PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / gpu / drm / mgag200 / mgag200_mode.c
blob968374776db9c32e2545b2409acc88322fe3f3f9
1 /*
2 * Copyright 2010 Matt Turner.
3 * Copyright 2012 Red Hat
5 * This file is subject to the terms and conditions of the GNU General
6 * Public License version 2. See the file COPYING in the main
7 * directory of this archive for more details.
9 * Authors: Matthew Garrett
10 * Matt Turner
11 * Dave Airlie
14 #include <linux/delay.h>
16 #include <drm/drmP.h>
17 #include <drm/drm_crtc_helper.h>
19 #include "mgag200_drv.h"
21 #define MGAG200_LUT_SIZE 256
24 * This file contains setup code for the CRTC.
27 static void mga_crtc_load_lut(struct drm_crtc *crtc)
29 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
30 struct drm_device *dev = crtc->dev;
31 struct mga_device *mdev = dev->dev_private;
32 struct drm_framebuffer *fb = crtc->fb;
33 int i;
35 if (!crtc->enabled)
36 return;
38 WREG8(DAC_INDEX + MGA1064_INDEX, 0);
40 if (fb && fb->bits_per_pixel == 16) {
41 int inc = (fb->depth == 15) ? 8 : 4;
42 u8 r, b;
43 for (i = 0; i < MGAG200_LUT_SIZE; i += inc) {
44 if (fb->depth == 16) {
45 if (i > (MGAG200_LUT_SIZE >> 1)) {
46 r = b = 0;
47 } else {
48 r = mga_crtc->lut_r[i << 1];
49 b = mga_crtc->lut_b[i << 1];
51 } else {
52 r = mga_crtc->lut_r[i];
53 b = mga_crtc->lut_b[i];
55 /* VGA registers */
56 WREG8(DAC_INDEX + MGA1064_COL_PAL, r);
57 WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_g[i]);
58 WREG8(DAC_INDEX + MGA1064_COL_PAL, b);
60 return;
62 for (i = 0; i < MGAG200_LUT_SIZE; i++) {
63 /* VGA registers */
64 WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_r[i]);
65 WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_g[i]);
66 WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_b[i]);
70 static inline void mga_wait_vsync(struct mga_device *mdev)
72 unsigned long timeout = jiffies + HZ/10;
73 unsigned int status = 0;
75 do {
76 status = RREG32(MGAREG_Status);
77 } while ((status & 0x08) && time_before(jiffies, timeout));
78 timeout = jiffies + HZ/10;
79 status = 0;
80 do {
81 status = RREG32(MGAREG_Status);
82 } while (!(status & 0x08) && time_before(jiffies, timeout));
85 static inline void mga_wait_busy(struct mga_device *mdev)
87 unsigned long timeout = jiffies + HZ;
88 unsigned int status = 0;
89 do {
90 status = RREG8(MGAREG_Status + 2);
91 } while ((status & 0x01) && time_before(jiffies, timeout));
95 * The core passes the desired mode to the CRTC code to see whether any
96 * CRTC-specific modifications need to be made to it. We're in a position
97 * to just pass that straight through, so this does nothing
99 static bool mga_crtc_mode_fixup(struct drm_crtc *crtc,
100 const struct drm_display_mode *mode,
101 struct drm_display_mode *adjusted_mode)
103 return true;
106 static int mga_g200se_set_plls(struct mga_device *mdev, long clock)
108 unsigned int vcomax, vcomin, pllreffreq;
109 unsigned int delta, tmpdelta, permitteddelta;
110 unsigned int testp, testm, testn;
111 unsigned int p, m, n;
112 unsigned int computed;
114 m = n = p = 0;
115 vcomax = 320000;
116 vcomin = 160000;
117 pllreffreq = 25000;
119 delta = 0xffffffff;
120 permitteddelta = clock * 5 / 1000;
122 for (testp = 8; testp > 0; testp /= 2) {
123 if (clock * testp > vcomax)
124 continue;
125 if (clock * testp < vcomin)
126 continue;
128 for (testn = 17; testn < 256; testn++) {
129 for (testm = 1; testm < 32; testm++) {
130 computed = (pllreffreq * testn) /
131 (testm * testp);
132 if (computed > clock)
133 tmpdelta = computed - clock;
134 else
135 tmpdelta = clock - computed;
136 if (tmpdelta < delta) {
137 delta = tmpdelta;
138 m = testm - 1;
139 n = testn - 1;
140 p = testp - 1;
146 if (delta > permitteddelta) {
147 printk(KERN_WARNING "PLL delta too large\n");
148 return 1;
151 WREG_DAC(MGA1064_PIX_PLLC_M, m);
152 WREG_DAC(MGA1064_PIX_PLLC_N, n);
153 WREG_DAC(MGA1064_PIX_PLLC_P, p);
154 return 0;
157 static int mga_g200wb_set_plls(struct mga_device *mdev, long clock)
159 unsigned int vcomax, vcomin, pllreffreq;
160 unsigned int delta, tmpdelta, permitteddelta;
161 unsigned int testp, testm, testn;
162 unsigned int p, m, n;
163 unsigned int computed;
164 int i, j, tmpcount, vcount;
165 bool pll_locked = false;
166 u8 tmp;
168 m = n = p = 0;
169 vcomax = 550000;
170 vcomin = 150000;
171 pllreffreq = 48000;
173 delta = 0xffffffff;
174 permitteddelta = clock * 5 / 1000;
176 for (testp = 1; testp < 9; testp++) {
177 if (clock * testp > vcomax)
178 continue;
179 if (clock * testp < vcomin)
180 continue;
182 for (testm = 1; testm < 17; testm++) {
183 for (testn = 1; testn < 151; testn++) {
184 computed = (pllreffreq * testn) /
185 (testm * testp);
186 if (computed > clock)
187 tmpdelta = computed - clock;
188 else
189 tmpdelta = clock - computed;
190 if (tmpdelta < delta) {
191 delta = tmpdelta;
192 n = testn - 1;
193 m = (testm - 1) | ((n >> 1) & 0x80);
194 p = testp - 1;
200 for (i = 0; i <= 32 && pll_locked == false; i++) {
201 if (i > 0) {
202 WREG8(MGAREG_CRTC_INDEX, 0x1e);
203 tmp = RREG8(MGAREG_CRTC_DATA);
204 if (tmp < 0xff)
205 WREG8(MGAREG_CRTC_DATA, tmp+1);
208 /* set pixclkdis to 1 */
209 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
210 tmp = RREG8(DAC_DATA);
211 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
212 WREG8(DAC_DATA, tmp);
214 WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
215 tmp = RREG8(DAC_DATA);
216 tmp |= MGA1064_REMHEADCTL_CLKDIS;
217 WREG8(DAC_DATA, tmp);
219 /* select PLL Set C */
220 tmp = RREG8(MGAREG_MEM_MISC_READ);
221 tmp |= 0x3 << 2;
222 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
224 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
225 tmp = RREG8(DAC_DATA);
226 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN | 0x80;
227 WREG8(DAC_DATA, tmp);
229 udelay(500);
231 /* reset the PLL */
232 WREG8(DAC_INDEX, MGA1064_VREF_CTL);
233 tmp = RREG8(DAC_DATA);
234 tmp &= ~0x04;
235 WREG8(DAC_DATA, tmp);
237 udelay(50);
239 /* program pixel pll register */
240 WREG_DAC(MGA1064_WB_PIX_PLLC_N, n);
241 WREG_DAC(MGA1064_WB_PIX_PLLC_M, m);
242 WREG_DAC(MGA1064_WB_PIX_PLLC_P, p);
244 udelay(50);
246 /* turn pll on */
247 WREG8(DAC_INDEX, MGA1064_VREF_CTL);
248 tmp = RREG8(DAC_DATA);
249 tmp |= 0x04;
250 WREG_DAC(MGA1064_VREF_CTL, tmp);
252 udelay(500);
254 /* select the pixel pll */
255 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
256 tmp = RREG8(DAC_DATA);
257 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
258 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
259 WREG8(DAC_DATA, tmp);
261 WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
262 tmp = RREG8(DAC_DATA);
263 tmp &= ~MGA1064_REMHEADCTL_CLKSL_MSK;
264 tmp |= MGA1064_REMHEADCTL_CLKSL_PLL;
265 WREG8(DAC_DATA, tmp);
267 /* reset dotclock rate bit */
268 WREG8(MGAREG_SEQ_INDEX, 1);
269 tmp = RREG8(MGAREG_SEQ_DATA);
270 tmp &= ~0x8;
271 WREG8(MGAREG_SEQ_DATA, tmp);
273 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
274 tmp = RREG8(DAC_DATA);
275 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
276 WREG8(DAC_DATA, tmp);
278 vcount = RREG8(MGAREG_VCOUNT);
280 for (j = 0; j < 30 && pll_locked == false; j++) {
281 tmpcount = RREG8(MGAREG_VCOUNT);
282 if (tmpcount < vcount)
283 vcount = 0;
284 if ((tmpcount - vcount) > 2)
285 pll_locked = true;
286 else
287 udelay(5);
290 WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
291 tmp = RREG8(DAC_DATA);
292 tmp &= ~MGA1064_REMHEADCTL_CLKDIS;
293 WREG_DAC(MGA1064_REMHEADCTL, tmp);
294 return 0;
297 static int mga_g200ev_set_plls(struct mga_device *mdev, long clock)
299 unsigned int vcomax, vcomin, pllreffreq;
300 unsigned int delta, tmpdelta, permitteddelta;
301 unsigned int testp, testm, testn;
302 unsigned int p, m, n;
303 unsigned int computed;
304 u8 tmp;
306 m = n = p = 0;
307 vcomax = 550000;
308 vcomin = 150000;
309 pllreffreq = 50000;
311 delta = 0xffffffff;
312 permitteddelta = clock * 5 / 1000;
314 for (testp = 16; testp > 0; testp--) {
315 if (clock * testp > vcomax)
316 continue;
317 if (clock * testp < vcomin)
318 continue;
320 for (testn = 1; testn < 257; testn++) {
321 for (testm = 1; testm < 17; testm++) {
322 computed = (pllreffreq * testn) /
323 (testm * testp);
324 if (computed > clock)
325 tmpdelta = computed - clock;
326 else
327 tmpdelta = clock - computed;
328 if (tmpdelta < delta) {
329 delta = tmpdelta;
330 n = testn - 1;
331 m = testm - 1;
332 p = testp - 1;
338 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
339 tmp = RREG8(DAC_DATA);
340 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
341 WREG8(DAC_DATA, tmp);
343 tmp = RREG8(MGAREG_MEM_MISC_READ);
344 tmp |= 0x3 << 2;
345 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
347 WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
348 tmp = RREG8(DAC_DATA);
349 WREG8(DAC_DATA, tmp & ~0x40);
351 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
352 tmp = RREG8(DAC_DATA);
353 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
354 WREG8(DAC_DATA, tmp);
356 WREG_DAC(MGA1064_EV_PIX_PLLC_M, m);
357 WREG_DAC(MGA1064_EV_PIX_PLLC_N, n);
358 WREG_DAC(MGA1064_EV_PIX_PLLC_P, p);
360 udelay(50);
362 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
363 tmp = RREG8(DAC_DATA);
364 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
365 WREG8(DAC_DATA, tmp);
367 udelay(500);
369 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
370 tmp = RREG8(DAC_DATA);
371 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
372 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
373 WREG8(DAC_DATA, tmp);
375 WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
376 tmp = RREG8(DAC_DATA);
377 WREG8(DAC_DATA, tmp | 0x40);
379 tmp = RREG8(MGAREG_MEM_MISC_READ);
380 tmp |= (0x3 << 2);
381 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
383 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
384 tmp = RREG8(DAC_DATA);
385 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
386 WREG8(DAC_DATA, tmp);
388 return 0;
391 static int mga_g200eh_set_plls(struct mga_device *mdev, long clock)
393 unsigned int vcomax, vcomin, pllreffreq;
394 unsigned int delta, tmpdelta, permitteddelta;
395 unsigned int testp, testm, testn;
396 unsigned int p, m, n;
397 unsigned int computed;
398 int i, j, tmpcount, vcount;
399 u8 tmp;
400 bool pll_locked = false;
402 m = n = p = 0;
403 vcomax = 800000;
404 vcomin = 400000;
405 pllreffreq = 33333;
407 delta = 0xffffffff;
408 permitteddelta = clock * 5 / 1000;
410 for (testp = 16; testp > 0; testp >>= 1) {
411 if (clock * testp > vcomax)
412 continue;
413 if (clock * testp < vcomin)
414 continue;
416 for (testm = 1; testm < 33; testm++) {
417 for (testn = 17; testn < 257; testn++) {
418 computed = (pllreffreq * testn) /
419 (testm * testp);
420 if (computed > clock)
421 tmpdelta = computed - clock;
422 else
423 tmpdelta = clock - computed;
424 if (tmpdelta < delta) {
425 delta = tmpdelta;
426 n = testn - 1;
427 m = (testm - 1);
428 p = testp - 1;
430 if ((clock * testp) >= 600000)
431 p |= 0x80;
435 for (i = 0; i <= 32 && pll_locked == false; i++) {
436 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
437 tmp = RREG8(DAC_DATA);
438 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
439 WREG8(DAC_DATA, tmp);
441 tmp = RREG8(MGAREG_MEM_MISC_READ);
442 tmp |= 0x3 << 2;
443 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
445 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
446 tmp = RREG8(DAC_DATA);
447 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
448 WREG8(DAC_DATA, tmp);
450 udelay(500);
452 WREG_DAC(MGA1064_EH_PIX_PLLC_M, m);
453 WREG_DAC(MGA1064_EH_PIX_PLLC_N, n);
454 WREG_DAC(MGA1064_EH_PIX_PLLC_P, p);
456 udelay(500);
458 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
459 tmp = RREG8(DAC_DATA);
460 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
461 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
462 WREG8(DAC_DATA, tmp);
464 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
465 tmp = RREG8(DAC_DATA);
466 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
467 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
468 WREG8(DAC_DATA, tmp);
470 vcount = RREG8(MGAREG_VCOUNT);
472 for (j = 0; j < 30 && pll_locked == false; j++) {
473 tmpcount = RREG8(MGAREG_VCOUNT);
474 if (tmpcount < vcount)
475 vcount = 0;
476 if ((tmpcount - vcount) > 2)
477 pll_locked = true;
478 else
479 udelay(5);
483 return 0;
486 static int mga_g200er_set_plls(struct mga_device *mdev, long clock)
488 unsigned int vcomax, vcomin, pllreffreq;
489 unsigned int delta, tmpdelta;
490 int testr, testn, testm, testo;
491 unsigned int p, m, n;
492 unsigned int computed, vco;
493 int tmp;
494 const unsigned int m_div_val[] = { 1, 2, 4, 8 };
496 m = n = p = 0;
497 vcomax = 1488000;
498 vcomin = 1056000;
499 pllreffreq = 48000;
501 delta = 0xffffffff;
503 for (testr = 0; testr < 4; testr++) {
504 if (delta == 0)
505 break;
506 for (testn = 5; testn < 129; testn++) {
507 if (delta == 0)
508 break;
509 for (testm = 3; testm >= 0; testm--) {
510 if (delta == 0)
511 break;
512 for (testo = 5; testo < 33; testo++) {
513 vco = pllreffreq * (testn + 1) /
514 (testr + 1);
515 if (vco < vcomin)
516 continue;
517 if (vco > vcomax)
518 continue;
519 computed = vco / (m_div_val[testm] * (testo + 1));
520 if (computed > clock)
521 tmpdelta = computed - clock;
522 else
523 tmpdelta = clock - computed;
524 if (tmpdelta < delta) {
525 delta = tmpdelta;
526 m = testm | (testo << 3);
527 n = testn;
528 p = testr | (testr << 3);
535 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
536 tmp = RREG8(DAC_DATA);
537 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
538 WREG8(DAC_DATA, tmp);
540 WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
541 tmp = RREG8(DAC_DATA);
542 tmp |= MGA1064_REMHEADCTL_CLKDIS;
543 WREG8(DAC_DATA, tmp);
545 tmp = RREG8(MGAREG_MEM_MISC_READ);
546 tmp |= (0x3<<2) | 0xc0;
547 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
549 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
550 tmp = RREG8(DAC_DATA);
551 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
552 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
553 WREG8(DAC_DATA, tmp);
555 udelay(500);
557 WREG_DAC(MGA1064_ER_PIX_PLLC_N, n);
558 WREG_DAC(MGA1064_ER_PIX_PLLC_M, m);
559 WREG_DAC(MGA1064_ER_PIX_PLLC_P, p);
561 udelay(50);
563 return 0;
566 static int mga_crtc_set_plls(struct mga_device *mdev, long clock)
568 switch(mdev->type) {
569 case G200_SE_A:
570 case G200_SE_B:
571 return mga_g200se_set_plls(mdev, clock);
572 break;
573 case G200_WB:
574 return mga_g200wb_set_plls(mdev, clock);
575 break;
576 case G200_EV:
577 return mga_g200ev_set_plls(mdev, clock);
578 break;
579 case G200_EH:
580 return mga_g200eh_set_plls(mdev, clock);
581 break;
582 case G200_ER:
583 return mga_g200er_set_plls(mdev, clock);
584 break;
586 return 0;
589 static void mga_g200wb_prepare(struct drm_crtc *crtc)
591 struct mga_device *mdev = crtc->dev->dev_private;
592 u8 tmp;
593 int iter_max;
595 /* 1- The first step is to warn the BMC of an upcoming mode change.
596 * We are putting the misc<0> to output.*/
598 WREG8(DAC_INDEX, MGA1064_GEN_IO_CTL);
599 tmp = RREG8(DAC_DATA);
600 tmp |= 0x10;
601 WREG_DAC(MGA1064_GEN_IO_CTL, tmp);
603 /* we are putting a 1 on the misc<0> line */
604 WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
605 tmp = RREG8(DAC_DATA);
606 tmp |= 0x10;
607 WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
609 /* 2- Second step to mask and further scan request
610 * This will be done by asserting the remfreqmsk bit (XSPAREREG<7>)
612 WREG8(DAC_INDEX, MGA1064_SPAREREG);
613 tmp = RREG8(DAC_DATA);
614 tmp |= 0x80;
615 WREG_DAC(MGA1064_SPAREREG, tmp);
617 /* 3a- the third step is to verifu if there is an active scan
618 * We are searching for a 0 on remhsyncsts <XSPAREREG<0>)
620 iter_max = 300;
621 while (!(tmp & 0x1) && iter_max) {
622 WREG8(DAC_INDEX, MGA1064_SPAREREG);
623 tmp = RREG8(DAC_DATA);
624 udelay(1000);
625 iter_max--;
628 /* 3b- this step occurs only if the remove is actually scanning
629 * we are waiting for the end of the frame which is a 1 on
630 * remvsyncsts (XSPAREREG<1>)
632 if (iter_max) {
633 iter_max = 300;
634 while ((tmp & 0x2) && iter_max) {
635 WREG8(DAC_INDEX, MGA1064_SPAREREG);
636 tmp = RREG8(DAC_DATA);
637 udelay(1000);
638 iter_max--;
643 static void mga_g200wb_commit(struct drm_crtc *crtc)
645 u8 tmp;
646 struct mga_device *mdev = crtc->dev->dev_private;
648 /* 1- The first step is to ensure that the vrsten and hrsten are set */
649 WREG8(MGAREG_CRTCEXT_INDEX, 1);
650 tmp = RREG8(MGAREG_CRTCEXT_DATA);
651 WREG8(MGAREG_CRTCEXT_DATA, tmp | 0x88);
653 /* 2- second step is to assert the rstlvl2 */
654 WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
655 tmp = RREG8(DAC_DATA);
656 tmp |= 0x8;
657 WREG8(DAC_DATA, tmp);
659 /* wait 10 us */
660 udelay(10);
662 /* 3- deassert rstlvl2 */
663 tmp &= ~0x08;
664 WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
665 WREG8(DAC_DATA, tmp);
667 /* 4- remove mask of scan request */
668 WREG8(DAC_INDEX, MGA1064_SPAREREG);
669 tmp = RREG8(DAC_DATA);
670 tmp &= ~0x80;
671 WREG8(DAC_DATA, tmp);
673 /* 5- put back a 0 on the misc<0> line */
674 WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
675 tmp = RREG8(DAC_DATA);
676 tmp &= ~0x10;
677 WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
681 This is how the framebuffer base address is stored in g200 cards:
682 * Assume @offset is the gpu_addr variable of the framebuffer object
683 * Then addr is the number of _pixels_ (not bytes) from the start of
684 VRAM to the first pixel we want to display. (divided by 2 for 32bit
685 framebuffers)
686 * addr is stored in the CRTCEXT0, CRTCC and CRTCD registers
687 addr<20> -> CRTCEXT0<6>
688 addr<19-16> -> CRTCEXT0<3-0>
689 addr<15-8> -> CRTCC<7-0>
690 addr<7-0> -> CRTCD<7-0>
691 CRTCEXT0 has to be programmed last to trigger an update and make the
692 new addr variable take effect.
694 static void mga_set_start_address(struct drm_crtc *crtc, unsigned offset)
696 struct mga_device *mdev = crtc->dev->dev_private;
697 u32 addr;
698 int count;
699 u8 crtcext0;
701 while (RREG8(0x1fda) & 0x08);
702 while (!(RREG8(0x1fda) & 0x08));
704 count = RREG8(MGAREG_VCOUNT) + 2;
705 while (RREG8(MGAREG_VCOUNT) < count);
707 WREG8(MGAREG_CRTCEXT_INDEX, 0);
708 crtcext0 = RREG8(MGAREG_CRTCEXT_DATA);
709 crtcext0 &= 0xB0;
710 addr = offset / 8;
711 /* Can't store addresses any higher than that...
712 but we also don't have more than 16MB of memory, so it should be fine. */
713 WARN_ON(addr > 0x1fffff);
714 crtcext0 |= (!!(addr & (1<<20)))<<6;
715 WREG_CRT(0x0d, (u8)(addr & 0xff));
716 WREG_CRT(0x0c, (u8)(addr >> 8) & 0xff);
717 WREG_ECRT(0x0, ((u8)(addr >> 16) & 0xf) | crtcext0);
721 /* ast is different - we will force move buffers out of VRAM */
722 static int mga_crtc_do_set_base(struct drm_crtc *crtc,
723 struct drm_framebuffer *fb,
724 int x, int y, int atomic)
726 struct mga_device *mdev = crtc->dev->dev_private;
727 struct drm_gem_object *obj;
728 struct mga_framebuffer *mga_fb;
729 struct mgag200_bo *bo;
730 int ret;
731 u64 gpu_addr;
733 /* push the previous fb to system ram */
734 if (!atomic && fb) {
735 mga_fb = to_mga_framebuffer(fb);
736 obj = mga_fb->obj;
737 bo = gem_to_mga_bo(obj);
738 ret = mgag200_bo_reserve(bo, false);
739 if (ret)
740 return ret;
741 mgag200_bo_push_sysram(bo);
742 mgag200_bo_unreserve(bo);
745 mga_fb = to_mga_framebuffer(crtc->fb);
746 obj = mga_fb->obj;
747 bo = gem_to_mga_bo(obj);
749 ret = mgag200_bo_reserve(bo, false);
750 if (ret)
751 return ret;
753 ret = mgag200_bo_pin(bo, TTM_PL_FLAG_VRAM, &gpu_addr);
754 if (ret) {
755 mgag200_bo_unreserve(bo);
756 return ret;
759 if (&mdev->mfbdev->mfb == mga_fb) {
760 /* if pushing console in kmap it */
761 ret = ttm_bo_kmap(&bo->bo, 0, bo->bo.num_pages, &bo->kmap);
762 if (ret)
763 DRM_ERROR("failed to kmap fbcon\n");
766 mgag200_bo_unreserve(bo);
768 mga_set_start_address(crtc, (u32)gpu_addr);
770 return 0;
773 static int mga_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
774 struct drm_framebuffer *old_fb)
776 return mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
779 static int mga_crtc_mode_set(struct drm_crtc *crtc,
780 struct drm_display_mode *mode,
781 struct drm_display_mode *adjusted_mode,
782 int x, int y, struct drm_framebuffer *old_fb)
784 struct drm_device *dev = crtc->dev;
785 struct mga_device *mdev = dev->dev_private;
786 int hdisplay, hsyncstart, hsyncend, htotal;
787 int vdisplay, vsyncstart, vsyncend, vtotal;
788 int pitch;
789 int option = 0, option2 = 0;
790 int i;
791 unsigned char misc = 0;
792 unsigned char ext_vga[6];
793 u8 bppshift;
795 static unsigned char dacvalue[] = {
796 /* 0x00: */ 0, 0, 0, 0, 0, 0, 0x00, 0,
797 /* 0x08: */ 0, 0, 0, 0, 0, 0, 0, 0,
798 /* 0x10: */ 0, 0, 0, 0, 0, 0, 0, 0,
799 /* 0x18: */ 0x00, 0, 0xC9, 0xFF, 0xBF, 0x20, 0x1F, 0x20,
800 /* 0x20: */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
801 /* 0x28: */ 0x00, 0x00, 0x00, 0x00, 0, 0, 0, 0x40,
802 /* 0x30: */ 0x00, 0xB0, 0x00, 0xC2, 0x34, 0x14, 0x02, 0x83,
803 /* 0x38: */ 0x00, 0x93, 0x00, 0x77, 0x00, 0x00, 0x00, 0x3A,
804 /* 0x40: */ 0, 0, 0, 0, 0, 0, 0, 0,
805 /* 0x48: */ 0, 0, 0, 0, 0, 0, 0, 0
808 bppshift = mdev->bpp_shifts[(crtc->fb->bits_per_pixel >> 3) - 1];
810 switch (mdev->type) {
811 case G200_SE_A:
812 case G200_SE_B:
813 dacvalue[MGA1064_VREF_CTL] = 0x03;
814 dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
815 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_DAC_EN |
816 MGA1064_MISC_CTL_VGA8 |
817 MGA1064_MISC_CTL_DAC_RAM_CS;
818 if (mdev->has_sdram)
819 option = 0x40049120;
820 else
821 option = 0x4004d120;
822 option2 = 0x00008000;
823 break;
824 case G200_WB:
825 dacvalue[MGA1064_VREF_CTL] = 0x07;
826 option = 0x41049120;
827 option2 = 0x0000b000;
828 break;
829 case G200_EV:
830 dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
831 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
832 MGA1064_MISC_CTL_DAC_RAM_CS;
833 option = 0x00000120;
834 option2 = 0x0000b000;
835 break;
836 case G200_EH:
837 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
838 MGA1064_MISC_CTL_DAC_RAM_CS;
839 option = 0x00000120;
840 option2 = 0x0000b000;
841 break;
842 case G200_ER:
843 break;
846 switch (crtc->fb->bits_per_pixel) {
847 case 8:
848 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_8bits;
849 break;
850 case 16:
851 if (crtc->fb->depth == 15)
852 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_15bits;
853 else
854 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_16bits;
855 break;
856 case 24:
857 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_24bits;
858 break;
859 case 32:
860 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_32_24bits;
861 break;
864 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
865 misc |= 0x40;
866 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
867 misc |= 0x80;
870 for (i = 0; i < sizeof(dacvalue); i++) {
871 if ((i <= 0x17) ||
872 (i == 0x1b) ||
873 (i == 0x1c) ||
874 ((i >= 0x1f) && (i <= 0x29)) ||
875 ((i >= 0x30) && (i <= 0x37)))
876 continue;
877 if (IS_G200_SE(mdev) &&
878 ((i == 0x2c) || (i == 0x2d) || (i == 0x2e)))
879 continue;
880 if ((mdev->type == G200_EV || mdev->type == G200_WB || mdev->type == G200_EH) &&
881 (i >= 0x44) && (i <= 0x4e))
882 continue;
884 WREG_DAC(i, dacvalue[i]);
887 if (mdev->type == G200_ER)
888 WREG_DAC(0x90, 0);
890 if (option)
891 pci_write_config_dword(dev->pdev, PCI_MGA_OPTION, option);
892 if (option2)
893 pci_write_config_dword(dev->pdev, PCI_MGA_OPTION2, option2);
895 WREG_SEQ(2, 0xf);
896 WREG_SEQ(3, 0);
897 WREG_SEQ(4, 0xe);
899 pitch = crtc->fb->pitches[0] / (crtc->fb->bits_per_pixel / 8);
900 if (crtc->fb->bits_per_pixel == 24)
901 pitch = (pitch * 3) >> (4 - bppshift);
902 else
903 pitch = pitch >> (4 - bppshift);
905 hdisplay = mode->hdisplay / 8 - 1;
906 hsyncstart = mode->hsync_start / 8 - 1;
907 hsyncend = mode->hsync_end / 8 - 1;
908 htotal = mode->htotal / 8 - 1;
910 /* Work around hardware quirk */
911 if ((htotal & 0x07) == 0x06 || (htotal & 0x07) == 0x04)
912 htotal++;
914 vdisplay = mode->vdisplay - 1;
915 vsyncstart = mode->vsync_start - 1;
916 vsyncend = mode->vsync_end - 1;
917 vtotal = mode->vtotal - 2;
919 WREG_GFX(0, 0);
920 WREG_GFX(1, 0);
921 WREG_GFX(2, 0);
922 WREG_GFX(3, 0);
923 WREG_GFX(4, 0);
924 WREG_GFX(5, 0x40);
925 WREG_GFX(6, 0x5);
926 WREG_GFX(7, 0xf);
927 WREG_GFX(8, 0xf);
929 WREG_CRT(0, htotal - 4);
930 WREG_CRT(1, hdisplay);
931 WREG_CRT(2, hdisplay);
932 WREG_CRT(3, (htotal & 0x1F) | 0x80);
933 WREG_CRT(4, hsyncstart);
934 WREG_CRT(5, ((htotal & 0x20) << 2) | (hsyncend & 0x1F));
935 WREG_CRT(6, vtotal & 0xFF);
936 WREG_CRT(7, ((vtotal & 0x100) >> 8) |
937 ((vdisplay & 0x100) >> 7) |
938 ((vsyncstart & 0x100) >> 6) |
939 ((vdisplay & 0x100) >> 5) |
940 ((vdisplay & 0x100) >> 4) | /* linecomp */
941 ((vtotal & 0x200) >> 4)|
942 ((vdisplay & 0x200) >> 3) |
943 ((vsyncstart & 0x200) >> 2));
944 WREG_CRT(9, ((vdisplay & 0x200) >> 4) |
945 ((vdisplay & 0x200) >> 3));
946 WREG_CRT(10, 0);
947 WREG_CRT(11, 0);
948 WREG_CRT(12, 0);
949 WREG_CRT(13, 0);
950 WREG_CRT(14, 0);
951 WREG_CRT(15, 0);
952 WREG_CRT(16, vsyncstart & 0xFF);
953 WREG_CRT(17, (vsyncend & 0x0F) | 0x20);
954 WREG_CRT(18, vdisplay & 0xFF);
955 WREG_CRT(19, pitch & 0xFF);
956 WREG_CRT(20, 0);
957 WREG_CRT(21, vdisplay & 0xFF);
958 WREG_CRT(22, (vtotal + 1) & 0xFF);
959 WREG_CRT(23, 0xc3);
960 WREG_CRT(24, vdisplay & 0xFF);
962 ext_vga[0] = 0;
963 ext_vga[5] = 0;
965 /* TODO interlace */
967 ext_vga[0] |= (pitch & 0x300) >> 4;
968 ext_vga[1] = (((htotal - 4) & 0x100) >> 8) |
969 ((hdisplay & 0x100) >> 7) |
970 ((hsyncstart & 0x100) >> 6) |
971 (htotal & 0x40);
972 ext_vga[2] = ((vtotal & 0xc00) >> 10) |
973 ((vdisplay & 0x400) >> 8) |
974 ((vdisplay & 0xc00) >> 7) |
975 ((vsyncstart & 0xc00) >> 5) |
976 ((vdisplay & 0x400) >> 3);
977 if (crtc->fb->bits_per_pixel == 24)
978 ext_vga[3] = (((1 << bppshift) * 3) - 1) | 0x80;
979 else
980 ext_vga[3] = ((1 << bppshift) - 1) | 0x80;
981 ext_vga[4] = 0;
982 if (mdev->type == G200_WB)
983 ext_vga[1] |= 0x88;
985 /* Set pixel clocks */
986 misc = 0x2d;
987 WREG8(MGA_MISC_OUT, misc);
989 mga_crtc_set_plls(mdev, mode->clock);
991 for (i = 0; i < 6; i++) {
992 WREG_ECRT(i, ext_vga[i]);
995 if (mdev->type == G200_ER)
996 WREG_ECRT(0x24, 0x5);
998 if (mdev->type == G200_EV) {
999 WREG_ECRT(6, 0);
1002 WREG_ECRT(0, ext_vga[0]);
1003 /* Enable mga pixel clock */
1004 misc = 0x2d;
1006 WREG8(MGA_MISC_OUT, misc);
1008 if (adjusted_mode)
1009 memcpy(&mdev->mode, mode, sizeof(struct drm_display_mode));
1011 mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
1013 /* reset tagfifo */
1014 if (mdev->type == G200_ER) {
1015 u32 mem_ctl = RREG32(MGAREG_MEMCTL);
1016 u8 seq1;
1018 /* screen off */
1019 WREG8(MGAREG_SEQ_INDEX, 0x01);
1020 seq1 = RREG8(MGAREG_SEQ_DATA) | 0x20;
1021 WREG8(MGAREG_SEQ_DATA, seq1);
1023 WREG32(MGAREG_MEMCTL, mem_ctl | 0x00200000);
1024 udelay(1000);
1025 WREG32(MGAREG_MEMCTL, mem_ctl & ~0x00200000);
1027 WREG8(MGAREG_SEQ_DATA, seq1 & ~0x20);
1031 if (IS_G200_SE(mdev)) {
1032 if (mdev->unique_rev_id >= 0x02) {
1033 u8 hi_pri_lvl;
1034 u32 bpp;
1035 u32 mb;
1037 if (crtc->fb->bits_per_pixel > 16)
1038 bpp = 32;
1039 else if (crtc->fb->bits_per_pixel > 8)
1040 bpp = 16;
1041 else
1042 bpp = 8;
1044 mb = (mode->clock * bpp) / 1000;
1045 if (mb > 3100)
1046 hi_pri_lvl = 0;
1047 else if (mb > 2600)
1048 hi_pri_lvl = 1;
1049 else if (mb > 1900)
1050 hi_pri_lvl = 2;
1051 else if (mb > 1160)
1052 hi_pri_lvl = 3;
1053 else if (mb > 440)
1054 hi_pri_lvl = 4;
1055 else
1056 hi_pri_lvl = 5;
1058 WREG8(MGAREG_CRTCEXT_INDEX, 0x06);
1059 WREG8(MGAREG_CRTCEXT_DATA, hi_pri_lvl);
1060 } else {
1061 WREG8(MGAREG_CRTCEXT_INDEX, 0x06);
1062 if (mdev->unique_rev_id >= 0x01)
1063 WREG8(MGAREG_CRTCEXT_DATA, 0x03);
1064 else
1065 WREG8(MGAREG_CRTCEXT_DATA, 0x04);
1068 return 0;
1071 #if 0 /* code from mjg to attempt D3 on crtc dpms off - revisit later */
1072 static int mga_suspend(struct drm_crtc *crtc)
1074 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1075 struct drm_device *dev = crtc->dev;
1076 struct mga_device *mdev = dev->dev_private;
1077 struct pci_dev *pdev = dev->pdev;
1078 int option;
1080 if (mdev->suspended)
1081 return 0;
1083 WREG_SEQ(1, 0x20);
1084 WREG_ECRT(1, 0x30);
1085 /* Disable the pixel clock */
1086 WREG_DAC(0x1a, 0x05);
1087 /* Power down the DAC */
1088 WREG_DAC(0x1e, 0x18);
1089 /* Power down the pixel PLL */
1090 WREG_DAC(0x1a, 0x0d);
1092 /* Disable PLLs and clocks */
1093 pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1094 option &= ~(0x1F8024);
1095 pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1096 pci_set_power_state(pdev, PCI_D3hot);
1097 pci_disable_device(pdev);
1099 mdev->suspended = true;
1101 return 0;
1104 static int mga_resume(struct drm_crtc *crtc)
1106 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1107 struct drm_device *dev = crtc->dev;
1108 struct mga_device *mdev = dev->dev_private;
1109 struct pci_dev *pdev = dev->pdev;
1110 int option;
1112 if (!mdev->suspended)
1113 return 0;
1115 pci_set_power_state(pdev, PCI_D0);
1116 pci_enable_device(pdev);
1118 /* Disable sysclk */
1119 pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1120 option &= ~(0x4);
1121 pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1123 mdev->suspended = false;
1125 return 0;
1128 #endif
1130 static void mga_crtc_dpms(struct drm_crtc *crtc, int mode)
1132 struct drm_device *dev = crtc->dev;
1133 struct mga_device *mdev = dev->dev_private;
1134 u8 seq1 = 0, crtcext1 = 0;
1136 switch (mode) {
1137 case DRM_MODE_DPMS_ON:
1138 seq1 = 0;
1139 crtcext1 = 0;
1140 mga_crtc_load_lut(crtc);
1141 break;
1142 case DRM_MODE_DPMS_STANDBY:
1143 seq1 = 0x20;
1144 crtcext1 = 0x10;
1145 break;
1146 case DRM_MODE_DPMS_SUSPEND:
1147 seq1 = 0x20;
1148 crtcext1 = 0x20;
1149 break;
1150 case DRM_MODE_DPMS_OFF:
1151 seq1 = 0x20;
1152 crtcext1 = 0x30;
1153 break;
1156 #if 0
1157 if (mode == DRM_MODE_DPMS_OFF) {
1158 mga_suspend(crtc);
1160 #endif
1161 WREG8(MGAREG_SEQ_INDEX, 0x01);
1162 seq1 |= RREG8(MGAREG_SEQ_DATA) & ~0x20;
1163 mga_wait_vsync(mdev);
1164 mga_wait_busy(mdev);
1165 WREG8(MGAREG_SEQ_DATA, seq1);
1166 msleep(20);
1167 WREG8(MGAREG_CRTCEXT_INDEX, 0x01);
1168 crtcext1 |= RREG8(MGAREG_CRTCEXT_DATA) & ~0x30;
1169 WREG8(MGAREG_CRTCEXT_DATA, crtcext1);
1171 #if 0
1172 if (mode == DRM_MODE_DPMS_ON && mdev->suspended == true) {
1173 mga_resume(crtc);
1174 drm_helper_resume_force_mode(dev);
1176 #endif
1180 * This is called before a mode is programmed. A typical use might be to
1181 * enable DPMS during the programming to avoid seeing intermediate stages,
1182 * but that's not relevant to us
1184 static void mga_crtc_prepare(struct drm_crtc *crtc)
1186 struct drm_device *dev = crtc->dev;
1187 struct mga_device *mdev = dev->dev_private;
1188 u8 tmp;
1190 /* mga_resume(crtc);*/
1192 WREG8(MGAREG_CRTC_INDEX, 0x11);
1193 tmp = RREG8(MGAREG_CRTC_DATA);
1194 WREG_CRT(0x11, tmp | 0x80);
1196 if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1197 WREG_SEQ(0, 1);
1198 msleep(50);
1199 WREG_SEQ(1, 0x20);
1200 msleep(20);
1201 } else {
1202 WREG8(MGAREG_SEQ_INDEX, 0x1);
1203 tmp = RREG8(MGAREG_SEQ_DATA);
1205 /* start sync reset */
1206 WREG_SEQ(0, 1);
1207 WREG_SEQ(1, tmp | 0x20);
1210 if (mdev->type == G200_WB)
1211 mga_g200wb_prepare(crtc);
1213 WREG_CRT(17, 0);
1217 * This is called after a mode is programmed. It should reverse anything done
1218 * by the prepare function
1220 static void mga_crtc_commit(struct drm_crtc *crtc)
1222 struct drm_device *dev = crtc->dev;
1223 struct mga_device *mdev = dev->dev_private;
1224 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1225 u8 tmp;
1227 if (mdev->type == G200_WB)
1228 mga_g200wb_commit(crtc);
1230 if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1231 msleep(50);
1232 WREG_SEQ(1, 0x0);
1233 msleep(20);
1234 WREG_SEQ(0, 0x3);
1235 } else {
1236 WREG8(MGAREG_SEQ_INDEX, 0x1);
1237 tmp = RREG8(MGAREG_SEQ_DATA);
1239 tmp &= ~0x20;
1240 WREG_SEQ(0x1, tmp);
1241 WREG_SEQ(0, 3);
1243 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1247 * The core can pass us a set of gamma values to program. We actually only
1248 * use this for 8-bit mode so can't perform smooth fades on deeper modes,
1249 * but it's a requirement that we provide the function
1251 static void mga_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
1252 u16 *blue, uint32_t start, uint32_t size)
1254 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1255 int end = (start + size > MGAG200_LUT_SIZE) ? MGAG200_LUT_SIZE : start + size;
1256 int i;
1258 for (i = start; i < end; i++) {
1259 mga_crtc->lut_r[i] = red[i] >> 8;
1260 mga_crtc->lut_g[i] = green[i] >> 8;
1261 mga_crtc->lut_b[i] = blue[i] >> 8;
1263 mga_crtc_load_lut(crtc);
1266 /* Simple cleanup function */
1267 static void mga_crtc_destroy(struct drm_crtc *crtc)
1269 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1271 drm_crtc_cleanup(crtc);
1272 kfree(mga_crtc);
1275 static void mga_crtc_disable(struct drm_crtc *crtc)
1277 int ret;
1278 DRM_DEBUG_KMS("\n");
1279 mga_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
1280 if (crtc->fb) {
1281 struct mga_framebuffer *mga_fb = to_mga_framebuffer(crtc->fb);
1282 struct drm_gem_object *obj = mga_fb->obj;
1283 struct mgag200_bo *bo = gem_to_mga_bo(obj);
1284 ret = mgag200_bo_reserve(bo, false);
1285 if (ret)
1286 return;
1287 mgag200_bo_push_sysram(bo);
1288 mgag200_bo_unreserve(bo);
1290 crtc->fb = NULL;
1293 /* These provide the minimum set of functions required to handle a CRTC */
1294 static const struct drm_crtc_funcs mga_crtc_funcs = {
1295 .cursor_set = mga_crtc_cursor_set,
1296 .cursor_move = mga_crtc_cursor_move,
1297 .gamma_set = mga_crtc_gamma_set,
1298 .set_config = drm_crtc_helper_set_config,
1299 .destroy = mga_crtc_destroy,
1302 static const struct drm_crtc_helper_funcs mga_helper_funcs = {
1303 .disable = mga_crtc_disable,
1304 .dpms = mga_crtc_dpms,
1305 .mode_fixup = mga_crtc_mode_fixup,
1306 .mode_set = mga_crtc_mode_set,
1307 .mode_set_base = mga_crtc_mode_set_base,
1308 .prepare = mga_crtc_prepare,
1309 .commit = mga_crtc_commit,
1310 .load_lut = mga_crtc_load_lut,
1313 /* CRTC setup */
1314 static void mga_crtc_init(struct mga_device *mdev)
1316 struct mga_crtc *mga_crtc;
1317 int i;
1319 mga_crtc = kzalloc(sizeof(struct mga_crtc) +
1320 (MGAG200FB_CONN_LIMIT * sizeof(struct drm_connector *)),
1321 GFP_KERNEL);
1323 if (mga_crtc == NULL)
1324 return;
1326 drm_crtc_init(mdev->dev, &mga_crtc->base, &mga_crtc_funcs);
1328 drm_mode_crtc_set_gamma_size(&mga_crtc->base, MGAG200_LUT_SIZE);
1329 mdev->mode_info.crtc = mga_crtc;
1331 for (i = 0; i < MGAG200_LUT_SIZE; i++) {
1332 mga_crtc->lut_r[i] = i;
1333 mga_crtc->lut_g[i] = i;
1334 mga_crtc->lut_b[i] = i;
1337 drm_crtc_helper_add(&mga_crtc->base, &mga_helper_funcs);
1340 /** Sets the color ramps on behalf of fbcon */
1341 void mga_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
1342 u16 blue, int regno)
1344 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1346 mga_crtc->lut_r[regno] = red >> 8;
1347 mga_crtc->lut_g[regno] = green >> 8;
1348 mga_crtc->lut_b[regno] = blue >> 8;
1351 /** Gets the color ramps on behalf of fbcon */
1352 void mga_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
1353 u16 *blue, int regno)
1355 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1357 *red = (u16)mga_crtc->lut_r[regno] << 8;
1358 *green = (u16)mga_crtc->lut_g[regno] << 8;
1359 *blue = (u16)mga_crtc->lut_b[regno] << 8;
1363 * The encoder comes after the CRTC in the output pipeline, but before
1364 * the connector. It's responsible for ensuring that the digital
1365 * stream is appropriately converted into the output format. Setup is
1366 * very simple in this case - all we have to do is inform qemu of the
1367 * colour depth in order to ensure that it displays appropriately
1371 * These functions are analagous to those in the CRTC code, but are intended
1372 * to handle any encoder-specific limitations
1374 static bool mga_encoder_mode_fixup(struct drm_encoder *encoder,
1375 const struct drm_display_mode *mode,
1376 struct drm_display_mode *adjusted_mode)
1378 return true;
1381 static void mga_encoder_mode_set(struct drm_encoder *encoder,
1382 struct drm_display_mode *mode,
1383 struct drm_display_mode *adjusted_mode)
1388 static void mga_encoder_dpms(struct drm_encoder *encoder, int state)
1390 return;
1393 static void mga_encoder_prepare(struct drm_encoder *encoder)
1397 static void mga_encoder_commit(struct drm_encoder *encoder)
1401 static void mga_encoder_destroy(struct drm_encoder *encoder)
1403 struct mga_encoder *mga_encoder = to_mga_encoder(encoder);
1404 drm_encoder_cleanup(encoder);
1405 kfree(mga_encoder);
1408 static const struct drm_encoder_helper_funcs mga_encoder_helper_funcs = {
1409 .dpms = mga_encoder_dpms,
1410 .mode_fixup = mga_encoder_mode_fixup,
1411 .mode_set = mga_encoder_mode_set,
1412 .prepare = mga_encoder_prepare,
1413 .commit = mga_encoder_commit,
1416 static const struct drm_encoder_funcs mga_encoder_encoder_funcs = {
1417 .destroy = mga_encoder_destroy,
1420 static struct drm_encoder *mga_encoder_init(struct drm_device *dev)
1422 struct drm_encoder *encoder;
1423 struct mga_encoder *mga_encoder;
1425 mga_encoder = kzalloc(sizeof(struct mga_encoder), GFP_KERNEL);
1426 if (!mga_encoder)
1427 return NULL;
1429 encoder = &mga_encoder->base;
1430 encoder->possible_crtcs = 0x1;
1432 drm_encoder_init(dev, encoder, &mga_encoder_encoder_funcs,
1433 DRM_MODE_ENCODER_DAC);
1434 drm_encoder_helper_add(encoder, &mga_encoder_helper_funcs);
1436 return encoder;
1440 static int mga_vga_get_modes(struct drm_connector *connector)
1442 struct mga_connector *mga_connector = to_mga_connector(connector);
1443 struct edid *edid;
1444 int ret = 0;
1446 edid = drm_get_edid(connector, &mga_connector->i2c->adapter);
1447 if (edid) {
1448 drm_mode_connector_update_edid_property(connector, edid);
1449 ret = drm_add_edid_modes(connector, edid);
1450 kfree(edid);
1452 return ret;
1455 static uint32_t mga_vga_calculate_mode_bandwidth(struct drm_display_mode *mode,
1456 int bits_per_pixel)
1458 uint32_t total_area, divisor;
1459 int64_t active_area, pixels_per_second, bandwidth;
1460 uint64_t bytes_per_pixel = (bits_per_pixel + 7) / 8;
1462 divisor = 1024;
1464 if (!mode->htotal || !mode->vtotal || !mode->clock)
1465 return 0;
1467 active_area = mode->hdisplay * mode->vdisplay;
1468 total_area = mode->htotal * mode->vtotal;
1470 pixels_per_second = active_area * mode->clock * 1000;
1471 do_div(pixels_per_second, total_area);
1473 bandwidth = pixels_per_second * bytes_per_pixel * 100;
1474 do_div(bandwidth, divisor);
1476 return (uint32_t)(bandwidth);
1479 #define MODE_BANDWIDTH MODE_BAD
1481 static int mga_vga_mode_valid(struct drm_connector *connector,
1482 struct drm_display_mode *mode)
1484 struct drm_device *dev = connector->dev;
1485 struct mga_device *mdev = (struct mga_device*)dev->dev_private;
1486 struct mga_fbdev *mfbdev = mdev->mfbdev;
1487 struct drm_fb_helper *fb_helper = &mfbdev->helper;
1488 struct drm_fb_helper_connector *fb_helper_conn = NULL;
1489 int bpp = 32;
1490 int i = 0;
1492 if (IS_G200_SE(mdev)) {
1493 if (mdev->unique_rev_id == 0x01) {
1494 if (mode->hdisplay > 1600)
1495 return MODE_VIRTUAL_X;
1496 if (mode->vdisplay > 1200)
1497 return MODE_VIRTUAL_Y;
1498 if (mga_vga_calculate_mode_bandwidth(mode, bpp)
1499 > (24400 * 1024))
1500 return MODE_BANDWIDTH;
1501 } else if (mdev->unique_rev_id >= 0x02) {
1502 if (mode->hdisplay > 1920)
1503 return MODE_VIRTUAL_X;
1504 if (mode->vdisplay > 1200)
1505 return MODE_VIRTUAL_Y;
1506 if (mga_vga_calculate_mode_bandwidth(mode, bpp)
1507 > (30100 * 1024))
1508 return MODE_BANDWIDTH;
1510 } else if (mdev->type == G200_WB) {
1511 if (mode->hdisplay > 1280)
1512 return MODE_VIRTUAL_X;
1513 if (mode->vdisplay > 1024)
1514 return MODE_VIRTUAL_Y;
1515 if (mga_vga_calculate_mode_bandwidth(mode,
1516 bpp > (31877 * 1024)))
1517 return MODE_BANDWIDTH;
1518 } else if (mdev->type == G200_EV &&
1519 (mga_vga_calculate_mode_bandwidth(mode, bpp)
1520 > (32700 * 1024))) {
1521 return MODE_BANDWIDTH;
1522 } else if (mdev->type == G200_EH &&
1523 (mga_vga_calculate_mode_bandwidth(mode, bpp)
1524 > (37500 * 1024))) {
1525 return MODE_BANDWIDTH;
1526 } else if (mdev->type == G200_ER &&
1527 (mga_vga_calculate_mode_bandwidth(mode,
1528 bpp) > (55000 * 1024))) {
1529 return MODE_BANDWIDTH;
1532 if (mode->crtc_hdisplay > 2048 || mode->crtc_hsync_start > 4096 ||
1533 mode->crtc_hsync_end > 4096 || mode->crtc_htotal > 4096 ||
1534 mode->crtc_vdisplay > 2048 || mode->crtc_vsync_start > 4096 ||
1535 mode->crtc_vsync_end > 4096 || mode->crtc_vtotal > 4096) {
1536 return MODE_BAD;
1539 /* Validate the mode input by the user */
1540 for (i = 0; i < fb_helper->connector_count; i++) {
1541 if (fb_helper->connector_info[i]->connector == connector) {
1542 /* Found the helper for this connector */
1543 fb_helper_conn = fb_helper->connector_info[i];
1544 if (fb_helper_conn->cmdline_mode.specified) {
1545 if (fb_helper_conn->cmdline_mode.bpp_specified) {
1546 bpp = fb_helper_conn->cmdline_mode.bpp;
1552 if ((mode->hdisplay * mode->vdisplay * (bpp/8)) > mdev->mc.vram_size) {
1553 if (fb_helper_conn)
1554 fb_helper_conn->cmdline_mode.specified = false;
1555 return MODE_BAD;
1558 return MODE_OK;
1561 static struct drm_encoder *mga_connector_best_encoder(struct drm_connector
1562 *connector)
1564 int enc_id = connector->encoder_ids[0];
1565 struct drm_mode_object *obj;
1566 struct drm_encoder *encoder;
1568 /* pick the encoder ids */
1569 if (enc_id) {
1570 obj =
1571 drm_mode_object_find(connector->dev, enc_id,
1572 DRM_MODE_OBJECT_ENCODER);
1573 if (!obj)
1574 return NULL;
1575 encoder = obj_to_encoder(obj);
1576 return encoder;
1578 return NULL;
1581 static enum drm_connector_status mga_vga_detect(struct drm_connector
1582 *connector, bool force)
1584 return connector_status_connected;
1587 static void mga_connector_destroy(struct drm_connector *connector)
1589 struct mga_connector *mga_connector = to_mga_connector(connector);
1590 mgag200_i2c_destroy(mga_connector->i2c);
1591 drm_connector_cleanup(connector);
1592 kfree(connector);
1595 struct drm_connector_helper_funcs mga_vga_connector_helper_funcs = {
1596 .get_modes = mga_vga_get_modes,
1597 .mode_valid = mga_vga_mode_valid,
1598 .best_encoder = mga_connector_best_encoder,
1601 struct drm_connector_funcs mga_vga_connector_funcs = {
1602 .dpms = drm_helper_connector_dpms,
1603 .detect = mga_vga_detect,
1604 .fill_modes = drm_helper_probe_single_connector_modes,
1605 .destroy = mga_connector_destroy,
1608 static struct drm_connector *mga_vga_init(struct drm_device *dev)
1610 struct drm_connector *connector;
1611 struct mga_connector *mga_connector;
1613 mga_connector = kzalloc(sizeof(struct mga_connector), GFP_KERNEL);
1614 if (!mga_connector)
1615 return NULL;
1617 connector = &mga_connector->base;
1619 drm_connector_init(dev, connector,
1620 &mga_vga_connector_funcs, DRM_MODE_CONNECTOR_VGA);
1622 drm_connector_helper_add(connector, &mga_vga_connector_helper_funcs);
1624 drm_sysfs_connector_add(connector);
1626 mga_connector->i2c = mgag200_i2c_create(dev);
1627 if (!mga_connector->i2c)
1628 DRM_ERROR("failed to add ddc bus\n");
1630 return connector;
1634 int mgag200_modeset_init(struct mga_device *mdev)
1636 struct drm_encoder *encoder;
1637 struct drm_connector *connector;
1638 int ret;
1640 mdev->mode_info.mode_config_initialized = true;
1642 mdev->dev->mode_config.max_width = MGAG200_MAX_FB_WIDTH;
1643 mdev->dev->mode_config.max_height = MGAG200_MAX_FB_HEIGHT;
1645 mdev->dev->mode_config.fb_base = mdev->mc.vram_base;
1647 mga_crtc_init(mdev);
1649 encoder = mga_encoder_init(mdev->dev);
1650 if (!encoder) {
1651 DRM_ERROR("mga_encoder_init failed\n");
1652 return -1;
1655 connector = mga_vga_init(mdev->dev);
1656 if (!connector) {
1657 DRM_ERROR("mga_vga_init failed\n");
1658 return -1;
1661 drm_mode_connector_attach_encoder(connector, encoder);
1663 ret = mgag200_fbdev_init(mdev);
1664 if (ret) {
1665 DRM_ERROR("mga_fbdev_init failed\n");
1666 return ret;
1669 return 0;
1672 void mgag200_modeset_fini(struct mga_device *mdev)