PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / crypto / ccp / ccp-crypto-sha.c
blob3867290b353149fdcff8a0ddd5b5ab55e90fadee
1 /*
2 * AMD Cryptographic Coprocessor (CCP) SHA crypto API support
4 * Copyright (C) 2013 Advanced Micro Devices, Inc.
6 * Author: Tom Lendacky <thomas.lendacky@amd.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/delay.h>
16 #include <linux/scatterlist.h>
17 #include <linux/crypto.h>
18 #include <crypto/algapi.h>
19 #include <crypto/hash.h>
20 #include <crypto/internal/hash.h>
21 #include <crypto/sha.h>
22 #include <crypto/scatterwalk.h>
24 #include "ccp-crypto.h"
27 struct ccp_sha_result {
28 struct completion completion;
29 int err;
32 static void ccp_sync_hash_complete(struct crypto_async_request *req, int err)
34 struct ccp_sha_result *result = req->data;
36 if (err == -EINPROGRESS)
37 return;
39 result->err = err;
40 complete(&result->completion);
43 static int ccp_sync_hash(struct crypto_ahash *tfm, u8 *buf,
44 struct scatterlist *sg, unsigned int len)
46 struct ccp_sha_result result;
47 struct ahash_request *req;
48 int ret;
50 init_completion(&result.completion);
52 req = ahash_request_alloc(tfm, GFP_KERNEL);
53 if (!req)
54 return -ENOMEM;
56 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
57 ccp_sync_hash_complete, &result);
58 ahash_request_set_crypt(req, sg, buf, len);
60 ret = crypto_ahash_digest(req);
61 if ((ret == -EINPROGRESS) || (ret == -EBUSY)) {
62 ret = wait_for_completion_interruptible(&result.completion);
63 if (!ret)
64 ret = result.err;
67 ahash_request_free(req);
69 return ret;
72 static int ccp_sha_finish_hmac(struct crypto_async_request *async_req)
74 struct ahash_request *req = ahash_request_cast(async_req);
75 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
76 struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
77 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
78 struct scatterlist sg[2];
79 unsigned int block_size =
80 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
81 unsigned int digest_size = crypto_ahash_digestsize(tfm);
83 sg_init_table(sg, ARRAY_SIZE(sg));
84 sg_set_buf(&sg[0], ctx->u.sha.opad, block_size);
85 sg_set_buf(&sg[1], rctx->ctx, digest_size);
87 return ccp_sync_hash(ctx->u.sha.hmac_tfm, req->result, sg,
88 block_size + digest_size);
91 static int ccp_sha_complete(struct crypto_async_request *async_req, int ret)
93 struct ahash_request *req = ahash_request_cast(async_req);
94 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
95 struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
96 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
97 unsigned int digest_size = crypto_ahash_digestsize(tfm);
99 if (ret)
100 goto e_free;
102 if (rctx->hash_rem) {
103 /* Save remaining data to buffer */
104 unsigned int offset = rctx->nbytes - rctx->hash_rem;
105 scatterwalk_map_and_copy(rctx->buf, rctx->src,
106 offset, rctx->hash_rem, 0);
107 rctx->buf_count = rctx->hash_rem;
108 } else
109 rctx->buf_count = 0;
111 /* Update result area if supplied */
112 if (req->result)
113 memcpy(req->result, rctx->ctx, digest_size);
115 /* If we're doing an HMAC, we need to perform that on the final op */
116 if (rctx->final && ctx->u.sha.key_len)
117 ret = ccp_sha_finish_hmac(async_req);
119 e_free:
120 sg_free_table(&rctx->data_sg);
122 return ret;
125 static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes,
126 unsigned int final)
128 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
129 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
130 struct scatterlist *sg;
131 unsigned int block_size =
132 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
133 unsigned int sg_count;
134 gfp_t gfp;
135 u64 len;
136 int ret;
138 len = (u64)rctx->buf_count + (u64)nbytes;
140 if (!final && (len <= block_size)) {
141 scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
142 0, nbytes, 0);
143 rctx->buf_count += nbytes;
145 return 0;
148 rctx->src = req->src;
149 rctx->nbytes = nbytes;
151 rctx->final = final;
152 rctx->hash_rem = final ? 0 : len & (block_size - 1);
153 rctx->hash_cnt = len - rctx->hash_rem;
154 if (!final && !rctx->hash_rem) {
155 /* CCP can't do zero length final, so keep some data around */
156 rctx->hash_cnt -= block_size;
157 rctx->hash_rem = block_size;
160 /* Initialize the context scatterlist */
161 sg_init_one(&rctx->ctx_sg, rctx->ctx, sizeof(rctx->ctx));
163 sg = NULL;
164 if (rctx->buf_count && nbytes) {
165 /* Build the data scatterlist table - allocate enough entries
166 * for both data pieces (buffer and input data)
168 gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
169 GFP_KERNEL : GFP_ATOMIC;
170 sg_count = sg_nents(req->src) + 1;
171 ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp);
172 if (ret)
173 return ret;
175 sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
176 sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
177 sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
178 sg_mark_end(sg);
180 sg = rctx->data_sg.sgl;
181 } else if (rctx->buf_count) {
182 sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
184 sg = &rctx->buf_sg;
185 } else if (nbytes) {
186 sg = req->src;
189 rctx->msg_bits += (rctx->hash_cnt << 3); /* Total in bits */
191 memset(&rctx->cmd, 0, sizeof(rctx->cmd));
192 INIT_LIST_HEAD(&rctx->cmd.entry);
193 rctx->cmd.engine = CCP_ENGINE_SHA;
194 rctx->cmd.u.sha.type = rctx->type;
195 rctx->cmd.u.sha.ctx = &rctx->ctx_sg;
196 rctx->cmd.u.sha.ctx_len = sizeof(rctx->ctx);
197 rctx->cmd.u.sha.src = sg;
198 rctx->cmd.u.sha.src_len = rctx->hash_cnt;
199 rctx->cmd.u.sha.final = rctx->final;
200 rctx->cmd.u.sha.msg_bits = rctx->msg_bits;
202 rctx->first = 0;
204 ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
206 return ret;
209 static int ccp_sha_init(struct ahash_request *req)
211 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
212 struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
213 struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
214 struct ccp_crypto_ahash_alg *alg =
215 ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
216 unsigned int block_size =
217 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
219 memset(rctx, 0, sizeof(*rctx));
221 memcpy(rctx->ctx, alg->init, sizeof(rctx->ctx));
222 rctx->type = alg->type;
223 rctx->first = 1;
225 if (ctx->u.sha.key_len) {
226 /* Buffer the HMAC key for first update */
227 memcpy(rctx->buf, ctx->u.sha.ipad, block_size);
228 rctx->buf_count = block_size;
231 return 0;
234 static int ccp_sha_update(struct ahash_request *req)
236 return ccp_do_sha_update(req, req->nbytes, 0);
239 static int ccp_sha_final(struct ahash_request *req)
241 return ccp_do_sha_update(req, 0, 1);
244 static int ccp_sha_finup(struct ahash_request *req)
246 return ccp_do_sha_update(req, req->nbytes, 1);
249 static int ccp_sha_digest(struct ahash_request *req)
251 int ret;
253 ret = ccp_sha_init(req);
254 if (ret)
255 return ret;
257 return ccp_sha_finup(req);
260 static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
261 unsigned int key_len)
263 struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
264 struct scatterlist sg;
265 unsigned int block_size =
266 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
267 unsigned int digest_size = crypto_ahash_digestsize(tfm);
268 int i, ret;
270 /* Set to zero until complete */
271 ctx->u.sha.key_len = 0;
273 /* Clear key area to provide zero padding for keys smaller
274 * than the block size
276 memset(ctx->u.sha.key, 0, sizeof(ctx->u.sha.key));
278 if (key_len > block_size) {
279 /* Must hash the input key */
280 sg_init_one(&sg, key, key_len);
281 ret = ccp_sync_hash(tfm, ctx->u.sha.key, &sg, key_len);
282 if (ret) {
283 crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
284 return -EINVAL;
287 key_len = digest_size;
288 } else
289 memcpy(ctx->u.sha.key, key, key_len);
291 for (i = 0; i < block_size; i++) {
292 ctx->u.sha.ipad[i] = ctx->u.sha.key[i] ^ 0x36;
293 ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ 0x5c;
296 ctx->u.sha.key_len = key_len;
298 return 0;
301 static int ccp_sha_cra_init(struct crypto_tfm *tfm)
303 struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
304 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
306 ctx->complete = ccp_sha_complete;
307 ctx->u.sha.key_len = 0;
309 crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_sha_req_ctx));
311 return 0;
314 static void ccp_sha_cra_exit(struct crypto_tfm *tfm)
318 static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm)
320 struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
321 struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm);
322 struct crypto_ahash *hmac_tfm;
324 hmac_tfm = crypto_alloc_ahash(alg->child_alg,
325 CRYPTO_ALG_TYPE_AHASH, 0);
326 if (IS_ERR(hmac_tfm)) {
327 pr_warn("could not load driver %s need for HMAC support\n",
328 alg->child_alg);
329 return PTR_ERR(hmac_tfm);
332 ctx->u.sha.hmac_tfm = hmac_tfm;
334 return ccp_sha_cra_init(tfm);
337 static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm)
339 struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
341 if (ctx->u.sha.hmac_tfm)
342 crypto_free_ahash(ctx->u.sha.hmac_tfm);
344 ccp_sha_cra_exit(tfm);
347 static const __be32 sha1_init[CCP_SHA_CTXSIZE / sizeof(__be32)] = {
348 cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
349 cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
350 cpu_to_be32(SHA1_H4), 0, 0, 0,
353 static const __be32 sha224_init[CCP_SHA_CTXSIZE / sizeof(__be32)] = {
354 cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
355 cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
356 cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
357 cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
360 static const __be32 sha256_init[CCP_SHA_CTXSIZE / sizeof(__be32)] = {
361 cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
362 cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
363 cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
364 cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
367 struct ccp_sha_def {
368 const char *name;
369 const char *drv_name;
370 const __be32 *init;
371 enum ccp_sha_type type;
372 u32 digest_size;
373 u32 block_size;
376 static struct ccp_sha_def sha_algs[] = {
378 .name = "sha1",
379 .drv_name = "sha1-ccp",
380 .init = sha1_init,
381 .type = CCP_SHA_TYPE_1,
382 .digest_size = SHA1_DIGEST_SIZE,
383 .block_size = SHA1_BLOCK_SIZE,
386 .name = "sha224",
387 .drv_name = "sha224-ccp",
388 .init = sha224_init,
389 .type = CCP_SHA_TYPE_224,
390 .digest_size = SHA224_DIGEST_SIZE,
391 .block_size = SHA224_BLOCK_SIZE,
394 .name = "sha256",
395 .drv_name = "sha256-ccp",
396 .init = sha256_init,
397 .type = CCP_SHA_TYPE_256,
398 .digest_size = SHA256_DIGEST_SIZE,
399 .block_size = SHA256_BLOCK_SIZE,
403 static int ccp_register_hmac_alg(struct list_head *head,
404 const struct ccp_sha_def *def,
405 const struct ccp_crypto_ahash_alg *base_alg)
407 struct ccp_crypto_ahash_alg *ccp_alg;
408 struct ahash_alg *alg;
409 struct hash_alg_common *halg;
410 struct crypto_alg *base;
411 int ret;
413 ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
414 if (!ccp_alg)
415 return -ENOMEM;
417 /* Copy the base algorithm and only change what's necessary */
418 *ccp_alg = *base_alg;
419 INIT_LIST_HEAD(&ccp_alg->entry);
421 strncpy(ccp_alg->child_alg, def->name, CRYPTO_MAX_ALG_NAME);
423 alg = &ccp_alg->alg;
424 alg->setkey = ccp_sha_setkey;
426 halg = &alg->halg;
428 base = &halg->base;
429 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", def->name);
430 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s",
431 def->drv_name);
432 base->cra_init = ccp_hmac_sha_cra_init;
433 base->cra_exit = ccp_hmac_sha_cra_exit;
435 ret = crypto_register_ahash(alg);
436 if (ret) {
437 pr_err("%s ahash algorithm registration error (%d)\n",
438 base->cra_name, ret);
439 kfree(ccp_alg);
440 return ret;
443 list_add(&ccp_alg->entry, head);
445 return ret;
448 static int ccp_register_sha_alg(struct list_head *head,
449 const struct ccp_sha_def *def)
451 struct ccp_crypto_ahash_alg *ccp_alg;
452 struct ahash_alg *alg;
453 struct hash_alg_common *halg;
454 struct crypto_alg *base;
455 int ret;
457 ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
458 if (!ccp_alg)
459 return -ENOMEM;
461 INIT_LIST_HEAD(&ccp_alg->entry);
463 ccp_alg->init = def->init;
464 ccp_alg->type = def->type;
466 alg = &ccp_alg->alg;
467 alg->init = ccp_sha_init;
468 alg->update = ccp_sha_update;
469 alg->final = ccp_sha_final;
470 alg->finup = ccp_sha_finup;
471 alg->digest = ccp_sha_digest;
473 halg = &alg->halg;
474 halg->digestsize = def->digest_size;
476 base = &halg->base;
477 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
478 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
479 def->drv_name);
480 base->cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC |
481 CRYPTO_ALG_KERN_DRIVER_ONLY |
482 CRYPTO_ALG_NEED_FALLBACK;
483 base->cra_blocksize = def->block_size;
484 base->cra_ctxsize = sizeof(struct ccp_ctx);
485 base->cra_priority = CCP_CRA_PRIORITY;
486 base->cra_type = &crypto_ahash_type;
487 base->cra_init = ccp_sha_cra_init;
488 base->cra_exit = ccp_sha_cra_exit;
489 base->cra_module = THIS_MODULE;
491 ret = crypto_register_ahash(alg);
492 if (ret) {
493 pr_err("%s ahash algorithm registration error (%d)\n",
494 base->cra_name, ret);
495 kfree(ccp_alg);
496 return ret;
499 list_add(&ccp_alg->entry, head);
501 ret = ccp_register_hmac_alg(head, def, ccp_alg);
503 return ret;
506 int ccp_register_sha_algs(struct list_head *head)
508 int i, ret;
510 for (i = 0; i < ARRAY_SIZE(sha_algs); i++) {
511 ret = ccp_register_sha_alg(head, &sha_algs[i]);
512 if (ret)
513 return ret;
516 return 0;