PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / hwmon / pmbus / pmbus_core.c
blob291d11fe93e792f50eab32bff2ce0783d97a75d8
1 /*
2 * Hardware monitoring driver for PMBus devices
4 * Copyright (c) 2010, 2011 Ericsson AB.
5 * Copyright (c) 2012 Guenter Roeck
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/err.h>
26 #include <linux/slab.h>
27 #include <linux/i2c.h>
28 #include <linux/hwmon.h>
29 #include <linux/hwmon-sysfs.h>
30 #include <linux/jiffies.h>
31 #include <linux/i2c/pmbus.h>
32 #include "pmbus.h"
35 * Number of additional attribute pointers to allocate
36 * with each call to krealloc
38 #define PMBUS_ATTR_ALLOC_SIZE 32
41 * Index into status register array, per status register group
43 #define PB_STATUS_BASE 0
44 #define PB_STATUS_VOUT_BASE (PB_STATUS_BASE + PMBUS_PAGES)
45 #define PB_STATUS_IOUT_BASE (PB_STATUS_VOUT_BASE + PMBUS_PAGES)
46 #define PB_STATUS_FAN_BASE (PB_STATUS_IOUT_BASE + PMBUS_PAGES)
47 #define PB_STATUS_FAN34_BASE (PB_STATUS_FAN_BASE + PMBUS_PAGES)
48 #define PB_STATUS_TEMP_BASE (PB_STATUS_FAN34_BASE + PMBUS_PAGES)
49 #define PB_STATUS_INPUT_BASE (PB_STATUS_TEMP_BASE + PMBUS_PAGES)
50 #define PB_STATUS_VMON_BASE (PB_STATUS_INPUT_BASE + 1)
52 #define PB_NUM_STATUS_REG (PB_STATUS_VMON_BASE + 1)
54 #define PMBUS_NAME_SIZE 24
56 struct pmbus_sensor {
57 struct pmbus_sensor *next;
58 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */
59 struct device_attribute attribute;
60 u8 page; /* page number */
61 u16 reg; /* register */
62 enum pmbus_sensor_classes class; /* sensor class */
63 bool update; /* runtime sensor update needed */
64 int data; /* Sensor data.
65 Negative if there was a read error */
67 #define to_pmbus_sensor(_attr) \
68 container_of(_attr, struct pmbus_sensor, attribute)
70 struct pmbus_boolean {
71 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */
72 struct sensor_device_attribute attribute;
73 struct pmbus_sensor *s1;
74 struct pmbus_sensor *s2;
76 #define to_pmbus_boolean(_attr) \
77 container_of(_attr, struct pmbus_boolean, attribute)
79 struct pmbus_label {
80 char name[PMBUS_NAME_SIZE]; /* sysfs label name */
81 struct device_attribute attribute;
82 char label[PMBUS_NAME_SIZE]; /* label */
84 #define to_pmbus_label(_attr) \
85 container_of(_attr, struct pmbus_label, attribute)
87 struct pmbus_data {
88 struct device *dev;
89 struct device *hwmon_dev;
91 u32 flags; /* from platform data */
93 int exponent[PMBUS_PAGES];
94 /* linear mode: exponent for output voltages */
96 const struct pmbus_driver_info *info;
98 int max_attributes;
99 int num_attributes;
100 struct attribute_group group;
101 const struct attribute_group *groups[2];
103 struct pmbus_sensor *sensors;
105 struct mutex update_lock;
106 bool valid;
107 unsigned long last_updated; /* in jiffies */
110 * A single status register covers multiple attributes,
111 * so we keep them all together.
113 u8 status[PB_NUM_STATUS_REG];
114 u8 status_register;
116 u8 currpage;
119 void pmbus_clear_cache(struct i2c_client *client)
121 struct pmbus_data *data = i2c_get_clientdata(client);
123 data->valid = false;
125 EXPORT_SYMBOL_GPL(pmbus_clear_cache);
127 int pmbus_set_page(struct i2c_client *client, u8 page)
129 struct pmbus_data *data = i2c_get_clientdata(client);
130 int rv = 0;
131 int newpage;
133 if (page != data->currpage) {
134 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
135 newpage = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
136 if (newpage != page)
137 rv = -EIO;
138 else
139 data->currpage = page;
141 return rv;
143 EXPORT_SYMBOL_GPL(pmbus_set_page);
145 int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
147 int rv;
149 if (page >= 0) {
150 rv = pmbus_set_page(client, page);
151 if (rv < 0)
152 return rv;
155 return i2c_smbus_write_byte(client, value);
157 EXPORT_SYMBOL_GPL(pmbus_write_byte);
160 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
161 * a device specific mapping function exists and calls it if necessary.
163 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
165 struct pmbus_data *data = i2c_get_clientdata(client);
166 const struct pmbus_driver_info *info = data->info;
167 int status;
169 if (info->write_byte) {
170 status = info->write_byte(client, page, value);
171 if (status != -ENODATA)
172 return status;
174 return pmbus_write_byte(client, page, value);
177 int pmbus_write_word_data(struct i2c_client *client, u8 page, u8 reg, u16 word)
179 int rv;
181 rv = pmbus_set_page(client, page);
182 if (rv < 0)
183 return rv;
185 return i2c_smbus_write_word_data(client, reg, word);
187 EXPORT_SYMBOL_GPL(pmbus_write_word_data);
190 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
191 * a device specific mapping function exists and calls it if necessary.
193 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
194 u16 word)
196 struct pmbus_data *data = i2c_get_clientdata(client);
197 const struct pmbus_driver_info *info = data->info;
198 int status;
200 if (info->write_word_data) {
201 status = info->write_word_data(client, page, reg, word);
202 if (status != -ENODATA)
203 return status;
205 if (reg >= PMBUS_VIRT_BASE)
206 return -ENXIO;
207 return pmbus_write_word_data(client, page, reg, word);
210 int pmbus_read_word_data(struct i2c_client *client, u8 page, u8 reg)
212 int rv;
214 rv = pmbus_set_page(client, page);
215 if (rv < 0)
216 return rv;
218 return i2c_smbus_read_word_data(client, reg);
220 EXPORT_SYMBOL_GPL(pmbus_read_word_data);
223 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
224 * a device specific mapping function exists and calls it if necessary.
226 static int _pmbus_read_word_data(struct i2c_client *client, int page, int reg)
228 struct pmbus_data *data = i2c_get_clientdata(client);
229 const struct pmbus_driver_info *info = data->info;
230 int status;
232 if (info->read_word_data) {
233 status = info->read_word_data(client, page, reg);
234 if (status != -ENODATA)
235 return status;
237 if (reg >= PMBUS_VIRT_BASE)
238 return -ENXIO;
239 return pmbus_read_word_data(client, page, reg);
242 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
244 int rv;
246 if (page >= 0) {
247 rv = pmbus_set_page(client, page);
248 if (rv < 0)
249 return rv;
252 return i2c_smbus_read_byte_data(client, reg);
254 EXPORT_SYMBOL_GPL(pmbus_read_byte_data);
257 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
258 * a device specific mapping function exists and calls it if necessary.
260 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
262 struct pmbus_data *data = i2c_get_clientdata(client);
263 const struct pmbus_driver_info *info = data->info;
264 int status;
266 if (info->read_byte_data) {
267 status = info->read_byte_data(client, page, reg);
268 if (status != -ENODATA)
269 return status;
271 return pmbus_read_byte_data(client, page, reg);
274 static void pmbus_clear_fault_page(struct i2c_client *client, int page)
276 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
279 void pmbus_clear_faults(struct i2c_client *client)
281 struct pmbus_data *data = i2c_get_clientdata(client);
282 int i;
284 for (i = 0; i < data->info->pages; i++)
285 pmbus_clear_fault_page(client, i);
287 EXPORT_SYMBOL_GPL(pmbus_clear_faults);
289 static int pmbus_check_status_cml(struct i2c_client *client)
291 struct pmbus_data *data = i2c_get_clientdata(client);
292 int status, status2;
294 status = _pmbus_read_byte_data(client, -1, data->status_register);
295 if (status < 0 || (status & PB_STATUS_CML)) {
296 status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
297 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
298 return -EIO;
300 return 0;
303 static bool pmbus_check_register(struct i2c_client *client,
304 int (*func)(struct i2c_client *client,
305 int page, int reg),
306 int page, int reg)
308 int rv;
309 struct pmbus_data *data = i2c_get_clientdata(client);
311 rv = func(client, page, reg);
312 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
313 rv = pmbus_check_status_cml(client);
314 pmbus_clear_fault_page(client, -1);
315 return rv >= 0;
318 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
320 return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
322 EXPORT_SYMBOL_GPL(pmbus_check_byte_register);
324 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
326 return pmbus_check_register(client, _pmbus_read_word_data, page, reg);
328 EXPORT_SYMBOL_GPL(pmbus_check_word_register);
330 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
332 struct pmbus_data *data = i2c_get_clientdata(client);
334 return data->info;
336 EXPORT_SYMBOL_GPL(pmbus_get_driver_info);
338 static struct _pmbus_status {
339 u32 func;
340 u16 base;
341 u16 reg;
342 } pmbus_status[] = {
343 { PMBUS_HAVE_STATUS_VOUT, PB_STATUS_VOUT_BASE, PMBUS_STATUS_VOUT },
344 { PMBUS_HAVE_STATUS_IOUT, PB_STATUS_IOUT_BASE, PMBUS_STATUS_IOUT },
345 { PMBUS_HAVE_STATUS_TEMP, PB_STATUS_TEMP_BASE,
346 PMBUS_STATUS_TEMPERATURE },
347 { PMBUS_HAVE_STATUS_FAN12, PB_STATUS_FAN_BASE, PMBUS_STATUS_FAN_12 },
348 { PMBUS_HAVE_STATUS_FAN34, PB_STATUS_FAN34_BASE, PMBUS_STATUS_FAN_34 },
351 static struct pmbus_data *pmbus_update_device(struct device *dev)
353 struct i2c_client *client = to_i2c_client(dev->parent);
354 struct pmbus_data *data = i2c_get_clientdata(client);
355 const struct pmbus_driver_info *info = data->info;
356 struct pmbus_sensor *sensor;
358 mutex_lock(&data->update_lock);
359 if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
360 int i, j;
362 for (i = 0; i < info->pages; i++) {
363 data->status[PB_STATUS_BASE + i]
364 = _pmbus_read_byte_data(client, i,
365 data->status_register);
366 for (j = 0; j < ARRAY_SIZE(pmbus_status); j++) {
367 struct _pmbus_status *s = &pmbus_status[j];
369 if (!(info->func[i] & s->func))
370 continue;
371 data->status[s->base + i]
372 = _pmbus_read_byte_data(client, i,
373 s->reg);
377 if (info->func[0] & PMBUS_HAVE_STATUS_INPUT)
378 data->status[PB_STATUS_INPUT_BASE]
379 = _pmbus_read_byte_data(client, 0,
380 PMBUS_STATUS_INPUT);
382 if (info->func[0] & PMBUS_HAVE_STATUS_VMON)
383 data->status[PB_STATUS_VMON_BASE]
384 = _pmbus_read_byte_data(client, 0,
385 PMBUS_VIRT_STATUS_VMON);
387 for (sensor = data->sensors; sensor; sensor = sensor->next) {
388 if (!data->valid || sensor->update)
389 sensor->data
390 = _pmbus_read_word_data(client,
391 sensor->page,
392 sensor->reg);
394 pmbus_clear_faults(client);
395 data->last_updated = jiffies;
396 data->valid = 1;
398 mutex_unlock(&data->update_lock);
399 return data;
403 * Convert linear sensor values to milli- or micro-units
404 * depending on sensor type.
406 static long pmbus_reg2data_linear(struct pmbus_data *data,
407 struct pmbus_sensor *sensor)
409 s16 exponent;
410 s32 mantissa;
411 long val;
413 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */
414 exponent = data->exponent[sensor->page];
415 mantissa = (u16) sensor->data;
416 } else { /* LINEAR11 */
417 exponent = ((s16)sensor->data) >> 11;
418 mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
421 val = mantissa;
423 /* scale result to milli-units for all sensors except fans */
424 if (sensor->class != PSC_FAN)
425 val = val * 1000L;
427 /* scale result to micro-units for power sensors */
428 if (sensor->class == PSC_POWER)
429 val = val * 1000L;
431 if (exponent >= 0)
432 val <<= exponent;
433 else
434 val >>= -exponent;
436 return val;
440 * Convert direct sensor values to milli- or micro-units
441 * depending on sensor type.
443 static long pmbus_reg2data_direct(struct pmbus_data *data,
444 struct pmbus_sensor *sensor)
446 long val = (s16) sensor->data;
447 long m, b, R;
449 m = data->info->m[sensor->class];
450 b = data->info->b[sensor->class];
451 R = data->info->R[sensor->class];
453 if (m == 0)
454 return 0;
456 /* X = 1/m * (Y * 10^-R - b) */
457 R = -R;
458 /* scale result to milli-units for everything but fans */
459 if (sensor->class != PSC_FAN) {
460 R += 3;
461 b *= 1000;
464 /* scale result to micro-units for power sensors */
465 if (sensor->class == PSC_POWER) {
466 R += 3;
467 b *= 1000;
470 while (R > 0) {
471 val *= 10;
472 R--;
474 while (R < 0) {
475 val = DIV_ROUND_CLOSEST(val, 10);
476 R++;
479 return (val - b) / m;
483 * Convert VID sensor values to milli- or micro-units
484 * depending on sensor type.
485 * We currently only support VR11.
487 static long pmbus_reg2data_vid(struct pmbus_data *data,
488 struct pmbus_sensor *sensor)
490 long val = sensor->data;
492 if (val < 0x02 || val > 0xb2)
493 return 0;
494 return DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
497 static long pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
499 long val;
501 switch (data->info->format[sensor->class]) {
502 case direct:
503 val = pmbus_reg2data_direct(data, sensor);
504 break;
505 case vid:
506 val = pmbus_reg2data_vid(data, sensor);
507 break;
508 case linear:
509 default:
510 val = pmbus_reg2data_linear(data, sensor);
511 break;
513 return val;
516 #define MAX_MANTISSA (1023 * 1000)
517 #define MIN_MANTISSA (511 * 1000)
519 static u16 pmbus_data2reg_linear(struct pmbus_data *data,
520 struct pmbus_sensor *sensor, long val)
522 s16 exponent = 0, mantissa;
523 bool negative = false;
525 /* simple case */
526 if (val == 0)
527 return 0;
529 if (sensor->class == PSC_VOLTAGE_OUT) {
530 /* LINEAR16 does not support negative voltages */
531 if (val < 0)
532 return 0;
535 * For a static exponents, we don't have a choice
536 * but to adjust the value to it.
538 if (data->exponent[sensor->page] < 0)
539 val <<= -data->exponent[sensor->page];
540 else
541 val >>= data->exponent[sensor->page];
542 val = DIV_ROUND_CLOSEST(val, 1000);
543 return val & 0xffff;
546 if (val < 0) {
547 negative = true;
548 val = -val;
551 /* Power is in uW. Convert to mW before converting. */
552 if (sensor->class == PSC_POWER)
553 val = DIV_ROUND_CLOSEST(val, 1000L);
556 * For simplicity, convert fan data to milli-units
557 * before calculating the exponent.
559 if (sensor->class == PSC_FAN)
560 val = val * 1000;
562 /* Reduce large mantissa until it fits into 10 bit */
563 while (val >= MAX_MANTISSA && exponent < 15) {
564 exponent++;
565 val >>= 1;
567 /* Increase small mantissa to improve precision */
568 while (val < MIN_MANTISSA && exponent > -15) {
569 exponent--;
570 val <<= 1;
573 /* Convert mantissa from milli-units to units */
574 mantissa = DIV_ROUND_CLOSEST(val, 1000);
576 /* Ensure that resulting number is within range */
577 if (mantissa > 0x3ff)
578 mantissa = 0x3ff;
580 /* restore sign */
581 if (negative)
582 mantissa = -mantissa;
584 /* Convert to 5 bit exponent, 11 bit mantissa */
585 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
588 static u16 pmbus_data2reg_direct(struct pmbus_data *data,
589 struct pmbus_sensor *sensor, long val)
591 long m, b, R;
593 m = data->info->m[sensor->class];
594 b = data->info->b[sensor->class];
595 R = data->info->R[sensor->class];
597 /* Power is in uW. Adjust R and b. */
598 if (sensor->class == PSC_POWER) {
599 R -= 3;
600 b *= 1000;
603 /* Calculate Y = (m * X + b) * 10^R */
604 if (sensor->class != PSC_FAN) {
605 R -= 3; /* Adjust R and b for data in milli-units */
606 b *= 1000;
608 val = val * m + b;
610 while (R > 0) {
611 val *= 10;
612 R--;
614 while (R < 0) {
615 val = DIV_ROUND_CLOSEST(val, 10);
616 R++;
619 return val;
622 static u16 pmbus_data2reg_vid(struct pmbus_data *data,
623 struct pmbus_sensor *sensor, long val)
625 val = clamp_val(val, 500, 1600);
627 return 2 + DIV_ROUND_CLOSEST((1600 - val) * 100, 625);
630 static u16 pmbus_data2reg(struct pmbus_data *data,
631 struct pmbus_sensor *sensor, long val)
633 u16 regval;
635 switch (data->info->format[sensor->class]) {
636 case direct:
637 regval = pmbus_data2reg_direct(data, sensor, val);
638 break;
639 case vid:
640 regval = pmbus_data2reg_vid(data, sensor, val);
641 break;
642 case linear:
643 default:
644 regval = pmbus_data2reg_linear(data, sensor, val);
645 break;
647 return regval;
651 * Return boolean calculated from converted data.
652 * <index> defines a status register index and mask.
653 * The mask is in the lower 8 bits, the register index is in bits 8..23.
655 * The associated pmbus_boolean structure contains optional pointers to two
656 * sensor attributes. If specified, those attributes are compared against each
657 * other to determine if a limit has been exceeded.
659 * If the sensor attribute pointers are NULL, the function returns true if
660 * (status[reg] & mask) is true.
662 * If sensor attribute pointers are provided, a comparison against a specified
663 * limit has to be performed to determine the boolean result.
664 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
665 * sensor values referenced by sensor attribute pointers s1 and s2).
667 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
668 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
670 * If a negative value is stored in any of the referenced registers, this value
671 * reflects an error code which will be returned.
673 static int pmbus_get_boolean(struct pmbus_data *data, struct pmbus_boolean *b,
674 int index)
676 struct pmbus_sensor *s1 = b->s1;
677 struct pmbus_sensor *s2 = b->s2;
678 u16 reg = (index >> 8) & 0xffff;
679 u8 mask = index & 0xff;
680 int ret, status;
681 u8 regval;
683 status = data->status[reg];
684 if (status < 0)
685 return status;
687 regval = status & mask;
688 if (!s1 && !s2) {
689 ret = !!regval;
690 } else if (!s1 || !s2) {
691 WARN(1, "Bad boolean descriptor %p: s1=%p, s2=%p\n", b, s1, s2);
692 return 0;
693 } else {
694 long v1, v2;
696 if (s1->data < 0)
697 return s1->data;
698 if (s2->data < 0)
699 return s2->data;
701 v1 = pmbus_reg2data(data, s1);
702 v2 = pmbus_reg2data(data, s2);
703 ret = !!(regval && v1 >= v2);
705 return ret;
708 static ssize_t pmbus_show_boolean(struct device *dev,
709 struct device_attribute *da, char *buf)
711 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
712 struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
713 struct pmbus_data *data = pmbus_update_device(dev);
714 int val;
716 val = pmbus_get_boolean(data, boolean, attr->index);
717 if (val < 0)
718 return val;
719 return snprintf(buf, PAGE_SIZE, "%d\n", val);
722 static ssize_t pmbus_show_sensor(struct device *dev,
723 struct device_attribute *devattr, char *buf)
725 struct pmbus_data *data = pmbus_update_device(dev);
726 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
728 if (sensor->data < 0)
729 return sensor->data;
731 return snprintf(buf, PAGE_SIZE, "%ld\n", pmbus_reg2data(data, sensor));
734 static ssize_t pmbus_set_sensor(struct device *dev,
735 struct device_attribute *devattr,
736 const char *buf, size_t count)
738 struct i2c_client *client = to_i2c_client(dev->parent);
739 struct pmbus_data *data = i2c_get_clientdata(client);
740 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
741 ssize_t rv = count;
742 long val = 0;
743 int ret;
744 u16 regval;
746 if (kstrtol(buf, 10, &val) < 0)
747 return -EINVAL;
749 mutex_lock(&data->update_lock);
750 regval = pmbus_data2reg(data, sensor, val);
751 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
752 if (ret < 0)
753 rv = ret;
754 else
755 sensor->data = regval;
756 mutex_unlock(&data->update_lock);
757 return rv;
760 static ssize_t pmbus_show_label(struct device *dev,
761 struct device_attribute *da, char *buf)
763 struct pmbus_label *label = to_pmbus_label(da);
765 return snprintf(buf, PAGE_SIZE, "%s\n", label->label);
768 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
770 if (data->num_attributes >= data->max_attributes - 1) {
771 int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
772 void *new_attrs = krealloc(data->group.attrs,
773 new_max_attrs * sizeof(void *),
774 GFP_KERNEL);
775 if (!new_attrs)
776 return -ENOMEM;
777 data->group.attrs = new_attrs;
778 data->max_attributes = new_max_attrs;
781 data->group.attrs[data->num_attributes++] = attr;
782 data->group.attrs[data->num_attributes] = NULL;
783 return 0;
786 static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
787 const char *name,
788 umode_t mode,
789 ssize_t (*show)(struct device *dev,
790 struct device_attribute *attr,
791 char *buf),
792 ssize_t (*store)(struct device *dev,
793 struct device_attribute *attr,
794 const char *buf, size_t count))
796 sysfs_attr_init(&dev_attr->attr);
797 dev_attr->attr.name = name;
798 dev_attr->attr.mode = mode;
799 dev_attr->show = show;
800 dev_attr->store = store;
803 static void pmbus_attr_init(struct sensor_device_attribute *a,
804 const char *name,
805 umode_t mode,
806 ssize_t (*show)(struct device *dev,
807 struct device_attribute *attr,
808 char *buf),
809 ssize_t (*store)(struct device *dev,
810 struct device_attribute *attr,
811 const char *buf, size_t count),
812 int idx)
814 pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
815 a->index = idx;
818 static int pmbus_add_boolean(struct pmbus_data *data,
819 const char *name, const char *type, int seq,
820 struct pmbus_sensor *s1,
821 struct pmbus_sensor *s2,
822 u16 reg, u8 mask)
824 struct pmbus_boolean *boolean;
825 struct sensor_device_attribute *a;
827 boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
828 if (!boolean)
829 return -ENOMEM;
831 a = &boolean->attribute;
833 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
834 name, seq, type);
835 boolean->s1 = s1;
836 boolean->s2 = s2;
837 pmbus_attr_init(a, boolean->name, S_IRUGO, pmbus_show_boolean, NULL,
838 (reg << 8) | mask);
840 return pmbus_add_attribute(data, &a->dev_attr.attr);
843 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
844 const char *name, const char *type,
845 int seq, int page, int reg,
846 enum pmbus_sensor_classes class,
847 bool update, bool readonly)
849 struct pmbus_sensor *sensor;
850 struct device_attribute *a;
852 sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
853 if (!sensor)
854 return NULL;
855 a = &sensor->attribute;
857 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
858 name, seq, type);
859 sensor->page = page;
860 sensor->reg = reg;
861 sensor->class = class;
862 sensor->update = update;
863 pmbus_dev_attr_init(a, sensor->name,
864 readonly ? S_IRUGO : S_IRUGO | S_IWUSR,
865 pmbus_show_sensor, pmbus_set_sensor);
867 if (pmbus_add_attribute(data, &a->attr))
868 return NULL;
870 sensor->next = data->sensors;
871 data->sensors = sensor;
873 return sensor;
876 static int pmbus_add_label(struct pmbus_data *data,
877 const char *name, int seq,
878 const char *lstring, int index)
880 struct pmbus_label *label;
881 struct device_attribute *a;
883 label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
884 if (!label)
885 return -ENOMEM;
887 a = &label->attribute;
889 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
890 if (!index)
891 strncpy(label->label, lstring, sizeof(label->label) - 1);
892 else
893 snprintf(label->label, sizeof(label->label), "%s%d", lstring,
894 index);
896 pmbus_dev_attr_init(a, label->name, S_IRUGO, pmbus_show_label, NULL);
897 return pmbus_add_attribute(data, &a->attr);
901 * Search for attributes. Allocate sensors, booleans, and labels as needed.
905 * The pmbus_limit_attr structure describes a single limit attribute
906 * and its associated alarm attribute.
908 struct pmbus_limit_attr {
909 u16 reg; /* Limit register */
910 u16 sbit; /* Alarm attribute status bit */
911 bool update; /* True if register needs updates */
912 bool low; /* True if low limit; for limits with compare
913 functions only */
914 const char *attr; /* Attribute name */
915 const char *alarm; /* Alarm attribute name */
919 * The pmbus_sensor_attr structure describes one sensor attribute. This
920 * description includes a reference to the associated limit attributes.
922 struct pmbus_sensor_attr {
923 u16 reg; /* sensor register */
924 u8 gbit; /* generic status bit */
925 u8 nlimit; /* # of limit registers */
926 enum pmbus_sensor_classes class;/* sensor class */
927 const char *label; /* sensor label */
928 bool paged; /* true if paged sensor */
929 bool update; /* true if update needed */
930 bool compare; /* true if compare function needed */
931 u32 func; /* sensor mask */
932 u32 sfunc; /* sensor status mask */
933 int sbase; /* status base register */
934 const struct pmbus_limit_attr *limit;/* limit registers */
938 * Add a set of limit attributes and, if supported, the associated
939 * alarm attributes.
940 * returns 0 if no alarm register found, 1 if an alarm register was found,
941 * < 0 on errors.
943 static int pmbus_add_limit_attrs(struct i2c_client *client,
944 struct pmbus_data *data,
945 const struct pmbus_driver_info *info,
946 const char *name, int index, int page,
947 struct pmbus_sensor *base,
948 const struct pmbus_sensor_attr *attr)
950 const struct pmbus_limit_attr *l = attr->limit;
951 int nlimit = attr->nlimit;
952 int have_alarm = 0;
953 int i, ret;
954 struct pmbus_sensor *curr;
956 for (i = 0; i < nlimit; i++) {
957 if (pmbus_check_word_register(client, page, l->reg)) {
958 curr = pmbus_add_sensor(data, name, l->attr, index,
959 page, l->reg, attr->class,
960 attr->update || l->update,
961 false);
962 if (!curr)
963 return -ENOMEM;
964 if (l->sbit && (info->func[page] & attr->sfunc)) {
965 ret = pmbus_add_boolean(data, name,
966 l->alarm, index,
967 attr->compare ? l->low ? curr : base
968 : NULL,
969 attr->compare ? l->low ? base : curr
970 : NULL,
971 attr->sbase + page, l->sbit);
972 if (ret)
973 return ret;
974 have_alarm = 1;
977 l++;
979 return have_alarm;
982 static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
983 struct pmbus_data *data,
984 const struct pmbus_driver_info *info,
985 const char *name,
986 int index, int page,
987 const struct pmbus_sensor_attr *attr)
989 struct pmbus_sensor *base;
990 int ret;
992 if (attr->label) {
993 ret = pmbus_add_label(data, name, index, attr->label,
994 attr->paged ? page + 1 : 0);
995 if (ret)
996 return ret;
998 base = pmbus_add_sensor(data, name, "input", index, page, attr->reg,
999 attr->class, true, true);
1000 if (!base)
1001 return -ENOMEM;
1002 if (attr->sfunc) {
1003 ret = pmbus_add_limit_attrs(client, data, info, name,
1004 index, page, base, attr);
1005 if (ret < 0)
1006 return ret;
1008 * Add generic alarm attribute only if there are no individual
1009 * alarm attributes, if there is a global alarm bit, and if
1010 * the generic status register for this page is accessible.
1012 if (!ret && attr->gbit &&
1013 pmbus_check_byte_register(client, page,
1014 data->status_register)) {
1015 ret = pmbus_add_boolean(data, name, "alarm", index,
1016 NULL, NULL,
1017 PB_STATUS_BASE + page,
1018 attr->gbit);
1019 if (ret)
1020 return ret;
1023 return 0;
1026 static int pmbus_add_sensor_attrs(struct i2c_client *client,
1027 struct pmbus_data *data,
1028 const char *name,
1029 const struct pmbus_sensor_attr *attrs,
1030 int nattrs)
1032 const struct pmbus_driver_info *info = data->info;
1033 int index, i;
1034 int ret;
1036 index = 1;
1037 for (i = 0; i < nattrs; i++) {
1038 int page, pages;
1040 pages = attrs->paged ? info->pages : 1;
1041 for (page = 0; page < pages; page++) {
1042 if (!(info->func[page] & attrs->func))
1043 continue;
1044 ret = pmbus_add_sensor_attrs_one(client, data, info,
1045 name, index, page,
1046 attrs);
1047 if (ret)
1048 return ret;
1049 index++;
1051 attrs++;
1053 return 0;
1056 static const struct pmbus_limit_attr vin_limit_attrs[] = {
1058 .reg = PMBUS_VIN_UV_WARN_LIMIT,
1059 .attr = "min",
1060 .alarm = "min_alarm",
1061 .sbit = PB_VOLTAGE_UV_WARNING,
1062 }, {
1063 .reg = PMBUS_VIN_UV_FAULT_LIMIT,
1064 .attr = "lcrit",
1065 .alarm = "lcrit_alarm",
1066 .sbit = PB_VOLTAGE_UV_FAULT,
1067 }, {
1068 .reg = PMBUS_VIN_OV_WARN_LIMIT,
1069 .attr = "max",
1070 .alarm = "max_alarm",
1071 .sbit = PB_VOLTAGE_OV_WARNING,
1072 }, {
1073 .reg = PMBUS_VIN_OV_FAULT_LIMIT,
1074 .attr = "crit",
1075 .alarm = "crit_alarm",
1076 .sbit = PB_VOLTAGE_OV_FAULT,
1077 }, {
1078 .reg = PMBUS_VIRT_READ_VIN_AVG,
1079 .update = true,
1080 .attr = "average",
1081 }, {
1082 .reg = PMBUS_VIRT_READ_VIN_MIN,
1083 .update = true,
1084 .attr = "lowest",
1085 }, {
1086 .reg = PMBUS_VIRT_READ_VIN_MAX,
1087 .update = true,
1088 .attr = "highest",
1089 }, {
1090 .reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1091 .attr = "reset_history",
1095 static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1097 .reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1098 .attr = "min",
1099 .alarm = "min_alarm",
1100 .sbit = PB_VOLTAGE_UV_WARNING,
1101 }, {
1102 .reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1103 .attr = "lcrit",
1104 .alarm = "lcrit_alarm",
1105 .sbit = PB_VOLTAGE_UV_FAULT,
1106 }, {
1107 .reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1108 .attr = "max",
1109 .alarm = "max_alarm",
1110 .sbit = PB_VOLTAGE_OV_WARNING,
1111 }, {
1112 .reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1113 .attr = "crit",
1114 .alarm = "crit_alarm",
1115 .sbit = PB_VOLTAGE_OV_FAULT,
1119 static const struct pmbus_limit_attr vout_limit_attrs[] = {
1121 .reg = PMBUS_VOUT_UV_WARN_LIMIT,
1122 .attr = "min",
1123 .alarm = "min_alarm",
1124 .sbit = PB_VOLTAGE_UV_WARNING,
1125 }, {
1126 .reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1127 .attr = "lcrit",
1128 .alarm = "lcrit_alarm",
1129 .sbit = PB_VOLTAGE_UV_FAULT,
1130 }, {
1131 .reg = PMBUS_VOUT_OV_WARN_LIMIT,
1132 .attr = "max",
1133 .alarm = "max_alarm",
1134 .sbit = PB_VOLTAGE_OV_WARNING,
1135 }, {
1136 .reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1137 .attr = "crit",
1138 .alarm = "crit_alarm",
1139 .sbit = PB_VOLTAGE_OV_FAULT,
1140 }, {
1141 .reg = PMBUS_VIRT_READ_VOUT_AVG,
1142 .update = true,
1143 .attr = "average",
1144 }, {
1145 .reg = PMBUS_VIRT_READ_VOUT_MIN,
1146 .update = true,
1147 .attr = "lowest",
1148 }, {
1149 .reg = PMBUS_VIRT_READ_VOUT_MAX,
1150 .update = true,
1151 .attr = "highest",
1152 }, {
1153 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1154 .attr = "reset_history",
1158 static const struct pmbus_sensor_attr voltage_attributes[] = {
1160 .reg = PMBUS_READ_VIN,
1161 .class = PSC_VOLTAGE_IN,
1162 .label = "vin",
1163 .func = PMBUS_HAVE_VIN,
1164 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1165 .sbase = PB_STATUS_INPUT_BASE,
1166 .gbit = PB_STATUS_VIN_UV,
1167 .limit = vin_limit_attrs,
1168 .nlimit = ARRAY_SIZE(vin_limit_attrs),
1169 }, {
1170 .reg = PMBUS_VIRT_READ_VMON,
1171 .class = PSC_VOLTAGE_IN,
1172 .label = "vmon",
1173 .func = PMBUS_HAVE_VMON,
1174 .sfunc = PMBUS_HAVE_STATUS_VMON,
1175 .sbase = PB_STATUS_VMON_BASE,
1176 .limit = vmon_limit_attrs,
1177 .nlimit = ARRAY_SIZE(vmon_limit_attrs),
1178 }, {
1179 .reg = PMBUS_READ_VCAP,
1180 .class = PSC_VOLTAGE_IN,
1181 .label = "vcap",
1182 .func = PMBUS_HAVE_VCAP,
1183 }, {
1184 .reg = PMBUS_READ_VOUT,
1185 .class = PSC_VOLTAGE_OUT,
1186 .label = "vout",
1187 .paged = true,
1188 .func = PMBUS_HAVE_VOUT,
1189 .sfunc = PMBUS_HAVE_STATUS_VOUT,
1190 .sbase = PB_STATUS_VOUT_BASE,
1191 .gbit = PB_STATUS_VOUT_OV,
1192 .limit = vout_limit_attrs,
1193 .nlimit = ARRAY_SIZE(vout_limit_attrs),
1197 /* Current attributes */
1199 static const struct pmbus_limit_attr iin_limit_attrs[] = {
1201 .reg = PMBUS_IIN_OC_WARN_LIMIT,
1202 .attr = "max",
1203 .alarm = "max_alarm",
1204 .sbit = PB_IIN_OC_WARNING,
1205 }, {
1206 .reg = PMBUS_IIN_OC_FAULT_LIMIT,
1207 .attr = "crit",
1208 .alarm = "crit_alarm",
1209 .sbit = PB_IIN_OC_FAULT,
1210 }, {
1211 .reg = PMBUS_VIRT_READ_IIN_AVG,
1212 .update = true,
1213 .attr = "average",
1214 }, {
1215 .reg = PMBUS_VIRT_READ_IIN_MIN,
1216 .update = true,
1217 .attr = "lowest",
1218 }, {
1219 .reg = PMBUS_VIRT_READ_IIN_MAX,
1220 .update = true,
1221 .attr = "highest",
1222 }, {
1223 .reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1224 .attr = "reset_history",
1228 static const struct pmbus_limit_attr iout_limit_attrs[] = {
1230 .reg = PMBUS_IOUT_OC_WARN_LIMIT,
1231 .attr = "max",
1232 .alarm = "max_alarm",
1233 .sbit = PB_IOUT_OC_WARNING,
1234 }, {
1235 .reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1236 .attr = "lcrit",
1237 .alarm = "lcrit_alarm",
1238 .sbit = PB_IOUT_UC_FAULT,
1239 }, {
1240 .reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1241 .attr = "crit",
1242 .alarm = "crit_alarm",
1243 .sbit = PB_IOUT_OC_FAULT,
1244 }, {
1245 .reg = PMBUS_VIRT_READ_IOUT_AVG,
1246 .update = true,
1247 .attr = "average",
1248 }, {
1249 .reg = PMBUS_VIRT_READ_IOUT_MIN,
1250 .update = true,
1251 .attr = "lowest",
1252 }, {
1253 .reg = PMBUS_VIRT_READ_IOUT_MAX,
1254 .update = true,
1255 .attr = "highest",
1256 }, {
1257 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1258 .attr = "reset_history",
1262 static const struct pmbus_sensor_attr current_attributes[] = {
1264 .reg = PMBUS_READ_IIN,
1265 .class = PSC_CURRENT_IN,
1266 .label = "iin",
1267 .func = PMBUS_HAVE_IIN,
1268 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1269 .sbase = PB_STATUS_INPUT_BASE,
1270 .limit = iin_limit_attrs,
1271 .nlimit = ARRAY_SIZE(iin_limit_attrs),
1272 }, {
1273 .reg = PMBUS_READ_IOUT,
1274 .class = PSC_CURRENT_OUT,
1275 .label = "iout",
1276 .paged = true,
1277 .func = PMBUS_HAVE_IOUT,
1278 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1279 .sbase = PB_STATUS_IOUT_BASE,
1280 .gbit = PB_STATUS_IOUT_OC,
1281 .limit = iout_limit_attrs,
1282 .nlimit = ARRAY_SIZE(iout_limit_attrs),
1286 /* Power attributes */
1288 static const struct pmbus_limit_attr pin_limit_attrs[] = {
1290 .reg = PMBUS_PIN_OP_WARN_LIMIT,
1291 .attr = "max",
1292 .alarm = "alarm",
1293 .sbit = PB_PIN_OP_WARNING,
1294 }, {
1295 .reg = PMBUS_VIRT_READ_PIN_AVG,
1296 .update = true,
1297 .attr = "average",
1298 }, {
1299 .reg = PMBUS_VIRT_READ_PIN_MAX,
1300 .update = true,
1301 .attr = "input_highest",
1302 }, {
1303 .reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1304 .attr = "reset_history",
1308 static const struct pmbus_limit_attr pout_limit_attrs[] = {
1310 .reg = PMBUS_POUT_MAX,
1311 .attr = "cap",
1312 .alarm = "cap_alarm",
1313 .sbit = PB_POWER_LIMITING,
1314 }, {
1315 .reg = PMBUS_POUT_OP_WARN_LIMIT,
1316 .attr = "max",
1317 .alarm = "max_alarm",
1318 .sbit = PB_POUT_OP_WARNING,
1319 }, {
1320 .reg = PMBUS_POUT_OP_FAULT_LIMIT,
1321 .attr = "crit",
1322 .alarm = "crit_alarm",
1323 .sbit = PB_POUT_OP_FAULT,
1324 }, {
1325 .reg = PMBUS_VIRT_READ_POUT_AVG,
1326 .update = true,
1327 .attr = "average",
1328 }, {
1329 .reg = PMBUS_VIRT_READ_POUT_MAX,
1330 .update = true,
1331 .attr = "input_highest",
1332 }, {
1333 .reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1334 .attr = "reset_history",
1338 static const struct pmbus_sensor_attr power_attributes[] = {
1340 .reg = PMBUS_READ_PIN,
1341 .class = PSC_POWER,
1342 .label = "pin",
1343 .func = PMBUS_HAVE_PIN,
1344 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1345 .sbase = PB_STATUS_INPUT_BASE,
1346 .limit = pin_limit_attrs,
1347 .nlimit = ARRAY_SIZE(pin_limit_attrs),
1348 }, {
1349 .reg = PMBUS_READ_POUT,
1350 .class = PSC_POWER,
1351 .label = "pout",
1352 .paged = true,
1353 .func = PMBUS_HAVE_POUT,
1354 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1355 .sbase = PB_STATUS_IOUT_BASE,
1356 .limit = pout_limit_attrs,
1357 .nlimit = ARRAY_SIZE(pout_limit_attrs),
1361 /* Temperature atributes */
1363 static const struct pmbus_limit_attr temp_limit_attrs[] = {
1365 .reg = PMBUS_UT_WARN_LIMIT,
1366 .low = true,
1367 .attr = "min",
1368 .alarm = "min_alarm",
1369 .sbit = PB_TEMP_UT_WARNING,
1370 }, {
1371 .reg = PMBUS_UT_FAULT_LIMIT,
1372 .low = true,
1373 .attr = "lcrit",
1374 .alarm = "lcrit_alarm",
1375 .sbit = PB_TEMP_UT_FAULT,
1376 }, {
1377 .reg = PMBUS_OT_WARN_LIMIT,
1378 .attr = "max",
1379 .alarm = "max_alarm",
1380 .sbit = PB_TEMP_OT_WARNING,
1381 }, {
1382 .reg = PMBUS_OT_FAULT_LIMIT,
1383 .attr = "crit",
1384 .alarm = "crit_alarm",
1385 .sbit = PB_TEMP_OT_FAULT,
1386 }, {
1387 .reg = PMBUS_VIRT_READ_TEMP_MIN,
1388 .attr = "lowest",
1389 }, {
1390 .reg = PMBUS_VIRT_READ_TEMP_AVG,
1391 .attr = "average",
1392 }, {
1393 .reg = PMBUS_VIRT_READ_TEMP_MAX,
1394 .attr = "highest",
1395 }, {
1396 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
1397 .attr = "reset_history",
1401 static const struct pmbus_limit_attr temp_limit_attrs2[] = {
1403 .reg = PMBUS_UT_WARN_LIMIT,
1404 .low = true,
1405 .attr = "min",
1406 .alarm = "min_alarm",
1407 .sbit = PB_TEMP_UT_WARNING,
1408 }, {
1409 .reg = PMBUS_UT_FAULT_LIMIT,
1410 .low = true,
1411 .attr = "lcrit",
1412 .alarm = "lcrit_alarm",
1413 .sbit = PB_TEMP_UT_FAULT,
1414 }, {
1415 .reg = PMBUS_OT_WARN_LIMIT,
1416 .attr = "max",
1417 .alarm = "max_alarm",
1418 .sbit = PB_TEMP_OT_WARNING,
1419 }, {
1420 .reg = PMBUS_OT_FAULT_LIMIT,
1421 .attr = "crit",
1422 .alarm = "crit_alarm",
1423 .sbit = PB_TEMP_OT_FAULT,
1424 }, {
1425 .reg = PMBUS_VIRT_READ_TEMP2_MIN,
1426 .attr = "lowest",
1427 }, {
1428 .reg = PMBUS_VIRT_READ_TEMP2_AVG,
1429 .attr = "average",
1430 }, {
1431 .reg = PMBUS_VIRT_READ_TEMP2_MAX,
1432 .attr = "highest",
1433 }, {
1434 .reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
1435 .attr = "reset_history",
1439 static const struct pmbus_limit_attr temp_limit_attrs3[] = {
1441 .reg = PMBUS_UT_WARN_LIMIT,
1442 .low = true,
1443 .attr = "min",
1444 .alarm = "min_alarm",
1445 .sbit = PB_TEMP_UT_WARNING,
1446 }, {
1447 .reg = PMBUS_UT_FAULT_LIMIT,
1448 .low = true,
1449 .attr = "lcrit",
1450 .alarm = "lcrit_alarm",
1451 .sbit = PB_TEMP_UT_FAULT,
1452 }, {
1453 .reg = PMBUS_OT_WARN_LIMIT,
1454 .attr = "max",
1455 .alarm = "max_alarm",
1456 .sbit = PB_TEMP_OT_WARNING,
1457 }, {
1458 .reg = PMBUS_OT_FAULT_LIMIT,
1459 .attr = "crit",
1460 .alarm = "crit_alarm",
1461 .sbit = PB_TEMP_OT_FAULT,
1465 static const struct pmbus_sensor_attr temp_attributes[] = {
1467 .reg = PMBUS_READ_TEMPERATURE_1,
1468 .class = PSC_TEMPERATURE,
1469 .paged = true,
1470 .update = true,
1471 .compare = true,
1472 .func = PMBUS_HAVE_TEMP,
1473 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1474 .sbase = PB_STATUS_TEMP_BASE,
1475 .gbit = PB_STATUS_TEMPERATURE,
1476 .limit = temp_limit_attrs,
1477 .nlimit = ARRAY_SIZE(temp_limit_attrs),
1478 }, {
1479 .reg = PMBUS_READ_TEMPERATURE_2,
1480 .class = PSC_TEMPERATURE,
1481 .paged = true,
1482 .update = true,
1483 .compare = true,
1484 .func = PMBUS_HAVE_TEMP2,
1485 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1486 .sbase = PB_STATUS_TEMP_BASE,
1487 .gbit = PB_STATUS_TEMPERATURE,
1488 .limit = temp_limit_attrs2,
1489 .nlimit = ARRAY_SIZE(temp_limit_attrs2),
1490 }, {
1491 .reg = PMBUS_READ_TEMPERATURE_3,
1492 .class = PSC_TEMPERATURE,
1493 .paged = true,
1494 .update = true,
1495 .compare = true,
1496 .func = PMBUS_HAVE_TEMP3,
1497 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1498 .sbase = PB_STATUS_TEMP_BASE,
1499 .gbit = PB_STATUS_TEMPERATURE,
1500 .limit = temp_limit_attrs3,
1501 .nlimit = ARRAY_SIZE(temp_limit_attrs3),
1505 static const int pmbus_fan_registers[] = {
1506 PMBUS_READ_FAN_SPEED_1,
1507 PMBUS_READ_FAN_SPEED_2,
1508 PMBUS_READ_FAN_SPEED_3,
1509 PMBUS_READ_FAN_SPEED_4
1512 static const int pmbus_fan_config_registers[] = {
1513 PMBUS_FAN_CONFIG_12,
1514 PMBUS_FAN_CONFIG_12,
1515 PMBUS_FAN_CONFIG_34,
1516 PMBUS_FAN_CONFIG_34
1519 static const int pmbus_fan_status_registers[] = {
1520 PMBUS_STATUS_FAN_12,
1521 PMBUS_STATUS_FAN_12,
1522 PMBUS_STATUS_FAN_34,
1523 PMBUS_STATUS_FAN_34
1526 static const u32 pmbus_fan_flags[] = {
1527 PMBUS_HAVE_FAN12,
1528 PMBUS_HAVE_FAN12,
1529 PMBUS_HAVE_FAN34,
1530 PMBUS_HAVE_FAN34
1533 static const u32 pmbus_fan_status_flags[] = {
1534 PMBUS_HAVE_STATUS_FAN12,
1535 PMBUS_HAVE_STATUS_FAN12,
1536 PMBUS_HAVE_STATUS_FAN34,
1537 PMBUS_HAVE_STATUS_FAN34
1540 /* Fans */
1541 static int pmbus_add_fan_attributes(struct i2c_client *client,
1542 struct pmbus_data *data)
1544 const struct pmbus_driver_info *info = data->info;
1545 int index = 1;
1546 int page;
1547 int ret;
1549 for (page = 0; page < info->pages; page++) {
1550 int f;
1552 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
1553 int regval;
1555 if (!(info->func[page] & pmbus_fan_flags[f]))
1556 break;
1558 if (!pmbus_check_word_register(client, page,
1559 pmbus_fan_registers[f]))
1560 break;
1563 * Skip fan if not installed.
1564 * Each fan configuration register covers multiple fans,
1565 * so we have to do some magic.
1567 regval = _pmbus_read_byte_data(client, page,
1568 pmbus_fan_config_registers[f]);
1569 if (regval < 0 ||
1570 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
1571 continue;
1573 if (pmbus_add_sensor(data, "fan", "input", index,
1574 page, pmbus_fan_registers[f],
1575 PSC_FAN, true, true) == NULL)
1576 return -ENOMEM;
1579 * Each fan status register covers multiple fans,
1580 * so we have to do some magic.
1582 if ((info->func[page] & pmbus_fan_status_flags[f]) &&
1583 pmbus_check_byte_register(client,
1584 page, pmbus_fan_status_registers[f])) {
1585 int base;
1587 if (f > 1) /* fan 3, 4 */
1588 base = PB_STATUS_FAN34_BASE + page;
1589 else
1590 base = PB_STATUS_FAN_BASE + page;
1591 ret = pmbus_add_boolean(data, "fan",
1592 "alarm", index, NULL, NULL, base,
1593 PB_FAN_FAN1_WARNING >> (f & 1));
1594 if (ret)
1595 return ret;
1596 ret = pmbus_add_boolean(data, "fan",
1597 "fault", index, NULL, NULL, base,
1598 PB_FAN_FAN1_FAULT >> (f & 1));
1599 if (ret)
1600 return ret;
1602 index++;
1605 return 0;
1608 static int pmbus_find_attributes(struct i2c_client *client,
1609 struct pmbus_data *data)
1611 int ret;
1613 /* Voltage sensors */
1614 ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
1615 ARRAY_SIZE(voltage_attributes));
1616 if (ret)
1617 return ret;
1619 /* Current sensors */
1620 ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
1621 ARRAY_SIZE(current_attributes));
1622 if (ret)
1623 return ret;
1625 /* Power sensors */
1626 ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
1627 ARRAY_SIZE(power_attributes));
1628 if (ret)
1629 return ret;
1631 /* Temperature sensors */
1632 ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
1633 ARRAY_SIZE(temp_attributes));
1634 if (ret)
1635 return ret;
1637 /* Fans */
1638 ret = pmbus_add_fan_attributes(client, data);
1639 return ret;
1643 * Identify chip parameters.
1644 * This function is called for all chips.
1646 static int pmbus_identify_common(struct i2c_client *client,
1647 struct pmbus_data *data, int page)
1649 int vout_mode = -1;
1651 if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
1652 vout_mode = _pmbus_read_byte_data(client, page,
1653 PMBUS_VOUT_MODE);
1654 if (vout_mode >= 0 && vout_mode != 0xff) {
1656 * Not all chips support the VOUT_MODE command,
1657 * so a failure to read it is not an error.
1659 switch (vout_mode >> 5) {
1660 case 0: /* linear mode */
1661 if (data->info->format[PSC_VOLTAGE_OUT] != linear)
1662 return -ENODEV;
1664 data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
1665 break;
1666 case 1: /* VID mode */
1667 if (data->info->format[PSC_VOLTAGE_OUT] != vid)
1668 return -ENODEV;
1669 break;
1670 case 2: /* direct mode */
1671 if (data->info->format[PSC_VOLTAGE_OUT] != direct)
1672 return -ENODEV;
1673 break;
1674 default:
1675 return -ENODEV;
1679 pmbus_clear_fault_page(client, page);
1680 return 0;
1683 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
1684 struct pmbus_driver_info *info)
1686 struct device *dev = &client->dev;
1687 int page, ret;
1690 * Some PMBus chips don't support PMBUS_STATUS_BYTE, so try
1691 * to use PMBUS_STATUS_WORD instead if that is the case.
1692 * Bail out if both registers are not supported.
1694 data->status_register = PMBUS_STATUS_BYTE;
1695 ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
1696 if (ret < 0 || ret == 0xff) {
1697 data->status_register = PMBUS_STATUS_WORD;
1698 ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
1699 if (ret < 0 || ret == 0xffff) {
1700 dev_err(dev, "PMBus status register not found\n");
1701 return -ENODEV;
1705 pmbus_clear_faults(client);
1707 if (info->identify) {
1708 ret = (*info->identify)(client, info);
1709 if (ret < 0) {
1710 dev_err(dev, "Chip identification failed\n");
1711 return ret;
1715 if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
1716 dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
1717 return -ENODEV;
1720 for (page = 0; page < info->pages; page++) {
1721 ret = pmbus_identify_common(client, data, page);
1722 if (ret < 0) {
1723 dev_err(dev, "Failed to identify chip capabilities\n");
1724 return ret;
1727 return 0;
1730 int pmbus_do_probe(struct i2c_client *client, const struct i2c_device_id *id,
1731 struct pmbus_driver_info *info)
1733 struct device *dev = &client->dev;
1734 const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
1735 struct pmbus_data *data;
1736 int ret;
1738 if (!info)
1739 return -ENODEV;
1741 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
1742 | I2C_FUNC_SMBUS_BYTE_DATA
1743 | I2C_FUNC_SMBUS_WORD_DATA))
1744 return -ENODEV;
1746 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
1747 if (!data)
1748 return -ENOMEM;
1750 i2c_set_clientdata(client, data);
1751 mutex_init(&data->update_lock);
1752 data->dev = dev;
1754 if (pdata)
1755 data->flags = pdata->flags;
1756 data->info = info;
1758 ret = pmbus_init_common(client, data, info);
1759 if (ret < 0)
1760 return ret;
1762 ret = pmbus_find_attributes(client, data);
1763 if (ret)
1764 goto out_kfree;
1767 * If there are no attributes, something is wrong.
1768 * Bail out instead of trying to register nothing.
1770 if (!data->num_attributes) {
1771 dev_err(dev, "No attributes found\n");
1772 ret = -ENODEV;
1773 goto out_kfree;
1776 data->groups[0] = &data->group;
1777 data->hwmon_dev = hwmon_device_register_with_groups(dev, client->name,
1778 data, data->groups);
1779 if (IS_ERR(data->hwmon_dev)) {
1780 ret = PTR_ERR(data->hwmon_dev);
1781 dev_err(dev, "Failed to register hwmon device\n");
1782 goto out_kfree;
1784 return 0;
1786 out_kfree:
1787 kfree(data->group.attrs);
1788 return ret;
1790 EXPORT_SYMBOL_GPL(pmbus_do_probe);
1792 int pmbus_do_remove(struct i2c_client *client)
1794 struct pmbus_data *data = i2c_get_clientdata(client);
1795 hwmon_device_unregister(data->hwmon_dev);
1796 kfree(data->group.attrs);
1797 return 0;
1799 EXPORT_SYMBOL_GPL(pmbus_do_remove);
1801 MODULE_AUTHOR("Guenter Roeck");
1802 MODULE_DESCRIPTION("PMBus core driver");
1803 MODULE_LICENSE("GPL");