PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / cpufreq / imx6q-cpufreq.c
blobce69059be1fc95318284a9aecf0c21916244e1c9
1 /*
2 * Copyright (C) 2013 Freescale Semiconductor, Inc.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
9 #include <linux/clk.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/delay.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/pm_opp.h>
17 #include <linux/platform_device.h>
18 #include <linux/regulator/consumer.h>
20 #define PU_SOC_VOLTAGE_NORMAL 1250000
21 #define PU_SOC_VOLTAGE_HIGH 1275000
22 #define FREQ_1P2_GHZ 1200000000
24 static struct regulator *arm_reg;
25 static struct regulator *pu_reg;
26 static struct regulator *soc_reg;
28 static struct clk *arm_clk;
29 static struct clk *pll1_sys_clk;
30 static struct clk *pll1_sw_clk;
31 static struct clk *step_clk;
32 static struct clk *pll2_pfd2_396m_clk;
34 static struct device *cpu_dev;
35 static struct cpufreq_frequency_table *freq_table;
36 static unsigned int transition_latency;
38 static u32 *imx6_soc_volt;
39 static u32 soc_opp_count;
41 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
43 struct dev_pm_opp *opp;
44 unsigned long freq_hz, volt, volt_old;
45 unsigned int old_freq, new_freq;
46 int ret;
48 new_freq = freq_table[index].frequency;
49 freq_hz = new_freq * 1000;
50 old_freq = clk_get_rate(arm_clk) / 1000;
52 rcu_read_lock();
53 opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
54 if (IS_ERR(opp)) {
55 rcu_read_unlock();
56 dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
57 return PTR_ERR(opp);
60 volt = dev_pm_opp_get_voltage(opp);
61 rcu_read_unlock();
62 volt_old = regulator_get_voltage(arm_reg);
64 dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
65 old_freq / 1000, volt_old / 1000,
66 new_freq / 1000, volt / 1000);
68 /* scaling up? scale voltage before frequency */
69 if (new_freq > old_freq) {
70 ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
71 if (ret) {
72 dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
73 return ret;
75 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
76 if (ret) {
77 dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
78 return ret;
80 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
81 if (ret) {
82 dev_err(cpu_dev,
83 "failed to scale vddarm up: %d\n", ret);
84 return ret;
89 * The setpoints are selected per PLL/PDF frequencies, so we need to
90 * reprogram PLL for frequency scaling. The procedure of reprogramming
91 * PLL1 is as below.
93 * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
94 * - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
95 * - Disable pll2_pfd2_396m_clk
97 clk_set_parent(step_clk, pll2_pfd2_396m_clk);
98 clk_set_parent(pll1_sw_clk, step_clk);
99 if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
100 clk_set_rate(pll1_sys_clk, new_freq * 1000);
101 clk_set_parent(pll1_sw_clk, pll1_sys_clk);
104 /* Ensure the arm clock divider is what we expect */
105 ret = clk_set_rate(arm_clk, new_freq * 1000);
106 if (ret) {
107 dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
108 regulator_set_voltage_tol(arm_reg, volt_old, 0);
109 return ret;
112 /* scaling down? scale voltage after frequency */
113 if (new_freq < old_freq) {
114 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
115 if (ret) {
116 dev_warn(cpu_dev,
117 "failed to scale vddarm down: %d\n", ret);
118 ret = 0;
120 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
121 if (ret) {
122 dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
123 ret = 0;
125 ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
126 if (ret) {
127 dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
128 ret = 0;
132 return 0;
135 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
137 policy->clk = arm_clk;
138 return cpufreq_generic_init(policy, freq_table, transition_latency);
141 static struct cpufreq_driver imx6q_cpufreq_driver = {
142 .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
143 .verify = cpufreq_generic_frequency_table_verify,
144 .target_index = imx6q_set_target,
145 .get = cpufreq_generic_get,
146 .init = imx6q_cpufreq_init,
147 .exit = cpufreq_generic_exit,
148 .name = "imx6q-cpufreq",
149 .attr = cpufreq_generic_attr,
152 static int imx6q_cpufreq_probe(struct platform_device *pdev)
154 struct device_node *np;
155 struct dev_pm_opp *opp;
156 unsigned long min_volt, max_volt;
157 int num, ret;
158 const struct property *prop;
159 const __be32 *val;
160 u32 nr, i, j;
162 cpu_dev = get_cpu_device(0);
163 if (!cpu_dev) {
164 pr_err("failed to get cpu0 device\n");
165 return -ENODEV;
168 np = of_node_get(cpu_dev->of_node);
169 if (!np) {
170 dev_err(cpu_dev, "failed to find cpu0 node\n");
171 return -ENOENT;
174 arm_clk = devm_clk_get(cpu_dev, "arm");
175 pll1_sys_clk = devm_clk_get(cpu_dev, "pll1_sys");
176 pll1_sw_clk = devm_clk_get(cpu_dev, "pll1_sw");
177 step_clk = devm_clk_get(cpu_dev, "step");
178 pll2_pfd2_396m_clk = devm_clk_get(cpu_dev, "pll2_pfd2_396m");
179 if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
180 IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
181 dev_err(cpu_dev, "failed to get clocks\n");
182 ret = -ENOENT;
183 goto put_node;
186 arm_reg = devm_regulator_get(cpu_dev, "arm");
187 pu_reg = devm_regulator_get(cpu_dev, "pu");
188 soc_reg = devm_regulator_get(cpu_dev, "soc");
189 if (IS_ERR(arm_reg) || IS_ERR(pu_reg) || IS_ERR(soc_reg)) {
190 dev_err(cpu_dev, "failed to get regulators\n");
191 ret = -ENOENT;
192 goto put_node;
196 * We expect an OPP table supplied by platform.
197 * Just, incase the platform did not supply the OPP
198 * table, it will try to get it.
200 num = dev_pm_opp_get_opp_count(cpu_dev);
201 if (num < 0) {
202 ret = of_init_opp_table(cpu_dev);
203 if (ret < 0) {
204 dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
205 goto put_node;
208 num = dev_pm_opp_get_opp_count(cpu_dev);
209 if (num < 0) {
210 ret = num;
211 dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
212 goto put_node;
216 ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
217 if (ret) {
218 dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
219 goto put_node;
222 /* Make imx6_soc_volt array's size same as arm opp number */
223 imx6_soc_volt = devm_kzalloc(cpu_dev, sizeof(*imx6_soc_volt) * num, GFP_KERNEL);
224 if (imx6_soc_volt == NULL) {
225 ret = -ENOMEM;
226 goto free_freq_table;
229 prop = of_find_property(np, "fsl,soc-operating-points", NULL);
230 if (!prop || !prop->value)
231 goto soc_opp_out;
234 * Each OPP is a set of tuples consisting of frequency and
235 * voltage like <freq-kHz vol-uV>.
237 nr = prop->length / sizeof(u32);
238 if (nr % 2 || (nr / 2) < num)
239 goto soc_opp_out;
241 for (j = 0; j < num; j++) {
242 val = prop->value;
243 for (i = 0; i < nr / 2; i++) {
244 unsigned long freq = be32_to_cpup(val++);
245 unsigned long volt = be32_to_cpup(val++);
246 if (freq_table[j].frequency == freq) {
247 imx6_soc_volt[soc_opp_count++] = volt;
248 break;
253 soc_opp_out:
254 /* use fixed soc opp volt if no valid soc opp info found in dtb */
255 if (soc_opp_count != num) {
256 dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
257 for (j = 0; j < num; j++)
258 imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
259 if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
260 imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
263 if (of_property_read_u32(np, "clock-latency", &transition_latency))
264 transition_latency = CPUFREQ_ETERNAL;
267 * Calculate the ramp time for max voltage change in the
268 * VDDSOC and VDDPU regulators.
270 ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
271 if (ret > 0)
272 transition_latency += ret * 1000;
273 ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
274 if (ret > 0)
275 transition_latency += ret * 1000;
278 * OPP is maintained in order of increasing frequency, and
279 * freq_table initialised from OPP is therefore sorted in the
280 * same order.
282 rcu_read_lock();
283 opp = dev_pm_opp_find_freq_exact(cpu_dev,
284 freq_table[0].frequency * 1000, true);
285 min_volt = dev_pm_opp_get_voltage(opp);
286 opp = dev_pm_opp_find_freq_exact(cpu_dev,
287 freq_table[--num].frequency * 1000, true);
288 max_volt = dev_pm_opp_get_voltage(opp);
289 rcu_read_unlock();
290 ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
291 if (ret > 0)
292 transition_latency += ret * 1000;
294 ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
295 if (ret) {
296 dev_err(cpu_dev, "failed register driver: %d\n", ret);
297 goto free_freq_table;
300 of_node_put(np);
301 return 0;
303 free_freq_table:
304 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
305 put_node:
306 of_node_put(np);
307 return ret;
310 static int imx6q_cpufreq_remove(struct platform_device *pdev)
312 cpufreq_unregister_driver(&imx6q_cpufreq_driver);
313 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
315 return 0;
318 static struct platform_driver imx6q_cpufreq_platdrv = {
319 .driver = {
320 .name = "imx6q-cpufreq",
321 .owner = THIS_MODULE,
323 .probe = imx6q_cpufreq_probe,
324 .remove = imx6q_cpufreq_remove,
326 module_platform_driver(imx6q_cpufreq_platdrv);
328 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
329 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
330 MODULE_LICENSE("GPL");