PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / gpu / drm / i2c / tda998x_drv.c
blobfa18cf37447037fc8545719880a2abd91a2c9248
1 /*
2 * Copyright (C) 2012 Texas Instruments
3 * Author: Rob Clark <robdclark@gmail.com>
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published by
7 * the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * You should have received a copy of the GNU General Public License along with
15 * this program. If not, see <http://www.gnu.org/licenses/>.
20 #include <linux/hdmi.h>
21 #include <linux/module.h>
23 #include <drm/drmP.h>
24 #include <drm/drm_crtc_helper.h>
25 #include <drm/drm_encoder_slave.h>
26 #include <drm/drm_edid.h>
27 #include <drm/i2c/tda998x.h>
29 #define DBG(fmt, ...) DRM_DEBUG(fmt"\n", ##__VA_ARGS__)
31 struct tda998x_priv {
32 struct i2c_client *cec;
33 uint16_t rev;
34 uint8_t current_page;
35 int dpms;
36 bool is_hdmi_sink;
37 u8 vip_cntrl_0;
38 u8 vip_cntrl_1;
39 u8 vip_cntrl_2;
40 struct tda998x_encoder_params params;
43 #define to_tda998x_priv(x) ((struct tda998x_priv *)to_encoder_slave(x)->slave_priv)
45 /* The TDA9988 series of devices use a paged register scheme.. to simplify
46 * things we encode the page # in upper bits of the register #. To read/
47 * write a given register, we need to make sure CURPAGE register is set
48 * appropriately. Which implies reads/writes are not atomic. Fun!
51 #define REG(page, addr) (((page) << 8) | (addr))
52 #define REG2ADDR(reg) ((reg) & 0xff)
53 #define REG2PAGE(reg) (((reg) >> 8) & 0xff)
55 #define REG_CURPAGE 0xff /* write */
58 /* Page 00h: General Control */
59 #define REG_VERSION_LSB REG(0x00, 0x00) /* read */
60 #define REG_MAIN_CNTRL0 REG(0x00, 0x01) /* read/write */
61 # define MAIN_CNTRL0_SR (1 << 0)
62 # define MAIN_CNTRL0_DECS (1 << 1)
63 # define MAIN_CNTRL0_DEHS (1 << 2)
64 # define MAIN_CNTRL0_CECS (1 << 3)
65 # define MAIN_CNTRL0_CEHS (1 << 4)
66 # define MAIN_CNTRL0_SCALER (1 << 7)
67 #define REG_VERSION_MSB REG(0x00, 0x02) /* read */
68 #define REG_SOFTRESET REG(0x00, 0x0a) /* write */
69 # define SOFTRESET_AUDIO (1 << 0)
70 # define SOFTRESET_I2C_MASTER (1 << 1)
71 #define REG_DDC_DISABLE REG(0x00, 0x0b) /* read/write */
72 #define REG_CCLK_ON REG(0x00, 0x0c) /* read/write */
73 #define REG_I2C_MASTER REG(0x00, 0x0d) /* read/write */
74 # define I2C_MASTER_DIS_MM (1 << 0)
75 # define I2C_MASTER_DIS_FILT (1 << 1)
76 # define I2C_MASTER_APP_STRT_LAT (1 << 2)
77 #define REG_FEAT_POWERDOWN REG(0x00, 0x0e) /* read/write */
78 # define FEAT_POWERDOWN_SPDIF (1 << 3)
79 #define REG_INT_FLAGS_0 REG(0x00, 0x0f) /* read/write */
80 #define REG_INT_FLAGS_1 REG(0x00, 0x10) /* read/write */
81 #define REG_INT_FLAGS_2 REG(0x00, 0x11) /* read/write */
82 # define INT_FLAGS_2_EDID_BLK_RD (1 << 1)
83 #define REG_ENA_ACLK REG(0x00, 0x16) /* read/write */
84 #define REG_ENA_VP_0 REG(0x00, 0x18) /* read/write */
85 #define REG_ENA_VP_1 REG(0x00, 0x19) /* read/write */
86 #define REG_ENA_VP_2 REG(0x00, 0x1a) /* read/write */
87 #define REG_ENA_AP REG(0x00, 0x1e) /* read/write */
88 #define REG_VIP_CNTRL_0 REG(0x00, 0x20) /* write */
89 # define VIP_CNTRL_0_MIRR_A (1 << 7)
90 # define VIP_CNTRL_0_SWAP_A(x) (((x) & 7) << 4)
91 # define VIP_CNTRL_0_MIRR_B (1 << 3)
92 # define VIP_CNTRL_0_SWAP_B(x) (((x) & 7) << 0)
93 #define REG_VIP_CNTRL_1 REG(0x00, 0x21) /* write */
94 # define VIP_CNTRL_1_MIRR_C (1 << 7)
95 # define VIP_CNTRL_1_SWAP_C(x) (((x) & 7) << 4)
96 # define VIP_CNTRL_1_MIRR_D (1 << 3)
97 # define VIP_CNTRL_1_SWAP_D(x) (((x) & 7) << 0)
98 #define REG_VIP_CNTRL_2 REG(0x00, 0x22) /* write */
99 # define VIP_CNTRL_2_MIRR_E (1 << 7)
100 # define VIP_CNTRL_2_SWAP_E(x) (((x) & 7) << 4)
101 # define VIP_CNTRL_2_MIRR_F (1 << 3)
102 # define VIP_CNTRL_2_SWAP_F(x) (((x) & 7) << 0)
103 #define REG_VIP_CNTRL_3 REG(0x00, 0x23) /* write */
104 # define VIP_CNTRL_3_X_TGL (1 << 0)
105 # define VIP_CNTRL_3_H_TGL (1 << 1)
106 # define VIP_CNTRL_3_V_TGL (1 << 2)
107 # define VIP_CNTRL_3_EMB (1 << 3)
108 # define VIP_CNTRL_3_SYNC_DE (1 << 4)
109 # define VIP_CNTRL_3_SYNC_HS (1 << 5)
110 # define VIP_CNTRL_3_DE_INT (1 << 6)
111 # define VIP_CNTRL_3_EDGE (1 << 7)
112 #define REG_VIP_CNTRL_4 REG(0x00, 0x24) /* write */
113 # define VIP_CNTRL_4_BLC(x) (((x) & 3) << 0)
114 # define VIP_CNTRL_4_BLANKIT(x) (((x) & 3) << 2)
115 # define VIP_CNTRL_4_CCIR656 (1 << 4)
116 # define VIP_CNTRL_4_656_ALT (1 << 5)
117 # define VIP_CNTRL_4_TST_656 (1 << 6)
118 # define VIP_CNTRL_4_TST_PAT (1 << 7)
119 #define REG_VIP_CNTRL_5 REG(0x00, 0x25) /* write */
120 # define VIP_CNTRL_5_CKCASE (1 << 0)
121 # define VIP_CNTRL_5_SP_CNT(x) (((x) & 3) << 1)
122 #define REG_MUX_AP REG(0x00, 0x26) /* read/write */
123 #define REG_MUX_VP_VIP_OUT REG(0x00, 0x27) /* read/write */
124 #define REG_MAT_CONTRL REG(0x00, 0x80) /* write */
125 # define MAT_CONTRL_MAT_SC(x) (((x) & 3) << 0)
126 # define MAT_CONTRL_MAT_BP (1 << 2)
127 #define REG_VIDFORMAT REG(0x00, 0xa0) /* write */
128 #define REG_REFPIX_MSB REG(0x00, 0xa1) /* write */
129 #define REG_REFPIX_LSB REG(0x00, 0xa2) /* write */
130 #define REG_REFLINE_MSB REG(0x00, 0xa3) /* write */
131 #define REG_REFLINE_LSB REG(0x00, 0xa4) /* write */
132 #define REG_NPIX_MSB REG(0x00, 0xa5) /* write */
133 #define REG_NPIX_LSB REG(0x00, 0xa6) /* write */
134 #define REG_NLINE_MSB REG(0x00, 0xa7) /* write */
135 #define REG_NLINE_LSB REG(0x00, 0xa8) /* write */
136 #define REG_VS_LINE_STRT_1_MSB REG(0x00, 0xa9) /* write */
137 #define REG_VS_LINE_STRT_1_LSB REG(0x00, 0xaa) /* write */
138 #define REG_VS_PIX_STRT_1_MSB REG(0x00, 0xab) /* write */
139 #define REG_VS_PIX_STRT_1_LSB REG(0x00, 0xac) /* write */
140 #define REG_VS_LINE_END_1_MSB REG(0x00, 0xad) /* write */
141 #define REG_VS_LINE_END_1_LSB REG(0x00, 0xae) /* write */
142 #define REG_VS_PIX_END_1_MSB REG(0x00, 0xaf) /* write */
143 #define REG_VS_PIX_END_1_LSB REG(0x00, 0xb0) /* write */
144 #define REG_VS_LINE_STRT_2_MSB REG(0x00, 0xb1) /* write */
145 #define REG_VS_LINE_STRT_2_LSB REG(0x00, 0xb2) /* write */
146 #define REG_VS_PIX_STRT_2_MSB REG(0x00, 0xb3) /* write */
147 #define REG_VS_PIX_STRT_2_LSB REG(0x00, 0xb4) /* write */
148 #define REG_VS_LINE_END_2_MSB REG(0x00, 0xb5) /* write */
149 #define REG_VS_LINE_END_2_LSB REG(0x00, 0xb6) /* write */
150 #define REG_VS_PIX_END_2_MSB REG(0x00, 0xb7) /* write */
151 #define REG_VS_PIX_END_2_LSB REG(0x00, 0xb8) /* write */
152 #define REG_HS_PIX_START_MSB REG(0x00, 0xb9) /* write */
153 #define REG_HS_PIX_START_LSB REG(0x00, 0xba) /* write */
154 #define REG_HS_PIX_STOP_MSB REG(0x00, 0xbb) /* write */
155 #define REG_HS_PIX_STOP_LSB REG(0x00, 0xbc) /* write */
156 #define REG_VWIN_START_1_MSB REG(0x00, 0xbd) /* write */
157 #define REG_VWIN_START_1_LSB REG(0x00, 0xbe) /* write */
158 #define REG_VWIN_END_1_MSB REG(0x00, 0xbf) /* write */
159 #define REG_VWIN_END_1_LSB REG(0x00, 0xc0) /* write */
160 #define REG_VWIN_START_2_MSB REG(0x00, 0xc1) /* write */
161 #define REG_VWIN_START_2_LSB REG(0x00, 0xc2) /* write */
162 #define REG_VWIN_END_2_MSB REG(0x00, 0xc3) /* write */
163 #define REG_VWIN_END_2_LSB REG(0x00, 0xc4) /* write */
164 #define REG_DE_START_MSB REG(0x00, 0xc5) /* write */
165 #define REG_DE_START_LSB REG(0x00, 0xc6) /* write */
166 #define REG_DE_STOP_MSB REG(0x00, 0xc7) /* write */
167 #define REG_DE_STOP_LSB REG(0x00, 0xc8) /* write */
168 #define REG_TBG_CNTRL_0 REG(0x00, 0xca) /* write */
169 # define TBG_CNTRL_0_TOP_TGL (1 << 0)
170 # define TBG_CNTRL_0_TOP_SEL (1 << 1)
171 # define TBG_CNTRL_0_DE_EXT (1 << 2)
172 # define TBG_CNTRL_0_TOP_EXT (1 << 3)
173 # define TBG_CNTRL_0_FRAME_DIS (1 << 5)
174 # define TBG_CNTRL_0_SYNC_MTHD (1 << 6)
175 # define TBG_CNTRL_0_SYNC_ONCE (1 << 7)
176 #define REG_TBG_CNTRL_1 REG(0x00, 0xcb) /* write */
177 # define TBG_CNTRL_1_H_TGL (1 << 0)
178 # define TBG_CNTRL_1_V_TGL (1 << 1)
179 # define TBG_CNTRL_1_TGL_EN (1 << 2)
180 # define TBG_CNTRL_1_X_EXT (1 << 3)
181 # define TBG_CNTRL_1_H_EXT (1 << 4)
182 # define TBG_CNTRL_1_V_EXT (1 << 5)
183 # define TBG_CNTRL_1_DWIN_DIS (1 << 6)
184 #define REG_ENABLE_SPACE REG(0x00, 0xd6) /* write */
185 #define REG_HVF_CNTRL_0 REG(0x00, 0xe4) /* write */
186 # define HVF_CNTRL_0_SM (1 << 7)
187 # define HVF_CNTRL_0_RWB (1 << 6)
188 # define HVF_CNTRL_0_PREFIL(x) (((x) & 3) << 2)
189 # define HVF_CNTRL_0_INTPOL(x) (((x) & 3) << 0)
190 #define REG_HVF_CNTRL_1 REG(0x00, 0xe5) /* write */
191 # define HVF_CNTRL_1_FOR (1 << 0)
192 # define HVF_CNTRL_1_YUVBLK (1 << 1)
193 # define HVF_CNTRL_1_VQR(x) (((x) & 3) << 2)
194 # define HVF_CNTRL_1_PAD(x) (((x) & 3) << 4)
195 # define HVF_CNTRL_1_SEMI_PLANAR (1 << 6)
196 #define REG_RPT_CNTRL REG(0x00, 0xf0) /* write */
197 #define REG_I2S_FORMAT REG(0x00, 0xfc) /* read/write */
198 # define I2S_FORMAT(x) (((x) & 3) << 0)
199 #define REG_AIP_CLKSEL REG(0x00, 0xfd) /* write */
200 # define AIP_CLKSEL_FS(x) (((x) & 3) << 0)
201 # define AIP_CLKSEL_CLK_POL(x) (((x) & 1) << 2)
202 # define AIP_CLKSEL_AIP(x) (((x) & 7) << 3)
205 /* Page 02h: PLL settings */
206 #define REG_PLL_SERIAL_1 REG(0x02, 0x00) /* read/write */
207 # define PLL_SERIAL_1_SRL_FDN (1 << 0)
208 # define PLL_SERIAL_1_SRL_IZ(x) (((x) & 3) << 1)
209 # define PLL_SERIAL_1_SRL_MAN_IZ (1 << 6)
210 #define REG_PLL_SERIAL_2 REG(0x02, 0x01) /* read/write */
211 # define PLL_SERIAL_2_SRL_NOSC(x) ((x) << 0)
212 # define PLL_SERIAL_2_SRL_PR(x) (((x) & 0xf) << 4)
213 #define REG_PLL_SERIAL_3 REG(0x02, 0x02) /* read/write */
214 # define PLL_SERIAL_3_SRL_CCIR (1 << 0)
215 # define PLL_SERIAL_3_SRL_DE (1 << 2)
216 # define PLL_SERIAL_3_SRL_PXIN_SEL (1 << 4)
217 #define REG_SERIALIZER REG(0x02, 0x03) /* read/write */
218 #define REG_BUFFER_OUT REG(0x02, 0x04) /* read/write */
219 #define REG_PLL_SCG1 REG(0x02, 0x05) /* read/write */
220 #define REG_PLL_SCG2 REG(0x02, 0x06) /* read/write */
221 #define REG_PLL_SCGN1 REG(0x02, 0x07) /* read/write */
222 #define REG_PLL_SCGN2 REG(0x02, 0x08) /* read/write */
223 #define REG_PLL_SCGR1 REG(0x02, 0x09) /* read/write */
224 #define REG_PLL_SCGR2 REG(0x02, 0x0a) /* read/write */
225 #define REG_AUDIO_DIV REG(0x02, 0x0e) /* read/write */
226 # define AUDIO_DIV_SERCLK_1 0
227 # define AUDIO_DIV_SERCLK_2 1
228 # define AUDIO_DIV_SERCLK_4 2
229 # define AUDIO_DIV_SERCLK_8 3
230 # define AUDIO_DIV_SERCLK_16 4
231 # define AUDIO_DIV_SERCLK_32 5
232 #define REG_SEL_CLK REG(0x02, 0x11) /* read/write */
233 # define SEL_CLK_SEL_CLK1 (1 << 0)
234 # define SEL_CLK_SEL_VRF_CLK(x) (((x) & 3) << 1)
235 # define SEL_CLK_ENA_SC_CLK (1 << 3)
236 #define REG_ANA_GENERAL REG(0x02, 0x12) /* read/write */
239 /* Page 09h: EDID Control */
240 #define REG_EDID_DATA_0 REG(0x09, 0x00) /* read */
241 /* next 127 successive registers are the EDID block */
242 #define REG_EDID_CTRL REG(0x09, 0xfa) /* read/write */
243 #define REG_DDC_ADDR REG(0x09, 0xfb) /* read/write */
244 #define REG_DDC_OFFS REG(0x09, 0xfc) /* read/write */
245 #define REG_DDC_SEGM_ADDR REG(0x09, 0xfd) /* read/write */
246 #define REG_DDC_SEGM REG(0x09, 0xfe) /* read/write */
249 /* Page 10h: information frames and packets */
250 #define REG_IF1_HB0 REG(0x10, 0x20) /* read/write */
251 #define REG_IF2_HB0 REG(0x10, 0x40) /* read/write */
252 #define REG_IF3_HB0 REG(0x10, 0x60) /* read/write */
253 #define REG_IF4_HB0 REG(0x10, 0x80) /* read/write */
254 #define REG_IF5_HB0 REG(0x10, 0xa0) /* read/write */
257 /* Page 11h: audio settings and content info packets */
258 #define REG_AIP_CNTRL_0 REG(0x11, 0x00) /* read/write */
259 # define AIP_CNTRL_0_RST_FIFO (1 << 0)
260 # define AIP_CNTRL_0_SWAP (1 << 1)
261 # define AIP_CNTRL_0_LAYOUT (1 << 2)
262 # define AIP_CNTRL_0_ACR_MAN (1 << 5)
263 # define AIP_CNTRL_0_RST_CTS (1 << 6)
264 #define REG_CA_I2S REG(0x11, 0x01) /* read/write */
265 # define CA_I2S_CA_I2S(x) (((x) & 31) << 0)
266 # define CA_I2S_HBR_CHSTAT (1 << 6)
267 #define REG_LATENCY_RD REG(0x11, 0x04) /* read/write */
268 #define REG_ACR_CTS_0 REG(0x11, 0x05) /* read/write */
269 #define REG_ACR_CTS_1 REG(0x11, 0x06) /* read/write */
270 #define REG_ACR_CTS_2 REG(0x11, 0x07) /* read/write */
271 #define REG_ACR_N_0 REG(0x11, 0x08) /* read/write */
272 #define REG_ACR_N_1 REG(0x11, 0x09) /* read/write */
273 #define REG_ACR_N_2 REG(0x11, 0x0a) /* read/write */
274 #define REG_CTS_N REG(0x11, 0x0c) /* read/write */
275 # define CTS_N_K(x) (((x) & 7) << 0)
276 # define CTS_N_M(x) (((x) & 3) << 4)
277 #define REG_ENC_CNTRL REG(0x11, 0x0d) /* read/write */
278 # define ENC_CNTRL_RST_ENC (1 << 0)
279 # define ENC_CNTRL_RST_SEL (1 << 1)
280 # define ENC_CNTRL_CTL_CODE(x) (((x) & 3) << 2)
281 #define REG_DIP_FLAGS REG(0x11, 0x0e) /* read/write */
282 # define DIP_FLAGS_ACR (1 << 0)
283 # define DIP_FLAGS_GC (1 << 1)
284 #define REG_DIP_IF_FLAGS REG(0x11, 0x0f) /* read/write */
285 # define DIP_IF_FLAGS_IF1 (1 << 1)
286 # define DIP_IF_FLAGS_IF2 (1 << 2)
287 # define DIP_IF_FLAGS_IF3 (1 << 3)
288 # define DIP_IF_FLAGS_IF4 (1 << 4)
289 # define DIP_IF_FLAGS_IF5 (1 << 5)
290 #define REG_CH_STAT_B(x) REG(0x11, 0x14 + (x)) /* read/write */
293 /* Page 12h: HDCP and OTP */
294 #define REG_TX3 REG(0x12, 0x9a) /* read/write */
295 #define REG_TX4 REG(0x12, 0x9b) /* read/write */
296 # define TX4_PD_RAM (1 << 1)
297 #define REG_TX33 REG(0x12, 0xb8) /* read/write */
298 # define TX33_HDMI (1 << 1)
301 /* Page 13h: Gamut related metadata packets */
305 /* CEC registers: (not paged)
307 #define REG_CEC_FRO_IM_CLK_CTRL 0xfb /* read/write */
308 # define CEC_FRO_IM_CLK_CTRL_GHOST_DIS (1 << 7)
309 # define CEC_FRO_IM_CLK_CTRL_ENA_OTP (1 << 6)
310 # define CEC_FRO_IM_CLK_CTRL_IMCLK_SEL (1 << 1)
311 # define CEC_FRO_IM_CLK_CTRL_FRO_DIV (1 << 0)
312 #define REG_CEC_RXSHPDLEV 0xfe /* read */
313 # define CEC_RXSHPDLEV_RXSENS (1 << 0)
314 # define CEC_RXSHPDLEV_HPD (1 << 1)
316 #define REG_CEC_ENAMODS 0xff /* read/write */
317 # define CEC_ENAMODS_DIS_FRO (1 << 6)
318 # define CEC_ENAMODS_DIS_CCLK (1 << 5)
319 # define CEC_ENAMODS_EN_RXSENS (1 << 2)
320 # define CEC_ENAMODS_EN_HDMI (1 << 1)
321 # define CEC_ENAMODS_EN_CEC (1 << 0)
324 /* Device versions: */
325 #define TDA9989N2 0x0101
326 #define TDA19989 0x0201
327 #define TDA19989N2 0x0202
328 #define TDA19988 0x0301
330 static void
331 cec_write(struct drm_encoder *encoder, uint16_t addr, uint8_t val)
333 struct i2c_client *client = to_tda998x_priv(encoder)->cec;
334 uint8_t buf[] = {addr, val};
335 int ret;
337 ret = i2c_master_send(client, buf, ARRAY_SIZE(buf));
338 if (ret < 0)
339 dev_err(&client->dev, "Error %d writing to cec:0x%x\n", ret, addr);
342 static uint8_t
343 cec_read(struct drm_encoder *encoder, uint8_t addr)
345 struct i2c_client *client = to_tda998x_priv(encoder)->cec;
346 uint8_t val;
347 int ret;
349 ret = i2c_master_send(client, &addr, sizeof(addr));
350 if (ret < 0)
351 goto fail;
353 ret = i2c_master_recv(client, &val, sizeof(val));
354 if (ret < 0)
355 goto fail;
357 return val;
359 fail:
360 dev_err(&client->dev, "Error %d reading from cec:0x%x\n", ret, addr);
361 return 0;
364 static void
365 set_page(struct drm_encoder *encoder, uint16_t reg)
367 struct tda998x_priv *priv = to_tda998x_priv(encoder);
369 if (REG2PAGE(reg) != priv->current_page) {
370 struct i2c_client *client = drm_i2c_encoder_get_client(encoder);
371 uint8_t buf[] = {
372 REG_CURPAGE, REG2PAGE(reg)
374 int ret = i2c_master_send(client, buf, sizeof(buf));
375 if (ret < 0)
376 dev_err(&client->dev, "Error %d writing to REG_CURPAGE\n", ret);
378 priv->current_page = REG2PAGE(reg);
382 static int
383 reg_read_range(struct drm_encoder *encoder, uint16_t reg, char *buf, int cnt)
385 struct i2c_client *client = drm_i2c_encoder_get_client(encoder);
386 uint8_t addr = REG2ADDR(reg);
387 int ret;
389 set_page(encoder, reg);
391 ret = i2c_master_send(client, &addr, sizeof(addr));
392 if (ret < 0)
393 goto fail;
395 ret = i2c_master_recv(client, buf, cnt);
396 if (ret < 0)
397 goto fail;
399 return ret;
401 fail:
402 dev_err(&client->dev, "Error %d reading from 0x%x\n", ret, reg);
403 return ret;
406 static void
407 reg_write_range(struct drm_encoder *encoder, uint16_t reg, uint8_t *p, int cnt)
409 struct i2c_client *client = drm_i2c_encoder_get_client(encoder);
410 uint8_t buf[cnt+1];
411 int ret;
413 buf[0] = REG2ADDR(reg);
414 memcpy(&buf[1], p, cnt);
416 set_page(encoder, reg);
418 ret = i2c_master_send(client, buf, cnt + 1);
419 if (ret < 0)
420 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
423 static uint8_t
424 reg_read(struct drm_encoder *encoder, uint16_t reg)
426 uint8_t val = 0;
427 reg_read_range(encoder, reg, &val, sizeof(val));
428 return val;
431 static void
432 reg_write(struct drm_encoder *encoder, uint16_t reg, uint8_t val)
434 struct i2c_client *client = drm_i2c_encoder_get_client(encoder);
435 uint8_t buf[] = {REG2ADDR(reg), val};
436 int ret;
438 set_page(encoder, reg);
440 ret = i2c_master_send(client, buf, ARRAY_SIZE(buf));
441 if (ret < 0)
442 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
445 static void
446 reg_write16(struct drm_encoder *encoder, uint16_t reg, uint16_t val)
448 struct i2c_client *client = drm_i2c_encoder_get_client(encoder);
449 uint8_t buf[] = {REG2ADDR(reg), val >> 8, val};
450 int ret;
452 set_page(encoder, reg);
454 ret = i2c_master_send(client, buf, ARRAY_SIZE(buf));
455 if (ret < 0)
456 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
459 static void
460 reg_set(struct drm_encoder *encoder, uint16_t reg, uint8_t val)
462 reg_write(encoder, reg, reg_read(encoder, reg) | val);
465 static void
466 reg_clear(struct drm_encoder *encoder, uint16_t reg, uint8_t val)
468 reg_write(encoder, reg, reg_read(encoder, reg) & ~val);
471 static void
472 tda998x_reset(struct drm_encoder *encoder)
474 /* reset audio and i2c master: */
475 reg_set(encoder, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER);
476 msleep(50);
477 reg_clear(encoder, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER);
478 msleep(50);
480 /* reset transmitter: */
481 reg_set(encoder, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
482 reg_clear(encoder, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
484 /* PLL registers common configuration */
485 reg_write(encoder, REG_PLL_SERIAL_1, 0x00);
486 reg_write(encoder, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(1));
487 reg_write(encoder, REG_PLL_SERIAL_3, 0x00);
488 reg_write(encoder, REG_SERIALIZER, 0x00);
489 reg_write(encoder, REG_BUFFER_OUT, 0x00);
490 reg_write(encoder, REG_PLL_SCG1, 0x00);
491 reg_write(encoder, REG_AUDIO_DIV, AUDIO_DIV_SERCLK_8);
492 reg_write(encoder, REG_SEL_CLK, SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
493 reg_write(encoder, REG_PLL_SCGN1, 0xfa);
494 reg_write(encoder, REG_PLL_SCGN2, 0x00);
495 reg_write(encoder, REG_PLL_SCGR1, 0x5b);
496 reg_write(encoder, REG_PLL_SCGR2, 0x00);
497 reg_write(encoder, REG_PLL_SCG2, 0x10);
499 /* Write the default value MUX register */
500 reg_write(encoder, REG_MUX_VP_VIP_OUT, 0x24);
503 static uint8_t tda998x_cksum(uint8_t *buf, size_t bytes)
505 uint8_t sum = 0;
507 while (bytes--)
508 sum += *buf++;
509 return (255 - sum) + 1;
512 #define HB(x) (x)
513 #define PB(x) (HB(2) + 1 + (x))
515 static void
516 tda998x_write_if(struct drm_encoder *encoder, uint8_t bit, uint16_t addr,
517 uint8_t *buf, size_t size)
519 buf[PB(0)] = tda998x_cksum(buf, size);
521 reg_clear(encoder, REG_DIP_IF_FLAGS, bit);
522 reg_write_range(encoder, addr, buf, size);
523 reg_set(encoder, REG_DIP_IF_FLAGS, bit);
526 static void
527 tda998x_write_aif(struct drm_encoder *encoder, struct tda998x_encoder_params *p)
529 uint8_t buf[PB(5) + 1];
531 memset(buf, 0, sizeof(buf));
532 buf[HB(0)] = 0x84;
533 buf[HB(1)] = 0x01;
534 buf[HB(2)] = 10;
535 buf[PB(1)] = p->audio_frame[1] & 0x07; /* CC */
536 buf[PB(2)] = p->audio_frame[2] & 0x1c; /* SF */
537 buf[PB(4)] = p->audio_frame[4];
538 buf[PB(5)] = p->audio_frame[5] & 0xf8; /* DM_INH + LSV */
540 tda998x_write_if(encoder, DIP_IF_FLAGS_IF4, REG_IF4_HB0, buf,
541 sizeof(buf));
544 static void
545 tda998x_write_avi(struct drm_encoder *encoder, struct drm_display_mode *mode)
547 uint8_t buf[PB(13) + 1];
549 memset(buf, 0, sizeof(buf));
550 buf[HB(0)] = 0x82;
551 buf[HB(1)] = 0x02;
552 buf[HB(2)] = 13;
553 buf[PB(1)] = HDMI_SCAN_MODE_UNDERSCAN;
554 buf[PB(3)] = HDMI_QUANTIZATION_RANGE_FULL << 2;
555 buf[PB(4)] = drm_match_cea_mode(mode);
557 tda998x_write_if(encoder, DIP_IF_FLAGS_IF2, REG_IF2_HB0, buf,
558 sizeof(buf));
561 static void tda998x_audio_mute(struct drm_encoder *encoder, bool on)
563 if (on) {
564 reg_set(encoder, REG_SOFTRESET, SOFTRESET_AUDIO);
565 reg_clear(encoder, REG_SOFTRESET, SOFTRESET_AUDIO);
566 reg_set(encoder, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
567 } else {
568 reg_clear(encoder, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
572 static void
573 tda998x_configure_audio(struct drm_encoder *encoder,
574 struct drm_display_mode *mode, struct tda998x_encoder_params *p)
576 uint8_t buf[6], clksel_aip, clksel_fs, ca_i2s, cts_n, adiv;
577 uint32_t n;
579 /* Enable audio ports */
580 reg_write(encoder, REG_ENA_AP, p->audio_cfg);
581 reg_write(encoder, REG_ENA_ACLK, p->audio_clk_cfg);
583 /* Set audio input source */
584 switch (p->audio_format) {
585 case AFMT_SPDIF:
586 reg_write(encoder, REG_MUX_AP, 0x40);
587 clksel_aip = AIP_CLKSEL_AIP(0);
588 /* FS64SPDIF */
589 clksel_fs = AIP_CLKSEL_FS(2);
590 cts_n = CTS_N_M(3) | CTS_N_K(3);
591 ca_i2s = 0;
592 break;
594 case AFMT_I2S:
595 reg_write(encoder, REG_MUX_AP, 0x64);
596 clksel_aip = AIP_CLKSEL_AIP(1);
597 /* ACLK */
598 clksel_fs = AIP_CLKSEL_FS(0);
599 cts_n = CTS_N_M(3) | CTS_N_K(3);
600 ca_i2s = CA_I2S_CA_I2S(0);
601 break;
603 default:
604 BUG();
605 return;
608 reg_write(encoder, REG_AIP_CLKSEL, clksel_aip);
609 reg_clear(encoder, REG_AIP_CNTRL_0, AIP_CNTRL_0_LAYOUT);
611 /* Enable automatic CTS generation */
612 reg_clear(encoder, REG_AIP_CNTRL_0, AIP_CNTRL_0_ACR_MAN);
613 reg_write(encoder, REG_CTS_N, cts_n);
616 * Audio input somehow depends on HDMI line rate which is
617 * related to pixclk. Testing showed that modes with pixclk
618 * >100MHz need a larger divider while <40MHz need the default.
619 * There is no detailed info in the datasheet, so we just
620 * assume 100MHz requires larger divider.
622 if (mode->clock > 100000)
623 adiv = AUDIO_DIV_SERCLK_16;
624 else
625 adiv = AUDIO_DIV_SERCLK_8;
626 reg_write(encoder, REG_AUDIO_DIV, adiv);
629 * This is the approximate value of N, which happens to be
630 * the recommended values for non-coherent clocks.
632 n = 128 * p->audio_sample_rate / 1000;
634 /* Write the CTS and N values */
635 buf[0] = 0x44;
636 buf[1] = 0x42;
637 buf[2] = 0x01;
638 buf[3] = n;
639 buf[4] = n >> 8;
640 buf[5] = n >> 16;
641 reg_write_range(encoder, REG_ACR_CTS_0, buf, 6);
643 /* Set CTS clock reference */
644 reg_write(encoder, REG_AIP_CLKSEL, clksel_aip | clksel_fs);
646 /* Reset CTS generator */
647 reg_set(encoder, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
648 reg_clear(encoder, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
650 /* Write the channel status */
651 buf[0] = 0x04;
652 buf[1] = 0x00;
653 buf[2] = 0x00;
654 buf[3] = 0xf1;
655 reg_write_range(encoder, REG_CH_STAT_B(0), buf, 4);
657 tda998x_audio_mute(encoder, true);
658 mdelay(20);
659 tda998x_audio_mute(encoder, false);
661 /* Write the audio information packet */
662 tda998x_write_aif(encoder, p);
665 /* DRM encoder functions */
667 static void
668 tda998x_encoder_set_config(struct drm_encoder *encoder, void *params)
670 struct tda998x_priv *priv = to_tda998x_priv(encoder);
671 struct tda998x_encoder_params *p = params;
673 priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(p->swap_a) |
674 (p->mirr_a ? VIP_CNTRL_0_MIRR_A : 0) |
675 VIP_CNTRL_0_SWAP_B(p->swap_b) |
676 (p->mirr_b ? VIP_CNTRL_0_MIRR_B : 0);
677 priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(p->swap_c) |
678 (p->mirr_c ? VIP_CNTRL_1_MIRR_C : 0) |
679 VIP_CNTRL_1_SWAP_D(p->swap_d) |
680 (p->mirr_d ? VIP_CNTRL_1_MIRR_D : 0);
681 priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(p->swap_e) |
682 (p->mirr_e ? VIP_CNTRL_2_MIRR_E : 0) |
683 VIP_CNTRL_2_SWAP_F(p->swap_f) |
684 (p->mirr_f ? VIP_CNTRL_2_MIRR_F : 0);
686 priv->params = *p;
689 static void
690 tda998x_encoder_dpms(struct drm_encoder *encoder, int mode)
692 struct tda998x_priv *priv = to_tda998x_priv(encoder);
694 /* we only care about on or off: */
695 if (mode != DRM_MODE_DPMS_ON)
696 mode = DRM_MODE_DPMS_OFF;
698 if (mode == priv->dpms)
699 return;
701 switch (mode) {
702 case DRM_MODE_DPMS_ON:
703 /* enable video ports, audio will be enabled later */
704 reg_write(encoder, REG_ENA_VP_0, 0xff);
705 reg_write(encoder, REG_ENA_VP_1, 0xff);
706 reg_write(encoder, REG_ENA_VP_2, 0xff);
707 /* set muxing after enabling ports: */
708 reg_write(encoder, REG_VIP_CNTRL_0, priv->vip_cntrl_0);
709 reg_write(encoder, REG_VIP_CNTRL_1, priv->vip_cntrl_1);
710 reg_write(encoder, REG_VIP_CNTRL_2, priv->vip_cntrl_2);
711 break;
712 case DRM_MODE_DPMS_OFF:
713 /* disable video ports */
714 reg_write(encoder, REG_ENA_VP_0, 0x00);
715 reg_write(encoder, REG_ENA_VP_1, 0x00);
716 reg_write(encoder, REG_ENA_VP_2, 0x00);
717 break;
720 priv->dpms = mode;
723 static void
724 tda998x_encoder_save(struct drm_encoder *encoder)
726 DBG("");
729 static void
730 tda998x_encoder_restore(struct drm_encoder *encoder)
732 DBG("");
735 static bool
736 tda998x_encoder_mode_fixup(struct drm_encoder *encoder,
737 const struct drm_display_mode *mode,
738 struct drm_display_mode *adjusted_mode)
740 return true;
743 static int
744 tda998x_encoder_mode_valid(struct drm_encoder *encoder,
745 struct drm_display_mode *mode)
747 return MODE_OK;
750 static void
751 tda998x_encoder_mode_set(struct drm_encoder *encoder,
752 struct drm_display_mode *mode,
753 struct drm_display_mode *adjusted_mode)
755 struct tda998x_priv *priv = to_tda998x_priv(encoder);
756 uint16_t ref_pix, ref_line, n_pix, n_line;
757 uint16_t hs_pix_s, hs_pix_e;
758 uint16_t vs1_pix_s, vs1_pix_e, vs1_line_s, vs1_line_e;
759 uint16_t vs2_pix_s, vs2_pix_e, vs2_line_s, vs2_line_e;
760 uint16_t vwin1_line_s, vwin1_line_e;
761 uint16_t vwin2_line_s, vwin2_line_e;
762 uint16_t de_pix_s, de_pix_e;
763 uint8_t reg, div, rep;
766 * Internally TDA998x is using ITU-R BT.656 style sync but
767 * we get VESA style sync. TDA998x is using a reference pixel
768 * relative to ITU to sync to the input frame and for output
769 * sync generation. Currently, we are using reference detection
770 * from HS/VS, i.e. REFPIX/REFLINE denote frame start sync point
771 * which is position of rising VS with coincident rising HS.
773 * Now there is some issues to take care of:
774 * - HDMI data islands require sync-before-active
775 * - TDA998x register values must be > 0 to be enabled
776 * - REFLINE needs an additional offset of +1
777 * - REFPIX needs an addtional offset of +1 for UYUV and +3 for RGB
779 * So we add +1 to all horizontal and vertical register values,
780 * plus an additional +3 for REFPIX as we are using RGB input only.
782 n_pix = mode->htotal;
783 n_line = mode->vtotal;
785 hs_pix_e = mode->hsync_end - mode->hdisplay;
786 hs_pix_s = mode->hsync_start - mode->hdisplay;
787 de_pix_e = mode->htotal;
788 de_pix_s = mode->htotal - mode->hdisplay;
789 ref_pix = 3 + hs_pix_s;
792 * Attached LCD controllers may generate broken sync. Allow
793 * those to adjust the position of the rising VS edge by adding
794 * HSKEW to ref_pix.
796 if (adjusted_mode->flags & DRM_MODE_FLAG_HSKEW)
797 ref_pix += adjusted_mode->hskew;
799 if ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0) {
800 ref_line = 1 + mode->vsync_start - mode->vdisplay;
801 vwin1_line_s = mode->vtotal - mode->vdisplay - 1;
802 vwin1_line_e = vwin1_line_s + mode->vdisplay;
803 vs1_pix_s = vs1_pix_e = hs_pix_s;
804 vs1_line_s = mode->vsync_start - mode->vdisplay;
805 vs1_line_e = vs1_line_s +
806 mode->vsync_end - mode->vsync_start;
807 vwin2_line_s = vwin2_line_e = 0;
808 vs2_pix_s = vs2_pix_e = 0;
809 vs2_line_s = vs2_line_e = 0;
810 } else {
811 ref_line = 1 + (mode->vsync_start - mode->vdisplay)/2;
812 vwin1_line_s = (mode->vtotal - mode->vdisplay)/2;
813 vwin1_line_e = vwin1_line_s + mode->vdisplay/2;
814 vs1_pix_s = vs1_pix_e = hs_pix_s;
815 vs1_line_s = (mode->vsync_start - mode->vdisplay)/2;
816 vs1_line_e = vs1_line_s +
817 (mode->vsync_end - mode->vsync_start)/2;
818 vwin2_line_s = vwin1_line_s + mode->vtotal/2;
819 vwin2_line_e = vwin2_line_s + mode->vdisplay/2;
820 vs2_pix_s = vs2_pix_e = hs_pix_s + mode->htotal/2;
821 vs2_line_s = vs1_line_s + mode->vtotal/2 ;
822 vs2_line_e = vs2_line_s +
823 (mode->vsync_end - mode->vsync_start)/2;
826 div = 148500 / mode->clock;
827 if (div != 0) {
828 div--;
829 if (div > 3)
830 div = 3;
833 /* mute the audio FIFO: */
834 reg_set(encoder, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
836 /* set HDMI HDCP mode off: */
837 reg_set(encoder, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS);
838 reg_clear(encoder, REG_TX33, TX33_HDMI);
840 reg_write(encoder, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(0));
841 /* no pre-filter or interpolator: */
842 reg_write(encoder, REG_HVF_CNTRL_0, HVF_CNTRL_0_PREFIL(0) |
843 HVF_CNTRL_0_INTPOL(0));
844 reg_write(encoder, REG_VIP_CNTRL_5, VIP_CNTRL_5_SP_CNT(0));
845 reg_write(encoder, REG_VIP_CNTRL_4, VIP_CNTRL_4_BLANKIT(0) |
846 VIP_CNTRL_4_BLC(0));
847 reg_clear(encoder, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_CCIR);
849 reg_clear(encoder, REG_PLL_SERIAL_1, PLL_SERIAL_1_SRL_MAN_IZ);
850 reg_clear(encoder, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_DE);
851 reg_write(encoder, REG_SERIALIZER, 0);
852 reg_write(encoder, REG_HVF_CNTRL_1, HVF_CNTRL_1_VQR(0));
854 /* TODO enable pixel repeat for pixel rates less than 25Msamp/s */
855 rep = 0;
856 reg_write(encoder, REG_RPT_CNTRL, 0);
857 reg_write(encoder, REG_SEL_CLK, SEL_CLK_SEL_VRF_CLK(0) |
858 SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
860 reg_write(encoder, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(div) |
861 PLL_SERIAL_2_SRL_PR(rep));
863 /* set color matrix bypass flag: */
864 reg_set(encoder, REG_MAT_CONTRL, MAT_CONTRL_MAT_BP);
866 /* set BIAS tmds value: */
867 reg_write(encoder, REG_ANA_GENERAL, 0x09);
869 reg_clear(encoder, REG_TBG_CNTRL_0, TBG_CNTRL_0_SYNC_MTHD);
872 * Sync on rising HSYNC/VSYNC
874 reg_write(encoder, REG_VIP_CNTRL_3, 0);
875 reg_set(encoder, REG_VIP_CNTRL_3, VIP_CNTRL_3_SYNC_HS);
878 * TDA19988 requires high-active sync at input stage,
879 * so invert low-active sync provided by master encoder here
881 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
882 reg_set(encoder, REG_VIP_CNTRL_3, VIP_CNTRL_3_H_TGL);
883 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
884 reg_set(encoder, REG_VIP_CNTRL_3, VIP_CNTRL_3_V_TGL);
887 * Always generate sync polarity relative to input sync and
888 * revert input stage toggled sync at output stage
890 reg = TBG_CNTRL_1_TGL_EN;
891 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
892 reg |= TBG_CNTRL_1_H_TGL;
893 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
894 reg |= TBG_CNTRL_1_V_TGL;
895 reg_write(encoder, REG_TBG_CNTRL_1, reg);
897 reg_write(encoder, REG_VIDFORMAT, 0x00);
898 reg_write16(encoder, REG_REFPIX_MSB, ref_pix);
899 reg_write16(encoder, REG_REFLINE_MSB, ref_line);
900 reg_write16(encoder, REG_NPIX_MSB, n_pix);
901 reg_write16(encoder, REG_NLINE_MSB, n_line);
902 reg_write16(encoder, REG_VS_LINE_STRT_1_MSB, vs1_line_s);
903 reg_write16(encoder, REG_VS_PIX_STRT_1_MSB, vs1_pix_s);
904 reg_write16(encoder, REG_VS_LINE_END_1_MSB, vs1_line_e);
905 reg_write16(encoder, REG_VS_PIX_END_1_MSB, vs1_pix_e);
906 reg_write16(encoder, REG_VS_LINE_STRT_2_MSB, vs2_line_s);
907 reg_write16(encoder, REG_VS_PIX_STRT_2_MSB, vs2_pix_s);
908 reg_write16(encoder, REG_VS_LINE_END_2_MSB, vs2_line_e);
909 reg_write16(encoder, REG_VS_PIX_END_2_MSB, vs2_pix_e);
910 reg_write16(encoder, REG_HS_PIX_START_MSB, hs_pix_s);
911 reg_write16(encoder, REG_HS_PIX_STOP_MSB, hs_pix_e);
912 reg_write16(encoder, REG_VWIN_START_1_MSB, vwin1_line_s);
913 reg_write16(encoder, REG_VWIN_END_1_MSB, vwin1_line_e);
914 reg_write16(encoder, REG_VWIN_START_2_MSB, vwin2_line_s);
915 reg_write16(encoder, REG_VWIN_END_2_MSB, vwin2_line_e);
916 reg_write16(encoder, REG_DE_START_MSB, de_pix_s);
917 reg_write16(encoder, REG_DE_STOP_MSB, de_pix_e);
919 if (priv->rev == TDA19988) {
920 /* let incoming pixels fill the active space (if any) */
921 reg_write(encoder, REG_ENABLE_SPACE, 0x00);
924 /* must be last register set: */
925 reg_clear(encoder, REG_TBG_CNTRL_0, TBG_CNTRL_0_SYNC_ONCE);
927 /* Only setup the info frames if the sink is HDMI */
928 if (priv->is_hdmi_sink) {
929 /* We need to turn HDMI HDCP stuff on to get audio through */
930 reg_clear(encoder, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS);
931 reg_write(encoder, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(1));
932 reg_set(encoder, REG_TX33, TX33_HDMI);
934 tda998x_write_avi(encoder, adjusted_mode);
936 if (priv->params.audio_cfg)
937 tda998x_configure_audio(encoder, adjusted_mode,
938 &priv->params);
942 static enum drm_connector_status
943 tda998x_encoder_detect(struct drm_encoder *encoder,
944 struct drm_connector *connector)
946 uint8_t val = cec_read(encoder, REG_CEC_RXSHPDLEV);
947 return (val & CEC_RXSHPDLEV_HPD) ? connector_status_connected :
948 connector_status_disconnected;
951 static int
952 read_edid_block(struct drm_encoder *encoder, uint8_t *buf, int blk)
954 uint8_t offset, segptr;
955 int ret, i;
957 /* enable EDID read irq: */
958 reg_set(encoder, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
960 offset = (blk & 1) ? 128 : 0;
961 segptr = blk / 2;
963 reg_write(encoder, REG_DDC_ADDR, 0xa0);
964 reg_write(encoder, REG_DDC_OFFS, offset);
965 reg_write(encoder, REG_DDC_SEGM_ADDR, 0x60);
966 reg_write(encoder, REG_DDC_SEGM, segptr);
968 /* enable reading EDID: */
969 reg_write(encoder, REG_EDID_CTRL, 0x1);
971 /* flag must be cleared by sw: */
972 reg_write(encoder, REG_EDID_CTRL, 0x0);
974 /* wait for block read to complete: */
975 for (i = 100; i > 0; i--) {
976 uint8_t val = reg_read(encoder, REG_INT_FLAGS_2);
977 if (val & INT_FLAGS_2_EDID_BLK_RD)
978 break;
979 msleep(1);
982 if (i == 0)
983 return -ETIMEDOUT;
985 ret = reg_read_range(encoder, REG_EDID_DATA_0, buf, EDID_LENGTH);
986 if (ret != EDID_LENGTH) {
987 dev_err(encoder->dev->dev, "failed to read edid block %d: %d",
988 blk, ret);
989 return ret;
992 reg_clear(encoder, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
994 return 0;
997 static uint8_t *
998 do_get_edid(struct drm_encoder *encoder)
1000 struct tda998x_priv *priv = to_tda998x_priv(encoder);
1001 int j = 0, valid_extensions = 0;
1002 uint8_t *block, *new;
1003 bool print_bad_edid = drm_debug & DRM_UT_KMS;
1005 if ((block = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
1006 return NULL;
1008 if (priv->rev == TDA19988)
1009 reg_clear(encoder, REG_TX4, TX4_PD_RAM);
1011 /* base block fetch */
1012 if (read_edid_block(encoder, block, 0))
1013 goto fail;
1015 if (!drm_edid_block_valid(block, 0, print_bad_edid))
1016 goto fail;
1018 /* if there's no extensions, we're done */
1019 if (block[0x7e] == 0)
1020 goto done;
1022 new = krealloc(block, (block[0x7e] + 1) * EDID_LENGTH, GFP_KERNEL);
1023 if (!new)
1024 goto fail;
1025 block = new;
1027 for (j = 1; j <= block[0x7e]; j++) {
1028 uint8_t *ext_block = block + (valid_extensions + 1) * EDID_LENGTH;
1029 if (read_edid_block(encoder, ext_block, j))
1030 goto fail;
1032 if (!drm_edid_block_valid(ext_block, j, print_bad_edid))
1033 goto fail;
1035 valid_extensions++;
1038 if (valid_extensions != block[0x7e]) {
1039 block[EDID_LENGTH-1] += block[0x7e] - valid_extensions;
1040 block[0x7e] = valid_extensions;
1041 new = krealloc(block, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1042 if (!new)
1043 goto fail;
1044 block = new;
1047 done:
1048 if (priv->rev == TDA19988)
1049 reg_set(encoder, REG_TX4, TX4_PD_RAM);
1051 return block;
1053 fail:
1054 if (priv->rev == TDA19988)
1055 reg_set(encoder, REG_TX4, TX4_PD_RAM);
1056 dev_warn(encoder->dev->dev, "failed to read EDID\n");
1057 kfree(block);
1058 return NULL;
1061 static int
1062 tda998x_encoder_get_modes(struct drm_encoder *encoder,
1063 struct drm_connector *connector)
1065 struct tda998x_priv *priv = to_tda998x_priv(encoder);
1066 struct edid *edid = (struct edid *)do_get_edid(encoder);
1067 int n = 0;
1069 if (edid) {
1070 drm_mode_connector_update_edid_property(connector, edid);
1071 n = drm_add_edid_modes(connector, edid);
1072 priv->is_hdmi_sink = drm_detect_hdmi_monitor(edid);
1073 kfree(edid);
1076 return n;
1079 static int
1080 tda998x_encoder_create_resources(struct drm_encoder *encoder,
1081 struct drm_connector *connector)
1083 DBG("");
1084 return 0;
1087 static int
1088 tda998x_encoder_set_property(struct drm_encoder *encoder,
1089 struct drm_connector *connector,
1090 struct drm_property *property,
1091 uint64_t val)
1093 DBG("");
1094 return 0;
1097 static void
1098 tda998x_encoder_destroy(struct drm_encoder *encoder)
1100 struct tda998x_priv *priv = to_tda998x_priv(encoder);
1101 drm_i2c_encoder_destroy(encoder);
1102 if (priv->cec)
1103 i2c_unregister_device(priv->cec);
1104 kfree(priv);
1107 static struct drm_encoder_slave_funcs tda998x_encoder_funcs = {
1108 .set_config = tda998x_encoder_set_config,
1109 .destroy = tda998x_encoder_destroy,
1110 .dpms = tda998x_encoder_dpms,
1111 .save = tda998x_encoder_save,
1112 .restore = tda998x_encoder_restore,
1113 .mode_fixup = tda998x_encoder_mode_fixup,
1114 .mode_valid = tda998x_encoder_mode_valid,
1115 .mode_set = tda998x_encoder_mode_set,
1116 .detect = tda998x_encoder_detect,
1117 .get_modes = tda998x_encoder_get_modes,
1118 .create_resources = tda998x_encoder_create_resources,
1119 .set_property = tda998x_encoder_set_property,
1122 /* I2C driver functions */
1124 static int
1125 tda998x_probe(struct i2c_client *client, const struct i2c_device_id *id)
1127 return 0;
1130 static int
1131 tda998x_remove(struct i2c_client *client)
1133 return 0;
1136 static int
1137 tda998x_encoder_init(struct i2c_client *client,
1138 struct drm_device *dev,
1139 struct drm_encoder_slave *encoder_slave)
1141 struct drm_encoder *encoder = &encoder_slave->base;
1142 struct tda998x_priv *priv;
1144 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1145 if (!priv)
1146 return -ENOMEM;
1148 priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(2) | VIP_CNTRL_0_SWAP_B(3);
1149 priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(0) | VIP_CNTRL_1_SWAP_D(1);
1150 priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(4) | VIP_CNTRL_2_SWAP_F(5);
1152 priv->current_page = 0xff;
1153 priv->cec = i2c_new_dummy(client->adapter, 0x34);
1154 if (!priv->cec)
1155 return -ENODEV;
1156 priv->dpms = DRM_MODE_DPMS_OFF;
1158 encoder_slave->slave_priv = priv;
1159 encoder_slave->slave_funcs = &tda998x_encoder_funcs;
1161 /* wake up the device: */
1162 cec_write(encoder, REG_CEC_ENAMODS,
1163 CEC_ENAMODS_EN_RXSENS | CEC_ENAMODS_EN_HDMI);
1165 tda998x_reset(encoder);
1167 /* read version: */
1168 priv->rev = reg_read(encoder, REG_VERSION_LSB) |
1169 reg_read(encoder, REG_VERSION_MSB) << 8;
1171 /* mask off feature bits: */
1172 priv->rev &= ~0x30; /* not-hdcp and not-scalar bit */
1174 switch (priv->rev) {
1175 case TDA9989N2: dev_info(dev->dev, "found TDA9989 n2"); break;
1176 case TDA19989: dev_info(dev->dev, "found TDA19989"); break;
1177 case TDA19989N2: dev_info(dev->dev, "found TDA19989 n2"); break;
1178 case TDA19988: dev_info(dev->dev, "found TDA19988"); break;
1179 default:
1180 DBG("found unsupported device: %04x", priv->rev);
1181 goto fail;
1184 /* after reset, enable DDC: */
1185 reg_write(encoder, REG_DDC_DISABLE, 0x00);
1187 /* set clock on DDC channel: */
1188 reg_write(encoder, REG_TX3, 39);
1190 /* if necessary, disable multi-master: */
1191 if (priv->rev == TDA19989)
1192 reg_set(encoder, REG_I2C_MASTER, I2C_MASTER_DIS_MM);
1194 cec_write(encoder, REG_CEC_FRO_IM_CLK_CTRL,
1195 CEC_FRO_IM_CLK_CTRL_GHOST_DIS | CEC_FRO_IM_CLK_CTRL_IMCLK_SEL);
1197 return 0;
1199 fail:
1200 /* if encoder_init fails, the encoder slave is never registered,
1201 * so cleanup here:
1203 if (priv->cec)
1204 i2c_unregister_device(priv->cec);
1205 kfree(priv);
1206 encoder_slave->slave_priv = NULL;
1207 encoder_slave->slave_funcs = NULL;
1208 return -ENXIO;
1211 static struct i2c_device_id tda998x_ids[] = {
1212 { "tda998x", 0 },
1215 MODULE_DEVICE_TABLE(i2c, tda998x_ids);
1217 static struct drm_i2c_encoder_driver tda998x_driver = {
1218 .i2c_driver = {
1219 .probe = tda998x_probe,
1220 .remove = tda998x_remove,
1221 .driver = {
1222 .name = "tda998x",
1224 .id_table = tda998x_ids,
1226 .encoder_init = tda998x_encoder_init,
1229 /* Module initialization */
1231 static int __init
1232 tda998x_init(void)
1234 DBG("");
1235 return drm_i2c_encoder_register(THIS_MODULE, &tda998x_driver);
1238 static void __exit
1239 tda998x_exit(void)
1241 DBG("");
1242 drm_i2c_encoder_unregister(&tda998x_driver);
1245 MODULE_AUTHOR("Rob Clark <robdclark@gmail.com");
1246 MODULE_DESCRIPTION("NXP Semiconductors TDA998X HDMI Encoder");
1247 MODULE_LICENSE("GPL");
1249 module_init(tda998x_init);
1250 module_exit(tda998x_exit);