PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / cpufreq / arm_big_little.c
blob72f87e9317e31057525b0785b36d78467890a34c
1 /*
2 * ARM big.LITTLE Platforms CPUFreq support
4 * Copyright (C) 2013 ARM Ltd.
5 * Sudeep KarkadaNagesha <sudeep.karkadanagesha@arm.com>
7 * Copyright (C) 2013 Linaro.
8 * Viresh Kumar <viresh.kumar@linaro.org>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
14 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
15 * kind, whether express or implied; without even the implied warranty
16 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22 #include <linux/clk.h>
23 #include <linux/cpu.h>
24 #include <linux/cpufreq.h>
25 #include <linux/cpumask.h>
26 #include <linux/export.h>
27 #include <linux/mutex.h>
28 #include <linux/of_platform.h>
29 #include <linux/pm_opp.h>
30 #include <linux/slab.h>
31 #include <linux/topology.h>
32 #include <linux/types.h>
33 #include <asm/bL_switcher.h>
35 #include "arm_big_little.h"
37 /* Currently we support only two clusters */
38 #define A15_CLUSTER 0
39 #define A7_CLUSTER 1
40 #define MAX_CLUSTERS 2
42 #ifdef CONFIG_BL_SWITCHER
43 static bool bL_switching_enabled;
44 #define is_bL_switching_enabled() bL_switching_enabled
45 #define set_switching_enabled(x) (bL_switching_enabled = (x))
46 #else
47 #define is_bL_switching_enabled() false
48 #define set_switching_enabled(x) do { } while (0)
49 #endif
51 #define ACTUAL_FREQ(cluster, freq) ((cluster == A7_CLUSTER) ? freq << 1 : freq)
52 #define VIRT_FREQ(cluster, freq) ((cluster == A7_CLUSTER) ? freq >> 1 : freq)
54 static struct cpufreq_arm_bL_ops *arm_bL_ops;
55 static struct clk *clk[MAX_CLUSTERS];
56 static struct cpufreq_frequency_table *freq_table[MAX_CLUSTERS + 1];
57 static atomic_t cluster_usage[MAX_CLUSTERS + 1];
59 static unsigned int clk_big_min; /* (Big) clock frequencies */
60 static unsigned int clk_little_max; /* Maximum clock frequency (Little) */
62 static DEFINE_PER_CPU(unsigned int, physical_cluster);
63 static DEFINE_PER_CPU(unsigned int, cpu_last_req_freq);
65 static struct mutex cluster_lock[MAX_CLUSTERS];
67 static inline int raw_cpu_to_cluster(int cpu)
69 return topology_physical_package_id(cpu);
72 static inline int cpu_to_cluster(int cpu)
74 return is_bL_switching_enabled() ?
75 MAX_CLUSTERS : raw_cpu_to_cluster(cpu);
78 static unsigned int find_cluster_maxfreq(int cluster)
80 int j;
81 u32 max_freq = 0, cpu_freq;
83 for_each_online_cpu(j) {
84 cpu_freq = per_cpu(cpu_last_req_freq, j);
86 if ((cluster == per_cpu(physical_cluster, j)) &&
87 (max_freq < cpu_freq))
88 max_freq = cpu_freq;
91 pr_debug("%s: cluster: %d, max freq: %d\n", __func__, cluster,
92 max_freq);
94 return max_freq;
97 static unsigned int clk_get_cpu_rate(unsigned int cpu)
99 u32 cur_cluster = per_cpu(physical_cluster, cpu);
100 u32 rate = clk_get_rate(clk[cur_cluster]) / 1000;
102 /* For switcher we use virtual A7 clock rates */
103 if (is_bL_switching_enabled())
104 rate = VIRT_FREQ(cur_cluster, rate);
106 pr_debug("%s: cpu: %d, cluster: %d, freq: %u\n", __func__, cpu,
107 cur_cluster, rate);
109 return rate;
112 static unsigned int bL_cpufreq_get_rate(unsigned int cpu)
114 if (is_bL_switching_enabled()) {
115 pr_debug("%s: freq: %d\n", __func__, per_cpu(cpu_last_req_freq,
116 cpu));
118 return per_cpu(cpu_last_req_freq, cpu);
119 } else {
120 return clk_get_cpu_rate(cpu);
124 static unsigned int
125 bL_cpufreq_set_rate(u32 cpu, u32 old_cluster, u32 new_cluster, u32 rate)
127 u32 new_rate, prev_rate;
128 int ret;
129 bool bLs = is_bL_switching_enabled();
131 mutex_lock(&cluster_lock[new_cluster]);
133 if (bLs) {
134 prev_rate = per_cpu(cpu_last_req_freq, cpu);
135 per_cpu(cpu_last_req_freq, cpu) = rate;
136 per_cpu(physical_cluster, cpu) = new_cluster;
138 new_rate = find_cluster_maxfreq(new_cluster);
139 new_rate = ACTUAL_FREQ(new_cluster, new_rate);
140 } else {
141 new_rate = rate;
144 pr_debug("%s: cpu: %d, old cluster: %d, new cluster: %d, freq: %d\n",
145 __func__, cpu, old_cluster, new_cluster, new_rate);
147 ret = clk_set_rate(clk[new_cluster], new_rate * 1000);
148 if (WARN_ON(ret)) {
149 pr_err("clk_set_rate failed: %d, new cluster: %d\n", ret,
150 new_cluster);
151 if (bLs) {
152 per_cpu(cpu_last_req_freq, cpu) = prev_rate;
153 per_cpu(physical_cluster, cpu) = old_cluster;
156 mutex_unlock(&cluster_lock[new_cluster]);
158 return ret;
161 mutex_unlock(&cluster_lock[new_cluster]);
163 /* Recalc freq for old cluster when switching clusters */
164 if (old_cluster != new_cluster) {
165 pr_debug("%s: cpu: %d, old cluster: %d, new cluster: %d\n",
166 __func__, cpu, old_cluster, new_cluster);
168 /* Switch cluster */
169 bL_switch_request(cpu, new_cluster);
171 mutex_lock(&cluster_lock[old_cluster]);
173 /* Set freq of old cluster if there are cpus left on it */
174 new_rate = find_cluster_maxfreq(old_cluster);
175 new_rate = ACTUAL_FREQ(old_cluster, new_rate);
177 if (new_rate) {
178 pr_debug("%s: Updating rate of old cluster: %d, to freq: %d\n",
179 __func__, old_cluster, new_rate);
181 if (clk_set_rate(clk[old_cluster], new_rate * 1000))
182 pr_err("%s: clk_set_rate failed: %d, old cluster: %d\n",
183 __func__, ret, old_cluster);
185 mutex_unlock(&cluster_lock[old_cluster]);
188 return 0;
191 /* Set clock frequency */
192 static int bL_cpufreq_set_target(struct cpufreq_policy *policy,
193 unsigned int index)
195 u32 cpu = policy->cpu, cur_cluster, new_cluster, actual_cluster;
196 unsigned int freqs_new;
198 cur_cluster = cpu_to_cluster(cpu);
199 new_cluster = actual_cluster = per_cpu(physical_cluster, cpu);
201 freqs_new = freq_table[cur_cluster][index].frequency;
203 if (is_bL_switching_enabled()) {
204 if ((actual_cluster == A15_CLUSTER) &&
205 (freqs_new < clk_big_min)) {
206 new_cluster = A7_CLUSTER;
207 } else if ((actual_cluster == A7_CLUSTER) &&
208 (freqs_new > clk_little_max)) {
209 new_cluster = A15_CLUSTER;
213 return bL_cpufreq_set_rate(cpu, actual_cluster, new_cluster, freqs_new);
216 static inline u32 get_table_count(struct cpufreq_frequency_table *table)
218 int count;
220 for (count = 0; table[count].frequency != CPUFREQ_TABLE_END; count++)
223 return count;
226 /* get the minimum frequency in the cpufreq_frequency_table */
227 static inline u32 get_table_min(struct cpufreq_frequency_table *table)
229 int i;
230 uint32_t min_freq = ~0;
231 for (i = 0; (table[i].frequency != CPUFREQ_TABLE_END); i++)
232 if (table[i].frequency < min_freq)
233 min_freq = table[i].frequency;
234 return min_freq;
237 /* get the maximum frequency in the cpufreq_frequency_table */
238 static inline u32 get_table_max(struct cpufreq_frequency_table *table)
240 int i;
241 uint32_t max_freq = 0;
242 for (i = 0; (table[i].frequency != CPUFREQ_TABLE_END); i++)
243 if (table[i].frequency > max_freq)
244 max_freq = table[i].frequency;
245 return max_freq;
248 static int merge_cluster_tables(void)
250 int i, j, k = 0, count = 1;
251 struct cpufreq_frequency_table *table;
253 for (i = 0; i < MAX_CLUSTERS; i++)
254 count += get_table_count(freq_table[i]);
256 table = kzalloc(sizeof(*table) * count, GFP_KERNEL);
257 if (!table)
258 return -ENOMEM;
260 freq_table[MAX_CLUSTERS] = table;
262 /* Add in reverse order to get freqs in increasing order */
263 for (i = MAX_CLUSTERS - 1; i >= 0; i--) {
264 for (j = 0; freq_table[i][j].frequency != CPUFREQ_TABLE_END;
265 j++) {
266 table[k].frequency = VIRT_FREQ(i,
267 freq_table[i][j].frequency);
268 pr_debug("%s: index: %d, freq: %d\n", __func__, k,
269 table[k].frequency);
270 k++;
274 table[k].driver_data = k;
275 table[k].frequency = CPUFREQ_TABLE_END;
277 pr_debug("%s: End, table: %p, count: %d\n", __func__, table, k);
279 return 0;
282 static void _put_cluster_clk_and_freq_table(struct device *cpu_dev)
284 u32 cluster = raw_cpu_to_cluster(cpu_dev->id);
286 if (!freq_table[cluster])
287 return;
289 clk_put(clk[cluster]);
290 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]);
291 dev_dbg(cpu_dev, "%s: cluster: %d\n", __func__, cluster);
294 static void put_cluster_clk_and_freq_table(struct device *cpu_dev)
296 u32 cluster = cpu_to_cluster(cpu_dev->id);
297 int i;
299 if (atomic_dec_return(&cluster_usage[cluster]))
300 return;
302 if (cluster < MAX_CLUSTERS)
303 return _put_cluster_clk_and_freq_table(cpu_dev);
305 for_each_present_cpu(i) {
306 struct device *cdev = get_cpu_device(i);
307 if (!cdev) {
308 pr_err("%s: failed to get cpu%d device\n", __func__, i);
309 return;
312 _put_cluster_clk_and_freq_table(cdev);
315 /* free virtual table */
316 kfree(freq_table[cluster]);
319 static int _get_cluster_clk_and_freq_table(struct device *cpu_dev)
321 u32 cluster = raw_cpu_to_cluster(cpu_dev->id);
322 char name[14] = "cpu-cluster.";
323 int ret;
325 if (freq_table[cluster])
326 return 0;
328 ret = arm_bL_ops->init_opp_table(cpu_dev);
329 if (ret) {
330 dev_err(cpu_dev, "%s: init_opp_table failed, cpu: %d, err: %d\n",
331 __func__, cpu_dev->id, ret);
332 goto out;
335 ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table[cluster]);
336 if (ret) {
337 dev_err(cpu_dev, "%s: failed to init cpufreq table, cpu: %d, err: %d\n",
338 __func__, cpu_dev->id, ret);
339 goto out;
342 name[12] = cluster + '0';
343 clk[cluster] = clk_get(cpu_dev, name);
344 if (!IS_ERR(clk[cluster])) {
345 dev_dbg(cpu_dev, "%s: clk: %p & freq table: %p, cluster: %d\n",
346 __func__, clk[cluster], freq_table[cluster],
347 cluster);
348 return 0;
351 dev_err(cpu_dev, "%s: Failed to get clk for cpu: %d, cluster: %d\n",
352 __func__, cpu_dev->id, cluster);
353 ret = PTR_ERR(clk[cluster]);
354 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]);
356 out:
357 dev_err(cpu_dev, "%s: Failed to get data for cluster: %d\n", __func__,
358 cluster);
359 return ret;
362 static int get_cluster_clk_and_freq_table(struct device *cpu_dev)
364 u32 cluster = cpu_to_cluster(cpu_dev->id);
365 int i, ret;
367 if (atomic_inc_return(&cluster_usage[cluster]) != 1)
368 return 0;
370 if (cluster < MAX_CLUSTERS) {
371 ret = _get_cluster_clk_and_freq_table(cpu_dev);
372 if (ret)
373 atomic_dec(&cluster_usage[cluster]);
374 return ret;
378 * Get data for all clusters and fill virtual cluster with a merge of
379 * both
381 for_each_present_cpu(i) {
382 struct device *cdev = get_cpu_device(i);
383 if (!cdev) {
384 pr_err("%s: failed to get cpu%d device\n", __func__, i);
385 return -ENODEV;
388 ret = _get_cluster_clk_and_freq_table(cdev);
389 if (ret)
390 goto put_clusters;
393 ret = merge_cluster_tables();
394 if (ret)
395 goto put_clusters;
397 /* Assuming 2 cluster, set clk_big_min and clk_little_max */
398 clk_big_min = get_table_min(freq_table[0]);
399 clk_little_max = VIRT_FREQ(1, get_table_max(freq_table[1]));
401 pr_debug("%s: cluster: %d, clk_big_min: %d, clk_little_max: %d\n",
402 __func__, cluster, clk_big_min, clk_little_max);
404 return 0;
406 put_clusters:
407 for_each_present_cpu(i) {
408 struct device *cdev = get_cpu_device(i);
409 if (!cdev) {
410 pr_err("%s: failed to get cpu%d device\n", __func__, i);
411 return -ENODEV;
414 _put_cluster_clk_and_freq_table(cdev);
417 atomic_dec(&cluster_usage[cluster]);
419 return ret;
422 /* Per-CPU initialization */
423 static int bL_cpufreq_init(struct cpufreq_policy *policy)
425 u32 cur_cluster = cpu_to_cluster(policy->cpu);
426 struct device *cpu_dev;
427 int ret;
429 cpu_dev = get_cpu_device(policy->cpu);
430 if (!cpu_dev) {
431 pr_err("%s: failed to get cpu%d device\n", __func__,
432 policy->cpu);
433 return -ENODEV;
436 ret = get_cluster_clk_and_freq_table(cpu_dev);
437 if (ret)
438 return ret;
440 ret = cpufreq_table_validate_and_show(policy, freq_table[cur_cluster]);
441 if (ret) {
442 dev_err(cpu_dev, "CPU %d, cluster: %d invalid freq table\n",
443 policy->cpu, cur_cluster);
444 put_cluster_clk_and_freq_table(cpu_dev);
445 return ret;
448 if (cur_cluster < MAX_CLUSTERS) {
449 cpumask_copy(policy->cpus, topology_core_cpumask(policy->cpu));
451 per_cpu(physical_cluster, policy->cpu) = cur_cluster;
452 } else {
453 /* Assumption: during init, we are always running on A15 */
454 per_cpu(physical_cluster, policy->cpu) = A15_CLUSTER;
457 if (arm_bL_ops->get_transition_latency)
458 policy->cpuinfo.transition_latency =
459 arm_bL_ops->get_transition_latency(cpu_dev);
460 else
461 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
463 if (is_bL_switching_enabled())
464 per_cpu(cpu_last_req_freq, policy->cpu) = clk_get_cpu_rate(policy->cpu);
466 dev_info(cpu_dev, "%s: CPU %d initialized\n", __func__, policy->cpu);
467 return 0;
470 static int bL_cpufreq_exit(struct cpufreq_policy *policy)
472 struct device *cpu_dev;
474 cpu_dev = get_cpu_device(policy->cpu);
475 if (!cpu_dev) {
476 pr_err("%s: failed to get cpu%d device\n", __func__,
477 policy->cpu);
478 return -ENODEV;
481 cpufreq_frequency_table_put_attr(policy->cpu);
482 put_cluster_clk_and_freq_table(cpu_dev);
483 dev_dbg(cpu_dev, "%s: Exited, cpu: %d\n", __func__, policy->cpu);
485 return 0;
488 static struct cpufreq_driver bL_cpufreq_driver = {
489 .name = "arm-big-little",
490 .flags = CPUFREQ_STICKY |
491 CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
492 CPUFREQ_NEED_INITIAL_FREQ_CHECK,
493 .verify = cpufreq_generic_frequency_table_verify,
494 .target_index = bL_cpufreq_set_target,
495 .get = bL_cpufreq_get_rate,
496 .init = bL_cpufreq_init,
497 .exit = bL_cpufreq_exit,
498 .attr = cpufreq_generic_attr,
501 static int bL_cpufreq_switcher_notifier(struct notifier_block *nfb,
502 unsigned long action, void *_arg)
504 pr_debug("%s: action: %ld\n", __func__, action);
506 switch (action) {
507 case BL_NOTIFY_PRE_ENABLE:
508 case BL_NOTIFY_PRE_DISABLE:
509 cpufreq_unregister_driver(&bL_cpufreq_driver);
510 break;
512 case BL_NOTIFY_POST_ENABLE:
513 set_switching_enabled(true);
514 cpufreq_register_driver(&bL_cpufreq_driver);
515 break;
517 case BL_NOTIFY_POST_DISABLE:
518 set_switching_enabled(false);
519 cpufreq_register_driver(&bL_cpufreq_driver);
520 break;
522 default:
523 return NOTIFY_DONE;
526 return NOTIFY_OK;
529 static struct notifier_block bL_switcher_notifier = {
530 .notifier_call = bL_cpufreq_switcher_notifier,
533 int bL_cpufreq_register(struct cpufreq_arm_bL_ops *ops)
535 int ret, i;
537 if (arm_bL_ops) {
538 pr_debug("%s: Already registered: %s, exiting\n", __func__,
539 arm_bL_ops->name);
540 return -EBUSY;
543 if (!ops || !strlen(ops->name) || !ops->init_opp_table) {
544 pr_err("%s: Invalid arm_bL_ops, exiting\n", __func__);
545 return -ENODEV;
548 arm_bL_ops = ops;
550 ret = bL_switcher_get_enabled();
551 set_switching_enabled(ret);
553 for (i = 0; i < MAX_CLUSTERS; i++)
554 mutex_init(&cluster_lock[i]);
556 ret = cpufreq_register_driver(&bL_cpufreq_driver);
557 if (ret) {
558 pr_info("%s: Failed registering platform driver: %s, err: %d\n",
559 __func__, ops->name, ret);
560 arm_bL_ops = NULL;
561 } else {
562 ret = bL_switcher_register_notifier(&bL_switcher_notifier);
563 if (ret) {
564 cpufreq_unregister_driver(&bL_cpufreq_driver);
565 arm_bL_ops = NULL;
566 } else {
567 pr_info("%s: Registered platform driver: %s\n",
568 __func__, ops->name);
572 bL_switcher_put_enabled();
573 return ret;
575 EXPORT_SYMBOL_GPL(bL_cpufreq_register);
577 void bL_cpufreq_unregister(struct cpufreq_arm_bL_ops *ops)
579 if (arm_bL_ops != ops) {
580 pr_err("%s: Registered with: %s, can't unregister, exiting\n",
581 __func__, arm_bL_ops->name);
582 return;
585 bL_switcher_get_enabled();
586 bL_switcher_unregister_notifier(&bL_switcher_notifier);
587 cpufreq_unregister_driver(&bL_cpufreq_driver);
588 bL_switcher_put_enabled();
589 pr_info("%s: Un-registered platform driver: %s\n", __func__,
590 arm_bL_ops->name);
591 arm_bL_ops = NULL;
593 EXPORT_SYMBOL_GPL(bL_cpufreq_unregister);