boost_enabled, cpumask);
541 break;
543 case CPU_DOWN_PREPARE:
544 case CPU_DOWN_PREPARE_FROZEN:
545 boost_set_msrs(1, cpumask);
546 break;
548 default:
549 break;
552 return NOTIFY_OK;
556 static struct notifier_block boost_nb = {
557 .notifier_call = boost_notify,
561 * acpi_cpufreq_early_init - initialize ACPI P-States library
563 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
564 * in order to determine correct frequency and voltage pairings. We can
565 * do _PDC and _PSD and find out the processor dependency for the
566 * actual init that will happen later...
568 static int __init acpi_cpufreq_early_init(void)
570 unsigned int i;
571 pr_debug("acpi_cpufreq_early_init\n");
573 acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
574 if (!acpi_perf_data) {
575 pr_debug("Memory allocation error for acpi_perf_data.\n");
576 return -ENOMEM;
578 for_each_possible_cpu(i) {
579 if (!zalloc_cpumask_var_node(
580 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
581 GFP_KERNEL, cpu_to_node(i))) {
583 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
584 free_acpi_perf_data();
585 return -ENOMEM;
589 /* Do initialization in ACPI core */
590 acpi_processor_preregister_performance(acpi_perf_data);
591 return 0;
594 #ifdef CONFIG_SMP
596 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
597 * or do it in BIOS firmware and won't inform about it to OS. If not
598 * detected, this has a side effect of making CPU run at a different speed
599 * than OS intended it to run at. Detect it and handle it cleanly.
601 static int bios_with_sw_any_bug;
603 static int sw_any_bug_found(const struct dmi_system_id *d)
605 bios_with_sw_any_bug = 1;
606 return 0;
609 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
611 .callback = sw_any_bug_found,
612 .ident = "Supermicro Server X6DLP",
613 .matches = {
614 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
615 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
616 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
622 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
624 /* Intel Xeon Processor 7100 Series Specification Update
625 * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
626 * AL30: A Machine Check Exception (MCE) Occurring during an
627 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
628 * Both Processor Cores to Lock Up. */
629 if (c->x86_vendor == X86_VENDOR_INTEL) {
630 if ((c->x86 == 15) &&
631 (c->x86_model == 6) &&
632 (c->x86_mask == 8)) {
633 printk(KERN_INFO "acpi-cpufreq: Intel(R) "
634 "Xeon(R) 7100 Errata AL30, processors may "
635 "lock up on frequency changes: disabling "
636 "acpi-cpufreq.\n");
637 return -ENODEV;
640 return 0;
642 #endif
644 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
646 unsigned int i;
647 unsigned int valid_states = 0;
648 unsigned int cpu = policy->cpu;
649 struct acpi_cpufreq_data *data;
650 unsigned int result = 0;
651 struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
652 struct acpi_processor_performance *perf;
653 #ifdef CONFIG_SMP
654 static int blacklisted;
655 #endif
657 pr_debug("acpi_cpufreq_cpu_init\n");
659 #ifdef CONFIG_SMP
660 if (blacklisted)
661 return blacklisted;
662 blacklisted = acpi_cpufreq_blacklist(c);
663 if (blacklisted)
664 return blacklisted;
665 #endif
667 data = kzalloc(sizeof(*data), GFP_KERNEL);
668 if (!data)
669 return -ENOMEM;
671 if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
672 result = -ENOMEM;
673 goto err_free;
676 data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
677 per_cpu(acfreq_data, cpu) = data;
679 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
680 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
682 result = acpi_processor_register_performance(data->acpi_data, cpu);
683 if (result)
684 goto err_free_mask;
686 perf = data->acpi_data;
687 policy->shared_type = perf->shared_type;
690 * Will let policy->cpus know about dependency only when software
691 * coordination is required.
693 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
694 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
695 cpumask_copy(policy->cpus, perf->shared_cpu_map);
697 cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
699 #ifdef CONFIG_SMP
700 dmi_check_system(sw_any_bug_dmi_table);
701 if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
702 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
703 cpumask_copy(policy->cpus, cpu_core_mask(cpu));
706 if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) {
707 cpumask_clear(policy->cpus);
708 cpumask_set_cpu(cpu, policy->cpus);
709 cpumask_copy(data->freqdomain_cpus, cpu_sibling_mask(cpu));
710 policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
711 pr_info_once(PFX "overriding BIOS provided _PSD data\n");
713 #endif
715 /* capability check */
716 if (perf->state_count <= 1) {
717 pr_debug("No P-States\n");
718 result = -ENODEV;
719 goto err_unreg;
722 if (perf->control_register.space_id != perf->status_register.space_id) {
723 result = -ENODEV;
724 goto err_unreg;
727 switch (perf->control_register.space_id) {
728 case ACPI_ADR_SPACE_SYSTEM_IO:
729 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
730 boot_cpu_data.x86 == 0xf) {
731 pr_debug("AMD K8 systems must use native drivers.\n");
732 result = -ENODEV;
733 goto err_unreg;
735 pr_debug("SYSTEM IO addr space\n");
736 data->cpu_feature = SYSTEM_IO_CAPABLE;
737 break;
738 case ACPI_ADR_SPACE_FIXED_HARDWARE:
739 pr_debug("HARDWARE addr space\n");
740 if (check_est_cpu(cpu)) {
741 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
742 break;
744 if (check_amd_hwpstate_cpu(cpu)) {
745 data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
746 break;
748 result = -ENODEV;
749 goto err_unreg;
750 default:
751 pr_debug("Unknown addr space %d\n",
752 (u32) (perf->control_register.space_id));
753 result = -ENODEV;
754 goto err_unreg;
757 data->freq_table = kmalloc(sizeof(*data->freq_table) *
758 (perf->state_count+1), GFP_KERNEL);
759 if (!data->freq_table) {
760 result = -ENOMEM;
761 goto err_unreg;
764 /* detect transition latency */
765 policy->cpuinfo.transition_latency = 0;
766 for (i = 0; i < perf->state_count; i++) {
767 if ((perf->states[i].transition_latency * 1000) >
768 policy->cpuinfo.transition_latency)
769 policy->cpuinfo.transition_latency =
770 perf->states[i].transition_latency * 1000;
773 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
774 if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
775 policy->cpuinfo.transition_latency > 20 * 1000) {
776 policy->cpuinfo.transition_latency = 20 * 1000;
777 printk_once(KERN_INFO
778 "P-state transition latency capped at 20 uS\n");
781 /* table init */
782 for (i = 0; i < perf->state_count; i++) {
783 if (i > 0 && perf->states[i].core_frequency >=
784 data->freq_table[valid_states-1].frequency / 1000)
785 continue;
787 data->freq_table[valid_states].driver_data = i;
788 data->freq_table[valid_states].frequency =
789 perf->states[i].core_frequency * 1000;
790 valid_states++;
792 data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
793 perf->state = 0;
795 result = cpufreq_table_validate_and_show(policy, data->freq_table);
796 if (result)
797 goto err_freqfree;
799 if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
800 printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
802 switch (perf->control_register.space_id) {
803 case ACPI_ADR_SPACE_SYSTEM_IO:
805 * The core will not set policy->cur, because
806 * cpufreq_driver->get is NULL, so we need to set it here.
807 * However, we have to guess it, because the current speed is
808 * unknown and not detectable via IO ports.
810 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
811 break;
812 case ACPI_ADR_SPACE_FIXED_HARDWARE:
813 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
814 break;
815 default:
816 break;
819 /* notify BIOS that we exist */
820 acpi_processor_notify_smm(THIS_MODULE);
822 pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
823 for (i = 0; i < perf->state_count; i++)
824 pr_debug(" %cP%d: %d MHz, %d mW, %d uS\n",
825 (i == perf->state ? '*' : ' '), i,
826 (u32) perf->states[i].core_frequency,
827 (u32) perf->states[i].power,
828 (u32) perf->states[i].transition_latency);
831 * the first call to ->target() should result in us actually
832 * writing something to the appropriate registers.
834 data->resume = 1;
836 return result;
838 err_freqfree:
839 kfree(data->freq_table);
840 err_unreg:
841 acpi_processor_unregister_performance(perf, cpu);
842 err_free_mask:
843 free_cpumask_var(data->freqdomain_cpus);
844 err_free:
845 kfree(data);
846 per_cpu(acfreq_data, cpu) = NULL;
848 return result;
851 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
853 struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
855 pr_debug("acpi_cpufreq_cpu_exit\n");
857 if (data) {
858 cpufreq_frequency_table_put_attr(policy->cpu);
859 per_cpu(acfreq_data, policy->cpu) = NULL;
860 acpi_processor_unregister_performance(data->acpi_data,
861 policy->cpu);
862 free_cpumask_var(data->freqdomain_cpus);
863 kfree(data->freq_table);
864 kfree(data);
867 return 0;
870 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
872 struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
874 pr_debug("acpi_cpufreq_resume\n");
876 data->resume = 1;
878 return 0;
881 static struct freq_attr *acpi_cpufreq_attr[] = {
882 &cpufreq_freq_attr_scaling_available_freqs,
883 &freqdomain_cpus,
884 NULL, /* this is a placeholder for cpb, do not remove */
885 NULL,
888 static struct cpufreq_driver acpi_cpufreq_driver = {
889 .verify = cpufreq_generic_frequency_table_verify,
890 .target_index = acpi_cpufreq_target,
891 .bios_limit = acpi_processor_get_bios_limit,
892 .init = acpi_cpufreq_cpu_init,
893 .exit = acpi_cpufreq_cpu_exit,
894 .resume = acpi_cpufreq_resume,
895 .name = "acpi-cpufreq",
896 .attr = acpi_cpufreq_attr,
897 .set_boost = _store_boost,
900 static void __init acpi_cpufreq_boost_init(void)
902 if (boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA)) {
903 msrs = msrs_alloc();
905 if (!msrs)
906 return;
908 acpi_cpufreq_driver.boost_supported = true;
909 acpi_cpufreq_driver.boost_enabled = boost_state(0);
910 get_online_cpus();
912 /* Force all MSRs to the same value */
913 boost_set_msrs(acpi_cpufreq_driver.boost_enabled,
914 cpu_online_mask);
916 register_cpu_notifier(&boost_nb);
918 put_online_cpus();
922 static void acpi_cpufreq_boost_exit(void)
924 if (msrs) {
925 unregister_cpu_notifier(&boost_nb);
927 msrs_free(msrs);
928 msrs = NULL;
932 static int __init acpi_cpufreq_init(void)
934 int ret;
936 if (acpi_disabled)
937 return -ENODEV;
939 /* don't keep reloading if cpufreq_driver exists */
940 if (cpufreq_get_current_driver())
941 return -EEXIST;
943 pr_debug("acpi_cpufreq_init\n");
945 ret = acpi_cpufreq_early_init();
946 if (ret)
947 return ret;
949 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
950 /* this is a sysfs file with a strange name and an even stranger
951 * semantic - per CPU instantiation, but system global effect.
952 * Lets enable it only on AMD CPUs for compatibility reasons and
953 * only if configured. This is considered legacy code, which
954 * will probably be removed at some point in the future.
956 if (check_amd_hwpstate_cpu(0)) {
957 struct freq_attr **iter;
959 pr_debug("adding sysfs entry for cpb\n");
961 for (iter = acpi_cpufreq_attr; *iter != NULL; iter++)
964 /* make sure there is a terminator behind it */
965 if (iter[1] == NULL)
966 *iter = &cpb;
968 #endif
969 acpi_cpufreq_boost_init();
971 ret = cpufreq_register_driver(&acpi_cpufreq_driver);
972 if (ret) {
973 free_acpi_perf_data();
974 acpi_cpufreq_boost_exit();
976 return ret;
979 static void __exit acpi_cpufreq_exit(void)
981 pr_debug("acpi_cpufreq_exit\n");
983 acpi_cpufreq_boost_exit();
985 cpufreq_unregister_driver(&acpi_cpufreq_driver);
987 free_acpi_perf_data();
990 module_param(acpi_pstate_strict, uint, 0644);
991 MODULE_PARM_DESC(acpi_pstate_strict,
992 "value 0 or non-zero. non-zero -> strict ACPI checks are "
993 "performed during frequency changes.");
995 late_initcall(acpi_cpufreq_init);
996 module_exit(acpi_cpufreq_exit);
998 static const struct x86_cpu_id acpi_cpufreq_ids[] = {
999 X86_FEATURE_MATCH(X86_FEATURE_ACPI),
1000 X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
1003 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
1005 static const struct acpi_device_id processor_device_ids[] = {
1006 {ACPI_PROCESSOR_OBJECT_HID, },
1007 {ACPI_PROCESSOR_DEVICE_HID, },
1010 MODULE_DEVICE_TABLE(acpi, processor_device_ids);
1012 MODULE_ALIAS("acpi");