PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / i915_sysfs.c
blob33bcae314bf86ea5f7a2deafb80625d0382634af
1 /*
2 * Copyright © 2012 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
28 #include <linux/device.h>
29 #include <linux/module.h>
30 #include <linux/stat.h>
31 #include <linux/sysfs.h>
32 #include "intel_drv.h"
33 #include "i915_drv.h"
35 #define dev_to_drm_minor(d) dev_get_drvdata((d))
37 #ifdef CONFIG_PM
38 static u32 calc_residency(struct drm_device *dev, const u32 reg)
40 struct drm_i915_private *dev_priv = dev->dev_private;
41 u64 raw_time; /* 32b value may overflow during fixed point math */
42 u64 units = 128ULL, div = 100000ULL, bias = 100ULL;
43 u32 ret;
45 if (!intel_enable_rc6(dev))
46 return 0;
48 intel_runtime_pm_get(dev_priv);
50 /* On VLV, residency time is in CZ units rather than 1.28us */
51 if (IS_VALLEYVIEW(dev)) {
52 u32 clkctl2;
54 clkctl2 = I915_READ(VLV_CLK_CTL2) >>
55 CLK_CTL2_CZCOUNT_30NS_SHIFT;
56 if (!clkctl2) {
57 WARN(!clkctl2, "bogus CZ count value");
58 ret = 0;
59 goto out;
61 units = DIV_ROUND_UP_ULL(30ULL * bias, (u64)clkctl2);
62 if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
63 units <<= 8;
65 div = 1000000ULL * bias;
68 raw_time = I915_READ(reg) * units;
69 ret = DIV_ROUND_UP_ULL(raw_time, div);
71 out:
72 intel_runtime_pm_put(dev_priv);
73 return ret;
76 static ssize_t
77 show_rc6_mask(struct device *kdev, struct device_attribute *attr, char *buf)
79 struct drm_minor *dminor = dev_to_drm_minor(kdev);
80 return snprintf(buf, PAGE_SIZE, "%x\n", intel_enable_rc6(dminor->dev));
83 static ssize_t
84 show_rc6_ms(struct device *kdev, struct device_attribute *attr, char *buf)
86 struct drm_minor *dminor = dev_get_drvdata(kdev);
87 u32 rc6_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6);
88 return snprintf(buf, PAGE_SIZE, "%u\n", rc6_residency);
91 static ssize_t
92 show_rc6p_ms(struct device *kdev, struct device_attribute *attr, char *buf)
94 struct drm_minor *dminor = dev_to_drm_minor(kdev);
95 u32 rc6p_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6p);
96 if (IS_VALLEYVIEW(dminor->dev))
97 rc6p_residency = 0;
98 return snprintf(buf, PAGE_SIZE, "%u\n", rc6p_residency);
101 static ssize_t
102 show_rc6pp_ms(struct device *kdev, struct device_attribute *attr, char *buf)
104 struct drm_minor *dminor = dev_to_drm_minor(kdev);
105 u32 rc6pp_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6pp);
106 if (IS_VALLEYVIEW(dminor->dev))
107 rc6pp_residency = 0;
108 return snprintf(buf, PAGE_SIZE, "%u\n", rc6pp_residency);
111 static DEVICE_ATTR(rc6_enable, S_IRUGO, show_rc6_mask, NULL);
112 static DEVICE_ATTR(rc6_residency_ms, S_IRUGO, show_rc6_ms, NULL);
113 static DEVICE_ATTR(rc6p_residency_ms, S_IRUGO, show_rc6p_ms, NULL);
114 static DEVICE_ATTR(rc6pp_residency_ms, S_IRUGO, show_rc6pp_ms, NULL);
116 static struct attribute *rc6_attrs[] = {
117 &dev_attr_rc6_enable.attr,
118 &dev_attr_rc6_residency_ms.attr,
119 &dev_attr_rc6p_residency_ms.attr,
120 &dev_attr_rc6pp_residency_ms.attr,
121 NULL
124 static struct attribute_group rc6_attr_group = {
125 .name = power_group_name,
126 .attrs = rc6_attrs
128 #endif
130 static int l3_access_valid(struct drm_device *dev, loff_t offset)
132 if (!HAS_L3_DPF(dev))
133 return -EPERM;
135 if (offset % 4 != 0)
136 return -EINVAL;
138 if (offset >= GEN7_L3LOG_SIZE)
139 return -ENXIO;
141 return 0;
144 static ssize_t
145 i915_l3_read(struct file *filp, struct kobject *kobj,
146 struct bin_attribute *attr, char *buf,
147 loff_t offset, size_t count)
149 struct device *dev = container_of(kobj, struct device, kobj);
150 struct drm_minor *dminor = dev_to_drm_minor(dev);
151 struct drm_device *drm_dev = dminor->dev;
152 struct drm_i915_private *dev_priv = drm_dev->dev_private;
153 int slice = (int)(uintptr_t)attr->private;
154 int ret;
156 count = round_down(count, 4);
158 ret = l3_access_valid(drm_dev, offset);
159 if (ret)
160 return ret;
162 count = min_t(size_t, GEN7_L3LOG_SIZE - offset, count);
164 ret = i915_mutex_lock_interruptible(drm_dev);
165 if (ret)
166 return ret;
168 if (dev_priv->l3_parity.remap_info[slice])
169 memcpy(buf,
170 dev_priv->l3_parity.remap_info[slice] + (offset/4),
171 count);
172 else
173 memset(buf, 0, count);
175 mutex_unlock(&drm_dev->struct_mutex);
177 return count;
180 static ssize_t
181 i915_l3_write(struct file *filp, struct kobject *kobj,
182 struct bin_attribute *attr, char *buf,
183 loff_t offset, size_t count)
185 struct device *dev = container_of(kobj, struct device, kobj);
186 struct drm_minor *dminor = dev_to_drm_minor(dev);
187 struct drm_device *drm_dev = dminor->dev;
188 struct drm_i915_private *dev_priv = drm_dev->dev_private;
189 struct i915_hw_context *ctx;
190 u32 *temp = NULL; /* Just here to make handling failures easy */
191 int slice = (int)(uintptr_t)attr->private;
192 int ret;
194 if (!HAS_HW_CONTEXTS(drm_dev))
195 return -ENXIO;
197 ret = l3_access_valid(drm_dev, offset);
198 if (ret)
199 return ret;
201 ret = i915_mutex_lock_interruptible(drm_dev);
202 if (ret)
203 return ret;
205 if (!dev_priv->l3_parity.remap_info[slice]) {
206 temp = kzalloc(GEN7_L3LOG_SIZE, GFP_KERNEL);
207 if (!temp) {
208 mutex_unlock(&drm_dev->struct_mutex);
209 return -ENOMEM;
213 ret = i915_gpu_idle(drm_dev);
214 if (ret) {
215 kfree(temp);
216 mutex_unlock(&drm_dev->struct_mutex);
217 return ret;
220 /* TODO: Ideally we really want a GPU reset here to make sure errors
221 * aren't propagated. Since I cannot find a stable way to reset the GPU
222 * at this point it is left as a TODO.
224 if (temp)
225 dev_priv->l3_parity.remap_info[slice] = temp;
227 memcpy(dev_priv->l3_parity.remap_info[slice] + (offset/4), buf, count);
229 /* NB: We defer the remapping until we switch to the context */
230 list_for_each_entry(ctx, &dev_priv->context_list, link)
231 ctx->remap_slice |= (1<<slice);
233 mutex_unlock(&drm_dev->struct_mutex);
235 return count;
238 static struct bin_attribute dpf_attrs = {
239 .attr = {.name = "l3_parity", .mode = (S_IRUSR | S_IWUSR)},
240 .size = GEN7_L3LOG_SIZE,
241 .read = i915_l3_read,
242 .write = i915_l3_write,
243 .mmap = NULL,
244 .private = (void *)0
247 static struct bin_attribute dpf_attrs_1 = {
248 .attr = {.name = "l3_parity_slice_1", .mode = (S_IRUSR | S_IWUSR)},
249 .size = GEN7_L3LOG_SIZE,
250 .read = i915_l3_read,
251 .write = i915_l3_write,
252 .mmap = NULL,
253 .private = (void *)1
256 static ssize_t gt_cur_freq_mhz_show(struct device *kdev,
257 struct device_attribute *attr, char *buf)
259 struct drm_minor *minor = dev_to_drm_minor(kdev);
260 struct drm_device *dev = minor->dev;
261 struct drm_i915_private *dev_priv = dev->dev_private;
262 int ret;
264 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
266 mutex_lock(&dev_priv->rps.hw_lock);
267 if (IS_VALLEYVIEW(dev_priv->dev)) {
268 u32 freq;
269 freq = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
270 ret = vlv_gpu_freq(dev_priv, (freq >> 8) & 0xff);
271 } else {
272 ret = dev_priv->rps.cur_delay * GT_FREQUENCY_MULTIPLIER;
274 mutex_unlock(&dev_priv->rps.hw_lock);
276 return snprintf(buf, PAGE_SIZE, "%d\n", ret);
279 static ssize_t vlv_rpe_freq_mhz_show(struct device *kdev,
280 struct device_attribute *attr, char *buf)
282 struct drm_minor *minor = dev_to_drm_minor(kdev);
283 struct drm_device *dev = minor->dev;
284 struct drm_i915_private *dev_priv = dev->dev_private;
286 return snprintf(buf, PAGE_SIZE, "%d\n",
287 vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay));
290 static ssize_t gt_max_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
292 struct drm_minor *minor = dev_to_drm_minor(kdev);
293 struct drm_device *dev = minor->dev;
294 struct drm_i915_private *dev_priv = dev->dev_private;
295 int ret;
297 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
299 mutex_lock(&dev_priv->rps.hw_lock);
300 if (IS_VALLEYVIEW(dev_priv->dev))
301 ret = vlv_gpu_freq(dev_priv, dev_priv->rps.max_delay);
302 else
303 ret = dev_priv->rps.max_delay * GT_FREQUENCY_MULTIPLIER;
304 mutex_unlock(&dev_priv->rps.hw_lock);
306 return snprintf(buf, PAGE_SIZE, "%d\n", ret);
309 static ssize_t gt_max_freq_mhz_store(struct device *kdev,
310 struct device_attribute *attr,
311 const char *buf, size_t count)
313 struct drm_minor *minor = dev_to_drm_minor(kdev);
314 struct drm_device *dev = minor->dev;
315 struct drm_i915_private *dev_priv = dev->dev_private;
316 u32 val, rp_state_cap, hw_max, hw_min, non_oc_max;
317 ssize_t ret;
319 ret = kstrtou32(buf, 0, &val);
320 if (ret)
321 return ret;
323 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
325 mutex_lock(&dev_priv->rps.hw_lock);
327 if (IS_VALLEYVIEW(dev_priv->dev)) {
328 val = vlv_freq_opcode(dev_priv, val);
330 hw_max = valleyview_rps_max_freq(dev_priv);
331 hw_min = valleyview_rps_min_freq(dev_priv);
332 non_oc_max = hw_max;
333 } else {
334 val /= GT_FREQUENCY_MULTIPLIER;
336 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
337 hw_max = dev_priv->rps.hw_max;
338 non_oc_max = (rp_state_cap & 0xff);
339 hw_min = ((rp_state_cap & 0xff0000) >> 16);
342 if (val < hw_min || val > hw_max ||
343 val < dev_priv->rps.min_delay) {
344 mutex_unlock(&dev_priv->rps.hw_lock);
345 return -EINVAL;
348 if (val > non_oc_max)
349 DRM_DEBUG("User requested overclocking to %d\n",
350 val * GT_FREQUENCY_MULTIPLIER);
352 dev_priv->rps.max_delay = val;
354 if (dev_priv->rps.cur_delay > val) {
355 if (IS_VALLEYVIEW(dev))
356 valleyview_set_rps(dev, val);
357 else
358 gen6_set_rps(dev, val);
361 mutex_unlock(&dev_priv->rps.hw_lock);
363 return count;
366 static ssize_t gt_min_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
368 struct drm_minor *minor = dev_to_drm_minor(kdev);
369 struct drm_device *dev = minor->dev;
370 struct drm_i915_private *dev_priv = dev->dev_private;
371 int ret;
373 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
375 mutex_lock(&dev_priv->rps.hw_lock);
376 if (IS_VALLEYVIEW(dev_priv->dev))
377 ret = vlv_gpu_freq(dev_priv, dev_priv->rps.min_delay);
378 else
379 ret = dev_priv->rps.min_delay * GT_FREQUENCY_MULTIPLIER;
380 mutex_unlock(&dev_priv->rps.hw_lock);
382 return snprintf(buf, PAGE_SIZE, "%d\n", ret);
385 static ssize_t gt_min_freq_mhz_store(struct device *kdev,
386 struct device_attribute *attr,
387 const char *buf, size_t count)
389 struct drm_minor *minor = dev_to_drm_minor(kdev);
390 struct drm_device *dev = minor->dev;
391 struct drm_i915_private *dev_priv = dev->dev_private;
392 u32 val, rp_state_cap, hw_max, hw_min;
393 ssize_t ret;
395 ret = kstrtou32(buf, 0, &val);
396 if (ret)
397 return ret;
399 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
401 mutex_lock(&dev_priv->rps.hw_lock);
403 if (IS_VALLEYVIEW(dev)) {
404 val = vlv_freq_opcode(dev_priv, val);
406 hw_max = valleyview_rps_max_freq(dev_priv);
407 hw_min = valleyview_rps_min_freq(dev_priv);
408 } else {
409 val /= GT_FREQUENCY_MULTIPLIER;
411 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
412 hw_max = dev_priv->rps.hw_max;
413 hw_min = ((rp_state_cap & 0xff0000) >> 16);
416 if (val < hw_min || val > hw_max || val > dev_priv->rps.max_delay) {
417 mutex_unlock(&dev_priv->rps.hw_lock);
418 return -EINVAL;
421 dev_priv->rps.min_delay = val;
423 if (dev_priv->rps.cur_delay < val) {
424 if (IS_VALLEYVIEW(dev))
425 valleyview_set_rps(dev, val);
426 else
427 gen6_set_rps(dev, val);
430 mutex_unlock(&dev_priv->rps.hw_lock);
432 return count;
436 static DEVICE_ATTR(gt_cur_freq_mhz, S_IRUGO, gt_cur_freq_mhz_show, NULL);
437 static DEVICE_ATTR(gt_max_freq_mhz, S_IRUGO | S_IWUSR, gt_max_freq_mhz_show, gt_max_freq_mhz_store);
438 static DEVICE_ATTR(gt_min_freq_mhz, S_IRUGO | S_IWUSR, gt_min_freq_mhz_show, gt_min_freq_mhz_store);
440 static DEVICE_ATTR(vlv_rpe_freq_mhz, S_IRUGO, vlv_rpe_freq_mhz_show, NULL);
442 static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf);
443 static DEVICE_ATTR(gt_RP0_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
444 static DEVICE_ATTR(gt_RP1_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
445 static DEVICE_ATTR(gt_RPn_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
447 /* For now we have a static number of RP states */
448 static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
450 struct drm_minor *minor = dev_to_drm_minor(kdev);
451 struct drm_device *dev = minor->dev;
452 struct drm_i915_private *dev_priv = dev->dev_private;
453 u32 val, rp_state_cap;
454 ssize_t ret;
456 ret = mutex_lock_interruptible(&dev->struct_mutex);
457 if (ret)
458 return ret;
459 intel_runtime_pm_get(dev_priv);
460 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
461 intel_runtime_pm_put(dev_priv);
462 mutex_unlock(&dev->struct_mutex);
464 if (attr == &dev_attr_gt_RP0_freq_mhz) {
465 val = ((rp_state_cap & 0x0000ff) >> 0) * GT_FREQUENCY_MULTIPLIER;
466 } else if (attr == &dev_attr_gt_RP1_freq_mhz) {
467 val = ((rp_state_cap & 0x00ff00) >> 8) * GT_FREQUENCY_MULTIPLIER;
468 } else if (attr == &dev_attr_gt_RPn_freq_mhz) {
469 val = ((rp_state_cap & 0xff0000) >> 16) * GT_FREQUENCY_MULTIPLIER;
470 } else {
471 BUG();
473 return snprintf(buf, PAGE_SIZE, "%d\n", val);
476 static const struct attribute *gen6_attrs[] = {
477 &dev_attr_gt_cur_freq_mhz.attr,
478 &dev_attr_gt_max_freq_mhz.attr,
479 &dev_attr_gt_min_freq_mhz.attr,
480 &dev_attr_gt_RP0_freq_mhz.attr,
481 &dev_attr_gt_RP1_freq_mhz.attr,
482 &dev_attr_gt_RPn_freq_mhz.attr,
483 NULL,
486 static const struct attribute *vlv_attrs[] = {
487 &dev_attr_gt_cur_freq_mhz.attr,
488 &dev_attr_gt_max_freq_mhz.attr,
489 &dev_attr_gt_min_freq_mhz.attr,
490 &dev_attr_vlv_rpe_freq_mhz.attr,
491 NULL,
494 static ssize_t error_state_read(struct file *filp, struct kobject *kobj,
495 struct bin_attribute *attr, char *buf,
496 loff_t off, size_t count)
499 struct device *kdev = container_of(kobj, struct device, kobj);
500 struct drm_minor *minor = dev_to_drm_minor(kdev);
501 struct drm_device *dev = minor->dev;
502 struct i915_error_state_file_priv error_priv;
503 struct drm_i915_error_state_buf error_str;
504 ssize_t ret_count = 0;
505 int ret;
507 memset(&error_priv, 0, sizeof(error_priv));
509 ret = i915_error_state_buf_init(&error_str, count, off);
510 if (ret)
511 return ret;
513 error_priv.dev = dev;
514 i915_error_state_get(dev, &error_priv);
516 ret = i915_error_state_to_str(&error_str, &error_priv);
517 if (ret)
518 goto out;
520 ret_count = count < error_str.bytes ? count : error_str.bytes;
522 memcpy(buf, error_str.buf, ret_count);
523 out:
524 i915_error_state_put(&error_priv);
525 i915_error_state_buf_release(&error_str);
527 return ret ?: ret_count;
530 static ssize_t error_state_write(struct file *file, struct kobject *kobj,
531 struct bin_attribute *attr, char *buf,
532 loff_t off, size_t count)
534 struct device *kdev = container_of(kobj, struct device, kobj);
535 struct drm_minor *minor = dev_to_drm_minor(kdev);
536 struct drm_device *dev = minor->dev;
537 int ret;
539 DRM_DEBUG_DRIVER("Resetting error state\n");
541 ret = mutex_lock_interruptible(&dev->struct_mutex);
542 if (ret)
543 return ret;
545 i915_destroy_error_state(dev);
546 mutex_unlock(&dev->struct_mutex);
548 return count;
551 static struct bin_attribute error_state_attr = {
552 .attr.name = "error",
553 .attr.mode = S_IRUSR | S_IWUSR,
554 .size = 0,
555 .read = error_state_read,
556 .write = error_state_write,
559 void i915_setup_sysfs(struct drm_device *dev)
561 int ret;
563 #ifdef CONFIG_PM
564 if (INTEL_INFO(dev)->gen >= 6) {
565 ret = sysfs_merge_group(&dev->primary->kdev->kobj,
566 &rc6_attr_group);
567 if (ret)
568 DRM_ERROR("RC6 residency sysfs setup failed\n");
570 #endif
571 if (HAS_L3_DPF(dev)) {
572 ret = device_create_bin_file(dev->primary->kdev, &dpf_attrs);
573 if (ret)
574 DRM_ERROR("l3 parity sysfs setup failed\n");
576 if (NUM_L3_SLICES(dev) > 1) {
577 ret = device_create_bin_file(dev->primary->kdev,
578 &dpf_attrs_1);
579 if (ret)
580 DRM_ERROR("l3 parity slice 1 setup failed\n");
584 ret = 0;
585 if (IS_VALLEYVIEW(dev))
586 ret = sysfs_create_files(&dev->primary->kdev->kobj, vlv_attrs);
587 else if (INTEL_INFO(dev)->gen >= 6)
588 ret = sysfs_create_files(&dev->primary->kdev->kobj, gen6_attrs);
589 if (ret)
590 DRM_ERROR("RPS sysfs setup failed\n");
592 ret = sysfs_create_bin_file(&dev->primary->kdev->kobj,
593 &error_state_attr);
594 if (ret)
595 DRM_ERROR("error_state sysfs setup failed\n");
598 void i915_teardown_sysfs(struct drm_device *dev)
600 sysfs_remove_bin_file(&dev->primary->kdev->kobj, &error_state_attr);
601 if (IS_VALLEYVIEW(dev))
602 sysfs_remove_files(&dev->primary->kdev->kobj, vlv_attrs);
603 else
604 sysfs_remove_files(&dev->primary->kdev->kobj, gen6_attrs);
605 device_remove_bin_file(dev->primary->kdev, &dpf_attrs_1);
606 device_remove_bin_file(dev->primary->kdev, &dpf_attrs);
607 #ifdef CONFIG_PM
608 sysfs_unmerge_group(&dev->primary->kdev->kobj, &rc6_attr_group);
609 #endif