PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / gpu / drm / gma500 / cdv_intel_display.c
blob8fbfa06da62d867d8b70d944a7e195388ab36848
1 /*
2 * Copyright © 2006-2011 Intel Corporation
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc.,
15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 * Authors:
18 * Eric Anholt <eric@anholt.net>
21 #include <linux/i2c.h>
23 #include <drm/drmP.h>
24 #include "framebuffer.h"
25 #include "psb_drv.h"
26 #include "psb_intel_drv.h"
27 #include "psb_intel_reg.h"
28 #include "gma_display.h"
29 #include "power.h"
30 #include "cdv_device.h"
32 static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit,
33 struct drm_crtc *crtc, int target,
34 int refclk, struct gma_clock_t *best_clock);
37 #define CDV_LIMIT_SINGLE_LVDS_96 0
38 #define CDV_LIMIT_SINGLE_LVDS_100 1
39 #define CDV_LIMIT_DAC_HDMI_27 2
40 #define CDV_LIMIT_DAC_HDMI_96 3
41 #define CDV_LIMIT_DP_27 4
42 #define CDV_LIMIT_DP_100 5
44 static const struct gma_limit_t cdv_intel_limits[] = {
45 { /* CDV_SINGLE_LVDS_96MHz */
46 .dot = {.min = 20000, .max = 115500},
47 .vco = {.min = 1800000, .max = 3600000},
48 .n = {.min = 2, .max = 6},
49 .m = {.min = 60, .max = 160},
50 .m1 = {.min = 0, .max = 0},
51 .m2 = {.min = 58, .max = 158},
52 .p = {.min = 28, .max = 140},
53 .p1 = {.min = 2, .max = 10},
54 .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14},
55 .find_pll = gma_find_best_pll,
57 { /* CDV_SINGLE_LVDS_100MHz */
58 .dot = {.min = 20000, .max = 115500},
59 .vco = {.min = 1800000, .max = 3600000},
60 .n = {.min = 2, .max = 6},
61 .m = {.min = 60, .max = 160},
62 .m1 = {.min = 0, .max = 0},
63 .m2 = {.min = 58, .max = 158},
64 .p = {.min = 28, .max = 140},
65 .p1 = {.min = 2, .max = 10},
66 /* The single-channel range is 25-112Mhz, and dual-channel
67 * is 80-224Mhz. Prefer single channel as much as possible.
69 .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14},
70 .find_pll = gma_find_best_pll,
72 { /* CDV_DAC_HDMI_27MHz */
73 .dot = {.min = 20000, .max = 400000},
74 .vco = {.min = 1809000, .max = 3564000},
75 .n = {.min = 1, .max = 1},
76 .m = {.min = 67, .max = 132},
77 .m1 = {.min = 0, .max = 0},
78 .m2 = {.min = 65, .max = 130},
79 .p = {.min = 5, .max = 90},
80 .p1 = {.min = 1, .max = 9},
81 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
82 .find_pll = gma_find_best_pll,
84 { /* CDV_DAC_HDMI_96MHz */
85 .dot = {.min = 20000, .max = 400000},
86 .vco = {.min = 1800000, .max = 3600000},
87 .n = {.min = 2, .max = 6},
88 .m = {.min = 60, .max = 160},
89 .m1 = {.min = 0, .max = 0},
90 .m2 = {.min = 58, .max = 158},
91 .p = {.min = 5, .max = 100},
92 .p1 = {.min = 1, .max = 10},
93 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
94 .find_pll = gma_find_best_pll,
96 { /* CDV_DP_27MHz */
97 .dot = {.min = 160000, .max = 272000},
98 .vco = {.min = 1809000, .max = 3564000},
99 .n = {.min = 1, .max = 1},
100 .m = {.min = 67, .max = 132},
101 .m1 = {.min = 0, .max = 0},
102 .m2 = {.min = 65, .max = 130},
103 .p = {.min = 5, .max = 90},
104 .p1 = {.min = 1, .max = 9},
105 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10},
106 .find_pll = cdv_intel_find_dp_pll,
108 { /* CDV_DP_100MHz */
109 .dot = {.min = 160000, .max = 272000},
110 .vco = {.min = 1800000, .max = 3600000},
111 .n = {.min = 2, .max = 6},
112 .m = {.min = 60, .max = 164},
113 .m1 = {.min = 0, .max = 0},
114 .m2 = {.min = 58, .max = 162},
115 .p = {.min = 5, .max = 100},
116 .p1 = {.min = 1, .max = 10},
117 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10},
118 .find_pll = cdv_intel_find_dp_pll,
122 #define _wait_for(COND, MS, W) ({ \
123 unsigned long timeout__ = jiffies + msecs_to_jiffies(MS); \
124 int ret__ = 0; \
125 while (!(COND)) { \
126 if (time_after(jiffies, timeout__)) { \
127 ret__ = -ETIMEDOUT; \
128 break; \
130 if (W && !in_dbg_master()) \
131 msleep(W); \
133 ret__; \
136 #define wait_for(COND, MS) _wait_for(COND, MS, 1)
139 int cdv_sb_read(struct drm_device *dev, u32 reg, u32 *val)
141 int ret;
143 ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
144 if (ret) {
145 DRM_ERROR("timeout waiting for SB to idle before read\n");
146 return ret;
149 REG_WRITE(SB_ADDR, reg);
150 REG_WRITE(SB_PCKT,
151 SET_FIELD(SB_OPCODE_READ, SB_OPCODE) |
152 SET_FIELD(SB_DEST_DPLL, SB_DEST) |
153 SET_FIELD(0xf, SB_BYTE_ENABLE));
155 ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
156 if (ret) {
157 DRM_ERROR("timeout waiting for SB to idle after read\n");
158 return ret;
161 *val = REG_READ(SB_DATA);
163 return 0;
166 int cdv_sb_write(struct drm_device *dev, u32 reg, u32 val)
168 int ret;
169 static bool dpio_debug = true;
170 u32 temp;
172 if (dpio_debug) {
173 if (cdv_sb_read(dev, reg, &temp) == 0)
174 DRM_DEBUG_KMS("0x%08x: 0x%08x (before)\n", reg, temp);
175 DRM_DEBUG_KMS("0x%08x: 0x%08x\n", reg, val);
178 ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
179 if (ret) {
180 DRM_ERROR("timeout waiting for SB to idle before write\n");
181 return ret;
184 REG_WRITE(SB_ADDR, reg);
185 REG_WRITE(SB_DATA, val);
186 REG_WRITE(SB_PCKT,
187 SET_FIELD(SB_OPCODE_WRITE, SB_OPCODE) |
188 SET_FIELD(SB_DEST_DPLL, SB_DEST) |
189 SET_FIELD(0xf, SB_BYTE_ENABLE));
191 ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
192 if (ret) {
193 DRM_ERROR("timeout waiting for SB to idle after write\n");
194 return ret;
197 if (dpio_debug) {
198 if (cdv_sb_read(dev, reg, &temp) == 0)
199 DRM_DEBUG_KMS("0x%08x: 0x%08x (after)\n", reg, temp);
202 return 0;
205 /* Reset the DPIO configuration register. The BIOS does this at every
206 * mode set.
208 void cdv_sb_reset(struct drm_device *dev)
211 REG_WRITE(DPIO_CFG, 0);
212 REG_READ(DPIO_CFG);
213 REG_WRITE(DPIO_CFG, DPIO_MODE_SELECT_0 | DPIO_CMN_RESET_N);
216 /* Unlike most Intel display engines, on Cedarview the DPLL registers
217 * are behind this sideband bus. They must be programmed while the
218 * DPLL reference clock is on in the DPLL control register, but before
219 * the DPLL is enabled in the DPLL control register.
221 static int
222 cdv_dpll_set_clock_cdv(struct drm_device *dev, struct drm_crtc *crtc,
223 struct gma_clock_t *clock, bool is_lvds, u32 ddi_select)
225 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
226 int pipe = gma_crtc->pipe;
227 u32 m, n_vco, p;
228 int ret = 0;
229 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
230 int ref_sfr = (pipe == 0) ? SB_REF_DPLLA : SB_REF_DPLLB;
231 u32 ref_value;
232 u32 lane_reg, lane_value;
234 cdv_sb_reset(dev);
236 REG_WRITE(dpll_reg, DPLL_SYNCLOCK_ENABLE | DPLL_VGA_MODE_DIS);
238 udelay(100);
240 /* Follow the BIOS and write the REF/SFR Register. Hardcoded value */
241 ref_value = 0x68A701;
243 cdv_sb_write(dev, SB_REF_SFR(pipe), ref_value);
245 /* We don't know what the other fields of these regs are, so
246 * leave them in place.
249 * The BIT 14:13 of 0x8010/0x8030 is used to select the ref clk
250 * for the pipe A/B. Display spec 1.06 has wrong definition.
251 * Correct definition is like below:
253 * refclka mean use clock from same PLL
255 * if DPLLA sets 01 and DPLLB sets 01, they use clock from their pll
257 * if DPLLA sets 01 and DPLLB sets 02, both use clk from DPLLA
260 ret = cdv_sb_read(dev, ref_sfr, &ref_value);
261 if (ret)
262 return ret;
263 ref_value &= ~(REF_CLK_MASK);
265 /* use DPLL_A for pipeB on CRT/HDMI */
266 if (pipe == 1 && !is_lvds && !(ddi_select & DP_MASK)) {
267 DRM_DEBUG_KMS("use DPLLA for pipe B\n");
268 ref_value |= REF_CLK_DPLLA;
269 } else {
270 DRM_DEBUG_KMS("use their DPLL for pipe A/B\n");
271 ref_value |= REF_CLK_DPLL;
273 ret = cdv_sb_write(dev, ref_sfr, ref_value);
274 if (ret)
275 return ret;
277 ret = cdv_sb_read(dev, SB_M(pipe), &m);
278 if (ret)
279 return ret;
280 m &= ~SB_M_DIVIDER_MASK;
281 m |= ((clock->m2) << SB_M_DIVIDER_SHIFT);
282 ret = cdv_sb_write(dev, SB_M(pipe), m);
283 if (ret)
284 return ret;
286 ret = cdv_sb_read(dev, SB_N_VCO(pipe), &n_vco);
287 if (ret)
288 return ret;
290 /* Follow the BIOS to program the N_DIVIDER REG */
291 n_vco &= 0xFFFF;
292 n_vco |= 0x107;
293 n_vco &= ~(SB_N_VCO_SEL_MASK |
294 SB_N_DIVIDER_MASK |
295 SB_N_CB_TUNE_MASK);
297 n_vco |= ((clock->n) << SB_N_DIVIDER_SHIFT);
299 if (clock->vco < 2250000) {
300 n_vco |= (2 << SB_N_CB_TUNE_SHIFT);
301 n_vco |= (0 << SB_N_VCO_SEL_SHIFT);
302 } else if (clock->vco < 2750000) {
303 n_vco |= (1 << SB_N_CB_TUNE_SHIFT);
304 n_vco |= (1 << SB_N_VCO_SEL_SHIFT);
305 } else if (clock->vco < 3300000) {
306 n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
307 n_vco |= (2 << SB_N_VCO_SEL_SHIFT);
308 } else {
309 n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
310 n_vco |= (3 << SB_N_VCO_SEL_SHIFT);
313 ret = cdv_sb_write(dev, SB_N_VCO(pipe), n_vco);
314 if (ret)
315 return ret;
317 ret = cdv_sb_read(dev, SB_P(pipe), &p);
318 if (ret)
319 return ret;
320 p &= ~(SB_P2_DIVIDER_MASK | SB_P1_DIVIDER_MASK);
321 p |= SET_FIELD(clock->p1, SB_P1_DIVIDER);
322 switch (clock->p2) {
323 case 5:
324 p |= SET_FIELD(SB_P2_5, SB_P2_DIVIDER);
325 break;
326 case 10:
327 p |= SET_FIELD(SB_P2_10, SB_P2_DIVIDER);
328 break;
329 case 14:
330 p |= SET_FIELD(SB_P2_14, SB_P2_DIVIDER);
331 break;
332 case 7:
333 p |= SET_FIELD(SB_P2_7, SB_P2_DIVIDER);
334 break;
335 default:
336 DRM_ERROR("Bad P2 clock: %d\n", clock->p2);
337 return -EINVAL;
339 ret = cdv_sb_write(dev, SB_P(pipe), p);
340 if (ret)
341 return ret;
343 if (ddi_select) {
344 if ((ddi_select & DDI_MASK) == DDI0_SELECT) {
345 lane_reg = PSB_LANE0;
346 cdv_sb_read(dev, lane_reg, &lane_value);
347 lane_value &= ~(LANE_PLL_MASK);
348 lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
349 cdv_sb_write(dev, lane_reg, lane_value);
351 lane_reg = PSB_LANE1;
352 cdv_sb_read(dev, lane_reg, &lane_value);
353 lane_value &= ~(LANE_PLL_MASK);
354 lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
355 cdv_sb_write(dev, lane_reg, lane_value);
356 } else {
357 lane_reg = PSB_LANE2;
358 cdv_sb_read(dev, lane_reg, &lane_value);
359 lane_value &= ~(LANE_PLL_MASK);
360 lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
361 cdv_sb_write(dev, lane_reg, lane_value);
363 lane_reg = PSB_LANE3;
364 cdv_sb_read(dev, lane_reg, &lane_value);
365 lane_value &= ~(LANE_PLL_MASK);
366 lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
367 cdv_sb_write(dev, lane_reg, lane_value);
370 return 0;
373 static const struct gma_limit_t *cdv_intel_limit(struct drm_crtc *crtc,
374 int refclk)
376 const struct gma_limit_t *limit;
377 if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
379 * Now only single-channel LVDS is supported on CDV. If it is
380 * incorrect, please add the dual-channel LVDS.
382 if (refclk == 96000)
383 limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_96];
384 else
385 limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_100];
386 } else if (gma_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
387 gma_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
388 if (refclk == 27000)
389 limit = &cdv_intel_limits[CDV_LIMIT_DP_27];
390 else
391 limit = &cdv_intel_limits[CDV_LIMIT_DP_100];
392 } else {
393 if (refclk == 27000)
394 limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_27];
395 else
396 limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_96];
398 return limit;
401 /* m1 is reserved as 0 in CDV, n is a ring counter */
402 static void cdv_intel_clock(int refclk, struct gma_clock_t *clock)
404 clock->m = clock->m2 + 2;
405 clock->p = clock->p1 * clock->p2;
406 clock->vco = (refclk * clock->m) / clock->n;
407 clock->dot = clock->vco / clock->p;
410 static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit,
411 struct drm_crtc *crtc, int target,
412 int refclk,
413 struct gma_clock_t *best_clock)
415 struct gma_clock_t clock;
416 if (refclk == 27000) {
417 if (target < 200000) {
418 clock.p1 = 2;
419 clock.p2 = 10;
420 clock.n = 1;
421 clock.m1 = 0;
422 clock.m2 = 118;
423 } else {
424 clock.p1 = 1;
425 clock.p2 = 10;
426 clock.n = 1;
427 clock.m1 = 0;
428 clock.m2 = 98;
430 } else if (refclk == 100000) {
431 if (target < 200000) {
432 clock.p1 = 2;
433 clock.p2 = 10;
434 clock.n = 5;
435 clock.m1 = 0;
436 clock.m2 = 160;
437 } else {
438 clock.p1 = 1;
439 clock.p2 = 10;
440 clock.n = 5;
441 clock.m1 = 0;
442 clock.m2 = 133;
444 } else
445 return false;
446 clock.m = clock.m2 + 2;
447 clock.p = clock.p1 * clock.p2;
448 clock.vco = (refclk * clock.m) / clock.n;
449 clock.dot = clock.vco / clock.p;
450 memcpy(best_clock, &clock, sizeof(struct gma_clock_t));
451 return true;
454 #define FIFO_PIPEA (1 << 0)
455 #define FIFO_PIPEB (1 << 1)
457 static bool cdv_intel_pipe_enabled(struct drm_device *dev, int pipe)
459 struct drm_crtc *crtc;
460 struct drm_psb_private *dev_priv = dev->dev_private;
461 struct gma_crtc *gma_crtc = NULL;
463 crtc = dev_priv->pipe_to_crtc_mapping[pipe];
464 gma_crtc = to_gma_crtc(crtc);
466 if (crtc->fb == NULL || !gma_crtc->active)
467 return false;
468 return true;
471 static bool cdv_intel_single_pipe_active (struct drm_device *dev)
473 uint32_t pipe_enabled = 0;
475 if (cdv_intel_pipe_enabled(dev, 0))
476 pipe_enabled |= FIFO_PIPEA;
478 if (cdv_intel_pipe_enabled(dev, 1))
479 pipe_enabled |= FIFO_PIPEB;
482 DRM_DEBUG_KMS("pipe enabled %x\n", pipe_enabled);
484 if (pipe_enabled == FIFO_PIPEA || pipe_enabled == FIFO_PIPEB)
485 return true;
486 else
487 return false;
490 static bool is_pipeb_lvds(struct drm_device *dev, struct drm_crtc *crtc)
492 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
493 struct drm_mode_config *mode_config = &dev->mode_config;
494 struct drm_connector *connector;
496 if (gma_crtc->pipe != 1)
497 return false;
499 list_for_each_entry(connector, &mode_config->connector_list, head) {
500 struct gma_encoder *gma_encoder =
501 gma_attached_encoder(connector);
503 if (!connector->encoder
504 || connector->encoder->crtc != crtc)
505 continue;
507 if (gma_encoder->type == INTEL_OUTPUT_LVDS)
508 return true;
511 return false;
514 void cdv_disable_sr(struct drm_device *dev)
516 if (REG_READ(FW_BLC_SELF) & FW_BLC_SELF_EN) {
518 /* Disable self-refresh before adjust WM */
519 REG_WRITE(FW_BLC_SELF, (REG_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN));
520 REG_READ(FW_BLC_SELF);
522 gma_wait_for_vblank(dev);
524 /* Cedarview workaround to write ovelay plane, which force to leave
525 * MAX_FIFO state.
527 REG_WRITE(OV_OVADD, 0/*dev_priv->ovl_offset*/);
528 REG_READ(OV_OVADD);
530 gma_wait_for_vblank(dev);
535 void cdv_update_wm(struct drm_device *dev, struct drm_crtc *crtc)
537 struct drm_psb_private *dev_priv = dev->dev_private;
539 if (cdv_intel_single_pipe_active(dev)) {
540 u32 fw;
542 fw = REG_READ(DSPFW1);
543 fw &= ~DSP_FIFO_SR_WM_MASK;
544 fw |= (0x7e << DSP_FIFO_SR_WM_SHIFT);
545 fw &= ~CURSOR_B_FIFO_WM_MASK;
546 fw |= (0x4 << CURSOR_B_FIFO_WM_SHIFT);
547 REG_WRITE(DSPFW1, fw);
549 fw = REG_READ(DSPFW2);
550 fw &= ~CURSOR_A_FIFO_WM_MASK;
551 fw |= (0x6 << CURSOR_A_FIFO_WM_SHIFT);
552 fw &= ~DSP_PLANE_C_FIFO_WM_MASK;
553 fw |= (0x8 << DSP_PLANE_C_FIFO_WM_SHIFT);
554 REG_WRITE(DSPFW2, fw);
556 REG_WRITE(DSPFW3, 0x36000000);
558 /* ignore FW4 */
560 if (is_pipeb_lvds(dev, crtc)) {
561 REG_WRITE(DSPFW5, 0x00040330);
562 } else {
563 fw = (3 << DSP_PLANE_B_FIFO_WM1_SHIFT) |
564 (4 << DSP_PLANE_A_FIFO_WM1_SHIFT) |
565 (3 << CURSOR_B_FIFO_WM1_SHIFT) |
566 (4 << CURSOR_FIFO_SR_WM1_SHIFT);
567 REG_WRITE(DSPFW5, fw);
570 REG_WRITE(DSPFW6, 0x10);
572 gma_wait_for_vblank(dev);
574 /* enable self-refresh for single pipe active */
575 REG_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
576 REG_READ(FW_BLC_SELF);
577 gma_wait_for_vblank(dev);
579 } else {
581 /* HW team suggested values... */
582 REG_WRITE(DSPFW1, 0x3f880808);
583 REG_WRITE(DSPFW2, 0x0b020202);
584 REG_WRITE(DSPFW3, 0x24000000);
585 REG_WRITE(DSPFW4, 0x08030202);
586 REG_WRITE(DSPFW5, 0x01010101);
587 REG_WRITE(DSPFW6, 0x1d0);
589 gma_wait_for_vblank(dev);
591 dev_priv->ops->disable_sr(dev);
596 * Return the pipe currently connected to the panel fitter,
597 * or -1 if the panel fitter is not present or not in use
599 static int cdv_intel_panel_fitter_pipe(struct drm_device *dev)
601 u32 pfit_control;
603 pfit_control = REG_READ(PFIT_CONTROL);
605 /* See if the panel fitter is in use */
606 if ((pfit_control & PFIT_ENABLE) == 0)
607 return -1;
608 return (pfit_control >> 29) & 0x3;
611 static int cdv_intel_crtc_mode_set(struct drm_crtc *crtc,
612 struct drm_display_mode *mode,
613 struct drm_display_mode *adjusted_mode,
614 int x, int y,
615 struct drm_framebuffer *old_fb)
617 struct drm_device *dev = crtc->dev;
618 struct drm_psb_private *dev_priv = dev->dev_private;
619 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
620 int pipe = gma_crtc->pipe;
621 const struct psb_offset *map = &dev_priv->regmap[pipe];
622 int refclk;
623 struct gma_clock_t clock;
624 u32 dpll = 0, dspcntr, pipeconf;
625 bool ok;
626 bool is_crt = false, is_lvds = false, is_tv = false;
627 bool is_hdmi = false, is_dp = false;
628 struct drm_mode_config *mode_config = &dev->mode_config;
629 struct drm_connector *connector;
630 const struct gma_limit_t *limit;
631 u32 ddi_select = 0;
632 bool is_edp = false;
634 list_for_each_entry(connector, &mode_config->connector_list, head) {
635 struct gma_encoder *gma_encoder =
636 gma_attached_encoder(connector);
638 if (!connector->encoder
639 || connector->encoder->crtc != crtc)
640 continue;
642 ddi_select = gma_encoder->ddi_select;
643 switch (gma_encoder->type) {
644 case INTEL_OUTPUT_LVDS:
645 is_lvds = true;
646 break;
647 case INTEL_OUTPUT_TVOUT:
648 is_tv = true;
649 break;
650 case INTEL_OUTPUT_ANALOG:
651 is_crt = true;
652 break;
653 case INTEL_OUTPUT_HDMI:
654 is_hdmi = true;
655 break;
656 case INTEL_OUTPUT_DISPLAYPORT:
657 is_dp = true;
658 break;
659 case INTEL_OUTPUT_EDP:
660 is_edp = true;
661 break;
662 default:
663 DRM_ERROR("invalid output type.\n");
664 return 0;
668 if (dev_priv->dplla_96mhz)
669 /* low-end sku, 96/100 mhz */
670 refclk = 96000;
671 else
672 /* high-end sku, 27/100 mhz */
673 refclk = 27000;
674 if (is_dp || is_edp) {
676 * Based on the spec the low-end SKU has only CRT/LVDS. So it is
677 * unnecessary to consider it for DP/eDP.
678 * On the high-end SKU, it will use the 27/100M reference clk
679 * for DP/eDP. When using SSC clock, the ref clk is 100MHz.Otherwise
680 * it will be 27MHz. From the VBIOS code it seems that the pipe A choose
681 * 27MHz for DP/eDP while the Pipe B chooses the 100MHz.
683 if (pipe == 0)
684 refclk = 27000;
685 else
686 refclk = 100000;
689 if (is_lvds && dev_priv->lvds_use_ssc) {
690 refclk = dev_priv->lvds_ssc_freq * 1000;
691 DRM_DEBUG_KMS("Use SSC reference clock %d Mhz\n", dev_priv->lvds_ssc_freq);
694 drm_mode_debug_printmodeline(adjusted_mode);
696 limit = gma_crtc->clock_funcs->limit(crtc, refclk);
698 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
699 &clock);
700 if (!ok) {
701 DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
702 adjusted_mode->clock, clock.dot);
703 return 0;
706 dpll = DPLL_VGA_MODE_DIS;
707 if (is_tv) {
708 /* XXX: just matching BIOS for now */
709 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
710 dpll |= 3;
712 /* dpll |= PLL_REF_INPUT_DREFCLK; */
714 if (is_dp || is_edp) {
715 cdv_intel_dp_set_m_n(crtc, mode, adjusted_mode);
716 } else {
717 REG_WRITE(PIPE_GMCH_DATA_M(pipe), 0);
718 REG_WRITE(PIPE_GMCH_DATA_N(pipe), 0);
719 REG_WRITE(PIPE_DP_LINK_M(pipe), 0);
720 REG_WRITE(PIPE_DP_LINK_N(pipe), 0);
723 dpll |= DPLL_SYNCLOCK_ENABLE;
724 /* if (is_lvds)
725 dpll |= DPLLB_MODE_LVDS;
726 else
727 dpll |= DPLLB_MODE_DAC_SERIAL; */
728 /* dpll |= (2 << 11); */
730 /* setup pipeconf */
731 pipeconf = REG_READ(map->conf);
733 pipeconf &= ~(PIPE_BPC_MASK);
734 if (is_edp) {
735 switch (dev_priv->edp.bpp) {
736 case 24:
737 pipeconf |= PIPE_8BPC;
738 break;
739 case 18:
740 pipeconf |= PIPE_6BPC;
741 break;
742 case 30:
743 pipeconf |= PIPE_10BPC;
744 break;
745 default:
746 pipeconf |= PIPE_8BPC;
747 break;
749 } else if (is_lvds) {
750 /* the BPC will be 6 if it is 18-bit LVDS panel */
751 if ((REG_READ(LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
752 pipeconf |= PIPE_8BPC;
753 else
754 pipeconf |= PIPE_6BPC;
755 } else
756 pipeconf |= PIPE_8BPC;
758 /* Set up the display plane register */
759 dspcntr = DISPPLANE_GAMMA_ENABLE;
761 if (pipe == 0)
762 dspcntr |= DISPPLANE_SEL_PIPE_A;
763 else
764 dspcntr |= DISPPLANE_SEL_PIPE_B;
766 dspcntr |= DISPLAY_PLANE_ENABLE;
767 pipeconf |= PIPEACONF_ENABLE;
769 REG_WRITE(map->dpll, dpll | DPLL_VGA_MODE_DIS | DPLL_SYNCLOCK_ENABLE);
770 REG_READ(map->dpll);
772 cdv_dpll_set_clock_cdv(dev, crtc, &clock, is_lvds, ddi_select);
774 udelay(150);
777 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
778 * This is an exception to the general rule that mode_set doesn't turn
779 * things on.
781 if (is_lvds) {
782 u32 lvds = REG_READ(LVDS);
784 lvds |=
785 LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP |
786 LVDS_PIPEB_SELECT;
787 /* Set the B0-B3 data pairs corresponding to
788 * whether we're going to
789 * set the DPLLs for dual-channel mode or not.
791 if (clock.p2 == 7)
792 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
793 else
794 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
796 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
797 * appropriately here, but we need to look more
798 * thoroughly into how panels behave in the two modes.
801 REG_WRITE(LVDS, lvds);
802 REG_READ(LVDS);
805 dpll |= DPLL_VCO_ENABLE;
807 /* Disable the panel fitter if it was on our pipe */
808 if (cdv_intel_panel_fitter_pipe(dev) == pipe)
809 REG_WRITE(PFIT_CONTROL, 0);
811 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
812 drm_mode_debug_printmodeline(mode);
814 REG_WRITE(map->dpll,
815 (REG_READ(map->dpll) & ~DPLL_LOCK) | DPLL_VCO_ENABLE);
816 REG_READ(map->dpll);
817 /* Wait for the clocks to stabilize. */
818 udelay(150); /* 42 usec w/o calibration, 110 with. rounded up. */
820 if (!(REG_READ(map->dpll) & DPLL_LOCK)) {
821 dev_err(dev->dev, "Failed to get DPLL lock\n");
822 return -EBUSY;
826 int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
827 REG_WRITE(map->dpll_md, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) | ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
830 REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
831 ((adjusted_mode->crtc_htotal - 1) << 16));
832 REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
833 ((adjusted_mode->crtc_hblank_end - 1) << 16));
834 REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
835 ((adjusted_mode->crtc_hsync_end - 1) << 16));
836 REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
837 ((adjusted_mode->crtc_vtotal - 1) << 16));
838 REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
839 ((adjusted_mode->crtc_vblank_end - 1) << 16));
840 REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
841 ((adjusted_mode->crtc_vsync_end - 1) << 16));
842 /* pipesrc and dspsize control the size that is scaled from,
843 * which should always be the user's requested size.
845 REG_WRITE(map->size,
846 ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
847 REG_WRITE(map->pos, 0);
848 REG_WRITE(map->src,
849 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
850 REG_WRITE(map->conf, pipeconf);
851 REG_READ(map->conf);
853 gma_wait_for_vblank(dev);
855 REG_WRITE(map->cntr, dspcntr);
857 /* Flush the plane changes */
859 struct drm_crtc_helper_funcs *crtc_funcs =
860 crtc->helper_private;
861 crtc_funcs->mode_set_base(crtc, x, y, old_fb);
864 gma_wait_for_vblank(dev);
866 return 0;
869 /** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
871 /* FIXME: why are we using this, should it be cdv_ in this tree ? */
873 static void i8xx_clock(int refclk, struct gma_clock_t *clock)
875 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
876 clock->p = clock->p1 * clock->p2;
877 clock->vco = refclk * clock->m / (clock->n + 2);
878 clock->dot = clock->vco / clock->p;
881 /* Returns the clock of the currently programmed mode of the given pipe. */
882 static int cdv_intel_crtc_clock_get(struct drm_device *dev,
883 struct drm_crtc *crtc)
885 struct drm_psb_private *dev_priv = dev->dev_private;
886 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
887 int pipe = gma_crtc->pipe;
888 const struct psb_offset *map = &dev_priv->regmap[pipe];
889 u32 dpll;
890 u32 fp;
891 struct gma_clock_t clock;
892 bool is_lvds;
893 struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
895 if (gma_power_begin(dev, false)) {
896 dpll = REG_READ(map->dpll);
897 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
898 fp = REG_READ(map->fp0);
899 else
900 fp = REG_READ(map->fp1);
901 is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
902 gma_power_end(dev);
903 } else {
904 dpll = p->dpll;
905 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
906 fp = p->fp0;
907 else
908 fp = p->fp1;
910 is_lvds = (pipe == 1) &&
911 (dev_priv->regs.psb.saveLVDS & LVDS_PORT_EN);
914 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
915 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
916 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
918 if (is_lvds) {
919 clock.p1 =
920 ffs((dpll &
921 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
922 DPLL_FPA01_P1_POST_DIV_SHIFT);
923 if (clock.p1 == 0) {
924 clock.p1 = 4;
925 dev_err(dev->dev, "PLL %d\n", dpll);
927 clock.p2 = 14;
929 if ((dpll & PLL_REF_INPUT_MASK) ==
930 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
931 /* XXX: might not be 66MHz */
932 i8xx_clock(66000, &clock);
933 } else
934 i8xx_clock(48000, &clock);
935 } else {
936 if (dpll & PLL_P1_DIVIDE_BY_TWO)
937 clock.p1 = 2;
938 else {
939 clock.p1 =
940 ((dpll &
941 DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
942 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
944 if (dpll & PLL_P2_DIVIDE_BY_4)
945 clock.p2 = 4;
946 else
947 clock.p2 = 2;
949 i8xx_clock(48000, &clock);
952 /* XXX: It would be nice to validate the clocks, but we can't reuse
953 * i830PllIsValid() because it relies on the xf86_config connector
954 * configuration being accurate, which it isn't necessarily.
957 return clock.dot;
960 /** Returns the currently programmed mode of the given pipe. */
961 struct drm_display_mode *cdv_intel_crtc_mode_get(struct drm_device *dev,
962 struct drm_crtc *crtc)
964 struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
965 int pipe = gma_crtc->pipe;
966 struct drm_psb_private *dev_priv = dev->dev_private;
967 struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
968 const struct psb_offset *map = &dev_priv->regmap[pipe];
969 struct drm_display_mode *mode;
970 int htot;
971 int hsync;
972 int vtot;
973 int vsync;
975 if (gma_power_begin(dev, false)) {
976 htot = REG_READ(map->htotal);
977 hsync = REG_READ(map->hsync);
978 vtot = REG_READ(map->vtotal);
979 vsync = REG_READ(map->vsync);
980 gma_power_end(dev);
981 } else {
982 htot = p->htotal;
983 hsync = p->hsync;
984 vtot = p->vtotal;
985 vsync = p->vsync;
988 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
989 if (!mode)
990 return NULL;
992 mode->clock = cdv_intel_crtc_clock_get(dev, crtc);
993 mode->hdisplay = (htot & 0xffff) + 1;
994 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
995 mode->hsync_start = (hsync & 0xffff) + 1;
996 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
997 mode->vdisplay = (vtot & 0xffff) + 1;
998 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
999 mode->vsync_start = (vsync & 0xffff) + 1;
1000 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
1002 drm_mode_set_name(mode);
1003 drm_mode_set_crtcinfo(mode, 0);
1005 return mode;
1008 const struct drm_crtc_helper_funcs cdv_intel_helper_funcs = {
1009 .dpms = gma_crtc_dpms,
1010 .mode_fixup = gma_crtc_mode_fixup,
1011 .mode_set = cdv_intel_crtc_mode_set,
1012 .mode_set_base = gma_pipe_set_base,
1013 .prepare = gma_crtc_prepare,
1014 .commit = gma_crtc_commit,
1015 .disable = gma_crtc_disable,
1018 const struct drm_crtc_funcs cdv_intel_crtc_funcs = {
1019 .save = gma_crtc_save,
1020 .restore = gma_crtc_restore,
1021 .cursor_set = gma_crtc_cursor_set,
1022 .cursor_move = gma_crtc_cursor_move,
1023 .gamma_set = gma_crtc_gamma_set,
1024 .set_config = gma_crtc_set_config,
1025 .destroy = gma_crtc_destroy,
1028 const struct gma_clock_funcs cdv_clock_funcs = {
1029 .clock = cdv_intel_clock,
1030 .limit = cdv_intel_limit,
1031 .pll_is_valid = gma_pll_is_valid,