PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / gpu / drm / vmwgfx / vmwgfx_buffer.c
blob6327cfc36805f46364402a004ce76cd9bb19ecd5
1 /**************************************************************************
3 * Copyright © 2009 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
26 **************************************************************************/
28 #include "vmwgfx_drv.h"
29 #include <drm/ttm/ttm_bo_driver.h>
30 #include <drm/ttm/ttm_placement.h>
31 #include <drm/ttm/ttm_page_alloc.h>
33 static uint32_t vram_placement_flags = TTM_PL_FLAG_VRAM |
34 TTM_PL_FLAG_CACHED;
36 static uint32_t vram_ne_placement_flags = TTM_PL_FLAG_VRAM |
37 TTM_PL_FLAG_CACHED |
38 TTM_PL_FLAG_NO_EVICT;
40 static uint32_t sys_placement_flags = TTM_PL_FLAG_SYSTEM |
41 TTM_PL_FLAG_CACHED;
43 static uint32_t sys_ne_placement_flags = TTM_PL_FLAG_SYSTEM |
44 TTM_PL_FLAG_CACHED |
45 TTM_PL_FLAG_NO_EVICT;
47 static uint32_t gmr_placement_flags = VMW_PL_FLAG_GMR |
48 TTM_PL_FLAG_CACHED;
50 static uint32_t gmr_ne_placement_flags = VMW_PL_FLAG_GMR |
51 TTM_PL_FLAG_CACHED |
52 TTM_PL_FLAG_NO_EVICT;
54 static uint32_t mob_placement_flags = VMW_PL_FLAG_MOB |
55 TTM_PL_FLAG_CACHED;
57 struct ttm_placement vmw_vram_placement = {
58 .fpfn = 0,
59 .lpfn = 0,
60 .num_placement = 1,
61 .placement = &vram_placement_flags,
62 .num_busy_placement = 1,
63 .busy_placement = &vram_placement_flags
66 static uint32_t vram_gmr_placement_flags[] = {
67 TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED,
68 VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
71 static uint32_t gmr_vram_placement_flags[] = {
72 VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED,
73 TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
76 struct ttm_placement vmw_vram_gmr_placement = {
77 .fpfn = 0,
78 .lpfn = 0,
79 .num_placement = 2,
80 .placement = vram_gmr_placement_flags,
81 .num_busy_placement = 1,
82 .busy_placement = &gmr_placement_flags
85 static uint32_t vram_gmr_ne_placement_flags[] = {
86 TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT,
87 VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
90 struct ttm_placement vmw_vram_gmr_ne_placement = {
91 .fpfn = 0,
92 .lpfn = 0,
93 .num_placement = 2,
94 .placement = vram_gmr_ne_placement_flags,
95 .num_busy_placement = 1,
96 .busy_placement = &gmr_ne_placement_flags
99 struct ttm_placement vmw_vram_sys_placement = {
100 .fpfn = 0,
101 .lpfn = 0,
102 .num_placement = 1,
103 .placement = &vram_placement_flags,
104 .num_busy_placement = 1,
105 .busy_placement = &sys_placement_flags
108 struct ttm_placement vmw_vram_ne_placement = {
109 .fpfn = 0,
110 .lpfn = 0,
111 .num_placement = 1,
112 .placement = &vram_ne_placement_flags,
113 .num_busy_placement = 1,
114 .busy_placement = &vram_ne_placement_flags
117 struct ttm_placement vmw_sys_placement = {
118 .fpfn = 0,
119 .lpfn = 0,
120 .num_placement = 1,
121 .placement = &sys_placement_flags,
122 .num_busy_placement = 1,
123 .busy_placement = &sys_placement_flags
126 struct ttm_placement vmw_sys_ne_placement = {
127 .fpfn = 0,
128 .lpfn = 0,
129 .num_placement = 1,
130 .placement = &sys_ne_placement_flags,
131 .num_busy_placement = 1,
132 .busy_placement = &sys_ne_placement_flags
135 static uint32_t evictable_placement_flags[] = {
136 TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED,
137 TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED,
138 VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED,
139 VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED
142 struct ttm_placement vmw_evictable_placement = {
143 .fpfn = 0,
144 .lpfn = 0,
145 .num_placement = 4,
146 .placement = evictable_placement_flags,
147 .num_busy_placement = 1,
148 .busy_placement = &sys_placement_flags
151 struct ttm_placement vmw_srf_placement = {
152 .fpfn = 0,
153 .lpfn = 0,
154 .num_placement = 1,
155 .num_busy_placement = 2,
156 .placement = &gmr_placement_flags,
157 .busy_placement = gmr_vram_placement_flags
160 struct ttm_placement vmw_mob_placement = {
161 .fpfn = 0,
162 .lpfn = 0,
163 .num_placement = 1,
164 .num_busy_placement = 1,
165 .placement = &mob_placement_flags,
166 .busy_placement = &mob_placement_flags
169 struct vmw_ttm_tt {
170 struct ttm_dma_tt dma_ttm;
171 struct vmw_private *dev_priv;
172 int gmr_id;
173 struct vmw_mob *mob;
174 int mem_type;
175 struct sg_table sgt;
176 struct vmw_sg_table vsgt;
177 uint64_t sg_alloc_size;
178 bool mapped;
181 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
184 * Helper functions to advance a struct vmw_piter iterator.
186 * @viter: Pointer to the iterator.
188 * These functions return false if past the end of the list,
189 * true otherwise. Functions are selected depending on the current
190 * DMA mapping mode.
192 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
194 return ++(viter->i) < viter->num_pages;
197 static bool __vmw_piter_sg_next(struct vmw_piter *viter)
199 return __sg_page_iter_next(&viter->iter);
204 * Helper functions to return a pointer to the current page.
206 * @viter: Pointer to the iterator
208 * These functions return a pointer to the page currently
209 * pointed to by @viter. Functions are selected depending on the
210 * current mapping mode.
212 static struct page *__vmw_piter_non_sg_page(struct vmw_piter *viter)
214 return viter->pages[viter->i];
217 static struct page *__vmw_piter_sg_page(struct vmw_piter *viter)
219 return sg_page_iter_page(&viter->iter);
224 * Helper functions to return the DMA address of the current page.
226 * @viter: Pointer to the iterator
228 * These functions return the DMA address of the page currently
229 * pointed to by @viter. Functions are selected depending on the
230 * current mapping mode.
232 static dma_addr_t __vmw_piter_phys_addr(struct vmw_piter *viter)
234 return page_to_phys(viter->pages[viter->i]);
237 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
239 return viter->addrs[viter->i];
242 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
244 return sg_page_iter_dma_address(&viter->iter);
249 * vmw_piter_start - Initialize a struct vmw_piter.
251 * @viter: Pointer to the iterator to initialize
252 * @vsgt: Pointer to a struct vmw_sg_table to initialize from
254 * Note that we're following the convention of __sg_page_iter_start, so that
255 * the iterator doesn't point to a valid page after initialization; it has
256 * to be advanced one step first.
258 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
259 unsigned long p_offset)
261 viter->i = p_offset - 1;
262 viter->num_pages = vsgt->num_pages;
263 switch (vsgt->mode) {
264 case vmw_dma_phys:
265 viter->next = &__vmw_piter_non_sg_next;
266 viter->dma_address = &__vmw_piter_phys_addr;
267 viter->page = &__vmw_piter_non_sg_page;
268 viter->pages = vsgt->pages;
269 break;
270 case vmw_dma_alloc_coherent:
271 viter->next = &__vmw_piter_non_sg_next;
272 viter->dma_address = &__vmw_piter_dma_addr;
273 viter->page = &__vmw_piter_non_sg_page;
274 viter->addrs = vsgt->addrs;
275 viter->pages = vsgt->pages;
276 break;
277 case vmw_dma_map_populate:
278 case vmw_dma_map_bind:
279 viter->next = &__vmw_piter_sg_next;
280 viter->dma_address = &__vmw_piter_sg_addr;
281 viter->page = &__vmw_piter_sg_page;
282 __sg_page_iter_start(&viter->iter, vsgt->sgt->sgl,
283 vsgt->sgt->orig_nents, p_offset);
284 break;
285 default:
286 BUG();
291 * vmw_ttm_unmap_from_dma - unmap device addresses previsouly mapped for
292 * TTM pages
294 * @vmw_tt: Pointer to a struct vmw_ttm_backend
296 * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
298 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
300 struct device *dev = vmw_tt->dev_priv->dev->dev;
302 dma_unmap_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.nents,
303 DMA_BIDIRECTIONAL);
304 vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
308 * vmw_ttm_map_for_dma - map TTM pages to get device addresses
310 * @vmw_tt: Pointer to a struct vmw_ttm_backend
312 * This function is used to get device addresses from the kernel DMA layer.
313 * However, it's violating the DMA API in that when this operation has been
314 * performed, it's illegal for the CPU to write to the pages without first
315 * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
316 * therefore only legal to call this function if we know that the function
317 * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
318 * a CPU write buffer flush.
320 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
322 struct device *dev = vmw_tt->dev_priv->dev->dev;
323 int ret;
325 ret = dma_map_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.orig_nents,
326 DMA_BIDIRECTIONAL);
327 if (unlikely(ret == 0))
328 return -ENOMEM;
330 vmw_tt->sgt.nents = ret;
332 return 0;
336 * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
338 * @vmw_tt: Pointer to a struct vmw_ttm_tt
340 * Select the correct function for and make sure the TTM pages are
341 * visible to the device. Allocate storage for the device mappings.
342 * If a mapping has already been performed, indicated by the storage
343 * pointer being non NULL, the function returns success.
345 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
347 struct vmw_private *dev_priv = vmw_tt->dev_priv;
348 struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
349 struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
350 struct vmw_piter iter;
351 dma_addr_t old;
352 int ret = 0;
353 static size_t sgl_size;
354 static size_t sgt_size;
356 if (vmw_tt->mapped)
357 return 0;
359 vsgt->mode = dev_priv->map_mode;
360 vsgt->pages = vmw_tt->dma_ttm.ttm.pages;
361 vsgt->num_pages = vmw_tt->dma_ttm.ttm.num_pages;
362 vsgt->addrs = vmw_tt->dma_ttm.dma_address;
363 vsgt->sgt = &vmw_tt->sgt;
365 switch (dev_priv->map_mode) {
366 case vmw_dma_map_bind:
367 case vmw_dma_map_populate:
368 if (unlikely(!sgl_size)) {
369 sgl_size = ttm_round_pot(sizeof(struct scatterlist));
370 sgt_size = ttm_round_pot(sizeof(struct sg_table));
372 vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages;
373 ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, false,
374 true);
375 if (unlikely(ret != 0))
376 return ret;
378 ret = sg_alloc_table_from_pages(&vmw_tt->sgt, vsgt->pages,
379 vsgt->num_pages, 0,
380 (unsigned long)
381 vsgt->num_pages << PAGE_SHIFT,
382 GFP_KERNEL);
383 if (unlikely(ret != 0))
384 goto out_sg_alloc_fail;
386 if (vsgt->num_pages > vmw_tt->sgt.nents) {
387 uint64_t over_alloc =
388 sgl_size * (vsgt->num_pages -
389 vmw_tt->sgt.nents);
391 ttm_mem_global_free(glob, over_alloc);
392 vmw_tt->sg_alloc_size -= over_alloc;
395 ret = vmw_ttm_map_for_dma(vmw_tt);
396 if (unlikely(ret != 0))
397 goto out_map_fail;
399 break;
400 default:
401 break;
404 old = ~((dma_addr_t) 0);
405 vmw_tt->vsgt.num_regions = 0;
406 for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) {
407 dma_addr_t cur = vmw_piter_dma_addr(&iter);
409 if (cur != old + PAGE_SIZE)
410 vmw_tt->vsgt.num_regions++;
411 old = cur;
414 vmw_tt->mapped = true;
415 return 0;
417 out_map_fail:
418 sg_free_table(vmw_tt->vsgt.sgt);
419 vmw_tt->vsgt.sgt = NULL;
420 out_sg_alloc_fail:
421 ttm_mem_global_free(glob, vmw_tt->sg_alloc_size);
422 return ret;
426 * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
428 * @vmw_tt: Pointer to a struct vmw_ttm_tt
430 * Tear down any previously set up device DMA mappings and free
431 * any storage space allocated for them. If there are no mappings set up,
432 * this function is a NOP.
434 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
436 struct vmw_private *dev_priv = vmw_tt->dev_priv;
438 if (!vmw_tt->vsgt.sgt)
439 return;
441 switch (dev_priv->map_mode) {
442 case vmw_dma_map_bind:
443 case vmw_dma_map_populate:
444 vmw_ttm_unmap_from_dma(vmw_tt);
445 sg_free_table(vmw_tt->vsgt.sgt);
446 vmw_tt->vsgt.sgt = NULL;
447 ttm_mem_global_free(vmw_mem_glob(dev_priv),
448 vmw_tt->sg_alloc_size);
449 break;
450 default:
451 break;
453 vmw_tt->mapped = false;
458 * vmw_bo_map_dma - Make sure buffer object pages are visible to the device
460 * @bo: Pointer to a struct ttm_buffer_object
462 * Wrapper around vmw_ttm_map_dma, that takes a TTM buffer object pointer
463 * instead of a pointer to a struct vmw_ttm_backend as argument.
464 * Note that the buffer object must be either pinned or reserved before
465 * calling this function.
467 int vmw_bo_map_dma(struct ttm_buffer_object *bo)
469 struct vmw_ttm_tt *vmw_tt =
470 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
472 return vmw_ttm_map_dma(vmw_tt);
477 * vmw_bo_unmap_dma - Make sure buffer object pages are visible to the device
479 * @bo: Pointer to a struct ttm_buffer_object
481 * Wrapper around vmw_ttm_unmap_dma, that takes a TTM buffer object pointer
482 * instead of a pointer to a struct vmw_ttm_backend as argument.
484 void vmw_bo_unmap_dma(struct ttm_buffer_object *bo)
486 struct vmw_ttm_tt *vmw_tt =
487 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
489 vmw_ttm_unmap_dma(vmw_tt);
494 * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
495 * TTM buffer object
497 * @bo: Pointer to a struct ttm_buffer_object
499 * Returns a pointer to a struct vmw_sg_table object. The object should
500 * not be freed after use.
501 * Note that for the device addresses to be valid, the buffer object must
502 * either be reserved or pinned.
504 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
506 struct vmw_ttm_tt *vmw_tt =
507 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
509 return &vmw_tt->vsgt;
513 static int vmw_ttm_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
515 struct vmw_ttm_tt *vmw_be =
516 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
517 int ret;
519 ret = vmw_ttm_map_dma(vmw_be);
520 if (unlikely(ret != 0))
521 return ret;
523 vmw_be->gmr_id = bo_mem->start;
524 vmw_be->mem_type = bo_mem->mem_type;
526 switch (bo_mem->mem_type) {
527 case VMW_PL_GMR:
528 return vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
529 ttm->num_pages, vmw_be->gmr_id);
530 case VMW_PL_MOB:
531 if (unlikely(vmw_be->mob == NULL)) {
532 vmw_be->mob =
533 vmw_mob_create(ttm->num_pages);
534 if (unlikely(vmw_be->mob == NULL))
535 return -ENOMEM;
538 return vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
539 &vmw_be->vsgt, ttm->num_pages,
540 vmw_be->gmr_id);
541 default:
542 BUG();
544 return 0;
547 static int vmw_ttm_unbind(struct ttm_tt *ttm)
549 struct vmw_ttm_tt *vmw_be =
550 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
552 switch (vmw_be->mem_type) {
553 case VMW_PL_GMR:
554 vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
555 break;
556 case VMW_PL_MOB:
557 vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
558 break;
559 default:
560 BUG();
563 if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
564 vmw_ttm_unmap_dma(vmw_be);
566 return 0;
570 static void vmw_ttm_destroy(struct ttm_tt *ttm)
572 struct vmw_ttm_tt *vmw_be =
573 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
575 vmw_ttm_unmap_dma(vmw_be);
576 if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
577 ttm_dma_tt_fini(&vmw_be->dma_ttm);
578 else
579 ttm_tt_fini(ttm);
581 if (vmw_be->mob)
582 vmw_mob_destroy(vmw_be->mob);
584 kfree(vmw_be);
588 static int vmw_ttm_populate(struct ttm_tt *ttm)
590 struct vmw_ttm_tt *vmw_tt =
591 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
592 struct vmw_private *dev_priv = vmw_tt->dev_priv;
593 struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
594 int ret;
596 if (ttm->state != tt_unpopulated)
597 return 0;
599 if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
600 size_t size =
601 ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
602 ret = ttm_mem_global_alloc(glob, size, false, true);
603 if (unlikely(ret != 0))
604 return ret;
606 ret = ttm_dma_populate(&vmw_tt->dma_ttm, dev_priv->dev->dev);
607 if (unlikely(ret != 0))
608 ttm_mem_global_free(glob, size);
609 } else
610 ret = ttm_pool_populate(ttm);
612 return ret;
615 static void vmw_ttm_unpopulate(struct ttm_tt *ttm)
617 struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
618 dma_ttm.ttm);
619 struct vmw_private *dev_priv = vmw_tt->dev_priv;
620 struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
623 if (vmw_tt->mob) {
624 vmw_mob_destroy(vmw_tt->mob);
625 vmw_tt->mob = NULL;
628 vmw_ttm_unmap_dma(vmw_tt);
629 if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
630 size_t size =
631 ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
633 ttm_dma_unpopulate(&vmw_tt->dma_ttm, dev_priv->dev->dev);
634 ttm_mem_global_free(glob, size);
635 } else
636 ttm_pool_unpopulate(ttm);
639 static struct ttm_backend_func vmw_ttm_func = {
640 .bind = vmw_ttm_bind,
641 .unbind = vmw_ttm_unbind,
642 .destroy = vmw_ttm_destroy,
645 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_bo_device *bdev,
646 unsigned long size, uint32_t page_flags,
647 struct page *dummy_read_page)
649 struct vmw_ttm_tt *vmw_be;
650 int ret;
652 vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
653 if (!vmw_be)
654 return NULL;
656 vmw_be->dma_ttm.ttm.func = &vmw_ttm_func;
657 vmw_be->dev_priv = container_of(bdev, struct vmw_private, bdev);
658 vmw_be->mob = NULL;
660 if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
661 ret = ttm_dma_tt_init(&vmw_be->dma_ttm, bdev, size, page_flags,
662 dummy_read_page);
663 else
664 ret = ttm_tt_init(&vmw_be->dma_ttm.ttm, bdev, size, page_flags,
665 dummy_read_page);
666 if (unlikely(ret != 0))
667 goto out_no_init;
669 return &vmw_be->dma_ttm.ttm;
670 out_no_init:
671 kfree(vmw_be);
672 return NULL;
675 static int vmw_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
677 return 0;
680 static int vmw_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
681 struct ttm_mem_type_manager *man)
683 switch (type) {
684 case TTM_PL_SYSTEM:
685 /* System memory */
687 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
688 man->available_caching = TTM_PL_FLAG_CACHED;
689 man->default_caching = TTM_PL_FLAG_CACHED;
690 break;
691 case TTM_PL_VRAM:
692 /* "On-card" video ram */
693 man->func = &ttm_bo_manager_func;
694 man->gpu_offset = 0;
695 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_MAPPABLE;
696 man->available_caching = TTM_PL_FLAG_CACHED;
697 man->default_caching = TTM_PL_FLAG_CACHED;
698 break;
699 case VMW_PL_GMR:
700 case VMW_PL_MOB:
702 * "Guest Memory Regions" is an aperture like feature with
703 * one slot per bo. There is an upper limit of the number of
704 * slots as well as the bo size.
706 man->func = &vmw_gmrid_manager_func;
707 man->gpu_offset = 0;
708 man->flags = TTM_MEMTYPE_FLAG_CMA | TTM_MEMTYPE_FLAG_MAPPABLE;
709 man->available_caching = TTM_PL_FLAG_CACHED;
710 man->default_caching = TTM_PL_FLAG_CACHED;
711 break;
712 default:
713 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
714 return -EINVAL;
716 return 0;
719 static void vmw_evict_flags(struct ttm_buffer_object *bo,
720 struct ttm_placement *placement)
722 *placement = vmw_sys_placement;
725 static int vmw_verify_access(struct ttm_buffer_object *bo, struct file *filp)
727 struct ttm_object_file *tfile =
728 vmw_fpriv((struct drm_file *)filp->private_data)->tfile;
730 return vmw_user_dmabuf_verify_access(bo, tfile);
733 static int vmw_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
735 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
736 struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);
738 mem->bus.addr = NULL;
739 mem->bus.is_iomem = false;
740 mem->bus.offset = 0;
741 mem->bus.size = mem->num_pages << PAGE_SHIFT;
742 mem->bus.base = 0;
743 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
744 return -EINVAL;
745 switch (mem->mem_type) {
746 case TTM_PL_SYSTEM:
747 case VMW_PL_GMR:
748 case VMW_PL_MOB:
749 return 0;
750 case TTM_PL_VRAM:
751 mem->bus.offset = mem->start << PAGE_SHIFT;
752 mem->bus.base = dev_priv->vram_start;
753 mem->bus.is_iomem = true;
754 break;
755 default:
756 return -EINVAL;
758 return 0;
761 static void vmw_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
765 static int vmw_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
767 return 0;
771 * FIXME: We're using the old vmware polling method to sync.
772 * Do this with fences instead.
775 static void *vmw_sync_obj_ref(void *sync_obj)
778 return (void *)
779 vmw_fence_obj_reference((struct vmw_fence_obj *) sync_obj);
782 static void vmw_sync_obj_unref(void **sync_obj)
784 vmw_fence_obj_unreference((struct vmw_fence_obj **) sync_obj);
787 static int vmw_sync_obj_flush(void *sync_obj)
789 vmw_fence_obj_flush((struct vmw_fence_obj *) sync_obj);
790 return 0;
793 static bool vmw_sync_obj_signaled(void *sync_obj)
795 return vmw_fence_obj_signaled((struct vmw_fence_obj *) sync_obj,
796 DRM_VMW_FENCE_FLAG_EXEC);
800 static int vmw_sync_obj_wait(void *sync_obj, bool lazy, bool interruptible)
802 return vmw_fence_obj_wait((struct vmw_fence_obj *) sync_obj,
803 DRM_VMW_FENCE_FLAG_EXEC,
804 lazy, interruptible,
805 VMW_FENCE_WAIT_TIMEOUT);
809 * vmw_move_notify - TTM move_notify_callback
811 * @bo: The TTM buffer object about to move.
812 * @mem: The truct ttm_mem_reg indicating to what memory
813 * region the move is taking place.
815 * Calls move_notify for all subsystems needing it.
816 * (currently only resources).
818 static void vmw_move_notify(struct ttm_buffer_object *bo,
819 struct ttm_mem_reg *mem)
821 vmw_resource_move_notify(bo, mem);
826 * vmw_swap_notify - TTM move_notify_callback
828 * @bo: The TTM buffer object about to be swapped out.
830 static void vmw_swap_notify(struct ttm_buffer_object *bo)
832 struct ttm_bo_device *bdev = bo->bdev;
834 spin_lock(&bdev->fence_lock);
835 ttm_bo_wait(bo, false, false, false);
836 spin_unlock(&bdev->fence_lock);
840 struct ttm_bo_driver vmw_bo_driver = {
841 .ttm_tt_create = &vmw_ttm_tt_create,
842 .ttm_tt_populate = &vmw_ttm_populate,
843 .ttm_tt_unpopulate = &vmw_ttm_unpopulate,
844 .invalidate_caches = vmw_invalidate_caches,
845 .init_mem_type = vmw_init_mem_type,
846 .evict_flags = vmw_evict_flags,
847 .move = NULL,
848 .verify_access = vmw_verify_access,
849 .sync_obj_signaled = vmw_sync_obj_signaled,
850 .sync_obj_wait = vmw_sync_obj_wait,
851 .sync_obj_flush = vmw_sync_obj_flush,
852 .sync_obj_unref = vmw_sync_obj_unref,
853 .sync_obj_ref = vmw_sync_obj_ref,
854 .move_notify = vmw_move_notify,
855 .swap_notify = vmw_swap_notify,
856 .fault_reserve_notify = &vmw_ttm_fault_reserve_notify,
857 .io_mem_reserve = &vmw_ttm_io_mem_reserve,
858 .io_mem_free = &vmw_ttm_io_mem_free,