2 * Copyright © 2008-2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
36 static inline int ring_space(struct intel_ring_buffer
*ring
)
38 int space
= (ring
->head
& HEAD_ADDR
) - (ring
->tail
+ I915_RING_FREE_SPACE
);
44 void __intel_ring_advance(struct intel_ring_buffer
*ring
)
46 struct drm_i915_private
*dev_priv
= ring
->dev
->dev_private
;
48 ring
->tail
&= ring
->size
- 1;
49 if (dev_priv
->gpu_error
.stop_rings
& intel_ring_flag(ring
))
51 ring
->write_tail(ring
, ring
->tail
);
55 gen2_render_ring_flush(struct intel_ring_buffer
*ring
,
56 u32 invalidate_domains
,
63 if (((invalidate_domains
|flush_domains
) & I915_GEM_DOMAIN_RENDER
) == 0)
64 cmd
|= MI_NO_WRITE_FLUSH
;
66 if (invalidate_domains
& I915_GEM_DOMAIN_SAMPLER
)
69 ret
= intel_ring_begin(ring
, 2);
73 intel_ring_emit(ring
, cmd
);
74 intel_ring_emit(ring
, MI_NOOP
);
75 intel_ring_advance(ring
);
81 gen4_render_ring_flush(struct intel_ring_buffer
*ring
,
82 u32 invalidate_domains
,
85 struct drm_device
*dev
= ring
->dev
;
92 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
93 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
94 * also flushed at 2d versus 3d pipeline switches.
98 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
99 * MI_READ_FLUSH is set, and is always flushed on 965.
101 * I915_GEM_DOMAIN_COMMAND may not exist?
103 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
104 * invalidated when MI_EXE_FLUSH is set.
106 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
107 * invalidated with every MI_FLUSH.
111 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
112 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
113 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
114 * are flushed at any MI_FLUSH.
117 cmd
= MI_FLUSH
| MI_NO_WRITE_FLUSH
;
118 if ((invalidate_domains
|flush_domains
) & I915_GEM_DOMAIN_RENDER
)
119 cmd
&= ~MI_NO_WRITE_FLUSH
;
120 if (invalidate_domains
& I915_GEM_DOMAIN_INSTRUCTION
)
123 if (invalidate_domains
& I915_GEM_DOMAIN_COMMAND
&&
124 (IS_G4X(dev
) || IS_GEN5(dev
)))
125 cmd
|= MI_INVALIDATE_ISP
;
127 ret
= intel_ring_begin(ring
, 2);
131 intel_ring_emit(ring
, cmd
);
132 intel_ring_emit(ring
, MI_NOOP
);
133 intel_ring_advance(ring
);
139 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
140 * implementing two workarounds on gen6. From section 1.4.7.1
141 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
143 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
144 * produced by non-pipelined state commands), software needs to first
145 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
148 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
149 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
151 * And the workaround for these two requires this workaround first:
153 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
154 * BEFORE the pipe-control with a post-sync op and no write-cache
157 * And this last workaround is tricky because of the requirements on
158 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
161 * "1 of the following must also be set:
162 * - Render Target Cache Flush Enable ([12] of DW1)
163 * - Depth Cache Flush Enable ([0] of DW1)
164 * - Stall at Pixel Scoreboard ([1] of DW1)
165 * - Depth Stall ([13] of DW1)
166 * - Post-Sync Operation ([13] of DW1)
167 * - Notify Enable ([8] of DW1)"
169 * The cache flushes require the workaround flush that triggered this
170 * one, so we can't use it. Depth stall would trigger the same.
171 * Post-sync nonzero is what triggered this second workaround, so we
172 * can't use that one either. Notify enable is IRQs, which aren't
173 * really our business. That leaves only stall at scoreboard.
176 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer
*ring
)
178 u32 scratch_addr
= ring
->scratch
.gtt_offset
+ 128;
182 ret
= intel_ring_begin(ring
, 6);
186 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(5));
187 intel_ring_emit(ring
, PIPE_CONTROL_CS_STALL
|
188 PIPE_CONTROL_STALL_AT_SCOREBOARD
);
189 intel_ring_emit(ring
, scratch_addr
| PIPE_CONTROL_GLOBAL_GTT
); /* address */
190 intel_ring_emit(ring
, 0); /* low dword */
191 intel_ring_emit(ring
, 0); /* high dword */
192 intel_ring_emit(ring
, MI_NOOP
);
193 intel_ring_advance(ring
);
195 ret
= intel_ring_begin(ring
, 6);
199 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(5));
200 intel_ring_emit(ring
, PIPE_CONTROL_QW_WRITE
);
201 intel_ring_emit(ring
, scratch_addr
| PIPE_CONTROL_GLOBAL_GTT
); /* address */
202 intel_ring_emit(ring
, 0);
203 intel_ring_emit(ring
, 0);
204 intel_ring_emit(ring
, MI_NOOP
);
205 intel_ring_advance(ring
);
211 gen6_render_ring_flush(struct intel_ring_buffer
*ring
,
212 u32 invalidate_domains
, u32 flush_domains
)
215 u32 scratch_addr
= ring
->scratch
.gtt_offset
+ 128;
218 /* Force SNB workarounds for PIPE_CONTROL flushes */
219 ret
= intel_emit_post_sync_nonzero_flush(ring
);
223 /* Just flush everything. Experiments have shown that reducing the
224 * number of bits based on the write domains has little performance
228 flags
|= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH
;
229 flags
|= PIPE_CONTROL_DEPTH_CACHE_FLUSH
;
231 * Ensure that any following seqno writes only happen
232 * when the render cache is indeed flushed.
234 flags
|= PIPE_CONTROL_CS_STALL
;
236 if (invalidate_domains
) {
237 flags
|= PIPE_CONTROL_TLB_INVALIDATE
;
238 flags
|= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE
;
239 flags
|= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE
;
240 flags
|= PIPE_CONTROL_VF_CACHE_INVALIDATE
;
241 flags
|= PIPE_CONTROL_CONST_CACHE_INVALIDATE
;
242 flags
|= PIPE_CONTROL_STATE_CACHE_INVALIDATE
;
244 * TLB invalidate requires a post-sync write.
246 flags
|= PIPE_CONTROL_QW_WRITE
| PIPE_CONTROL_CS_STALL
;
249 ret
= intel_ring_begin(ring
, 4);
253 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(4));
254 intel_ring_emit(ring
, flags
);
255 intel_ring_emit(ring
, scratch_addr
| PIPE_CONTROL_GLOBAL_GTT
);
256 intel_ring_emit(ring
, 0);
257 intel_ring_advance(ring
);
263 gen7_render_ring_cs_stall_wa(struct intel_ring_buffer
*ring
)
267 ret
= intel_ring_begin(ring
, 4);
271 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(4));
272 intel_ring_emit(ring
, PIPE_CONTROL_CS_STALL
|
273 PIPE_CONTROL_STALL_AT_SCOREBOARD
);
274 intel_ring_emit(ring
, 0);
275 intel_ring_emit(ring
, 0);
276 intel_ring_advance(ring
);
281 static int gen7_ring_fbc_flush(struct intel_ring_buffer
*ring
, u32 value
)
285 if (!ring
->fbc_dirty
)
288 ret
= intel_ring_begin(ring
, 6);
291 /* WaFbcNukeOn3DBlt:ivb/hsw */
292 intel_ring_emit(ring
, MI_LOAD_REGISTER_IMM(1));
293 intel_ring_emit(ring
, MSG_FBC_REND_STATE
);
294 intel_ring_emit(ring
, value
);
295 intel_ring_emit(ring
, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT
);
296 intel_ring_emit(ring
, MSG_FBC_REND_STATE
);
297 intel_ring_emit(ring
, ring
->scratch
.gtt_offset
+ 256);
298 intel_ring_advance(ring
);
300 ring
->fbc_dirty
= false;
305 gen7_render_ring_flush(struct intel_ring_buffer
*ring
,
306 u32 invalidate_domains
, u32 flush_domains
)
309 u32 scratch_addr
= ring
->scratch
.gtt_offset
+ 128;
313 * Ensure that any following seqno writes only happen when the render
314 * cache is indeed flushed.
316 * Workaround: 4th PIPE_CONTROL command (except the ones with only
317 * read-cache invalidate bits set) must have the CS_STALL bit set. We
318 * don't try to be clever and just set it unconditionally.
320 flags
|= PIPE_CONTROL_CS_STALL
;
322 /* Just flush everything. Experiments have shown that reducing the
323 * number of bits based on the write domains has little performance
327 flags
|= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH
;
328 flags
|= PIPE_CONTROL_DEPTH_CACHE_FLUSH
;
330 if (invalidate_domains
) {
331 flags
|= PIPE_CONTROL_TLB_INVALIDATE
;
332 flags
|= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE
;
333 flags
|= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE
;
334 flags
|= PIPE_CONTROL_VF_CACHE_INVALIDATE
;
335 flags
|= PIPE_CONTROL_CONST_CACHE_INVALIDATE
;
336 flags
|= PIPE_CONTROL_STATE_CACHE_INVALIDATE
;
338 * TLB invalidate requires a post-sync write.
340 flags
|= PIPE_CONTROL_QW_WRITE
;
341 flags
|= PIPE_CONTROL_GLOBAL_GTT_IVB
;
343 /* Workaround: we must issue a pipe_control with CS-stall bit
344 * set before a pipe_control command that has the state cache
345 * invalidate bit set. */
346 gen7_render_ring_cs_stall_wa(ring
);
349 ret
= intel_ring_begin(ring
, 4);
353 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(4));
354 intel_ring_emit(ring
, flags
);
355 intel_ring_emit(ring
, scratch_addr
);
356 intel_ring_emit(ring
, 0);
357 intel_ring_advance(ring
);
359 if (!invalidate_domains
&& flush_domains
)
360 return gen7_ring_fbc_flush(ring
, FBC_REND_NUKE
);
366 gen8_render_ring_flush(struct intel_ring_buffer
*ring
,
367 u32 invalidate_domains
, u32 flush_domains
)
370 u32 scratch_addr
= ring
->scratch
.gtt_offset
+ 128;
373 flags
|= PIPE_CONTROL_CS_STALL
;
376 flags
|= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH
;
377 flags
|= PIPE_CONTROL_DEPTH_CACHE_FLUSH
;
379 if (invalidate_domains
) {
380 flags
|= PIPE_CONTROL_TLB_INVALIDATE
;
381 flags
|= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE
;
382 flags
|= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE
;
383 flags
|= PIPE_CONTROL_VF_CACHE_INVALIDATE
;
384 flags
|= PIPE_CONTROL_CONST_CACHE_INVALIDATE
;
385 flags
|= PIPE_CONTROL_STATE_CACHE_INVALIDATE
;
386 flags
|= PIPE_CONTROL_QW_WRITE
;
387 flags
|= PIPE_CONTROL_GLOBAL_GTT_IVB
;
390 ret
= intel_ring_begin(ring
, 6);
394 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(6));
395 intel_ring_emit(ring
, flags
);
396 intel_ring_emit(ring
, scratch_addr
);
397 intel_ring_emit(ring
, 0);
398 intel_ring_emit(ring
, 0);
399 intel_ring_emit(ring
, 0);
400 intel_ring_advance(ring
);
406 static void ring_write_tail(struct intel_ring_buffer
*ring
,
409 drm_i915_private_t
*dev_priv
= ring
->dev
->dev_private
;
410 I915_WRITE_TAIL(ring
, value
);
413 u32
intel_ring_get_active_head(struct intel_ring_buffer
*ring
)
415 drm_i915_private_t
*dev_priv
= ring
->dev
->dev_private
;
416 u32 acthd_reg
= INTEL_INFO(ring
->dev
)->gen
>= 4 ?
417 RING_ACTHD(ring
->mmio_base
) : ACTHD
;
419 return I915_READ(acthd_reg
);
422 static void ring_setup_phys_status_page(struct intel_ring_buffer
*ring
)
424 struct drm_i915_private
*dev_priv
= ring
->dev
->dev_private
;
427 addr
= dev_priv
->status_page_dmah
->busaddr
;
428 if (INTEL_INFO(ring
->dev
)->gen
>= 4)
429 addr
|= (dev_priv
->status_page_dmah
->busaddr
>> 28) & 0xf0;
430 I915_WRITE(HWS_PGA
, addr
);
433 static int init_ring_common(struct intel_ring_buffer
*ring
)
435 struct drm_device
*dev
= ring
->dev
;
436 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
437 struct drm_i915_gem_object
*obj
= ring
->obj
;
441 gen6_gt_force_wake_get(dev_priv
, FORCEWAKE_ALL
);
443 if (I915_NEED_GFX_HWS(dev
))
444 intel_ring_setup_status_page(ring
);
446 ring_setup_phys_status_page(ring
);
448 /* Stop the ring if it's running. */
449 I915_WRITE_CTL(ring
, 0);
450 I915_WRITE_HEAD(ring
, 0);
451 ring
->write_tail(ring
, 0);
453 head
= I915_READ_HEAD(ring
) & HEAD_ADDR
;
455 /* G45 ring initialization fails to reset head to zero */
457 DRM_DEBUG_KMS("%s head not reset to zero "
458 "ctl %08x head %08x tail %08x start %08x\n",
461 I915_READ_HEAD(ring
),
462 I915_READ_TAIL(ring
),
463 I915_READ_START(ring
));
465 I915_WRITE_HEAD(ring
, 0);
467 if (I915_READ_HEAD(ring
) & HEAD_ADDR
) {
468 DRM_ERROR("failed to set %s head to zero "
469 "ctl %08x head %08x tail %08x start %08x\n",
472 I915_READ_HEAD(ring
),
473 I915_READ_TAIL(ring
),
474 I915_READ_START(ring
));
478 /* Initialize the ring. This must happen _after_ we've cleared the ring
479 * registers with the above sequence (the readback of the HEAD registers
480 * also enforces ordering), otherwise the hw might lose the new ring
481 * register values. */
482 I915_WRITE_START(ring
, i915_gem_obj_ggtt_offset(obj
));
484 ((ring
->size
- PAGE_SIZE
) & RING_NR_PAGES
)
487 /* If the head is still not zero, the ring is dead */
488 if (wait_for((I915_READ_CTL(ring
) & RING_VALID
) != 0 &&
489 I915_READ_START(ring
) == i915_gem_obj_ggtt_offset(obj
) &&
490 (I915_READ_HEAD(ring
) & HEAD_ADDR
) == 0, 50)) {
491 DRM_ERROR("%s initialization failed "
492 "ctl %08x head %08x tail %08x start %08x\n",
495 I915_READ_HEAD(ring
),
496 I915_READ_TAIL(ring
),
497 I915_READ_START(ring
));
502 if (!drm_core_check_feature(ring
->dev
, DRIVER_MODESET
))
503 i915_kernel_lost_context(ring
->dev
);
505 ring
->head
= I915_READ_HEAD(ring
);
506 ring
->tail
= I915_READ_TAIL(ring
) & TAIL_ADDR
;
507 ring
->space
= ring_space(ring
);
508 ring
->last_retired_head
= -1;
511 memset(&ring
->hangcheck
, 0, sizeof(ring
->hangcheck
));
514 gen6_gt_force_wake_put(dev_priv
, FORCEWAKE_ALL
);
520 init_pipe_control(struct intel_ring_buffer
*ring
)
524 if (ring
->scratch
.obj
)
527 ring
->scratch
.obj
= i915_gem_alloc_object(ring
->dev
, 4096);
528 if (ring
->scratch
.obj
== NULL
) {
529 DRM_ERROR("Failed to allocate seqno page\n");
534 i915_gem_object_set_cache_level(ring
->scratch
.obj
, I915_CACHE_LLC
);
536 ret
= i915_gem_obj_ggtt_pin(ring
->scratch
.obj
, 4096, true, false);
540 ring
->scratch
.gtt_offset
= i915_gem_obj_ggtt_offset(ring
->scratch
.obj
);
541 ring
->scratch
.cpu_page
= kmap(sg_page(ring
->scratch
.obj
->pages
->sgl
));
542 if (ring
->scratch
.cpu_page
== NULL
) {
547 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
548 ring
->name
, ring
->scratch
.gtt_offset
);
552 i915_gem_object_unpin(ring
->scratch
.obj
);
554 drm_gem_object_unreference(&ring
->scratch
.obj
->base
);
559 static int init_render_ring(struct intel_ring_buffer
*ring
)
561 struct drm_device
*dev
= ring
->dev
;
562 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
563 int ret
= init_ring_common(ring
);
565 if (INTEL_INFO(dev
)->gen
> 3)
566 I915_WRITE(MI_MODE
, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH
));
568 /* We need to disable the AsyncFlip performance optimisations in order
569 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
570 * programmed to '1' on all products.
572 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
574 if (INTEL_INFO(dev
)->gen
>= 6)
575 I915_WRITE(MI_MODE
, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE
));
577 /* Required for the hardware to program scanline values for waiting */
578 if (INTEL_INFO(dev
)->gen
== 6)
580 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS
));
583 I915_WRITE(GFX_MODE_GEN7
,
584 _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS
) |
585 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE
));
587 if (INTEL_INFO(dev
)->gen
>= 5) {
588 ret
= init_pipe_control(ring
);
594 /* From the Sandybridge PRM, volume 1 part 3, page 24:
595 * "If this bit is set, STCunit will have LRA as replacement
596 * policy. [...] This bit must be reset. LRA replacement
597 * policy is not supported."
599 I915_WRITE(CACHE_MODE_0
,
600 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB
));
602 /* This is not explicitly set for GEN6, so read the register.
603 * see intel_ring_mi_set_context() for why we care.
604 * TODO: consider explicitly setting the bit for GEN5
606 ring
->itlb_before_ctx_switch
=
607 !!(I915_READ(GFX_MODE
) & GFX_TLB_INVALIDATE_ALWAYS
);
610 if (INTEL_INFO(dev
)->gen
>= 6)
611 I915_WRITE(INSTPM
, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING
));
614 I915_WRITE_IMR(ring
, ~GT_PARITY_ERROR(dev
));
619 static void render_ring_cleanup(struct intel_ring_buffer
*ring
)
621 struct drm_device
*dev
= ring
->dev
;
623 if (ring
->scratch
.obj
== NULL
)
626 if (INTEL_INFO(dev
)->gen
>= 5) {
627 kunmap(sg_page(ring
->scratch
.obj
->pages
->sgl
));
628 i915_gem_object_unpin(ring
->scratch
.obj
);
631 drm_gem_object_unreference(&ring
->scratch
.obj
->base
);
632 ring
->scratch
.obj
= NULL
;
636 update_mboxes(struct intel_ring_buffer
*ring
,
639 /* NB: In order to be able to do semaphore MBOX updates for varying number
640 * of rings, it's easiest if we round up each individual update to a
641 * multiple of 2 (since ring updates must always be a multiple of 2)
642 * even though the actual update only requires 3 dwords.
644 #define MBOX_UPDATE_DWORDS 4
645 intel_ring_emit(ring
, MI_LOAD_REGISTER_IMM(1));
646 intel_ring_emit(ring
, mmio_offset
);
647 intel_ring_emit(ring
, ring
->outstanding_lazy_seqno
);
648 intel_ring_emit(ring
, MI_NOOP
);
652 * gen6_add_request - Update the semaphore mailbox registers
654 * @ring - ring that is adding a request
655 * @seqno - return seqno stuck into the ring
657 * Update the mailbox registers in the *other* rings with the current seqno.
658 * This acts like a signal in the canonical semaphore.
661 gen6_add_request(struct intel_ring_buffer
*ring
)
663 struct drm_device
*dev
= ring
->dev
;
664 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
665 struct intel_ring_buffer
*useless
;
666 int i
, ret
, num_dwords
= 4;
668 if (i915_semaphore_is_enabled(dev
))
669 num_dwords
+= ((I915_NUM_RINGS
-1) * MBOX_UPDATE_DWORDS
);
670 #undef MBOX_UPDATE_DWORDS
672 ret
= intel_ring_begin(ring
, num_dwords
);
676 if (i915_semaphore_is_enabled(dev
)) {
677 for_each_ring(useless
, dev_priv
, i
) {
678 u32 mbox_reg
= ring
->signal_mbox
[i
];
679 if (mbox_reg
!= GEN6_NOSYNC
)
680 update_mboxes(ring
, mbox_reg
);
684 intel_ring_emit(ring
, MI_STORE_DWORD_INDEX
);
685 intel_ring_emit(ring
, I915_GEM_HWS_INDEX
<< MI_STORE_DWORD_INDEX_SHIFT
);
686 intel_ring_emit(ring
, ring
->outstanding_lazy_seqno
);
687 intel_ring_emit(ring
, MI_USER_INTERRUPT
);
688 __intel_ring_advance(ring
);
693 static inline bool i915_gem_has_seqno_wrapped(struct drm_device
*dev
,
696 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
697 return dev_priv
->last_seqno
< seqno
;
701 * intel_ring_sync - sync the waiter to the signaller on seqno
703 * @waiter - ring that is waiting
704 * @signaller - ring which has, or will signal
705 * @seqno - seqno which the waiter will block on
708 gen6_ring_sync(struct intel_ring_buffer
*waiter
,
709 struct intel_ring_buffer
*signaller
,
713 u32 dw1
= MI_SEMAPHORE_MBOX
|
714 MI_SEMAPHORE_COMPARE
|
715 MI_SEMAPHORE_REGISTER
;
717 /* Throughout all of the GEM code, seqno passed implies our current
718 * seqno is >= the last seqno executed. However for hardware the
719 * comparison is strictly greater than.
723 WARN_ON(signaller
->semaphore_register
[waiter
->id
] ==
724 MI_SEMAPHORE_SYNC_INVALID
);
726 ret
= intel_ring_begin(waiter
, 4);
730 /* If seqno wrap happened, omit the wait with no-ops */
731 if (likely(!i915_gem_has_seqno_wrapped(waiter
->dev
, seqno
))) {
732 intel_ring_emit(waiter
,
734 signaller
->semaphore_register
[waiter
->id
]);
735 intel_ring_emit(waiter
, seqno
);
736 intel_ring_emit(waiter
, 0);
737 intel_ring_emit(waiter
, MI_NOOP
);
739 intel_ring_emit(waiter
, MI_NOOP
);
740 intel_ring_emit(waiter
, MI_NOOP
);
741 intel_ring_emit(waiter
, MI_NOOP
);
742 intel_ring_emit(waiter
, MI_NOOP
);
744 intel_ring_advance(waiter
);
749 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
751 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
752 PIPE_CONTROL_DEPTH_STALL); \
753 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
754 intel_ring_emit(ring__, 0); \
755 intel_ring_emit(ring__, 0); \
759 pc_render_add_request(struct intel_ring_buffer
*ring
)
761 u32 scratch_addr
= ring
->scratch
.gtt_offset
+ 128;
764 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
765 * incoherent with writes to memory, i.e. completely fubar,
766 * so we need to use PIPE_NOTIFY instead.
768 * However, we also need to workaround the qword write
769 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
770 * memory before requesting an interrupt.
772 ret
= intel_ring_begin(ring
, 32);
776 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE
|
777 PIPE_CONTROL_WRITE_FLUSH
|
778 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE
);
779 intel_ring_emit(ring
, ring
->scratch
.gtt_offset
| PIPE_CONTROL_GLOBAL_GTT
);
780 intel_ring_emit(ring
, ring
->outstanding_lazy_seqno
);
781 intel_ring_emit(ring
, 0);
782 PIPE_CONTROL_FLUSH(ring
, scratch_addr
);
783 scratch_addr
+= 128; /* write to separate cachelines */
784 PIPE_CONTROL_FLUSH(ring
, scratch_addr
);
786 PIPE_CONTROL_FLUSH(ring
, scratch_addr
);
788 PIPE_CONTROL_FLUSH(ring
, scratch_addr
);
790 PIPE_CONTROL_FLUSH(ring
, scratch_addr
);
792 PIPE_CONTROL_FLUSH(ring
, scratch_addr
);
794 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE
|
795 PIPE_CONTROL_WRITE_FLUSH
|
796 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE
|
797 PIPE_CONTROL_NOTIFY
);
798 intel_ring_emit(ring
, ring
->scratch
.gtt_offset
| PIPE_CONTROL_GLOBAL_GTT
);
799 intel_ring_emit(ring
, ring
->outstanding_lazy_seqno
);
800 intel_ring_emit(ring
, 0);
801 __intel_ring_advance(ring
);
807 gen6_ring_get_seqno(struct intel_ring_buffer
*ring
, bool lazy_coherency
)
809 /* Workaround to force correct ordering between irq and seqno writes on
810 * ivb (and maybe also on snb) by reading from a CS register (like
811 * ACTHD) before reading the status page. */
813 intel_ring_get_active_head(ring
);
814 return intel_read_status_page(ring
, I915_GEM_HWS_INDEX
);
818 ring_get_seqno(struct intel_ring_buffer
*ring
, bool lazy_coherency
)
820 return intel_read_status_page(ring
, I915_GEM_HWS_INDEX
);
824 ring_set_seqno(struct intel_ring_buffer
*ring
, u32 seqno
)
826 intel_write_status_page(ring
, I915_GEM_HWS_INDEX
, seqno
);
830 pc_render_get_seqno(struct intel_ring_buffer
*ring
, bool lazy_coherency
)
832 return ring
->scratch
.cpu_page
[0];
836 pc_render_set_seqno(struct intel_ring_buffer
*ring
, u32 seqno
)
838 ring
->scratch
.cpu_page
[0] = seqno
;
842 gen5_ring_get_irq(struct intel_ring_buffer
*ring
)
844 struct drm_device
*dev
= ring
->dev
;
845 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
848 if (!dev
->irq_enabled
)
851 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
852 if (ring
->irq_refcount
++ == 0)
853 ilk_enable_gt_irq(dev_priv
, ring
->irq_enable_mask
);
854 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
860 gen5_ring_put_irq(struct intel_ring_buffer
*ring
)
862 struct drm_device
*dev
= ring
->dev
;
863 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
866 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
867 if (--ring
->irq_refcount
== 0)
868 ilk_disable_gt_irq(dev_priv
, ring
->irq_enable_mask
);
869 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
873 i9xx_ring_get_irq(struct intel_ring_buffer
*ring
)
875 struct drm_device
*dev
= ring
->dev
;
876 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
879 if (!dev
->irq_enabled
)
882 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
883 if (ring
->irq_refcount
++ == 0) {
884 dev_priv
->irq_mask
&= ~ring
->irq_enable_mask
;
885 I915_WRITE(IMR
, dev_priv
->irq_mask
);
888 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
894 i9xx_ring_put_irq(struct intel_ring_buffer
*ring
)
896 struct drm_device
*dev
= ring
->dev
;
897 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
900 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
901 if (--ring
->irq_refcount
== 0) {
902 dev_priv
->irq_mask
|= ring
->irq_enable_mask
;
903 I915_WRITE(IMR
, dev_priv
->irq_mask
);
906 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
910 i8xx_ring_get_irq(struct intel_ring_buffer
*ring
)
912 struct drm_device
*dev
= ring
->dev
;
913 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
916 if (!dev
->irq_enabled
)
919 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
920 if (ring
->irq_refcount
++ == 0) {
921 dev_priv
->irq_mask
&= ~ring
->irq_enable_mask
;
922 I915_WRITE16(IMR
, dev_priv
->irq_mask
);
925 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
931 i8xx_ring_put_irq(struct intel_ring_buffer
*ring
)
933 struct drm_device
*dev
= ring
->dev
;
934 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
937 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
938 if (--ring
->irq_refcount
== 0) {
939 dev_priv
->irq_mask
|= ring
->irq_enable_mask
;
940 I915_WRITE16(IMR
, dev_priv
->irq_mask
);
943 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
946 void intel_ring_setup_status_page(struct intel_ring_buffer
*ring
)
948 struct drm_device
*dev
= ring
->dev
;
949 drm_i915_private_t
*dev_priv
= ring
->dev
->dev_private
;
952 /* The ring status page addresses are no longer next to the rest of
953 * the ring registers as of gen7.
958 mmio
= RENDER_HWS_PGA_GEN7
;
961 mmio
= BLT_HWS_PGA_GEN7
;
964 mmio
= BSD_HWS_PGA_GEN7
;
967 mmio
= VEBOX_HWS_PGA_GEN7
;
970 } else if (IS_GEN6(ring
->dev
)) {
971 mmio
= RING_HWS_PGA_GEN6(ring
->mmio_base
);
973 /* XXX: gen8 returns to sanity */
974 mmio
= RING_HWS_PGA(ring
->mmio_base
);
977 I915_WRITE(mmio
, (u32
)ring
->status_page
.gfx_addr
);
980 /* Flush the TLB for this page */
981 if (INTEL_INFO(dev
)->gen
>= 6) {
982 u32 reg
= RING_INSTPM(ring
->mmio_base
);
984 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE
|
986 if (wait_for((I915_READ(reg
) & INSTPM_SYNC_FLUSH
) == 0,
988 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
994 bsd_ring_flush(struct intel_ring_buffer
*ring
,
995 u32 invalidate_domains
,
1000 ret
= intel_ring_begin(ring
, 2);
1004 intel_ring_emit(ring
, MI_FLUSH
);
1005 intel_ring_emit(ring
, MI_NOOP
);
1006 intel_ring_advance(ring
);
1011 i9xx_add_request(struct intel_ring_buffer
*ring
)
1015 ret
= intel_ring_begin(ring
, 4);
1019 intel_ring_emit(ring
, MI_STORE_DWORD_INDEX
);
1020 intel_ring_emit(ring
, I915_GEM_HWS_INDEX
<< MI_STORE_DWORD_INDEX_SHIFT
);
1021 intel_ring_emit(ring
, ring
->outstanding_lazy_seqno
);
1022 intel_ring_emit(ring
, MI_USER_INTERRUPT
);
1023 __intel_ring_advance(ring
);
1029 gen6_ring_get_irq(struct intel_ring_buffer
*ring
)
1031 struct drm_device
*dev
= ring
->dev
;
1032 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
1033 unsigned long flags
;
1035 if (!dev
->irq_enabled
)
1038 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
1039 if (ring
->irq_refcount
++ == 0) {
1040 if (HAS_L3_DPF(dev
) && ring
->id
== RCS
)
1041 I915_WRITE_IMR(ring
,
1042 ~(ring
->irq_enable_mask
|
1043 GT_PARITY_ERROR(dev
)));
1045 I915_WRITE_IMR(ring
, ~ring
->irq_enable_mask
);
1046 ilk_enable_gt_irq(dev_priv
, ring
->irq_enable_mask
);
1048 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
1054 gen6_ring_put_irq(struct intel_ring_buffer
*ring
)
1056 struct drm_device
*dev
= ring
->dev
;
1057 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
1058 unsigned long flags
;
1060 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
1061 if (--ring
->irq_refcount
== 0) {
1062 if (HAS_L3_DPF(dev
) && ring
->id
== RCS
)
1063 I915_WRITE_IMR(ring
, ~GT_PARITY_ERROR(dev
));
1065 I915_WRITE_IMR(ring
, ~0);
1066 ilk_disable_gt_irq(dev_priv
, ring
->irq_enable_mask
);
1068 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
1072 hsw_vebox_get_irq(struct intel_ring_buffer
*ring
)
1074 struct drm_device
*dev
= ring
->dev
;
1075 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1076 unsigned long flags
;
1078 if (!dev
->irq_enabled
)
1081 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
1082 if (ring
->irq_refcount
++ == 0) {
1083 I915_WRITE_IMR(ring
, ~ring
->irq_enable_mask
);
1084 snb_enable_pm_irq(dev_priv
, ring
->irq_enable_mask
);
1086 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
1092 hsw_vebox_put_irq(struct intel_ring_buffer
*ring
)
1094 struct drm_device
*dev
= ring
->dev
;
1095 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1096 unsigned long flags
;
1098 if (!dev
->irq_enabled
)
1101 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
1102 if (--ring
->irq_refcount
== 0) {
1103 I915_WRITE_IMR(ring
, ~0);
1104 snb_disable_pm_irq(dev_priv
, ring
->irq_enable_mask
);
1106 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
1110 gen8_ring_get_irq(struct intel_ring_buffer
*ring
)
1112 struct drm_device
*dev
= ring
->dev
;
1113 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1114 unsigned long flags
;
1116 if (!dev
->irq_enabled
)
1119 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
1120 if (ring
->irq_refcount
++ == 0) {
1121 if (HAS_L3_DPF(dev
) && ring
->id
== RCS
) {
1122 I915_WRITE_IMR(ring
,
1123 ~(ring
->irq_enable_mask
|
1124 GT_RENDER_L3_PARITY_ERROR_INTERRUPT
));
1126 I915_WRITE_IMR(ring
, ~ring
->irq_enable_mask
);
1128 POSTING_READ(RING_IMR(ring
->mmio_base
));
1130 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
1136 gen8_ring_put_irq(struct intel_ring_buffer
*ring
)
1138 struct drm_device
*dev
= ring
->dev
;
1139 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1140 unsigned long flags
;
1142 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
1143 if (--ring
->irq_refcount
== 0) {
1144 if (HAS_L3_DPF(dev
) && ring
->id
== RCS
) {
1145 I915_WRITE_IMR(ring
,
1146 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT
);
1148 I915_WRITE_IMR(ring
, ~0);
1150 POSTING_READ(RING_IMR(ring
->mmio_base
));
1152 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
1156 i965_dispatch_execbuffer(struct intel_ring_buffer
*ring
,
1157 u32 offset
, u32 length
,
1162 ret
= intel_ring_begin(ring
, 2);
1166 intel_ring_emit(ring
,
1167 MI_BATCH_BUFFER_START
|
1169 (flags
& I915_DISPATCH_SECURE
? 0 : MI_BATCH_NON_SECURE_I965
));
1170 intel_ring_emit(ring
, offset
);
1171 intel_ring_advance(ring
);
1176 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1177 #define I830_BATCH_LIMIT (256*1024)
1179 i830_dispatch_execbuffer(struct intel_ring_buffer
*ring
,
1180 u32 offset
, u32 len
,
1185 if (flags
& I915_DISPATCH_PINNED
) {
1186 ret
= intel_ring_begin(ring
, 4);
1190 intel_ring_emit(ring
, MI_BATCH_BUFFER
);
1191 intel_ring_emit(ring
, offset
| (flags
& I915_DISPATCH_SECURE
? 0 : MI_BATCH_NON_SECURE
));
1192 intel_ring_emit(ring
, offset
+ len
- 8);
1193 intel_ring_emit(ring
, MI_NOOP
);
1194 intel_ring_advance(ring
);
1196 u32 cs_offset
= ring
->scratch
.gtt_offset
;
1198 if (len
> I830_BATCH_LIMIT
)
1201 ret
= intel_ring_begin(ring
, 9+3);
1204 /* Blit the batch (which has now all relocs applied) to the stable batch
1205 * scratch bo area (so that the CS never stumbles over its tlb
1206 * invalidation bug) ... */
1207 intel_ring_emit(ring
, XY_SRC_COPY_BLT_CMD
|
1208 XY_SRC_COPY_BLT_WRITE_ALPHA
|
1209 XY_SRC_COPY_BLT_WRITE_RGB
);
1210 intel_ring_emit(ring
, BLT_DEPTH_32
| BLT_ROP_GXCOPY
| 4096);
1211 intel_ring_emit(ring
, 0);
1212 intel_ring_emit(ring
, (DIV_ROUND_UP(len
, 4096) << 16) | 1024);
1213 intel_ring_emit(ring
, cs_offset
);
1214 intel_ring_emit(ring
, 0);
1215 intel_ring_emit(ring
, 4096);
1216 intel_ring_emit(ring
, offset
);
1217 intel_ring_emit(ring
, MI_FLUSH
);
1219 /* ... and execute it. */
1220 intel_ring_emit(ring
, MI_BATCH_BUFFER
);
1221 intel_ring_emit(ring
, cs_offset
| (flags
& I915_DISPATCH_SECURE
? 0 : MI_BATCH_NON_SECURE
));
1222 intel_ring_emit(ring
, cs_offset
+ len
- 8);
1223 intel_ring_advance(ring
);
1230 i915_dispatch_execbuffer(struct intel_ring_buffer
*ring
,
1231 u32 offset
, u32 len
,
1236 ret
= intel_ring_begin(ring
, 2);
1240 intel_ring_emit(ring
, MI_BATCH_BUFFER_START
| MI_BATCH_GTT
);
1241 intel_ring_emit(ring
, offset
| (flags
& I915_DISPATCH_SECURE
? 0 : MI_BATCH_NON_SECURE
));
1242 intel_ring_advance(ring
);
1247 static void cleanup_status_page(struct intel_ring_buffer
*ring
)
1249 struct drm_i915_gem_object
*obj
;
1251 obj
= ring
->status_page
.obj
;
1255 kunmap(sg_page(obj
->pages
->sgl
));
1256 i915_gem_object_unpin(obj
);
1257 drm_gem_object_unreference(&obj
->base
);
1258 ring
->status_page
.obj
= NULL
;
1261 static int init_status_page(struct intel_ring_buffer
*ring
)
1263 struct drm_device
*dev
= ring
->dev
;
1264 struct drm_i915_gem_object
*obj
;
1267 obj
= i915_gem_alloc_object(dev
, 4096);
1269 DRM_ERROR("Failed to allocate status page\n");
1274 i915_gem_object_set_cache_level(obj
, I915_CACHE_LLC
);
1276 ret
= i915_gem_obj_ggtt_pin(obj
, 4096, true, false);
1281 ring
->status_page
.gfx_addr
= i915_gem_obj_ggtt_offset(obj
);
1282 ring
->status_page
.page_addr
= kmap(sg_page(obj
->pages
->sgl
));
1283 if (ring
->status_page
.page_addr
== NULL
) {
1287 ring
->status_page
.obj
= obj
;
1288 memset(ring
->status_page
.page_addr
, 0, PAGE_SIZE
);
1290 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1291 ring
->name
, ring
->status_page
.gfx_addr
);
1296 i915_gem_object_unpin(obj
);
1298 drm_gem_object_unreference(&obj
->base
);
1303 static int init_phys_status_page(struct intel_ring_buffer
*ring
)
1305 struct drm_i915_private
*dev_priv
= ring
->dev
->dev_private
;
1307 if (!dev_priv
->status_page_dmah
) {
1308 dev_priv
->status_page_dmah
=
1309 drm_pci_alloc(ring
->dev
, PAGE_SIZE
, PAGE_SIZE
);
1310 if (!dev_priv
->status_page_dmah
)
1314 ring
->status_page
.page_addr
= dev_priv
->status_page_dmah
->vaddr
;
1315 memset(ring
->status_page
.page_addr
, 0, PAGE_SIZE
);
1320 static int intel_init_ring_buffer(struct drm_device
*dev
,
1321 struct intel_ring_buffer
*ring
)
1323 struct drm_i915_gem_object
*obj
;
1324 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1328 INIT_LIST_HEAD(&ring
->active_list
);
1329 INIT_LIST_HEAD(&ring
->request_list
);
1330 ring
->size
= 32 * PAGE_SIZE
;
1331 memset(ring
->sync_seqno
, 0, sizeof(ring
->sync_seqno
));
1333 init_waitqueue_head(&ring
->irq_queue
);
1335 if (I915_NEED_GFX_HWS(dev
)) {
1336 ret
= init_status_page(ring
);
1340 BUG_ON(ring
->id
!= RCS
);
1341 ret
= init_phys_status_page(ring
);
1348 obj
= i915_gem_object_create_stolen(dev
, ring
->size
);
1350 obj
= i915_gem_alloc_object(dev
, ring
->size
);
1352 DRM_ERROR("Failed to allocate ringbuffer\n");
1359 ret
= i915_gem_obj_ggtt_pin(obj
, PAGE_SIZE
, true, false);
1363 ret
= i915_gem_object_set_to_gtt_domain(obj
, true);
1367 ring
->virtual_start
=
1368 ioremap_wc(dev_priv
->gtt
.mappable_base
+ i915_gem_obj_ggtt_offset(obj
),
1370 if (ring
->virtual_start
== NULL
) {
1371 DRM_ERROR("Failed to map ringbuffer.\n");
1376 ret
= ring
->init(ring
);
1380 /* Workaround an erratum on the i830 which causes a hang if
1381 * the TAIL pointer points to within the last 2 cachelines
1384 ring
->effective_size
= ring
->size
;
1385 if (IS_I830(ring
->dev
) || IS_845G(ring
->dev
))
1386 ring
->effective_size
-= 128;
1391 iounmap(ring
->virtual_start
);
1393 i915_gem_object_unpin(obj
);
1395 drm_gem_object_unreference(&obj
->base
);
1398 cleanup_status_page(ring
);
1402 void intel_cleanup_ring_buffer(struct intel_ring_buffer
*ring
)
1404 struct drm_i915_private
*dev_priv
;
1407 if (ring
->obj
== NULL
)
1410 /* Disable the ring buffer. The ring must be idle at this point */
1411 dev_priv
= ring
->dev
->dev_private
;
1412 ret
= intel_ring_idle(ring
);
1413 if (ret
&& !i915_reset_in_progress(&dev_priv
->gpu_error
))
1414 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1417 I915_WRITE_CTL(ring
, 0);
1419 iounmap(ring
->virtual_start
);
1421 i915_gem_object_unpin(ring
->obj
);
1422 drm_gem_object_unreference(&ring
->obj
->base
);
1424 ring
->preallocated_lazy_request
= NULL
;
1425 ring
->outstanding_lazy_seqno
= 0;
1428 ring
->cleanup(ring
);
1430 cleanup_status_page(ring
);
1433 static int intel_ring_wait_seqno(struct intel_ring_buffer
*ring
, u32 seqno
)
1437 ret
= i915_wait_seqno(ring
, seqno
);
1439 i915_gem_retire_requests_ring(ring
);
1444 static int intel_ring_wait_request(struct intel_ring_buffer
*ring
, int n
)
1446 struct drm_i915_gem_request
*request
;
1450 i915_gem_retire_requests_ring(ring
);
1452 if (ring
->last_retired_head
!= -1) {
1453 ring
->head
= ring
->last_retired_head
;
1454 ring
->last_retired_head
= -1;
1455 ring
->space
= ring_space(ring
);
1456 if (ring
->space
>= n
)
1460 list_for_each_entry(request
, &ring
->request_list
, list
) {
1463 if (request
->tail
== -1)
1466 space
= request
->tail
- (ring
->tail
+ I915_RING_FREE_SPACE
);
1468 space
+= ring
->size
;
1470 seqno
= request
->seqno
;
1474 /* Consume this request in case we need more space than
1475 * is available and so need to prevent a race between
1476 * updating last_retired_head and direct reads of
1477 * I915_RING_HEAD. It also provides a nice sanity check.
1485 ret
= intel_ring_wait_seqno(ring
, seqno
);
1489 if (WARN_ON(ring
->last_retired_head
== -1))
1492 ring
->head
= ring
->last_retired_head
;
1493 ring
->last_retired_head
= -1;
1494 ring
->space
= ring_space(ring
);
1495 if (WARN_ON(ring
->space
< n
))
1501 static int ring_wait_for_space(struct intel_ring_buffer
*ring
, int n
)
1503 struct drm_device
*dev
= ring
->dev
;
1504 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1508 ret
= intel_ring_wait_request(ring
, n
);
1512 /* force the tail write in case we have been skipping them */
1513 __intel_ring_advance(ring
);
1515 trace_i915_ring_wait_begin(ring
);
1516 /* With GEM the hangcheck timer should kick us out of the loop,
1517 * leaving it early runs the risk of corrupting GEM state (due
1518 * to running on almost untested codepaths). But on resume
1519 * timers don't work yet, so prevent a complete hang in that
1520 * case by choosing an insanely large timeout. */
1521 end
= jiffies
+ 60 * HZ
;
1524 ring
->head
= I915_READ_HEAD(ring
);
1525 ring
->space
= ring_space(ring
);
1526 if (ring
->space
>= n
) {
1527 trace_i915_ring_wait_end(ring
);
1531 if (dev
->primary
->master
) {
1532 struct drm_i915_master_private
*master_priv
= dev
->primary
->master
->driver_priv
;
1533 if (master_priv
->sarea_priv
)
1534 master_priv
->sarea_priv
->perf_boxes
|= I915_BOX_WAIT
;
1539 ret
= i915_gem_check_wedge(&dev_priv
->gpu_error
,
1540 dev_priv
->mm
.interruptible
);
1543 } while (!time_after(jiffies
, end
));
1544 trace_i915_ring_wait_end(ring
);
1548 static int intel_wrap_ring_buffer(struct intel_ring_buffer
*ring
)
1550 uint32_t __iomem
*virt
;
1551 int rem
= ring
->size
- ring
->tail
;
1553 if (ring
->space
< rem
) {
1554 int ret
= ring_wait_for_space(ring
, rem
);
1559 virt
= ring
->virtual_start
+ ring
->tail
;
1562 iowrite32(MI_NOOP
, virt
++);
1565 ring
->space
= ring_space(ring
);
1570 int intel_ring_idle(struct intel_ring_buffer
*ring
)
1575 /* We need to add any requests required to flush the objects and ring */
1576 if (ring
->outstanding_lazy_seqno
) {
1577 ret
= i915_add_request(ring
, NULL
);
1582 /* Wait upon the last request to be completed */
1583 if (list_empty(&ring
->request_list
))
1586 seqno
= list_entry(ring
->request_list
.prev
,
1587 struct drm_i915_gem_request
,
1590 return i915_wait_seqno(ring
, seqno
);
1594 intel_ring_alloc_seqno(struct intel_ring_buffer
*ring
)
1596 if (ring
->outstanding_lazy_seqno
)
1599 if (ring
->preallocated_lazy_request
== NULL
) {
1600 struct drm_i915_gem_request
*request
;
1602 request
= kmalloc(sizeof(*request
), GFP_KERNEL
);
1603 if (request
== NULL
)
1606 ring
->preallocated_lazy_request
= request
;
1609 return i915_gem_get_seqno(ring
->dev
, &ring
->outstanding_lazy_seqno
);
1612 static int __intel_ring_prepare(struct intel_ring_buffer
*ring
,
1617 if (unlikely(ring
->tail
+ bytes
> ring
->effective_size
)) {
1618 ret
= intel_wrap_ring_buffer(ring
);
1623 if (unlikely(ring
->space
< bytes
)) {
1624 ret
= ring_wait_for_space(ring
, bytes
);
1632 int intel_ring_begin(struct intel_ring_buffer
*ring
,
1635 drm_i915_private_t
*dev_priv
= ring
->dev
->dev_private
;
1638 ret
= i915_gem_check_wedge(&dev_priv
->gpu_error
,
1639 dev_priv
->mm
.interruptible
);
1643 ret
= __intel_ring_prepare(ring
, num_dwords
* sizeof(uint32_t));
1647 /* Preallocate the olr before touching the ring */
1648 ret
= intel_ring_alloc_seqno(ring
);
1652 ring
->space
-= num_dwords
* sizeof(uint32_t);
1656 void intel_ring_init_seqno(struct intel_ring_buffer
*ring
, u32 seqno
)
1658 struct drm_i915_private
*dev_priv
= ring
->dev
->dev_private
;
1660 BUG_ON(ring
->outstanding_lazy_seqno
);
1662 if (INTEL_INFO(ring
->dev
)->gen
>= 6) {
1663 I915_WRITE(RING_SYNC_0(ring
->mmio_base
), 0);
1664 I915_WRITE(RING_SYNC_1(ring
->mmio_base
), 0);
1665 if (HAS_VEBOX(ring
->dev
))
1666 I915_WRITE(RING_SYNC_2(ring
->mmio_base
), 0);
1669 ring
->set_seqno(ring
, seqno
);
1670 ring
->hangcheck
.seqno
= seqno
;
1673 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer
*ring
,
1676 drm_i915_private_t
*dev_priv
= ring
->dev
->dev_private
;
1678 /* Every tail move must follow the sequence below */
1680 /* Disable notification that the ring is IDLE. The GT
1681 * will then assume that it is busy and bring it out of rc6.
1683 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL
,
1684 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE
));
1686 /* Clear the context id. Here be magic! */
1687 I915_WRITE64(GEN6_BSD_RNCID
, 0x0);
1689 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1690 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL
) &
1691 GEN6_BSD_SLEEP_INDICATOR
) == 0,
1693 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1695 /* Now that the ring is fully powered up, update the tail */
1696 I915_WRITE_TAIL(ring
, value
);
1697 POSTING_READ(RING_TAIL(ring
->mmio_base
));
1699 /* Let the ring send IDLE messages to the GT again,
1700 * and so let it sleep to conserve power when idle.
1702 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL
,
1703 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE
));
1706 static int gen6_bsd_ring_flush(struct intel_ring_buffer
*ring
,
1707 u32 invalidate
, u32 flush
)
1712 ret
= intel_ring_begin(ring
, 4);
1717 if (INTEL_INFO(ring
->dev
)->gen
>= 8)
1720 * Bspec vol 1c.5 - video engine command streamer:
1721 * "If ENABLED, all TLBs will be invalidated once the flush
1722 * operation is complete. This bit is only valid when the
1723 * Post-Sync Operation field is a value of 1h or 3h."
1725 if (invalidate
& I915_GEM_GPU_DOMAINS
)
1726 cmd
|= MI_INVALIDATE_TLB
| MI_INVALIDATE_BSD
|
1727 MI_FLUSH_DW_STORE_INDEX
| MI_FLUSH_DW_OP_STOREDW
;
1728 intel_ring_emit(ring
, cmd
);
1729 intel_ring_emit(ring
, I915_GEM_HWS_SCRATCH_ADDR
| MI_FLUSH_DW_USE_GTT
);
1730 if (INTEL_INFO(ring
->dev
)->gen
>= 8) {
1731 intel_ring_emit(ring
, 0); /* upper addr */
1732 intel_ring_emit(ring
, 0); /* value */
1734 intel_ring_emit(ring
, 0);
1735 intel_ring_emit(ring
, MI_NOOP
);
1737 intel_ring_advance(ring
);
1742 gen8_ring_dispatch_execbuffer(struct intel_ring_buffer
*ring
,
1743 u32 offset
, u32 len
,
1746 struct drm_i915_private
*dev_priv
= ring
->dev
->dev_private
;
1747 bool ppgtt
= dev_priv
->mm
.aliasing_ppgtt
!= NULL
&&
1748 !(flags
& I915_DISPATCH_SECURE
);
1751 ret
= intel_ring_begin(ring
, 4);
1755 /* FIXME(BDW): Address space and security selectors. */
1756 intel_ring_emit(ring
, MI_BATCH_BUFFER_START_GEN8
| (ppgtt
<<8));
1757 intel_ring_emit(ring
, offset
);
1758 intel_ring_emit(ring
, 0);
1759 intel_ring_emit(ring
, MI_NOOP
);
1760 intel_ring_advance(ring
);
1766 hsw_ring_dispatch_execbuffer(struct intel_ring_buffer
*ring
,
1767 u32 offset
, u32 len
,
1772 ret
= intel_ring_begin(ring
, 2);
1776 intel_ring_emit(ring
,
1777 MI_BATCH_BUFFER_START
| MI_BATCH_PPGTT_HSW
|
1778 (flags
& I915_DISPATCH_SECURE
? 0 : MI_BATCH_NON_SECURE_HSW
));
1779 /* bit0-7 is the length on GEN6+ */
1780 intel_ring_emit(ring
, offset
);
1781 intel_ring_advance(ring
);
1787 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer
*ring
,
1788 u32 offset
, u32 len
,
1793 ret
= intel_ring_begin(ring
, 2);
1797 intel_ring_emit(ring
,
1798 MI_BATCH_BUFFER_START
|
1799 (flags
& I915_DISPATCH_SECURE
? 0 : MI_BATCH_NON_SECURE_I965
));
1800 /* bit0-7 is the length on GEN6+ */
1801 intel_ring_emit(ring
, offset
);
1802 intel_ring_advance(ring
);
1807 /* Blitter support (SandyBridge+) */
1809 static int gen6_ring_flush(struct intel_ring_buffer
*ring
,
1810 u32 invalidate
, u32 flush
)
1812 struct drm_device
*dev
= ring
->dev
;
1816 ret
= intel_ring_begin(ring
, 4);
1821 if (INTEL_INFO(ring
->dev
)->gen
>= 8)
1824 * Bspec vol 1c.3 - blitter engine command streamer:
1825 * "If ENABLED, all TLBs will be invalidated once the flush
1826 * operation is complete. This bit is only valid when the
1827 * Post-Sync Operation field is a value of 1h or 3h."
1829 if (invalidate
& I915_GEM_DOMAIN_RENDER
)
1830 cmd
|= MI_INVALIDATE_TLB
| MI_FLUSH_DW_STORE_INDEX
|
1831 MI_FLUSH_DW_OP_STOREDW
;
1832 intel_ring_emit(ring
, cmd
);
1833 intel_ring_emit(ring
, I915_GEM_HWS_SCRATCH_ADDR
| MI_FLUSH_DW_USE_GTT
);
1834 if (INTEL_INFO(ring
->dev
)->gen
>= 8) {
1835 intel_ring_emit(ring
, 0); /* upper addr */
1836 intel_ring_emit(ring
, 0); /* value */
1838 intel_ring_emit(ring
, 0);
1839 intel_ring_emit(ring
, MI_NOOP
);
1841 intel_ring_advance(ring
);
1843 if (IS_GEN7(dev
) && !invalidate
&& flush
)
1844 return gen7_ring_fbc_flush(ring
, FBC_REND_CACHE_CLEAN
);
1849 int intel_init_render_ring_buffer(struct drm_device
*dev
)
1851 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
1852 struct intel_ring_buffer
*ring
= &dev_priv
->ring
[RCS
];
1854 ring
->name
= "render ring";
1856 ring
->mmio_base
= RENDER_RING_BASE
;
1858 if (INTEL_INFO(dev
)->gen
>= 6) {
1859 ring
->add_request
= gen6_add_request
;
1860 ring
->flush
= gen7_render_ring_flush
;
1861 if (INTEL_INFO(dev
)->gen
== 6)
1862 ring
->flush
= gen6_render_ring_flush
;
1863 if (INTEL_INFO(dev
)->gen
>= 8) {
1864 ring
->flush
= gen8_render_ring_flush
;
1865 ring
->irq_get
= gen8_ring_get_irq
;
1866 ring
->irq_put
= gen8_ring_put_irq
;
1868 ring
->irq_get
= gen6_ring_get_irq
;
1869 ring
->irq_put
= gen6_ring_put_irq
;
1871 ring
->irq_enable_mask
= GT_RENDER_USER_INTERRUPT
;
1872 ring
->get_seqno
= gen6_ring_get_seqno
;
1873 ring
->set_seqno
= ring_set_seqno
;
1874 ring
->sync_to
= gen6_ring_sync
;
1875 ring
->semaphore_register
[RCS
] = MI_SEMAPHORE_SYNC_INVALID
;
1876 ring
->semaphore_register
[VCS
] = MI_SEMAPHORE_SYNC_RV
;
1877 ring
->semaphore_register
[BCS
] = MI_SEMAPHORE_SYNC_RB
;
1878 ring
->semaphore_register
[VECS
] = MI_SEMAPHORE_SYNC_RVE
;
1879 ring
->signal_mbox
[RCS
] = GEN6_NOSYNC
;
1880 ring
->signal_mbox
[VCS
] = GEN6_VRSYNC
;
1881 ring
->signal_mbox
[BCS
] = GEN6_BRSYNC
;
1882 ring
->signal_mbox
[VECS
] = GEN6_VERSYNC
;
1883 } else if (IS_GEN5(dev
)) {
1884 ring
->add_request
= pc_render_add_request
;
1885 ring
->flush
= gen4_render_ring_flush
;
1886 ring
->get_seqno
= pc_render_get_seqno
;
1887 ring
->set_seqno
= pc_render_set_seqno
;
1888 ring
->irq_get
= gen5_ring_get_irq
;
1889 ring
->irq_put
= gen5_ring_put_irq
;
1890 ring
->irq_enable_mask
= GT_RENDER_USER_INTERRUPT
|
1891 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT
;
1893 ring
->add_request
= i9xx_add_request
;
1894 if (INTEL_INFO(dev
)->gen
< 4)
1895 ring
->flush
= gen2_render_ring_flush
;
1897 ring
->flush
= gen4_render_ring_flush
;
1898 ring
->get_seqno
= ring_get_seqno
;
1899 ring
->set_seqno
= ring_set_seqno
;
1901 ring
->irq_get
= i8xx_ring_get_irq
;
1902 ring
->irq_put
= i8xx_ring_put_irq
;
1904 ring
->irq_get
= i9xx_ring_get_irq
;
1905 ring
->irq_put
= i9xx_ring_put_irq
;
1907 ring
->irq_enable_mask
= I915_USER_INTERRUPT
;
1909 ring
->write_tail
= ring_write_tail
;
1910 if (IS_HASWELL(dev
))
1911 ring
->dispatch_execbuffer
= hsw_ring_dispatch_execbuffer
;
1912 else if (IS_GEN8(dev
))
1913 ring
->dispatch_execbuffer
= gen8_ring_dispatch_execbuffer
;
1914 else if (INTEL_INFO(dev
)->gen
>= 6)
1915 ring
->dispatch_execbuffer
= gen6_ring_dispatch_execbuffer
;
1916 else if (INTEL_INFO(dev
)->gen
>= 4)
1917 ring
->dispatch_execbuffer
= i965_dispatch_execbuffer
;
1918 else if (IS_I830(dev
) || IS_845G(dev
))
1919 ring
->dispatch_execbuffer
= i830_dispatch_execbuffer
;
1921 ring
->dispatch_execbuffer
= i915_dispatch_execbuffer
;
1922 ring
->init
= init_render_ring
;
1923 ring
->cleanup
= render_ring_cleanup
;
1925 /* Workaround batchbuffer to combat CS tlb bug. */
1926 if (HAS_BROKEN_CS_TLB(dev
)) {
1927 struct drm_i915_gem_object
*obj
;
1930 obj
= i915_gem_alloc_object(dev
, I830_BATCH_LIMIT
);
1932 DRM_ERROR("Failed to allocate batch bo\n");
1936 ret
= i915_gem_obj_ggtt_pin(obj
, 0, true, false);
1938 drm_gem_object_unreference(&obj
->base
);
1939 DRM_ERROR("Failed to ping batch bo\n");
1943 ring
->scratch
.obj
= obj
;
1944 ring
->scratch
.gtt_offset
= i915_gem_obj_ggtt_offset(obj
);
1947 return intel_init_ring_buffer(dev
, ring
);
1950 int intel_render_ring_init_dri(struct drm_device
*dev
, u64 start
, u32 size
)
1952 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
1953 struct intel_ring_buffer
*ring
= &dev_priv
->ring
[RCS
];
1956 ring
->name
= "render ring";
1958 ring
->mmio_base
= RENDER_RING_BASE
;
1960 if (INTEL_INFO(dev
)->gen
>= 6) {
1961 /* non-kms not supported on gen6+ */
1965 /* Note: gem is not supported on gen5/ilk without kms (the corresponding
1966 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
1967 * the special gen5 functions. */
1968 ring
->add_request
= i9xx_add_request
;
1969 if (INTEL_INFO(dev
)->gen
< 4)
1970 ring
->flush
= gen2_render_ring_flush
;
1972 ring
->flush
= gen4_render_ring_flush
;
1973 ring
->get_seqno
= ring_get_seqno
;
1974 ring
->set_seqno
= ring_set_seqno
;
1976 ring
->irq_get
= i8xx_ring_get_irq
;
1977 ring
->irq_put
= i8xx_ring_put_irq
;
1979 ring
->irq_get
= i9xx_ring_get_irq
;
1980 ring
->irq_put
= i9xx_ring_put_irq
;
1982 ring
->irq_enable_mask
= I915_USER_INTERRUPT
;
1983 ring
->write_tail
= ring_write_tail
;
1984 if (INTEL_INFO(dev
)->gen
>= 4)
1985 ring
->dispatch_execbuffer
= i965_dispatch_execbuffer
;
1986 else if (IS_I830(dev
) || IS_845G(dev
))
1987 ring
->dispatch_execbuffer
= i830_dispatch_execbuffer
;
1989 ring
->dispatch_execbuffer
= i915_dispatch_execbuffer
;
1990 ring
->init
= init_render_ring
;
1991 ring
->cleanup
= render_ring_cleanup
;
1994 INIT_LIST_HEAD(&ring
->active_list
);
1995 INIT_LIST_HEAD(&ring
->request_list
);
1998 ring
->effective_size
= ring
->size
;
1999 if (IS_I830(ring
->dev
) || IS_845G(ring
->dev
))
2000 ring
->effective_size
-= 128;
2002 ring
->virtual_start
= ioremap_wc(start
, size
);
2003 if (ring
->virtual_start
== NULL
) {
2004 DRM_ERROR("can not ioremap virtual address for"
2009 if (!I915_NEED_GFX_HWS(dev
)) {
2010 ret
= init_phys_status_page(ring
);
2018 int intel_init_bsd_ring_buffer(struct drm_device
*dev
)
2020 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
2021 struct intel_ring_buffer
*ring
= &dev_priv
->ring
[VCS
];
2023 ring
->name
= "bsd ring";
2026 ring
->write_tail
= ring_write_tail
;
2027 if (INTEL_INFO(dev
)->gen
>= 6) {
2028 ring
->mmio_base
= GEN6_BSD_RING_BASE
;
2029 /* gen6 bsd needs a special wa for tail updates */
2031 ring
->write_tail
= gen6_bsd_ring_write_tail
;
2032 ring
->flush
= gen6_bsd_ring_flush
;
2033 ring
->add_request
= gen6_add_request
;
2034 ring
->get_seqno
= gen6_ring_get_seqno
;
2035 ring
->set_seqno
= ring_set_seqno
;
2036 if (INTEL_INFO(dev
)->gen
>= 8) {
2037 ring
->irq_enable_mask
=
2038 GT_RENDER_USER_INTERRUPT
<< GEN8_VCS1_IRQ_SHIFT
;
2039 ring
->irq_get
= gen8_ring_get_irq
;
2040 ring
->irq_put
= gen8_ring_put_irq
;
2041 ring
->dispatch_execbuffer
=
2042 gen8_ring_dispatch_execbuffer
;
2044 ring
->irq_enable_mask
= GT_BSD_USER_INTERRUPT
;
2045 ring
->irq_get
= gen6_ring_get_irq
;
2046 ring
->irq_put
= gen6_ring_put_irq
;
2047 ring
->dispatch_execbuffer
=
2048 gen6_ring_dispatch_execbuffer
;
2050 ring
->sync_to
= gen6_ring_sync
;
2051 ring
->semaphore_register
[RCS
] = MI_SEMAPHORE_SYNC_VR
;
2052 ring
->semaphore_register
[VCS
] = MI_SEMAPHORE_SYNC_INVALID
;
2053 ring
->semaphore_register
[BCS
] = MI_SEMAPHORE_SYNC_VB
;
2054 ring
->semaphore_register
[VECS
] = MI_SEMAPHORE_SYNC_VVE
;
2055 ring
->signal_mbox
[RCS
] = GEN6_RVSYNC
;
2056 ring
->signal_mbox
[VCS
] = GEN6_NOSYNC
;
2057 ring
->signal_mbox
[BCS
] = GEN6_BVSYNC
;
2058 ring
->signal_mbox
[VECS
] = GEN6_VEVSYNC
;
2060 ring
->mmio_base
= BSD_RING_BASE
;
2061 ring
->flush
= bsd_ring_flush
;
2062 ring
->add_request
= i9xx_add_request
;
2063 ring
->get_seqno
= ring_get_seqno
;
2064 ring
->set_seqno
= ring_set_seqno
;
2066 ring
->irq_enable_mask
= ILK_BSD_USER_INTERRUPT
;
2067 ring
->irq_get
= gen5_ring_get_irq
;
2068 ring
->irq_put
= gen5_ring_put_irq
;
2070 ring
->irq_enable_mask
= I915_BSD_USER_INTERRUPT
;
2071 ring
->irq_get
= i9xx_ring_get_irq
;
2072 ring
->irq_put
= i9xx_ring_put_irq
;
2074 ring
->dispatch_execbuffer
= i965_dispatch_execbuffer
;
2076 ring
->init
= init_ring_common
;
2078 return intel_init_ring_buffer(dev
, ring
);
2081 int intel_init_blt_ring_buffer(struct drm_device
*dev
)
2083 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
2084 struct intel_ring_buffer
*ring
= &dev_priv
->ring
[BCS
];
2086 ring
->name
= "blitter ring";
2089 ring
->mmio_base
= BLT_RING_BASE
;
2090 ring
->write_tail
= ring_write_tail
;
2091 ring
->flush
= gen6_ring_flush
;
2092 ring
->add_request
= gen6_add_request
;
2093 ring
->get_seqno
= gen6_ring_get_seqno
;
2094 ring
->set_seqno
= ring_set_seqno
;
2095 if (INTEL_INFO(dev
)->gen
>= 8) {
2096 ring
->irq_enable_mask
=
2097 GT_RENDER_USER_INTERRUPT
<< GEN8_BCS_IRQ_SHIFT
;
2098 ring
->irq_get
= gen8_ring_get_irq
;
2099 ring
->irq_put
= gen8_ring_put_irq
;
2100 ring
->dispatch_execbuffer
= gen8_ring_dispatch_execbuffer
;
2102 ring
->irq_enable_mask
= GT_BLT_USER_INTERRUPT
;
2103 ring
->irq_get
= gen6_ring_get_irq
;
2104 ring
->irq_put
= gen6_ring_put_irq
;
2105 ring
->dispatch_execbuffer
= gen6_ring_dispatch_execbuffer
;
2107 ring
->sync_to
= gen6_ring_sync
;
2108 ring
->semaphore_register
[RCS
] = MI_SEMAPHORE_SYNC_BR
;
2109 ring
->semaphore_register
[VCS
] = MI_SEMAPHORE_SYNC_BV
;
2110 ring
->semaphore_register
[BCS
] = MI_SEMAPHORE_SYNC_INVALID
;
2111 ring
->semaphore_register
[VECS
] = MI_SEMAPHORE_SYNC_BVE
;
2112 ring
->signal_mbox
[RCS
] = GEN6_RBSYNC
;
2113 ring
->signal_mbox
[VCS
] = GEN6_VBSYNC
;
2114 ring
->signal_mbox
[BCS
] = GEN6_NOSYNC
;
2115 ring
->signal_mbox
[VECS
] = GEN6_VEBSYNC
;
2116 ring
->init
= init_ring_common
;
2118 return intel_init_ring_buffer(dev
, ring
);
2121 int intel_init_vebox_ring_buffer(struct drm_device
*dev
)
2123 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
2124 struct intel_ring_buffer
*ring
= &dev_priv
->ring
[VECS
];
2126 ring
->name
= "video enhancement ring";
2129 ring
->mmio_base
= VEBOX_RING_BASE
;
2130 ring
->write_tail
= ring_write_tail
;
2131 ring
->flush
= gen6_ring_flush
;
2132 ring
->add_request
= gen6_add_request
;
2133 ring
->get_seqno
= gen6_ring_get_seqno
;
2134 ring
->set_seqno
= ring_set_seqno
;
2136 if (INTEL_INFO(dev
)->gen
>= 8) {
2137 ring
->irq_enable_mask
=
2138 GT_RENDER_USER_INTERRUPT
<< GEN8_VECS_IRQ_SHIFT
;
2139 ring
->irq_get
= gen8_ring_get_irq
;
2140 ring
->irq_put
= gen8_ring_put_irq
;
2141 ring
->dispatch_execbuffer
= gen8_ring_dispatch_execbuffer
;
2143 ring
->irq_enable_mask
= PM_VEBOX_USER_INTERRUPT
;
2144 ring
->irq_get
= hsw_vebox_get_irq
;
2145 ring
->irq_put
= hsw_vebox_put_irq
;
2146 ring
->dispatch_execbuffer
= gen6_ring_dispatch_execbuffer
;
2148 ring
->sync_to
= gen6_ring_sync
;
2149 ring
->semaphore_register
[RCS
] = MI_SEMAPHORE_SYNC_VER
;
2150 ring
->semaphore_register
[VCS
] = MI_SEMAPHORE_SYNC_VEV
;
2151 ring
->semaphore_register
[BCS
] = MI_SEMAPHORE_SYNC_VEB
;
2152 ring
->semaphore_register
[VECS
] = MI_SEMAPHORE_SYNC_INVALID
;
2153 ring
->signal_mbox
[RCS
] = GEN6_RVESYNC
;
2154 ring
->signal_mbox
[VCS
] = GEN6_VVESYNC
;
2155 ring
->signal_mbox
[BCS
] = GEN6_BVESYNC
;
2156 ring
->signal_mbox
[VECS
] = GEN6_NOSYNC
;
2157 ring
->init
= init_ring_common
;
2159 return intel_init_ring_buffer(dev
, ring
);
2163 intel_ring_flush_all_caches(struct intel_ring_buffer
*ring
)
2167 if (!ring
->gpu_caches_dirty
)
2170 ret
= ring
->flush(ring
, 0, I915_GEM_GPU_DOMAINS
);
2174 trace_i915_gem_ring_flush(ring
, 0, I915_GEM_GPU_DOMAINS
);
2176 ring
->gpu_caches_dirty
= false;
2181 intel_ring_invalidate_all_caches(struct intel_ring_buffer
*ring
)
2183 uint32_t flush_domains
;
2187 if (ring
->gpu_caches_dirty
)
2188 flush_domains
= I915_GEM_GPU_DOMAINS
;
2190 ret
= ring
->flush(ring
, I915_GEM_GPU_DOMAINS
, flush_domains
);
2194 trace_i915_gem_ring_flush(ring
, I915_GEM_GPU_DOMAINS
, flush_domains
);
2196 ring
->gpu_caches_dirty
= false;