2 * Copyright (c) 2006 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 #include <linux/module.h>
33 #include <linux/list.h>
34 #include <linux/slab.h>
35 #include <linux/workqueue.h>
36 #include <linux/skbuff.h>
37 #include <linux/timer.h>
38 #include <linux/notifier.h>
39 #include <linux/inetdevice.h>
41 #include <net/neighbour.h>
42 #include <net/netevent.h>
43 #include <net/route.h>
46 #include "cxgb3_offload.h"
48 #include "iwch_provider.h"
51 static char *states
[] = {
68 module_param(peer2peer
, int, 0644);
69 MODULE_PARM_DESC(peer2peer
, "Support peer2peer ULPs (default=0)");
71 static int ep_timeout_secs
= 60;
72 module_param(ep_timeout_secs
, int, 0644);
73 MODULE_PARM_DESC(ep_timeout_secs
, "CM Endpoint operation timeout "
74 "in seconds (default=60)");
76 static int mpa_rev
= 1;
77 module_param(mpa_rev
, int, 0644);
78 MODULE_PARM_DESC(mpa_rev
, "MPA Revision, 0 supports amso1100, "
79 "1 is spec compliant. (default=1)");
81 static int markers_enabled
= 0;
82 module_param(markers_enabled
, int, 0644);
83 MODULE_PARM_DESC(markers_enabled
, "Enable MPA MARKERS (default(0)=disabled)");
85 static int crc_enabled
= 1;
86 module_param(crc_enabled
, int, 0644);
87 MODULE_PARM_DESC(crc_enabled
, "Enable MPA CRC (default(1)=enabled)");
89 static int rcv_win
= 256 * 1024;
90 module_param(rcv_win
, int, 0644);
91 MODULE_PARM_DESC(rcv_win
, "TCP receive window in bytes (default=256)");
93 static int snd_win
= 32 * 1024;
94 module_param(snd_win
, int, 0644);
95 MODULE_PARM_DESC(snd_win
, "TCP send window in bytes (default=32KB)");
97 static unsigned int nocong
= 0;
98 module_param(nocong
, uint
, 0644);
99 MODULE_PARM_DESC(nocong
, "Turn off congestion control (default=0)");
101 static unsigned int cong_flavor
= 1;
102 module_param(cong_flavor
, uint
, 0644);
103 MODULE_PARM_DESC(cong_flavor
, "TCP Congestion control flavor (default=1)");
105 static struct workqueue_struct
*workq
;
107 static struct sk_buff_head rxq
;
109 static struct sk_buff
*get_skb(struct sk_buff
*skb
, int len
, gfp_t gfp
);
110 static void ep_timeout(unsigned long arg
);
111 static void connect_reply_upcall(struct iwch_ep
*ep
, int status
);
113 static void start_ep_timer(struct iwch_ep
*ep
)
115 PDBG("%s ep %p\n", __func__
, ep
);
116 if (timer_pending(&ep
->timer
)) {
117 PDBG("%s stopped / restarted timer ep %p\n", __func__
, ep
);
118 del_timer_sync(&ep
->timer
);
121 ep
->timer
.expires
= jiffies
+ ep_timeout_secs
* HZ
;
122 ep
->timer
.data
= (unsigned long)ep
;
123 ep
->timer
.function
= ep_timeout
;
124 add_timer(&ep
->timer
);
127 static void stop_ep_timer(struct iwch_ep
*ep
)
129 PDBG("%s ep %p\n", __func__
, ep
);
130 if (!timer_pending(&ep
->timer
)) {
131 WARN(1, "%s timer stopped when its not running! ep %p state %u\n",
132 __func__
, ep
, ep
->com
.state
);
135 del_timer_sync(&ep
->timer
);
139 static int iwch_l2t_send(struct t3cdev
*tdev
, struct sk_buff
*skb
, struct l2t_entry
*l2e
)
142 struct cxio_rdev
*rdev
;
144 rdev
= (struct cxio_rdev
*)tdev
->ulp
;
145 if (cxio_fatal_error(rdev
)) {
149 error
= l2t_send(tdev
, skb
, l2e
);
155 int iwch_cxgb3_ofld_send(struct t3cdev
*tdev
, struct sk_buff
*skb
)
158 struct cxio_rdev
*rdev
;
160 rdev
= (struct cxio_rdev
*)tdev
->ulp
;
161 if (cxio_fatal_error(rdev
)) {
165 error
= cxgb3_ofld_send(tdev
, skb
);
171 static void release_tid(struct t3cdev
*tdev
, u32 hwtid
, struct sk_buff
*skb
)
173 struct cpl_tid_release
*req
;
175 skb
= get_skb(skb
, sizeof *req
, GFP_KERNEL
);
178 req
= (struct cpl_tid_release
*) skb_put(skb
, sizeof(*req
));
179 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
180 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE
, hwtid
));
181 skb
->priority
= CPL_PRIORITY_SETUP
;
182 iwch_cxgb3_ofld_send(tdev
, skb
);
186 int iwch_quiesce_tid(struct iwch_ep
*ep
)
188 struct cpl_set_tcb_field
*req
;
189 struct sk_buff
*skb
= get_skb(NULL
, sizeof(*req
), GFP_KERNEL
);
193 req
= (struct cpl_set_tcb_field
*) skb_put(skb
, sizeof(*req
));
194 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
195 req
->wr
.wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
196 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD
, ep
->hwtid
));
199 req
->word
= htons(W_TCB_RX_QUIESCE
);
200 req
->mask
= cpu_to_be64(1ULL << S_TCB_RX_QUIESCE
);
201 req
->val
= cpu_to_be64(1 << S_TCB_RX_QUIESCE
);
203 skb
->priority
= CPL_PRIORITY_DATA
;
204 return iwch_cxgb3_ofld_send(ep
->com
.tdev
, skb
);
207 int iwch_resume_tid(struct iwch_ep
*ep
)
209 struct cpl_set_tcb_field
*req
;
210 struct sk_buff
*skb
= get_skb(NULL
, sizeof(*req
), GFP_KERNEL
);
214 req
= (struct cpl_set_tcb_field
*) skb_put(skb
, sizeof(*req
));
215 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
216 req
->wr
.wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
217 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD
, ep
->hwtid
));
220 req
->word
= htons(W_TCB_RX_QUIESCE
);
221 req
->mask
= cpu_to_be64(1ULL << S_TCB_RX_QUIESCE
);
224 skb
->priority
= CPL_PRIORITY_DATA
;
225 return iwch_cxgb3_ofld_send(ep
->com
.tdev
, skb
);
228 static void set_emss(struct iwch_ep
*ep
, u16 opt
)
230 PDBG("%s ep %p opt %u\n", __func__
, ep
, opt
);
231 ep
->emss
= T3C_DATA(ep
->com
.tdev
)->mtus
[G_TCPOPT_MSS(opt
)] - 40;
232 if (G_TCPOPT_TSTAMP(opt
))
236 PDBG("emss=%d\n", ep
->emss
);
239 static enum iwch_ep_state
state_read(struct iwch_ep_common
*epc
)
242 enum iwch_ep_state state
;
244 spin_lock_irqsave(&epc
->lock
, flags
);
246 spin_unlock_irqrestore(&epc
->lock
, flags
);
250 static void __state_set(struct iwch_ep_common
*epc
, enum iwch_ep_state
new)
255 static void state_set(struct iwch_ep_common
*epc
, enum iwch_ep_state
new)
259 spin_lock_irqsave(&epc
->lock
, flags
);
260 PDBG("%s - %s -> %s\n", __func__
, states
[epc
->state
], states
[new]);
261 __state_set(epc
, new);
262 spin_unlock_irqrestore(&epc
->lock
, flags
);
266 static void *alloc_ep(int size
, gfp_t gfp
)
268 struct iwch_ep_common
*epc
;
270 epc
= kzalloc(size
, gfp
);
272 kref_init(&epc
->kref
);
273 spin_lock_init(&epc
->lock
);
274 init_waitqueue_head(&epc
->waitq
);
276 PDBG("%s alloc ep %p\n", __func__
, epc
);
280 void __free_ep(struct kref
*kref
)
283 ep
= container_of(container_of(kref
, struct iwch_ep_common
, kref
),
284 struct iwch_ep
, com
);
285 PDBG("%s ep %p state %s\n", __func__
, ep
, states
[state_read(&ep
->com
)]);
286 if (test_bit(RELEASE_RESOURCES
, &ep
->com
.flags
)) {
287 cxgb3_remove_tid(ep
->com
.tdev
, (void *)ep
, ep
->hwtid
);
288 dst_release(ep
->dst
);
289 l2t_release(ep
->com
.tdev
, ep
->l2t
);
294 static void release_ep_resources(struct iwch_ep
*ep
)
296 PDBG("%s ep %p tid %d\n", __func__
, ep
, ep
->hwtid
);
297 set_bit(RELEASE_RESOURCES
, &ep
->com
.flags
);
301 static int status2errno(int status
)
306 case CPL_ERR_CONN_RESET
:
308 case CPL_ERR_ARP_MISS
:
309 return -EHOSTUNREACH
;
310 case CPL_ERR_CONN_TIMEDOUT
:
312 case CPL_ERR_TCAM_FULL
:
314 case CPL_ERR_CONN_EXIST
:
322 * Try and reuse skbs already allocated...
324 static struct sk_buff
*get_skb(struct sk_buff
*skb
, int len
, gfp_t gfp
)
326 if (skb
&& !skb_is_nonlinear(skb
) && !skb_cloned(skb
)) {
330 skb
= alloc_skb(len
, gfp
);
335 static struct rtable
*find_route(struct t3cdev
*dev
, __be32 local_ip
,
336 __be32 peer_ip
, __be16 local_port
,
337 __be16 peer_port
, u8 tos
)
342 rt
= ip_route_output_ports(&init_net
, &fl4
, NULL
, peer_ip
, local_ip
,
343 peer_port
, local_port
, IPPROTO_TCP
,
350 static unsigned int find_best_mtu(const struct t3c_data
*d
, unsigned short mtu
)
354 while (i
< d
->nmtus
- 1 && d
->mtus
[i
+ 1] <= mtu
)
359 static void arp_failure_discard(struct t3cdev
*dev
, struct sk_buff
*skb
)
361 PDBG("%s t3cdev %p\n", __func__
, dev
);
366 * Handle an ARP failure for an active open.
368 static void act_open_req_arp_failure(struct t3cdev
*dev
, struct sk_buff
*skb
)
370 printk(KERN_ERR MOD
"ARP failure duing connect\n");
375 * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant
378 static void abort_arp_failure(struct t3cdev
*dev
, struct sk_buff
*skb
)
380 struct cpl_abort_req
*req
= cplhdr(skb
);
382 PDBG("%s t3cdev %p\n", __func__
, dev
);
383 req
->cmd
= CPL_ABORT_NO_RST
;
384 iwch_cxgb3_ofld_send(dev
, skb
);
387 static int send_halfclose(struct iwch_ep
*ep
, gfp_t gfp
)
389 struct cpl_close_con_req
*req
;
392 PDBG("%s ep %p\n", __func__
, ep
);
393 skb
= get_skb(NULL
, sizeof(*req
), gfp
);
395 printk(KERN_ERR MOD
"%s - failed to alloc skb\n", __func__
);
398 skb
->priority
= CPL_PRIORITY_DATA
;
399 set_arp_failure_handler(skb
, arp_failure_discard
);
400 req
= (struct cpl_close_con_req
*) skb_put(skb
, sizeof(*req
));
401 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_OFLD_CLOSE_CON
));
402 req
->wr
.wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
403 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_CLOSE_CON_REQ
, ep
->hwtid
));
404 return iwch_l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
407 static int send_abort(struct iwch_ep
*ep
, struct sk_buff
*skb
, gfp_t gfp
)
409 struct cpl_abort_req
*req
;
411 PDBG("%s ep %p\n", __func__
, ep
);
412 skb
= get_skb(skb
, sizeof(*req
), gfp
);
414 printk(KERN_ERR MOD
"%s - failed to alloc skb.\n",
418 skb
->priority
= CPL_PRIORITY_DATA
;
419 set_arp_failure_handler(skb
, abort_arp_failure
);
420 req
= (struct cpl_abort_req
*) skb_put(skb
, sizeof(*req
));
421 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_REQ
));
422 req
->wr
.wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
423 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_ABORT_REQ
, ep
->hwtid
));
424 req
->cmd
= CPL_ABORT_SEND_RST
;
425 return iwch_l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
428 static int send_connect(struct iwch_ep
*ep
)
430 struct cpl_act_open_req
*req
;
432 u32 opt0h
, opt0l
, opt2
;
433 unsigned int mtu_idx
;
436 PDBG("%s ep %p\n", __func__
, ep
);
438 skb
= get_skb(NULL
, sizeof(*req
), GFP_KERNEL
);
440 printk(KERN_ERR MOD
"%s - failed to alloc skb.\n",
444 mtu_idx
= find_best_mtu(T3C_DATA(ep
->com
.tdev
), dst_mtu(ep
->dst
));
445 wscale
= compute_wscale(rcv_win
);
450 V_WND_SCALE(wscale
) |
452 V_L2T_IDX(ep
->l2t
->idx
) | V_TX_CHANNEL(ep
->l2t
->smt_idx
);
453 opt0l
= V_TOS((ep
->tos
>> 2) & M_TOS
) | V_RCV_BUFSIZ(rcv_win
>>10);
454 opt2
= F_RX_COALESCE_VALID
| V_RX_COALESCE(0) | V_FLAVORS_VALID(1) |
455 V_CONG_CONTROL_FLAVOR(cong_flavor
);
456 skb
->priority
= CPL_PRIORITY_SETUP
;
457 set_arp_failure_handler(skb
, act_open_req_arp_failure
);
459 req
= (struct cpl_act_open_req
*) skb_put(skb
, sizeof(*req
));
460 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
461 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_ACT_OPEN_REQ
, ep
->atid
));
462 req
->local_port
= ep
->com
.local_addr
.sin_port
;
463 req
->peer_port
= ep
->com
.remote_addr
.sin_port
;
464 req
->local_ip
= ep
->com
.local_addr
.sin_addr
.s_addr
;
465 req
->peer_ip
= ep
->com
.remote_addr
.sin_addr
.s_addr
;
466 req
->opt0h
= htonl(opt0h
);
467 req
->opt0l
= htonl(opt0l
);
469 req
->opt2
= htonl(opt2
);
470 return iwch_l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
473 static void send_mpa_req(struct iwch_ep
*ep
, struct sk_buff
*skb
)
476 struct tx_data_wr
*req
;
477 struct mpa_message
*mpa
;
480 PDBG("%s ep %p pd_len %d\n", __func__
, ep
, ep
->plen
);
482 BUG_ON(skb_cloned(skb
));
484 mpalen
= sizeof(*mpa
) + ep
->plen
;
485 if (skb
->data
+ mpalen
+ sizeof(*req
) > skb_end_pointer(skb
)) {
487 skb
=alloc_skb(mpalen
+ sizeof(*req
), GFP_KERNEL
);
489 connect_reply_upcall(ep
, -ENOMEM
);
494 skb_reserve(skb
, sizeof(*req
));
495 skb_put(skb
, mpalen
);
496 skb
->priority
= CPL_PRIORITY_DATA
;
497 mpa
= (struct mpa_message
*) skb
->data
;
498 memset(mpa
, 0, sizeof(*mpa
));
499 memcpy(mpa
->key
, MPA_KEY_REQ
, sizeof(mpa
->key
));
500 mpa
->flags
= (crc_enabled
? MPA_CRC
: 0) |
501 (markers_enabled
? MPA_MARKERS
: 0);
502 mpa
->private_data_size
= htons(ep
->plen
);
503 mpa
->revision
= mpa_rev
;
506 memcpy(mpa
->private_data
, ep
->mpa_pkt
+ sizeof(*mpa
), ep
->plen
);
509 * Reference the mpa skb. This ensures the data area
510 * will remain in memory until the hw acks the tx.
511 * Function tx_ack() will deref it.
514 set_arp_failure_handler(skb
, arp_failure_discard
);
515 skb_reset_transport_header(skb
);
517 req
= (struct tx_data_wr
*) skb_push(skb
, sizeof(*req
));
518 req
->wr_hi
= htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA
)|F_WR_COMPL
);
519 req
->wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
520 req
->len
= htonl(len
);
521 req
->param
= htonl(V_TX_PORT(ep
->l2t
->smt_idx
) |
522 V_TX_SNDBUF(snd_win
>>15));
523 req
->flags
= htonl(F_TX_INIT
);
524 req
->sndseq
= htonl(ep
->snd_seq
);
527 iwch_l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
529 state_set(&ep
->com
, MPA_REQ_SENT
);
533 static int send_mpa_reject(struct iwch_ep
*ep
, const void *pdata
, u8 plen
)
536 struct tx_data_wr
*req
;
537 struct mpa_message
*mpa
;
540 PDBG("%s ep %p plen %d\n", __func__
, ep
, plen
);
542 mpalen
= sizeof(*mpa
) + plen
;
544 skb
= get_skb(NULL
, mpalen
+ sizeof(*req
), GFP_KERNEL
);
546 printk(KERN_ERR MOD
"%s - cannot alloc skb!\n", __func__
);
549 skb_reserve(skb
, sizeof(*req
));
550 mpa
= (struct mpa_message
*) skb_put(skb
, mpalen
);
551 memset(mpa
, 0, sizeof(*mpa
));
552 memcpy(mpa
->key
, MPA_KEY_REP
, sizeof(mpa
->key
));
553 mpa
->flags
= MPA_REJECT
;
554 mpa
->revision
= mpa_rev
;
555 mpa
->private_data_size
= htons(plen
);
557 memcpy(mpa
->private_data
, pdata
, plen
);
560 * Reference the mpa skb again. This ensures the data area
561 * will remain in memory until the hw acks the tx.
562 * Function tx_ack() will deref it.
565 skb
->priority
= CPL_PRIORITY_DATA
;
566 set_arp_failure_handler(skb
, arp_failure_discard
);
567 skb_reset_transport_header(skb
);
568 req
= (struct tx_data_wr
*) skb_push(skb
, sizeof(*req
));
569 req
->wr_hi
= htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA
)|F_WR_COMPL
);
570 req
->wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
571 req
->len
= htonl(mpalen
);
572 req
->param
= htonl(V_TX_PORT(ep
->l2t
->smt_idx
) |
573 V_TX_SNDBUF(snd_win
>>15));
574 req
->flags
= htonl(F_TX_INIT
);
575 req
->sndseq
= htonl(ep
->snd_seq
);
578 return iwch_l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
581 static int send_mpa_reply(struct iwch_ep
*ep
, const void *pdata
, u8 plen
)
584 struct tx_data_wr
*req
;
585 struct mpa_message
*mpa
;
589 PDBG("%s ep %p plen %d\n", __func__
, ep
, plen
);
591 mpalen
= sizeof(*mpa
) + plen
;
593 skb
= get_skb(NULL
, mpalen
+ sizeof(*req
), GFP_KERNEL
);
595 printk(KERN_ERR MOD
"%s - cannot alloc skb!\n", __func__
);
598 skb
->priority
= CPL_PRIORITY_DATA
;
599 skb_reserve(skb
, sizeof(*req
));
600 mpa
= (struct mpa_message
*) skb_put(skb
, mpalen
);
601 memset(mpa
, 0, sizeof(*mpa
));
602 memcpy(mpa
->key
, MPA_KEY_REP
, sizeof(mpa
->key
));
603 mpa
->flags
= (ep
->mpa_attr
.crc_enabled
? MPA_CRC
: 0) |
604 (markers_enabled
? MPA_MARKERS
: 0);
605 mpa
->revision
= mpa_rev
;
606 mpa
->private_data_size
= htons(plen
);
608 memcpy(mpa
->private_data
, pdata
, plen
);
611 * Reference the mpa skb. This ensures the data area
612 * will remain in memory until the hw acks the tx.
613 * Function tx_ack() will deref it.
616 set_arp_failure_handler(skb
, arp_failure_discard
);
617 skb_reset_transport_header(skb
);
619 req
= (struct tx_data_wr
*) skb_push(skb
, sizeof(*req
));
620 req
->wr_hi
= htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA
)|F_WR_COMPL
);
621 req
->wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
622 req
->len
= htonl(len
);
623 req
->param
= htonl(V_TX_PORT(ep
->l2t
->smt_idx
) |
624 V_TX_SNDBUF(snd_win
>>15));
625 req
->flags
= htonl(F_TX_INIT
);
626 req
->sndseq
= htonl(ep
->snd_seq
);
628 state_set(&ep
->com
, MPA_REP_SENT
);
629 return iwch_l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
632 static int act_establish(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
634 struct iwch_ep
*ep
= ctx
;
635 struct cpl_act_establish
*req
= cplhdr(skb
);
636 unsigned int tid
= GET_TID(req
);
638 PDBG("%s ep %p tid %d\n", __func__
, ep
, tid
);
640 dst_confirm(ep
->dst
);
642 /* setup the hwtid for this connection */
644 cxgb3_insert_tid(ep
->com
.tdev
, &t3c_client
, ep
, tid
);
646 ep
->snd_seq
= ntohl(req
->snd_isn
);
647 ep
->rcv_seq
= ntohl(req
->rcv_isn
);
649 set_emss(ep
, ntohs(req
->tcp_opt
));
651 /* dealloc the atid */
652 cxgb3_free_atid(ep
->com
.tdev
, ep
->atid
);
654 /* start MPA negotiation */
655 send_mpa_req(ep
, skb
);
660 static void abort_connection(struct iwch_ep
*ep
, struct sk_buff
*skb
, gfp_t gfp
)
662 PDBG("%s ep %p\n", __FILE__
, ep
);
663 state_set(&ep
->com
, ABORTING
);
664 send_abort(ep
, skb
, gfp
);
667 static void close_complete_upcall(struct iwch_ep
*ep
)
669 struct iw_cm_event event
;
671 PDBG("%s ep %p\n", __func__
, ep
);
672 memset(&event
, 0, sizeof(event
));
673 event
.event
= IW_CM_EVENT_CLOSE
;
675 PDBG("close complete delivered ep %p cm_id %p tid %d\n",
676 ep
, ep
->com
.cm_id
, ep
->hwtid
);
677 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
678 ep
->com
.cm_id
->rem_ref(ep
->com
.cm_id
);
679 ep
->com
.cm_id
= NULL
;
684 static void peer_close_upcall(struct iwch_ep
*ep
)
686 struct iw_cm_event event
;
688 PDBG("%s ep %p\n", __func__
, ep
);
689 memset(&event
, 0, sizeof(event
));
690 event
.event
= IW_CM_EVENT_DISCONNECT
;
692 PDBG("peer close delivered ep %p cm_id %p tid %d\n",
693 ep
, ep
->com
.cm_id
, ep
->hwtid
);
694 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
698 static void peer_abort_upcall(struct iwch_ep
*ep
)
700 struct iw_cm_event event
;
702 PDBG("%s ep %p\n", __func__
, ep
);
703 memset(&event
, 0, sizeof(event
));
704 event
.event
= IW_CM_EVENT_CLOSE
;
705 event
.status
= -ECONNRESET
;
707 PDBG("abort delivered ep %p cm_id %p tid %d\n", ep
,
708 ep
->com
.cm_id
, ep
->hwtid
);
709 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
710 ep
->com
.cm_id
->rem_ref(ep
->com
.cm_id
);
711 ep
->com
.cm_id
= NULL
;
716 static void connect_reply_upcall(struct iwch_ep
*ep
, int status
)
718 struct iw_cm_event event
;
720 PDBG("%s ep %p status %d\n", __func__
, ep
, status
);
721 memset(&event
, 0, sizeof(event
));
722 event
.event
= IW_CM_EVENT_CONNECT_REPLY
;
723 event
.status
= status
;
724 memcpy(&event
.local_addr
, &ep
->com
.local_addr
,
725 sizeof(ep
->com
.local_addr
));
726 memcpy(&event
.remote_addr
, &ep
->com
.remote_addr
,
727 sizeof(ep
->com
.remote_addr
));
729 if ((status
== 0) || (status
== -ECONNREFUSED
)) {
730 event
.private_data_len
= ep
->plen
;
731 event
.private_data
= ep
->mpa_pkt
+ sizeof(struct mpa_message
);
734 PDBG("%s ep %p tid %d status %d\n", __func__
, ep
,
736 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
739 ep
->com
.cm_id
->rem_ref(ep
->com
.cm_id
);
740 ep
->com
.cm_id
= NULL
;
745 static void connect_request_upcall(struct iwch_ep
*ep
)
747 struct iw_cm_event event
;
749 PDBG("%s ep %p tid %d\n", __func__
, ep
, ep
->hwtid
);
750 memset(&event
, 0, sizeof(event
));
751 event
.event
= IW_CM_EVENT_CONNECT_REQUEST
;
752 memcpy(&event
.local_addr
, &ep
->com
.local_addr
,
753 sizeof(ep
->com
.local_addr
));
754 memcpy(&event
.remote_addr
, &ep
->com
.remote_addr
,
755 sizeof(ep
->com
.local_addr
));
756 event
.private_data_len
= ep
->plen
;
757 event
.private_data
= ep
->mpa_pkt
+ sizeof(struct mpa_message
);
758 event
.provider_data
= ep
;
760 * Until ird/ord negotiation via MPAv2 support is added, send max
763 event
.ird
= event
.ord
= 8;
764 if (state_read(&ep
->parent_ep
->com
) != DEAD
) {
766 ep
->parent_ep
->com
.cm_id
->event_handler(
767 ep
->parent_ep
->com
.cm_id
,
770 put_ep(&ep
->parent_ep
->com
);
771 ep
->parent_ep
= NULL
;
774 static void established_upcall(struct iwch_ep
*ep
)
776 struct iw_cm_event event
;
778 PDBG("%s ep %p\n", __func__
, ep
);
779 memset(&event
, 0, sizeof(event
));
780 event
.event
= IW_CM_EVENT_ESTABLISHED
;
782 * Until ird/ord negotiation via MPAv2 support is added, send max
785 event
.ird
= event
.ord
= 8;
787 PDBG("%s ep %p tid %d\n", __func__
, ep
, ep
->hwtid
);
788 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
792 static int update_rx_credits(struct iwch_ep
*ep
, u32 credits
)
794 struct cpl_rx_data_ack
*req
;
797 PDBG("%s ep %p credits %u\n", __func__
, ep
, credits
);
798 skb
= get_skb(NULL
, sizeof(*req
), GFP_KERNEL
);
800 printk(KERN_ERR MOD
"update_rx_credits - cannot alloc skb!\n");
804 req
= (struct cpl_rx_data_ack
*) skb_put(skb
, sizeof(*req
));
805 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
806 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_RX_DATA_ACK
, ep
->hwtid
));
807 req
->credit_dack
= htonl(V_RX_CREDITS(credits
) | V_RX_FORCE_ACK(1));
808 skb
->priority
= CPL_PRIORITY_ACK
;
809 iwch_cxgb3_ofld_send(ep
->com
.tdev
, skb
);
813 static void process_mpa_reply(struct iwch_ep
*ep
, struct sk_buff
*skb
)
815 struct mpa_message
*mpa
;
817 struct iwch_qp_attributes attrs
;
818 enum iwch_qp_attr_mask mask
;
821 PDBG("%s ep %p\n", __func__
, ep
);
824 * Stop mpa timer. If it expired, then the state has
825 * changed and we bail since ep_timeout already aborted
829 if (state_read(&ep
->com
) != MPA_REQ_SENT
)
833 * If we get more than the supported amount of private data
834 * then we must fail this connection.
836 if (ep
->mpa_pkt_len
+ skb
->len
> sizeof(ep
->mpa_pkt
)) {
842 * copy the new data into our accumulation buffer.
844 skb_copy_from_linear_data(skb
, &(ep
->mpa_pkt
[ep
->mpa_pkt_len
]),
846 ep
->mpa_pkt_len
+= skb
->len
;
849 * if we don't even have the mpa message, then bail.
851 if (ep
->mpa_pkt_len
< sizeof(*mpa
))
853 mpa
= (struct mpa_message
*) ep
->mpa_pkt
;
855 /* Validate MPA header. */
856 if (mpa
->revision
!= mpa_rev
) {
860 if (memcmp(mpa
->key
, MPA_KEY_REP
, sizeof(mpa
->key
))) {
865 plen
= ntohs(mpa
->private_data_size
);
868 * Fail if there's too much private data.
870 if (plen
> MPA_MAX_PRIVATE_DATA
) {
876 * If plen does not account for pkt size
878 if (ep
->mpa_pkt_len
> (sizeof(*mpa
) + plen
)) {
883 ep
->plen
= (u8
) plen
;
886 * If we don't have all the pdata yet, then bail.
887 * We'll continue process when more data arrives.
889 if (ep
->mpa_pkt_len
< (sizeof(*mpa
) + plen
))
892 if (mpa
->flags
& MPA_REJECT
) {
898 * If we get here we have accumulated the entire mpa
899 * start reply message including private data. And
900 * the MPA header is valid.
902 state_set(&ep
->com
, FPDU_MODE
);
903 ep
->mpa_attr
.initiator
= 1;
904 ep
->mpa_attr
.crc_enabled
= (mpa
->flags
& MPA_CRC
) | crc_enabled
? 1 : 0;
905 ep
->mpa_attr
.recv_marker_enabled
= markers_enabled
;
906 ep
->mpa_attr
.xmit_marker_enabled
= mpa
->flags
& MPA_MARKERS
? 1 : 0;
907 ep
->mpa_attr
.version
= mpa_rev
;
908 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
909 "xmit_marker_enabled=%d, version=%d\n", __func__
,
910 ep
->mpa_attr
.crc_enabled
, ep
->mpa_attr
.recv_marker_enabled
,
911 ep
->mpa_attr
.xmit_marker_enabled
, ep
->mpa_attr
.version
);
913 attrs
.mpa_attr
= ep
->mpa_attr
;
914 attrs
.max_ird
= ep
->ird
;
915 attrs
.max_ord
= ep
->ord
;
916 attrs
.llp_stream_handle
= ep
;
917 attrs
.next_state
= IWCH_QP_STATE_RTS
;
919 mask
= IWCH_QP_ATTR_NEXT_STATE
|
920 IWCH_QP_ATTR_LLP_STREAM_HANDLE
| IWCH_QP_ATTR_MPA_ATTR
|
921 IWCH_QP_ATTR_MAX_IRD
| IWCH_QP_ATTR_MAX_ORD
;
923 /* bind QP and TID with INIT_WR */
924 err
= iwch_modify_qp(ep
->com
.qp
->rhp
,
925 ep
->com
.qp
, mask
, &attrs
, 1);
929 if (peer2peer
&& iwch_rqes_posted(ep
->com
.qp
) == 0) {
930 iwch_post_zb_read(ep
);
935 abort_connection(ep
, skb
, GFP_KERNEL
);
937 connect_reply_upcall(ep
, err
);
941 static void process_mpa_request(struct iwch_ep
*ep
, struct sk_buff
*skb
)
943 struct mpa_message
*mpa
;
946 PDBG("%s ep %p\n", __func__
, ep
);
949 * Stop mpa timer. If it expired, then the state has
950 * changed and we bail since ep_timeout already aborted
954 if (state_read(&ep
->com
) != MPA_REQ_WAIT
)
958 * If we get more than the supported amount of private data
959 * then we must fail this connection.
961 if (ep
->mpa_pkt_len
+ skb
->len
> sizeof(ep
->mpa_pkt
)) {
962 abort_connection(ep
, skb
, GFP_KERNEL
);
966 PDBG("%s enter (%s line %u)\n", __func__
, __FILE__
, __LINE__
);
969 * Copy the new data into our accumulation buffer.
971 skb_copy_from_linear_data(skb
, &(ep
->mpa_pkt
[ep
->mpa_pkt_len
]),
973 ep
->mpa_pkt_len
+= skb
->len
;
976 * If we don't even have the mpa message, then bail.
977 * We'll continue process when more data arrives.
979 if (ep
->mpa_pkt_len
< sizeof(*mpa
))
981 PDBG("%s enter (%s line %u)\n", __func__
, __FILE__
, __LINE__
);
982 mpa
= (struct mpa_message
*) ep
->mpa_pkt
;
985 * Validate MPA Header.
987 if (mpa
->revision
!= mpa_rev
) {
988 abort_connection(ep
, skb
, GFP_KERNEL
);
992 if (memcmp(mpa
->key
, MPA_KEY_REQ
, sizeof(mpa
->key
))) {
993 abort_connection(ep
, skb
, GFP_KERNEL
);
997 plen
= ntohs(mpa
->private_data_size
);
1000 * Fail if there's too much private data.
1002 if (plen
> MPA_MAX_PRIVATE_DATA
) {
1003 abort_connection(ep
, skb
, GFP_KERNEL
);
1008 * If plen does not account for pkt size
1010 if (ep
->mpa_pkt_len
> (sizeof(*mpa
) + plen
)) {
1011 abort_connection(ep
, skb
, GFP_KERNEL
);
1014 ep
->plen
= (u8
) plen
;
1017 * If we don't have all the pdata yet, then bail.
1019 if (ep
->mpa_pkt_len
< (sizeof(*mpa
) + plen
))
1023 * If we get here we have accumulated the entire mpa
1024 * start reply message including private data.
1026 ep
->mpa_attr
.initiator
= 0;
1027 ep
->mpa_attr
.crc_enabled
= (mpa
->flags
& MPA_CRC
) | crc_enabled
? 1 : 0;
1028 ep
->mpa_attr
.recv_marker_enabled
= markers_enabled
;
1029 ep
->mpa_attr
.xmit_marker_enabled
= mpa
->flags
& MPA_MARKERS
? 1 : 0;
1030 ep
->mpa_attr
.version
= mpa_rev
;
1031 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1032 "xmit_marker_enabled=%d, version=%d\n", __func__
,
1033 ep
->mpa_attr
.crc_enabled
, ep
->mpa_attr
.recv_marker_enabled
,
1034 ep
->mpa_attr
.xmit_marker_enabled
, ep
->mpa_attr
.version
);
1036 state_set(&ep
->com
, MPA_REQ_RCVD
);
1039 connect_request_upcall(ep
);
1043 static int rx_data(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1045 struct iwch_ep
*ep
= ctx
;
1046 struct cpl_rx_data
*hdr
= cplhdr(skb
);
1047 unsigned int dlen
= ntohs(hdr
->len
);
1049 PDBG("%s ep %p dlen %u\n", __func__
, ep
, dlen
);
1051 skb_pull(skb
, sizeof(*hdr
));
1052 skb_trim(skb
, dlen
);
1054 ep
->rcv_seq
+= dlen
;
1055 BUG_ON(ep
->rcv_seq
!= (ntohl(hdr
->seq
) + dlen
));
1057 switch (state_read(&ep
->com
)) {
1059 process_mpa_reply(ep
, skb
);
1062 process_mpa_request(ep
, skb
);
1067 printk(KERN_ERR MOD
"%s Unexpected streaming data."
1068 " ep %p state %d tid %d\n",
1069 __func__
, ep
, state_read(&ep
->com
), ep
->hwtid
);
1072 * The ep will timeout and inform the ULP of the failure.
1078 /* update RX credits */
1079 update_rx_credits(ep
, dlen
);
1081 return CPL_RET_BUF_DONE
;
1085 * Upcall from the adapter indicating data has been transmitted.
1086 * For us its just the single MPA request or reply. We can now free
1087 * the skb holding the mpa message.
1089 static int tx_ack(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1091 struct iwch_ep
*ep
= ctx
;
1092 struct cpl_wr_ack
*hdr
= cplhdr(skb
);
1093 unsigned int credits
= ntohs(hdr
->credits
);
1094 unsigned long flags
;
1097 PDBG("%s ep %p credits %u\n", __func__
, ep
, credits
);
1100 PDBG("%s 0 credit ack ep %p state %u\n",
1101 __func__
, ep
, state_read(&ep
->com
));
1102 return CPL_RET_BUF_DONE
;
1105 spin_lock_irqsave(&ep
->com
.lock
, flags
);
1106 BUG_ON(credits
!= 1);
1107 dst_confirm(ep
->dst
);
1109 PDBG("%s rdma_init wr_ack ep %p state %u\n",
1110 __func__
, ep
, ep
->com
.state
);
1111 if (ep
->mpa_attr
.initiator
) {
1112 PDBG("%s initiator ep %p state %u\n",
1113 __func__
, ep
, ep
->com
.state
);
1114 if (peer2peer
&& ep
->com
.state
== FPDU_MODE
)
1117 PDBG("%s responder ep %p state %u\n",
1118 __func__
, ep
, ep
->com
.state
);
1119 if (ep
->com
.state
== MPA_REQ_RCVD
) {
1120 ep
->com
.rpl_done
= 1;
1121 wake_up(&ep
->com
.waitq
);
1125 PDBG("%s lsm ack ep %p state %u freeing skb\n",
1126 __func__
, ep
, ep
->com
.state
);
1127 kfree_skb(ep
->mpa_skb
);
1130 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
1132 iwch_post_zb_read(ep
);
1133 return CPL_RET_BUF_DONE
;
1136 static int abort_rpl(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1138 struct iwch_ep
*ep
= ctx
;
1139 unsigned long flags
;
1142 PDBG("%s ep %p\n", __func__
, ep
);
1146 * We get 2 abort replies from the HW. The first one must
1147 * be ignored except for scribbling that we need one more.
1149 if (!test_and_set_bit(ABORT_REQ_IN_PROGRESS
, &ep
->com
.flags
)) {
1150 return CPL_RET_BUF_DONE
;
1153 spin_lock_irqsave(&ep
->com
.lock
, flags
);
1154 switch (ep
->com
.state
) {
1156 close_complete_upcall(ep
);
1157 __state_set(&ep
->com
, DEAD
);
1161 printk(KERN_ERR
"%s ep %p state %d\n",
1162 __func__
, ep
, ep
->com
.state
);
1165 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
1168 release_ep_resources(ep
);
1169 return CPL_RET_BUF_DONE
;
1173 * Return whether a failed active open has allocated a TID
1175 static inline int act_open_has_tid(int status
)
1177 return status
!= CPL_ERR_TCAM_FULL
&& status
!= CPL_ERR_CONN_EXIST
&&
1178 status
!= CPL_ERR_ARP_MISS
;
1181 static int act_open_rpl(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1183 struct iwch_ep
*ep
= ctx
;
1184 struct cpl_act_open_rpl
*rpl
= cplhdr(skb
);
1186 PDBG("%s ep %p status %u errno %d\n", __func__
, ep
, rpl
->status
,
1187 status2errno(rpl
->status
));
1188 connect_reply_upcall(ep
, status2errno(rpl
->status
));
1189 state_set(&ep
->com
, DEAD
);
1190 if (ep
->com
.tdev
->type
!= T3A
&& act_open_has_tid(rpl
->status
))
1191 release_tid(ep
->com
.tdev
, GET_TID(rpl
), NULL
);
1192 cxgb3_free_atid(ep
->com
.tdev
, ep
->atid
);
1193 dst_release(ep
->dst
);
1194 l2t_release(ep
->com
.tdev
, ep
->l2t
);
1196 return CPL_RET_BUF_DONE
;
1199 static int listen_start(struct iwch_listen_ep
*ep
)
1201 struct sk_buff
*skb
;
1202 struct cpl_pass_open_req
*req
;
1204 PDBG("%s ep %p\n", __func__
, ep
);
1205 skb
= get_skb(NULL
, sizeof(*req
), GFP_KERNEL
);
1207 printk(KERN_ERR MOD
"t3c_listen_start failed to alloc skb!\n");
1211 req
= (struct cpl_pass_open_req
*) skb_put(skb
, sizeof(*req
));
1212 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
1213 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ
, ep
->stid
));
1214 req
->local_port
= ep
->com
.local_addr
.sin_port
;
1215 req
->local_ip
= ep
->com
.local_addr
.sin_addr
.s_addr
;
1218 req
->peer_netmask
= 0;
1219 req
->opt0h
= htonl(F_DELACK
| F_TCAM_BYPASS
);
1220 req
->opt0l
= htonl(V_RCV_BUFSIZ(rcv_win
>>10));
1221 req
->opt1
= htonl(V_CONN_POLICY(CPL_CONN_POLICY_ASK
));
1224 return iwch_cxgb3_ofld_send(ep
->com
.tdev
, skb
);
1227 static int pass_open_rpl(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1229 struct iwch_listen_ep
*ep
= ctx
;
1230 struct cpl_pass_open_rpl
*rpl
= cplhdr(skb
);
1232 PDBG("%s ep %p status %d error %d\n", __func__
, ep
,
1233 rpl
->status
, status2errno(rpl
->status
));
1234 ep
->com
.rpl_err
= status2errno(rpl
->status
);
1235 ep
->com
.rpl_done
= 1;
1236 wake_up(&ep
->com
.waitq
);
1238 return CPL_RET_BUF_DONE
;
1241 static int listen_stop(struct iwch_listen_ep
*ep
)
1243 struct sk_buff
*skb
;
1244 struct cpl_close_listserv_req
*req
;
1246 PDBG("%s ep %p\n", __func__
, ep
);
1247 skb
= get_skb(NULL
, sizeof(*req
), GFP_KERNEL
);
1249 printk(KERN_ERR MOD
"%s - failed to alloc skb\n", __func__
);
1252 req
= (struct cpl_close_listserv_req
*) skb_put(skb
, sizeof(*req
));
1253 req
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
1255 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ
, ep
->stid
));
1257 return iwch_cxgb3_ofld_send(ep
->com
.tdev
, skb
);
1260 static int close_listsrv_rpl(struct t3cdev
*tdev
, struct sk_buff
*skb
,
1263 struct iwch_listen_ep
*ep
= ctx
;
1264 struct cpl_close_listserv_rpl
*rpl
= cplhdr(skb
);
1266 PDBG("%s ep %p\n", __func__
, ep
);
1267 ep
->com
.rpl_err
= status2errno(rpl
->status
);
1268 ep
->com
.rpl_done
= 1;
1269 wake_up(&ep
->com
.waitq
);
1270 return CPL_RET_BUF_DONE
;
1273 static void accept_cr(struct iwch_ep
*ep
, __be32 peer_ip
, struct sk_buff
*skb
)
1275 struct cpl_pass_accept_rpl
*rpl
;
1276 unsigned int mtu_idx
;
1277 u32 opt0h
, opt0l
, opt2
;
1280 PDBG("%s ep %p\n", __func__
, ep
);
1281 BUG_ON(skb_cloned(skb
));
1282 skb_trim(skb
, sizeof(*rpl
));
1284 mtu_idx
= find_best_mtu(T3C_DATA(ep
->com
.tdev
), dst_mtu(ep
->dst
));
1285 wscale
= compute_wscale(rcv_win
);
1286 opt0h
= V_NAGLE(0) |
1290 V_WND_SCALE(wscale
) |
1291 V_MSS_IDX(mtu_idx
) |
1292 V_L2T_IDX(ep
->l2t
->idx
) | V_TX_CHANNEL(ep
->l2t
->smt_idx
);
1293 opt0l
= V_TOS((ep
->tos
>> 2) & M_TOS
) | V_RCV_BUFSIZ(rcv_win
>>10);
1294 opt2
= F_RX_COALESCE_VALID
| V_RX_COALESCE(0) | V_FLAVORS_VALID(1) |
1295 V_CONG_CONTROL_FLAVOR(cong_flavor
);
1298 rpl
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
1299 OPCODE_TID(rpl
) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL
, ep
->hwtid
));
1300 rpl
->peer_ip
= peer_ip
;
1301 rpl
->opt0h
= htonl(opt0h
);
1302 rpl
->opt0l_status
= htonl(opt0l
| CPL_PASS_OPEN_ACCEPT
);
1303 rpl
->opt2
= htonl(opt2
);
1304 rpl
->rsvd
= rpl
->opt2
; /* workaround for HW bug */
1305 skb
->priority
= CPL_PRIORITY_SETUP
;
1306 iwch_l2t_send(ep
->com
.tdev
, skb
, ep
->l2t
);
1311 static void reject_cr(struct t3cdev
*tdev
, u32 hwtid
, __be32 peer_ip
,
1312 struct sk_buff
*skb
)
1314 PDBG("%s t3cdev %p tid %u peer_ip %x\n", __func__
, tdev
, hwtid
,
1316 BUG_ON(skb_cloned(skb
));
1317 skb_trim(skb
, sizeof(struct cpl_tid_release
));
1320 if (tdev
->type
!= T3A
)
1321 release_tid(tdev
, hwtid
, skb
);
1323 struct cpl_pass_accept_rpl
*rpl
;
1326 skb
->priority
= CPL_PRIORITY_SETUP
;
1327 rpl
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_FORWARD
));
1328 OPCODE_TID(rpl
) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL
,
1330 rpl
->peer_ip
= peer_ip
;
1331 rpl
->opt0h
= htonl(F_TCAM_BYPASS
);
1332 rpl
->opt0l_status
= htonl(CPL_PASS_OPEN_REJECT
);
1334 rpl
->rsvd
= rpl
->opt2
;
1335 iwch_cxgb3_ofld_send(tdev
, skb
);
1339 static int pass_accept_req(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1341 struct iwch_ep
*child_ep
, *parent_ep
= ctx
;
1342 struct cpl_pass_accept_req
*req
= cplhdr(skb
);
1343 unsigned int hwtid
= GET_TID(req
);
1344 struct dst_entry
*dst
;
1345 struct l2t_entry
*l2t
;
1349 PDBG("%s parent ep %p tid %u\n", __func__
, parent_ep
, hwtid
);
1351 if (state_read(&parent_ep
->com
) != LISTEN
) {
1352 printk(KERN_ERR
"%s - listening ep not in LISTEN\n",
1358 * Find the netdev for this connection request.
1360 tim
.mac_addr
= req
->dst_mac
;
1361 tim
.vlan_tag
= ntohs(req
->vlan_tag
);
1362 if (tdev
->ctl(tdev
, GET_IFF_FROM_MAC
, &tim
) < 0 || !tim
.dev
) {
1363 printk(KERN_ERR
"%s bad dst mac %pM\n",
1364 __func__
, req
->dst_mac
);
1368 /* Find output route */
1369 rt
= find_route(tdev
,
1373 req
->peer_port
, G_PASS_OPEN_TOS(ntohl(req
->tos_tid
)));
1375 printk(KERN_ERR MOD
"%s - failed to find dst entry!\n",
1380 l2t
= t3_l2t_get(tdev
, dst
, NULL
, &req
->peer_ip
);
1382 printk(KERN_ERR MOD
"%s - failed to allocate l2t entry!\n",
1387 child_ep
= alloc_ep(sizeof(*child_ep
), GFP_KERNEL
);
1389 printk(KERN_ERR MOD
"%s - failed to allocate ep entry!\n",
1391 l2t_release(tdev
, l2t
);
1395 state_set(&child_ep
->com
, CONNECTING
);
1396 child_ep
->com
.tdev
= tdev
;
1397 child_ep
->com
.cm_id
= NULL
;
1398 child_ep
->com
.local_addr
.sin_family
= PF_INET
;
1399 child_ep
->com
.local_addr
.sin_port
= req
->local_port
;
1400 child_ep
->com
.local_addr
.sin_addr
.s_addr
= req
->local_ip
;
1401 child_ep
->com
.remote_addr
.sin_family
= PF_INET
;
1402 child_ep
->com
.remote_addr
.sin_port
= req
->peer_port
;
1403 child_ep
->com
.remote_addr
.sin_addr
.s_addr
= req
->peer_ip
;
1404 get_ep(&parent_ep
->com
);
1405 child_ep
->parent_ep
= parent_ep
;
1406 child_ep
->tos
= G_PASS_OPEN_TOS(ntohl(req
->tos_tid
));
1407 child_ep
->l2t
= l2t
;
1408 child_ep
->dst
= dst
;
1409 child_ep
->hwtid
= hwtid
;
1410 init_timer(&child_ep
->timer
);
1411 cxgb3_insert_tid(tdev
, &t3c_client
, child_ep
, hwtid
);
1412 accept_cr(child_ep
, req
->peer_ip
, skb
);
1415 reject_cr(tdev
, hwtid
, req
->peer_ip
, skb
);
1417 return CPL_RET_BUF_DONE
;
1420 static int pass_establish(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1422 struct iwch_ep
*ep
= ctx
;
1423 struct cpl_pass_establish
*req
= cplhdr(skb
);
1425 PDBG("%s ep %p\n", __func__
, ep
);
1426 ep
->snd_seq
= ntohl(req
->snd_isn
);
1427 ep
->rcv_seq
= ntohl(req
->rcv_isn
);
1429 set_emss(ep
, ntohs(req
->tcp_opt
));
1431 dst_confirm(ep
->dst
);
1432 state_set(&ep
->com
, MPA_REQ_WAIT
);
1435 return CPL_RET_BUF_DONE
;
1438 static int peer_close(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1440 struct iwch_ep
*ep
= ctx
;
1441 struct iwch_qp_attributes attrs
;
1442 unsigned long flags
;
1446 PDBG("%s ep %p\n", __func__
, ep
);
1447 dst_confirm(ep
->dst
);
1449 spin_lock_irqsave(&ep
->com
.lock
, flags
);
1450 switch (ep
->com
.state
) {
1452 __state_set(&ep
->com
, CLOSING
);
1455 __state_set(&ep
->com
, CLOSING
);
1456 connect_reply_upcall(ep
, -ECONNRESET
);
1461 * We're gonna mark this puppy DEAD, but keep
1462 * the reference on it until the ULP accepts or
1463 * rejects the CR. Also wake up anyone waiting
1464 * in rdma connection migration (see iwch_accept_cr()).
1466 __state_set(&ep
->com
, CLOSING
);
1467 ep
->com
.rpl_done
= 1;
1468 ep
->com
.rpl_err
= -ECONNRESET
;
1469 PDBG("waking up ep %p\n", ep
);
1470 wake_up(&ep
->com
.waitq
);
1473 __state_set(&ep
->com
, CLOSING
);
1474 ep
->com
.rpl_done
= 1;
1475 ep
->com
.rpl_err
= -ECONNRESET
;
1476 PDBG("waking up ep %p\n", ep
);
1477 wake_up(&ep
->com
.waitq
);
1481 __state_set(&ep
->com
, CLOSING
);
1482 attrs
.next_state
= IWCH_QP_STATE_CLOSING
;
1483 iwch_modify_qp(ep
->com
.qp
->rhp
, ep
->com
.qp
,
1484 IWCH_QP_ATTR_NEXT_STATE
, &attrs
, 1);
1485 peer_close_upcall(ep
);
1491 __state_set(&ep
->com
, MORIBUND
);
1496 if (ep
->com
.cm_id
&& ep
->com
.qp
) {
1497 attrs
.next_state
= IWCH_QP_STATE_IDLE
;
1498 iwch_modify_qp(ep
->com
.qp
->rhp
, ep
->com
.qp
,
1499 IWCH_QP_ATTR_NEXT_STATE
, &attrs
, 1);
1501 close_complete_upcall(ep
);
1502 __state_set(&ep
->com
, DEAD
);
1512 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
1514 iwch_ep_disconnect(ep
, 0, GFP_KERNEL
);
1516 release_ep_resources(ep
);
1517 return CPL_RET_BUF_DONE
;
1521 * Returns whether an ABORT_REQ_RSS message is a negative advice.
1523 static int is_neg_adv_abort(unsigned int status
)
1525 return status
== CPL_ERR_RTX_NEG_ADVICE
||
1526 status
== CPL_ERR_PERSIST_NEG_ADVICE
;
1529 static int peer_abort(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1531 struct cpl_abort_req_rss
*req
= cplhdr(skb
);
1532 struct iwch_ep
*ep
= ctx
;
1533 struct cpl_abort_rpl
*rpl
;
1534 struct sk_buff
*rpl_skb
;
1535 struct iwch_qp_attributes attrs
;
1538 unsigned long flags
;
1540 if (is_neg_adv_abort(req
->status
)) {
1541 PDBG("%s neg_adv_abort ep %p tid %d\n", __func__
, ep
,
1543 t3_l2t_send_event(ep
->com
.tdev
, ep
->l2t
);
1544 return CPL_RET_BUF_DONE
;
1548 * We get 2 peer aborts from the HW. The first one must
1549 * be ignored except for scribbling that we need one more.
1551 if (!test_and_set_bit(PEER_ABORT_IN_PROGRESS
, &ep
->com
.flags
)) {
1552 return CPL_RET_BUF_DONE
;
1555 spin_lock_irqsave(&ep
->com
.lock
, flags
);
1556 PDBG("%s ep %p state %u\n", __func__
, ep
, ep
->com
.state
);
1557 switch (ep
->com
.state
) {
1565 connect_reply_upcall(ep
, -ECONNRESET
);
1568 ep
->com
.rpl_done
= 1;
1569 ep
->com
.rpl_err
= -ECONNRESET
;
1570 PDBG("waking up ep %p\n", ep
);
1571 wake_up(&ep
->com
.waitq
);
1576 * We're gonna mark this puppy DEAD, but keep
1577 * the reference on it until the ULP accepts or
1578 * rejects the CR. Also wake up anyone waiting
1579 * in rdma connection migration (see iwch_accept_cr()).
1581 ep
->com
.rpl_done
= 1;
1582 ep
->com
.rpl_err
= -ECONNRESET
;
1583 PDBG("waking up ep %p\n", ep
);
1584 wake_up(&ep
->com
.waitq
);
1591 if (ep
->com
.cm_id
&& ep
->com
.qp
) {
1592 attrs
.next_state
= IWCH_QP_STATE_ERROR
;
1593 ret
= iwch_modify_qp(ep
->com
.qp
->rhp
,
1594 ep
->com
.qp
, IWCH_QP_ATTR_NEXT_STATE
,
1598 "%s - qp <- error failed!\n",
1601 peer_abort_upcall(ep
);
1606 PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__
);
1607 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
1608 return CPL_RET_BUF_DONE
;
1613 dst_confirm(ep
->dst
);
1614 if (ep
->com
.state
!= ABORTING
) {
1615 __state_set(&ep
->com
, DEAD
);
1618 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
1620 rpl_skb
= get_skb(skb
, sizeof(*rpl
), GFP_KERNEL
);
1622 printk(KERN_ERR MOD
"%s - cannot allocate skb!\n",
1627 rpl_skb
->priority
= CPL_PRIORITY_DATA
;
1628 rpl
= (struct cpl_abort_rpl
*) skb_put(rpl_skb
, sizeof(*rpl
));
1629 rpl
->wr
.wr_hi
= htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL
));
1630 rpl
->wr
.wr_lo
= htonl(V_WR_TID(ep
->hwtid
));
1631 OPCODE_TID(rpl
) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL
, ep
->hwtid
));
1632 rpl
->cmd
= CPL_ABORT_NO_RST
;
1633 iwch_cxgb3_ofld_send(ep
->com
.tdev
, rpl_skb
);
1636 release_ep_resources(ep
);
1637 return CPL_RET_BUF_DONE
;
1640 static int close_con_rpl(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1642 struct iwch_ep
*ep
= ctx
;
1643 struct iwch_qp_attributes attrs
;
1644 unsigned long flags
;
1647 PDBG("%s ep %p\n", __func__
, ep
);
1650 /* The cm_id may be null if we failed to connect */
1651 spin_lock_irqsave(&ep
->com
.lock
, flags
);
1652 switch (ep
->com
.state
) {
1654 __state_set(&ep
->com
, MORIBUND
);
1658 if ((ep
->com
.cm_id
) && (ep
->com
.qp
)) {
1659 attrs
.next_state
= IWCH_QP_STATE_IDLE
;
1660 iwch_modify_qp(ep
->com
.qp
->rhp
,
1662 IWCH_QP_ATTR_NEXT_STATE
,
1665 close_complete_upcall(ep
);
1666 __state_set(&ep
->com
, DEAD
);
1676 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
1678 release_ep_resources(ep
);
1679 return CPL_RET_BUF_DONE
;
1683 * T3A does 3 things when a TERM is received:
1684 * 1) send up a CPL_RDMA_TERMINATE message with the TERM packet
1685 * 2) generate an async event on the QP with the TERMINATE opcode
1686 * 3) post a TERMINATE opcode cqe into the associated CQ.
1688 * For (1), we save the message in the qp for later consumer consumption.
1689 * For (2), we move the QP into TERMINATE, post a QP event and disconnect.
1690 * For (3), we toss the CQE in cxio_poll_cq().
1692 * terminate() handles case (1)...
1694 static int terminate(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1696 struct iwch_ep
*ep
= ctx
;
1698 if (state_read(&ep
->com
) != FPDU_MODE
)
1699 return CPL_RET_BUF_DONE
;
1701 PDBG("%s ep %p\n", __func__
, ep
);
1702 skb_pull(skb
, sizeof(struct cpl_rdma_terminate
));
1703 PDBG("%s saving %d bytes of term msg\n", __func__
, skb
->len
);
1704 skb_copy_from_linear_data(skb
, ep
->com
.qp
->attr
.terminate_buffer
,
1706 ep
->com
.qp
->attr
.terminate_msg_len
= skb
->len
;
1707 ep
->com
.qp
->attr
.is_terminate_local
= 0;
1708 return CPL_RET_BUF_DONE
;
1711 static int ec_status(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
1713 struct cpl_rdma_ec_status
*rep
= cplhdr(skb
);
1714 struct iwch_ep
*ep
= ctx
;
1716 PDBG("%s ep %p tid %u status %d\n", __func__
, ep
, ep
->hwtid
,
1719 struct iwch_qp_attributes attrs
;
1721 printk(KERN_ERR MOD
"%s BAD CLOSE - Aborting tid %u\n",
1722 __func__
, ep
->hwtid
);
1724 attrs
.next_state
= IWCH_QP_STATE_ERROR
;
1725 iwch_modify_qp(ep
->com
.qp
->rhp
,
1726 ep
->com
.qp
, IWCH_QP_ATTR_NEXT_STATE
,
1728 abort_connection(ep
, NULL
, GFP_KERNEL
);
1730 return CPL_RET_BUF_DONE
;
1733 static void ep_timeout(unsigned long arg
)
1735 struct iwch_ep
*ep
= (struct iwch_ep
*)arg
;
1736 struct iwch_qp_attributes attrs
;
1737 unsigned long flags
;
1740 spin_lock_irqsave(&ep
->com
.lock
, flags
);
1741 PDBG("%s ep %p tid %u state %d\n", __func__
, ep
, ep
->hwtid
,
1743 switch (ep
->com
.state
) {
1745 __state_set(&ep
->com
, ABORTING
);
1746 connect_reply_upcall(ep
, -ETIMEDOUT
);
1749 __state_set(&ep
->com
, ABORTING
);
1753 if (ep
->com
.cm_id
&& ep
->com
.qp
) {
1754 attrs
.next_state
= IWCH_QP_STATE_ERROR
;
1755 iwch_modify_qp(ep
->com
.qp
->rhp
,
1756 ep
->com
.qp
, IWCH_QP_ATTR_NEXT_STATE
,
1759 __state_set(&ep
->com
, ABORTING
);
1762 WARN(1, "%s unexpected state ep %p state %u\n",
1763 __func__
, ep
, ep
->com
.state
);
1766 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
1768 abort_connection(ep
, NULL
, GFP_ATOMIC
);
1772 int iwch_reject_cr(struct iw_cm_id
*cm_id
, const void *pdata
, u8 pdata_len
)
1775 struct iwch_ep
*ep
= to_ep(cm_id
);
1776 PDBG("%s ep %p tid %u\n", __func__
, ep
, ep
->hwtid
);
1778 if (state_read(&ep
->com
) == DEAD
) {
1782 BUG_ON(state_read(&ep
->com
) != MPA_REQ_RCVD
);
1784 abort_connection(ep
, NULL
, GFP_KERNEL
);
1786 err
= send_mpa_reject(ep
, pdata
, pdata_len
);
1787 err
= iwch_ep_disconnect(ep
, 0, GFP_KERNEL
);
1793 int iwch_accept_cr(struct iw_cm_id
*cm_id
, struct iw_cm_conn_param
*conn_param
)
1796 struct iwch_qp_attributes attrs
;
1797 enum iwch_qp_attr_mask mask
;
1798 struct iwch_ep
*ep
= to_ep(cm_id
);
1799 struct iwch_dev
*h
= to_iwch_dev(cm_id
->device
);
1800 struct iwch_qp
*qp
= get_qhp(h
, conn_param
->qpn
);
1802 PDBG("%s ep %p tid %u\n", __func__
, ep
, ep
->hwtid
);
1803 if (state_read(&ep
->com
) == DEAD
) {
1808 BUG_ON(state_read(&ep
->com
) != MPA_REQ_RCVD
);
1811 if ((conn_param
->ord
> qp
->rhp
->attr
.max_rdma_read_qp_depth
) ||
1812 (conn_param
->ird
> qp
->rhp
->attr
.max_rdma_reads_per_qp
)) {
1813 abort_connection(ep
, NULL
, GFP_KERNEL
);
1818 cm_id
->add_ref(cm_id
);
1819 ep
->com
.cm_id
= cm_id
;
1822 ep
->ird
= conn_param
->ird
;
1823 ep
->ord
= conn_param
->ord
;
1825 if (peer2peer
&& ep
->ird
== 0)
1828 PDBG("%s %d ird %d ord %d\n", __func__
, __LINE__
, ep
->ird
, ep
->ord
);
1830 /* bind QP to EP and move to RTS */
1831 attrs
.mpa_attr
= ep
->mpa_attr
;
1832 attrs
.max_ird
= ep
->ird
;
1833 attrs
.max_ord
= ep
->ord
;
1834 attrs
.llp_stream_handle
= ep
;
1835 attrs
.next_state
= IWCH_QP_STATE_RTS
;
1837 /* bind QP and TID with INIT_WR */
1838 mask
= IWCH_QP_ATTR_NEXT_STATE
|
1839 IWCH_QP_ATTR_LLP_STREAM_HANDLE
|
1840 IWCH_QP_ATTR_MPA_ATTR
|
1841 IWCH_QP_ATTR_MAX_IRD
|
1842 IWCH_QP_ATTR_MAX_ORD
;
1844 err
= iwch_modify_qp(ep
->com
.qp
->rhp
,
1845 ep
->com
.qp
, mask
, &attrs
, 1);
1849 /* if needed, wait for wr_ack */
1850 if (iwch_rqes_posted(qp
)) {
1851 wait_event(ep
->com
.waitq
, ep
->com
.rpl_done
);
1852 err
= ep
->com
.rpl_err
;
1857 err
= send_mpa_reply(ep
, conn_param
->private_data
,
1858 conn_param
->private_data_len
);
1863 state_set(&ep
->com
, FPDU_MODE
);
1864 established_upcall(ep
);
1868 ep
->com
.cm_id
= NULL
;
1870 cm_id
->rem_ref(cm_id
);
1876 static int is_loopback_dst(struct iw_cm_id
*cm_id
)
1878 struct net_device
*dev
;
1879 struct sockaddr_in
*raddr
= (struct sockaddr_in
*)&cm_id
->remote_addr
;
1881 dev
= ip_dev_find(&init_net
, raddr
->sin_addr
.s_addr
);
1888 int iwch_connect(struct iw_cm_id
*cm_id
, struct iw_cm_conn_param
*conn_param
)
1890 struct iwch_dev
*h
= to_iwch_dev(cm_id
->device
);
1894 struct sockaddr_in
*laddr
= (struct sockaddr_in
*)&cm_id
->local_addr
;
1895 struct sockaddr_in
*raddr
= (struct sockaddr_in
*)&cm_id
->remote_addr
;
1897 if (cm_id
->remote_addr
.ss_family
!= PF_INET
) {
1902 if (is_loopback_dst(cm_id
)) {
1907 ep
= alloc_ep(sizeof(*ep
), GFP_KERNEL
);
1909 printk(KERN_ERR MOD
"%s - cannot alloc ep.\n", __func__
);
1913 init_timer(&ep
->timer
);
1914 ep
->plen
= conn_param
->private_data_len
;
1916 memcpy(ep
->mpa_pkt
+ sizeof(struct mpa_message
),
1917 conn_param
->private_data
, ep
->plen
);
1918 ep
->ird
= conn_param
->ird
;
1919 ep
->ord
= conn_param
->ord
;
1921 if (peer2peer
&& ep
->ord
== 0)
1924 ep
->com
.tdev
= h
->rdev
.t3cdev_p
;
1926 cm_id
->add_ref(cm_id
);
1927 ep
->com
.cm_id
= cm_id
;
1928 ep
->com
.qp
= get_qhp(h
, conn_param
->qpn
);
1929 BUG_ON(!ep
->com
.qp
);
1930 PDBG("%s qpn 0x%x qp %p cm_id %p\n", __func__
, conn_param
->qpn
,
1934 * Allocate an active TID to initiate a TCP connection.
1936 ep
->atid
= cxgb3_alloc_atid(h
->rdev
.t3cdev_p
, &t3c_client
, ep
);
1937 if (ep
->atid
== -1) {
1938 printk(KERN_ERR MOD
"%s - cannot alloc atid.\n", __func__
);
1944 rt
= find_route(h
->rdev
.t3cdev_p
, laddr
->sin_addr
.s_addr
,
1945 raddr
->sin_addr
.s_addr
, laddr
->sin_port
,
1946 raddr
->sin_port
, IPTOS_LOWDELAY
);
1948 printk(KERN_ERR MOD
"%s - cannot find route.\n", __func__
);
1949 err
= -EHOSTUNREACH
;
1953 ep
->l2t
= t3_l2t_get(ep
->com
.tdev
, ep
->dst
, NULL
,
1954 &raddr
->sin_addr
.s_addr
);
1956 printk(KERN_ERR MOD
"%s - cannot alloc l2e.\n", __func__
);
1961 state_set(&ep
->com
, CONNECTING
);
1962 ep
->tos
= IPTOS_LOWDELAY
;
1963 memcpy(&ep
->com
.local_addr
, &cm_id
->local_addr
,
1964 sizeof(ep
->com
.local_addr
));
1965 memcpy(&ep
->com
.remote_addr
, &cm_id
->remote_addr
,
1966 sizeof(ep
->com
.remote_addr
));
1968 /* send connect request to rnic */
1969 err
= send_connect(ep
);
1973 l2t_release(h
->rdev
.t3cdev_p
, ep
->l2t
);
1975 dst_release(ep
->dst
);
1977 cxgb3_free_atid(ep
->com
.tdev
, ep
->atid
);
1979 cm_id
->rem_ref(cm_id
);
1985 int iwch_create_listen(struct iw_cm_id
*cm_id
, int backlog
)
1988 struct iwch_dev
*h
= to_iwch_dev(cm_id
->device
);
1989 struct iwch_listen_ep
*ep
;
1994 if (cm_id
->local_addr
.ss_family
!= PF_INET
) {
1999 ep
= alloc_ep(sizeof(*ep
), GFP_KERNEL
);
2001 printk(KERN_ERR MOD
"%s - cannot alloc ep.\n", __func__
);
2005 PDBG("%s ep %p\n", __func__
, ep
);
2006 ep
->com
.tdev
= h
->rdev
.t3cdev_p
;
2007 cm_id
->add_ref(cm_id
);
2008 ep
->com
.cm_id
= cm_id
;
2009 ep
->backlog
= backlog
;
2010 memcpy(&ep
->com
.local_addr
, &cm_id
->local_addr
,
2011 sizeof(ep
->com
.local_addr
));
2014 * Allocate a server TID.
2016 ep
->stid
= cxgb3_alloc_stid(h
->rdev
.t3cdev_p
, &t3c_client
, ep
);
2017 if (ep
->stid
== -1) {
2018 printk(KERN_ERR MOD
"%s - cannot alloc atid.\n", __func__
);
2023 state_set(&ep
->com
, LISTEN
);
2024 err
= listen_start(ep
);
2028 /* wait for pass_open_rpl */
2029 wait_event(ep
->com
.waitq
, ep
->com
.rpl_done
);
2030 err
= ep
->com
.rpl_err
;
2032 cm_id
->provider_data
= ep
;
2036 cxgb3_free_stid(ep
->com
.tdev
, ep
->stid
);
2038 cm_id
->rem_ref(cm_id
);
2045 int iwch_destroy_listen(struct iw_cm_id
*cm_id
)
2048 struct iwch_listen_ep
*ep
= to_listen_ep(cm_id
);
2050 PDBG("%s ep %p\n", __func__
, ep
);
2053 state_set(&ep
->com
, DEAD
);
2054 ep
->com
.rpl_done
= 0;
2055 ep
->com
.rpl_err
= 0;
2056 err
= listen_stop(ep
);
2059 wait_event(ep
->com
.waitq
, ep
->com
.rpl_done
);
2060 cxgb3_free_stid(ep
->com
.tdev
, ep
->stid
);
2062 err
= ep
->com
.rpl_err
;
2063 cm_id
->rem_ref(cm_id
);
2068 int iwch_ep_disconnect(struct iwch_ep
*ep
, int abrupt
, gfp_t gfp
)
2071 unsigned long flags
;
2074 struct t3cdev
*tdev
;
2075 struct cxio_rdev
*rdev
;
2077 spin_lock_irqsave(&ep
->com
.lock
, flags
);
2079 PDBG("%s ep %p state %s, abrupt %d\n", __func__
, ep
,
2080 states
[ep
->com
.state
], abrupt
);
2082 tdev
= (struct t3cdev
*)ep
->com
.tdev
;
2083 rdev
= (struct cxio_rdev
*)tdev
->ulp
;
2084 if (cxio_fatal_error(rdev
)) {
2086 close_complete_upcall(ep
);
2087 ep
->com
.state
= DEAD
;
2089 switch (ep
->com
.state
) {
2097 ep
->com
.state
= ABORTING
;
2099 ep
->com
.state
= CLOSING
;
2102 set_bit(CLOSE_SENT
, &ep
->com
.flags
);
2105 if (!test_and_set_bit(CLOSE_SENT
, &ep
->com
.flags
)) {
2109 ep
->com
.state
= ABORTING
;
2111 ep
->com
.state
= MORIBUND
;
2117 PDBG("%s ignoring disconnect ep %p state %u\n",
2118 __func__
, ep
, ep
->com
.state
);
2125 spin_unlock_irqrestore(&ep
->com
.lock
, flags
);
2128 ret
= send_abort(ep
, NULL
, gfp
);
2130 ret
= send_halfclose(ep
, gfp
);
2135 release_ep_resources(ep
);
2139 int iwch_ep_redirect(void *ctx
, struct dst_entry
*old
, struct dst_entry
*new,
2140 struct l2t_entry
*l2t
)
2142 struct iwch_ep
*ep
= ctx
;
2147 PDBG("%s ep %p redirect to dst %p l2t %p\n", __func__
, ep
, new,
2150 l2t_release(ep
->com
.tdev
, ep
->l2t
);
2158 * All the CM events are handled on a work queue to have a safe context.
2159 * These are the real handlers that are called from the work queue.
2161 static const cxgb3_cpl_handler_func work_handlers
[NUM_CPL_CMDS
] = {
2162 [CPL_ACT_ESTABLISH
] = act_establish
,
2163 [CPL_ACT_OPEN_RPL
] = act_open_rpl
,
2164 [CPL_RX_DATA
] = rx_data
,
2165 [CPL_TX_DMA_ACK
] = tx_ack
,
2166 [CPL_ABORT_RPL_RSS
] = abort_rpl
,
2167 [CPL_ABORT_RPL
] = abort_rpl
,
2168 [CPL_PASS_OPEN_RPL
] = pass_open_rpl
,
2169 [CPL_CLOSE_LISTSRV_RPL
] = close_listsrv_rpl
,
2170 [CPL_PASS_ACCEPT_REQ
] = pass_accept_req
,
2171 [CPL_PASS_ESTABLISH
] = pass_establish
,
2172 [CPL_PEER_CLOSE
] = peer_close
,
2173 [CPL_ABORT_REQ_RSS
] = peer_abort
,
2174 [CPL_CLOSE_CON_RPL
] = close_con_rpl
,
2175 [CPL_RDMA_TERMINATE
] = terminate
,
2176 [CPL_RDMA_EC_STATUS
] = ec_status
,
2179 static void process_work(struct work_struct
*work
)
2181 struct sk_buff
*skb
= NULL
;
2183 struct t3cdev
*tdev
;
2186 while ((skb
= skb_dequeue(&rxq
))) {
2187 ep
= *((void **) (skb
->cb
));
2188 tdev
= *((struct t3cdev
**) (skb
->cb
+ sizeof(void *)));
2189 ret
= work_handlers
[G_OPCODE(ntohl((__force __be32
)skb
->csum
))](tdev
, skb
, ep
);
2190 if (ret
& CPL_RET_BUF_DONE
)
2194 * ep was referenced in sched(), and is freed here.
2196 put_ep((struct iwch_ep_common
*)ep
);
2200 static DECLARE_WORK(skb_work
, process_work
);
2202 static int sched(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
2204 struct iwch_ep_common
*epc
= ctx
;
2209 * Save ctx and tdev in the skb->cb area.
2211 *((void **) skb
->cb
) = ctx
;
2212 *((struct t3cdev
**) (skb
->cb
+ sizeof(void *))) = tdev
;
2215 * Queue the skb and schedule the worker thread.
2217 skb_queue_tail(&rxq
, skb
);
2218 queue_work(workq
, &skb_work
);
2222 static int set_tcb_rpl(struct t3cdev
*tdev
, struct sk_buff
*skb
, void *ctx
)
2224 struct cpl_set_tcb_rpl
*rpl
= cplhdr(skb
);
2226 if (rpl
->status
!= CPL_ERR_NONE
) {
2227 printk(KERN_ERR MOD
"Unexpected SET_TCB_RPL status %u "
2228 "for tid %u\n", rpl
->status
, GET_TID(rpl
));
2230 return CPL_RET_BUF_DONE
;
2234 * All upcalls from the T3 Core go to sched() to schedule the
2235 * processing on a work queue.
2237 cxgb3_cpl_handler_func t3c_handlers
[NUM_CPL_CMDS
] = {
2238 [CPL_ACT_ESTABLISH
] = sched
,
2239 [CPL_ACT_OPEN_RPL
] = sched
,
2240 [CPL_RX_DATA
] = sched
,
2241 [CPL_TX_DMA_ACK
] = sched
,
2242 [CPL_ABORT_RPL_RSS
] = sched
,
2243 [CPL_ABORT_RPL
] = sched
,
2244 [CPL_PASS_OPEN_RPL
] = sched
,
2245 [CPL_CLOSE_LISTSRV_RPL
] = sched
,
2246 [CPL_PASS_ACCEPT_REQ
] = sched
,
2247 [CPL_PASS_ESTABLISH
] = sched
,
2248 [CPL_PEER_CLOSE
] = sched
,
2249 [CPL_CLOSE_CON_RPL
] = sched
,
2250 [CPL_ABORT_REQ_RSS
] = sched
,
2251 [CPL_RDMA_TERMINATE
] = sched
,
2252 [CPL_RDMA_EC_STATUS
] = sched
,
2253 [CPL_SET_TCB_RPL
] = set_tcb_rpl
,
2256 int __init
iwch_cm_init(void)
2258 skb_queue_head_init(&rxq
);
2260 workq
= create_singlethread_workqueue("iw_cxgb3");
2267 void __exit
iwch_cm_term(void)
2269 flush_workqueue(workq
);
2270 destroy_workqueue(workq
);