PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / infiniband / hw / qib / qib_file_ops.c
blob275f247f9fca540e45854655bc7871bacdb6bc98
1 /*
2 * Copyright (c) 2012, 2013 Intel Corporation. All rights reserved.
3 * Copyright (c) 2006 - 2012 QLogic Corporation. All rights reserved.
4 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
35 #include <linux/pci.h>
36 #include <linux/poll.h>
37 #include <linux/cdev.h>
38 #include <linux/swap.h>
39 #include <linux/vmalloc.h>
40 #include <linux/highmem.h>
41 #include <linux/io.h>
42 #include <linux/aio.h>
43 #include <linux/jiffies.h>
44 #include <asm/pgtable.h>
45 #include <linux/delay.h>
46 #include <linux/export.h>
48 #include "qib.h"
49 #include "qib_common.h"
50 #include "qib_user_sdma.h"
52 #undef pr_fmt
53 #define pr_fmt(fmt) QIB_DRV_NAME ": " fmt
55 static int qib_open(struct inode *, struct file *);
56 static int qib_close(struct inode *, struct file *);
57 static ssize_t qib_write(struct file *, const char __user *, size_t, loff_t *);
58 static ssize_t qib_aio_write(struct kiocb *, const struct iovec *,
59 unsigned long, loff_t);
60 static unsigned int qib_poll(struct file *, struct poll_table_struct *);
61 static int qib_mmapf(struct file *, struct vm_area_struct *);
63 static const struct file_operations qib_file_ops = {
64 .owner = THIS_MODULE,
65 .write = qib_write,
66 .aio_write = qib_aio_write,
67 .open = qib_open,
68 .release = qib_close,
69 .poll = qib_poll,
70 .mmap = qib_mmapf,
71 .llseek = noop_llseek,
75 * Convert kernel virtual addresses to physical addresses so they don't
76 * potentially conflict with the chip addresses used as mmap offsets.
77 * It doesn't really matter what mmap offset we use as long as we can
78 * interpret it correctly.
80 static u64 cvt_kvaddr(void *p)
82 struct page *page;
83 u64 paddr = 0;
85 page = vmalloc_to_page(p);
86 if (page)
87 paddr = page_to_pfn(page) << PAGE_SHIFT;
89 return paddr;
92 static int qib_get_base_info(struct file *fp, void __user *ubase,
93 size_t ubase_size)
95 struct qib_ctxtdata *rcd = ctxt_fp(fp);
96 int ret = 0;
97 struct qib_base_info *kinfo = NULL;
98 struct qib_devdata *dd = rcd->dd;
99 struct qib_pportdata *ppd = rcd->ppd;
100 unsigned subctxt_cnt;
101 int shared, master;
102 size_t sz;
104 subctxt_cnt = rcd->subctxt_cnt;
105 if (!subctxt_cnt) {
106 shared = 0;
107 master = 0;
108 subctxt_cnt = 1;
109 } else {
110 shared = 1;
111 master = !subctxt_fp(fp);
114 sz = sizeof(*kinfo);
115 /* If context sharing is not requested, allow the old size structure */
116 if (!shared)
117 sz -= 7 * sizeof(u64);
118 if (ubase_size < sz) {
119 ret = -EINVAL;
120 goto bail;
123 kinfo = kzalloc(sizeof(*kinfo), GFP_KERNEL);
124 if (kinfo == NULL) {
125 ret = -ENOMEM;
126 goto bail;
129 ret = dd->f_get_base_info(rcd, kinfo);
130 if (ret < 0)
131 goto bail;
133 kinfo->spi_rcvhdr_cnt = dd->rcvhdrcnt;
134 kinfo->spi_rcvhdrent_size = dd->rcvhdrentsize;
135 kinfo->spi_tidegrcnt = rcd->rcvegrcnt;
136 kinfo->spi_rcv_egrbufsize = dd->rcvegrbufsize;
138 * have to mmap whole thing
140 kinfo->spi_rcv_egrbuftotlen =
141 rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size;
142 kinfo->spi_rcv_egrperchunk = rcd->rcvegrbufs_perchunk;
143 kinfo->spi_rcv_egrchunksize = kinfo->spi_rcv_egrbuftotlen /
144 rcd->rcvegrbuf_chunks;
145 kinfo->spi_tidcnt = dd->rcvtidcnt / subctxt_cnt;
146 if (master)
147 kinfo->spi_tidcnt += dd->rcvtidcnt % subctxt_cnt;
149 * for this use, may be cfgctxts summed over all chips that
150 * are are configured and present
152 kinfo->spi_nctxts = dd->cfgctxts;
153 /* unit (chip/board) our context is on */
154 kinfo->spi_unit = dd->unit;
155 kinfo->spi_port = ppd->port;
156 /* for now, only a single page */
157 kinfo->spi_tid_maxsize = PAGE_SIZE;
160 * Doing this per context, and based on the skip value, etc. This has
161 * to be the actual buffer size, since the protocol code treats it
162 * as an array.
164 * These have to be set to user addresses in the user code via mmap.
165 * These values are used on return to user code for the mmap target
166 * addresses only. For 32 bit, same 44 bit address problem, so use
167 * the physical address, not virtual. Before 2.6.11, using the
168 * page_address() macro worked, but in 2.6.11, even that returns the
169 * full 64 bit address (upper bits all 1's). So far, using the
170 * physical addresses (or chip offsets, for chip mapping) works, but
171 * no doubt some future kernel release will change that, and we'll be
172 * on to yet another method of dealing with this.
173 * Normally only one of rcvhdr_tailaddr or rhf_offset is useful
174 * since the chips with non-zero rhf_offset don't normally
175 * enable tail register updates to host memory, but for testing,
176 * both can be enabled and used.
178 kinfo->spi_rcvhdr_base = (u64) rcd->rcvhdrq_phys;
179 kinfo->spi_rcvhdr_tailaddr = (u64) rcd->rcvhdrqtailaddr_phys;
180 kinfo->spi_rhf_offset = dd->rhf_offset;
181 kinfo->spi_rcv_egrbufs = (u64) rcd->rcvegr_phys;
182 kinfo->spi_pioavailaddr = (u64) dd->pioavailregs_phys;
183 /* setup per-unit (not port) status area for user programs */
184 kinfo->spi_status = (u64) kinfo->spi_pioavailaddr +
185 (char *) ppd->statusp -
186 (char *) dd->pioavailregs_dma;
187 kinfo->spi_uregbase = (u64) dd->uregbase + dd->ureg_align * rcd->ctxt;
188 if (!shared) {
189 kinfo->spi_piocnt = rcd->piocnt;
190 kinfo->spi_piobufbase = (u64) rcd->piobufs;
191 kinfo->spi_sendbuf_status = cvt_kvaddr(rcd->user_event_mask);
192 } else if (master) {
193 kinfo->spi_piocnt = (rcd->piocnt / subctxt_cnt) +
194 (rcd->piocnt % subctxt_cnt);
195 /* Master's PIO buffers are after all the slave's */
196 kinfo->spi_piobufbase = (u64) rcd->piobufs +
197 dd->palign *
198 (rcd->piocnt - kinfo->spi_piocnt);
199 } else {
200 unsigned slave = subctxt_fp(fp) - 1;
202 kinfo->spi_piocnt = rcd->piocnt / subctxt_cnt;
203 kinfo->spi_piobufbase = (u64) rcd->piobufs +
204 dd->palign * kinfo->spi_piocnt * slave;
207 if (shared) {
208 kinfo->spi_sendbuf_status =
209 cvt_kvaddr(&rcd->user_event_mask[subctxt_fp(fp)]);
210 /* only spi_subctxt_* fields should be set in this block! */
211 kinfo->spi_subctxt_uregbase = cvt_kvaddr(rcd->subctxt_uregbase);
213 kinfo->spi_subctxt_rcvegrbuf =
214 cvt_kvaddr(rcd->subctxt_rcvegrbuf);
215 kinfo->spi_subctxt_rcvhdr_base =
216 cvt_kvaddr(rcd->subctxt_rcvhdr_base);
220 * All user buffers are 2KB buffers. If we ever support
221 * giving 4KB buffers to user processes, this will need some
222 * work. Can't use piobufbase directly, because it has
223 * both 2K and 4K buffer base values.
225 kinfo->spi_pioindex = (kinfo->spi_piobufbase - dd->pio2k_bufbase) /
226 dd->palign;
227 kinfo->spi_pioalign = dd->palign;
228 kinfo->spi_qpair = QIB_KD_QP;
230 * user mode PIO buffers are always 2KB, even when 4KB can
231 * be received, and sent via the kernel; this is ibmaxlen
232 * for 2K MTU.
234 kinfo->spi_piosize = dd->piosize2k - 2 * sizeof(u32);
235 kinfo->spi_mtu = ppd->ibmaxlen; /* maxlen, not ibmtu */
236 kinfo->spi_ctxt = rcd->ctxt;
237 kinfo->spi_subctxt = subctxt_fp(fp);
238 kinfo->spi_sw_version = QIB_KERN_SWVERSION;
239 kinfo->spi_sw_version |= 1U << 31; /* QLogic-built, not kernel.org */
240 kinfo->spi_hw_version = dd->revision;
242 if (master)
243 kinfo->spi_runtime_flags |= QIB_RUNTIME_MASTER;
245 sz = (ubase_size < sizeof(*kinfo)) ? ubase_size : sizeof(*kinfo);
246 if (copy_to_user(ubase, kinfo, sz))
247 ret = -EFAULT;
248 bail:
249 kfree(kinfo);
250 return ret;
254 * qib_tid_update - update a context TID
255 * @rcd: the context
256 * @fp: the qib device file
257 * @ti: the TID information
259 * The new implementation as of Oct 2004 is that the driver assigns
260 * the tid and returns it to the caller. To reduce search time, we
261 * keep a cursor for each context, walking the shadow tid array to find
262 * one that's not in use.
264 * For now, if we can't allocate the full list, we fail, although
265 * in the long run, we'll allocate as many as we can, and the
266 * caller will deal with that by trying the remaining pages later.
267 * That means that when we fail, we have to mark the tids as not in
268 * use again, in our shadow copy.
270 * It's up to the caller to free the tids when they are done.
271 * We'll unlock the pages as they free them.
273 * Also, right now we are locking one page at a time, but since
274 * the intended use of this routine is for a single group of
275 * virtually contiguous pages, that should change to improve
276 * performance.
278 static int qib_tid_update(struct qib_ctxtdata *rcd, struct file *fp,
279 const struct qib_tid_info *ti)
281 int ret = 0, ntids;
282 u32 tid, ctxttid, cnt, i, tidcnt, tidoff;
283 u16 *tidlist;
284 struct qib_devdata *dd = rcd->dd;
285 u64 physaddr;
286 unsigned long vaddr;
287 u64 __iomem *tidbase;
288 unsigned long tidmap[8];
289 struct page **pagep = NULL;
290 unsigned subctxt = subctxt_fp(fp);
292 if (!dd->pageshadow) {
293 ret = -ENOMEM;
294 goto done;
297 cnt = ti->tidcnt;
298 if (!cnt) {
299 ret = -EFAULT;
300 goto done;
302 ctxttid = rcd->ctxt * dd->rcvtidcnt;
303 if (!rcd->subctxt_cnt) {
304 tidcnt = dd->rcvtidcnt;
305 tid = rcd->tidcursor;
306 tidoff = 0;
307 } else if (!subctxt) {
308 tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) +
309 (dd->rcvtidcnt % rcd->subctxt_cnt);
310 tidoff = dd->rcvtidcnt - tidcnt;
311 ctxttid += tidoff;
312 tid = tidcursor_fp(fp);
313 } else {
314 tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt;
315 tidoff = tidcnt * (subctxt - 1);
316 ctxttid += tidoff;
317 tid = tidcursor_fp(fp);
319 if (cnt > tidcnt) {
320 /* make sure it all fits in tid_pg_list */
321 qib_devinfo(dd->pcidev,
322 "Process tried to allocate %u TIDs, only trying max (%u)\n",
323 cnt, tidcnt);
324 cnt = tidcnt;
326 pagep = (struct page **) rcd->tid_pg_list;
327 tidlist = (u16 *) &pagep[dd->rcvtidcnt];
328 pagep += tidoff;
329 tidlist += tidoff;
331 memset(tidmap, 0, sizeof(tidmap));
332 /* before decrement; chip actual # */
333 ntids = tidcnt;
334 tidbase = (u64 __iomem *) (((char __iomem *) dd->kregbase) +
335 dd->rcvtidbase +
336 ctxttid * sizeof(*tidbase));
338 /* virtual address of first page in transfer */
339 vaddr = ti->tidvaddr;
340 if (!access_ok(VERIFY_WRITE, (void __user *) vaddr,
341 cnt * PAGE_SIZE)) {
342 ret = -EFAULT;
343 goto done;
345 ret = qib_get_user_pages(vaddr, cnt, pagep);
346 if (ret) {
348 * if (ret == -EBUSY)
349 * We can't continue because the pagep array won't be
350 * initialized. This should never happen,
351 * unless perhaps the user has mpin'ed the pages
352 * themselves.
354 qib_devinfo(dd->pcidev,
355 "Failed to lock addr %p, %u pages: "
356 "errno %d\n", (void *) vaddr, cnt, -ret);
357 goto done;
359 for (i = 0; i < cnt; i++, vaddr += PAGE_SIZE) {
360 for (; ntids--; tid++) {
361 if (tid == tidcnt)
362 tid = 0;
363 if (!dd->pageshadow[ctxttid + tid])
364 break;
366 if (ntids < 0) {
368 * Oops, wrapped all the way through their TIDs,
369 * and didn't have enough free; see comments at
370 * start of routine
372 i--; /* last tidlist[i] not filled in */
373 ret = -ENOMEM;
374 break;
376 tidlist[i] = tid + tidoff;
377 /* we "know" system pages and TID pages are same size */
378 dd->pageshadow[ctxttid + tid] = pagep[i];
379 dd->physshadow[ctxttid + tid] =
380 qib_map_page(dd->pcidev, pagep[i], 0, PAGE_SIZE,
381 PCI_DMA_FROMDEVICE);
383 * don't need atomic or it's overhead
385 __set_bit(tid, tidmap);
386 physaddr = dd->physshadow[ctxttid + tid];
387 /* PERFORMANCE: below should almost certainly be cached */
388 dd->f_put_tid(dd, &tidbase[tid],
389 RCVHQ_RCV_TYPE_EXPECTED, physaddr);
391 * don't check this tid in qib_ctxtshadow, since we
392 * just filled it in; start with the next one.
394 tid++;
397 if (ret) {
398 u32 limit;
399 cleanup:
400 /* jump here if copy out of updated info failed... */
401 /* same code that's in qib_free_tid() */
402 limit = sizeof(tidmap) * BITS_PER_BYTE;
403 if (limit > tidcnt)
404 /* just in case size changes in future */
405 limit = tidcnt;
406 tid = find_first_bit((const unsigned long *)tidmap, limit);
407 for (; tid < limit; tid++) {
408 if (!test_bit(tid, tidmap))
409 continue;
410 if (dd->pageshadow[ctxttid + tid]) {
411 dma_addr_t phys;
413 phys = dd->physshadow[ctxttid + tid];
414 dd->physshadow[ctxttid + tid] = dd->tidinvalid;
415 /* PERFORMANCE: below should almost certainly
416 * be cached
418 dd->f_put_tid(dd, &tidbase[tid],
419 RCVHQ_RCV_TYPE_EXPECTED,
420 dd->tidinvalid);
421 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE,
422 PCI_DMA_FROMDEVICE);
423 dd->pageshadow[ctxttid + tid] = NULL;
426 qib_release_user_pages(pagep, cnt);
427 } else {
429 * Copy the updated array, with qib_tid's filled in, back
430 * to user. Since we did the copy in already, this "should
431 * never fail" If it does, we have to clean up...
433 if (copy_to_user((void __user *)
434 (unsigned long) ti->tidlist,
435 tidlist, cnt * sizeof(*tidlist))) {
436 ret = -EFAULT;
437 goto cleanup;
439 if (copy_to_user((void __user *) (unsigned long) ti->tidmap,
440 tidmap, sizeof tidmap)) {
441 ret = -EFAULT;
442 goto cleanup;
444 if (tid == tidcnt)
445 tid = 0;
446 if (!rcd->subctxt_cnt)
447 rcd->tidcursor = tid;
448 else
449 tidcursor_fp(fp) = tid;
452 done:
453 return ret;
457 * qib_tid_free - free a context TID
458 * @rcd: the context
459 * @subctxt: the subcontext
460 * @ti: the TID info
462 * right now we are unlocking one page at a time, but since
463 * the intended use of this routine is for a single group of
464 * virtually contiguous pages, that should change to improve
465 * performance. We check that the TID is in range for this context
466 * but otherwise don't check validity; if user has an error and
467 * frees the wrong tid, it's only their own data that can thereby
468 * be corrupted. We do check that the TID was in use, for sanity
469 * We always use our idea of the saved address, not the address that
470 * they pass in to us.
472 static int qib_tid_free(struct qib_ctxtdata *rcd, unsigned subctxt,
473 const struct qib_tid_info *ti)
475 int ret = 0;
476 u32 tid, ctxttid, cnt, limit, tidcnt;
477 struct qib_devdata *dd = rcd->dd;
478 u64 __iomem *tidbase;
479 unsigned long tidmap[8];
481 if (!dd->pageshadow) {
482 ret = -ENOMEM;
483 goto done;
486 if (copy_from_user(tidmap, (void __user *)(unsigned long)ti->tidmap,
487 sizeof tidmap)) {
488 ret = -EFAULT;
489 goto done;
492 ctxttid = rcd->ctxt * dd->rcvtidcnt;
493 if (!rcd->subctxt_cnt)
494 tidcnt = dd->rcvtidcnt;
495 else if (!subctxt) {
496 tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) +
497 (dd->rcvtidcnt % rcd->subctxt_cnt);
498 ctxttid += dd->rcvtidcnt - tidcnt;
499 } else {
500 tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt;
501 ctxttid += tidcnt * (subctxt - 1);
503 tidbase = (u64 __iomem *) ((char __iomem *)(dd->kregbase) +
504 dd->rcvtidbase +
505 ctxttid * sizeof(*tidbase));
507 limit = sizeof(tidmap) * BITS_PER_BYTE;
508 if (limit > tidcnt)
509 /* just in case size changes in future */
510 limit = tidcnt;
511 tid = find_first_bit(tidmap, limit);
512 for (cnt = 0; tid < limit; tid++) {
514 * small optimization; if we detect a run of 3 or so without
515 * any set, use find_first_bit again. That's mainly to
516 * accelerate the case where we wrapped, so we have some at
517 * the beginning, and some at the end, and a big gap
518 * in the middle.
520 if (!test_bit(tid, tidmap))
521 continue;
522 cnt++;
523 if (dd->pageshadow[ctxttid + tid]) {
524 struct page *p;
525 dma_addr_t phys;
527 p = dd->pageshadow[ctxttid + tid];
528 dd->pageshadow[ctxttid + tid] = NULL;
529 phys = dd->physshadow[ctxttid + tid];
530 dd->physshadow[ctxttid + tid] = dd->tidinvalid;
531 /* PERFORMANCE: below should almost certainly be
532 * cached
534 dd->f_put_tid(dd, &tidbase[tid],
535 RCVHQ_RCV_TYPE_EXPECTED, dd->tidinvalid);
536 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE,
537 PCI_DMA_FROMDEVICE);
538 qib_release_user_pages(&p, 1);
541 done:
542 return ret;
546 * qib_set_part_key - set a partition key
547 * @rcd: the context
548 * @key: the key
550 * We can have up to 4 active at a time (other than the default, which is
551 * always allowed). This is somewhat tricky, since multiple contexts may set
552 * the same key, so we reference count them, and clean up at exit. All 4
553 * partition keys are packed into a single qlogic_ib register. It's an
554 * error for a process to set the same pkey multiple times. We provide no
555 * mechanism to de-allocate a pkey at this time, we may eventually need to
556 * do that. I've used the atomic operations, and no locking, and only make
557 * a single pass through what's available. This should be more than
558 * adequate for some time. I'll think about spinlocks or the like if and as
559 * it's necessary.
561 static int qib_set_part_key(struct qib_ctxtdata *rcd, u16 key)
563 struct qib_pportdata *ppd = rcd->ppd;
564 int i, any = 0, pidx = -1;
565 u16 lkey = key & 0x7FFF;
566 int ret;
568 if (lkey == (QIB_DEFAULT_P_KEY & 0x7FFF)) {
569 /* nothing to do; this key always valid */
570 ret = 0;
571 goto bail;
574 if (!lkey) {
575 ret = -EINVAL;
576 goto bail;
580 * Set the full membership bit, because it has to be
581 * set in the register or the packet, and it seems
582 * cleaner to set in the register than to force all
583 * callers to set it.
585 key |= 0x8000;
587 for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) {
588 if (!rcd->pkeys[i] && pidx == -1)
589 pidx = i;
590 if (rcd->pkeys[i] == key) {
591 ret = -EEXIST;
592 goto bail;
595 if (pidx == -1) {
596 ret = -EBUSY;
597 goto bail;
599 for (any = i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) {
600 if (!ppd->pkeys[i]) {
601 any++;
602 continue;
604 if (ppd->pkeys[i] == key) {
605 atomic_t *pkrefs = &ppd->pkeyrefs[i];
607 if (atomic_inc_return(pkrefs) > 1) {
608 rcd->pkeys[pidx] = key;
609 ret = 0;
610 goto bail;
611 } else {
613 * lost race, decrement count, catch below
615 atomic_dec(pkrefs);
616 any++;
619 if ((ppd->pkeys[i] & 0x7FFF) == lkey) {
621 * It makes no sense to have both the limited and
622 * full membership PKEY set at the same time since
623 * the unlimited one will disable the limited one.
625 ret = -EEXIST;
626 goto bail;
629 if (!any) {
630 ret = -EBUSY;
631 goto bail;
633 for (any = i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) {
634 if (!ppd->pkeys[i] &&
635 atomic_inc_return(&ppd->pkeyrefs[i]) == 1) {
636 rcd->pkeys[pidx] = key;
637 ppd->pkeys[i] = key;
638 (void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0);
639 ret = 0;
640 goto bail;
643 ret = -EBUSY;
645 bail:
646 return ret;
650 * qib_manage_rcvq - manage a context's receive queue
651 * @rcd: the context
652 * @subctxt: the subcontext
653 * @start_stop: action to carry out
655 * start_stop == 0 disables receive on the context, for use in queue
656 * overflow conditions. start_stop==1 re-enables, to be used to
657 * re-init the software copy of the head register
659 static int qib_manage_rcvq(struct qib_ctxtdata *rcd, unsigned subctxt,
660 int start_stop)
662 struct qib_devdata *dd = rcd->dd;
663 unsigned int rcvctrl_op;
665 if (subctxt)
666 goto bail;
667 /* atomically clear receive enable ctxt. */
668 if (start_stop) {
670 * On enable, force in-memory copy of the tail register to
671 * 0, so that protocol code doesn't have to worry about
672 * whether or not the chip has yet updated the in-memory
673 * copy or not on return from the system call. The chip
674 * always resets it's tail register back to 0 on a
675 * transition from disabled to enabled.
677 if (rcd->rcvhdrtail_kvaddr)
678 qib_clear_rcvhdrtail(rcd);
679 rcvctrl_op = QIB_RCVCTRL_CTXT_ENB;
680 } else
681 rcvctrl_op = QIB_RCVCTRL_CTXT_DIS;
682 dd->f_rcvctrl(rcd->ppd, rcvctrl_op, rcd->ctxt);
683 /* always; new head should be equal to new tail; see above */
684 bail:
685 return 0;
688 static void qib_clean_part_key(struct qib_ctxtdata *rcd,
689 struct qib_devdata *dd)
691 int i, j, pchanged = 0;
692 u64 oldpkey;
693 struct qib_pportdata *ppd = rcd->ppd;
695 /* for debugging only */
696 oldpkey = (u64) ppd->pkeys[0] |
697 ((u64) ppd->pkeys[1] << 16) |
698 ((u64) ppd->pkeys[2] << 32) |
699 ((u64) ppd->pkeys[3] << 48);
701 for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) {
702 if (!rcd->pkeys[i])
703 continue;
704 for (j = 0; j < ARRAY_SIZE(ppd->pkeys); j++) {
705 /* check for match independent of the global bit */
706 if ((ppd->pkeys[j] & 0x7fff) !=
707 (rcd->pkeys[i] & 0x7fff))
708 continue;
709 if (atomic_dec_and_test(&ppd->pkeyrefs[j])) {
710 ppd->pkeys[j] = 0;
711 pchanged++;
713 break;
715 rcd->pkeys[i] = 0;
717 if (pchanged)
718 (void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0);
721 /* common code for the mappings on dma_alloc_coherent mem */
722 static int qib_mmap_mem(struct vm_area_struct *vma, struct qib_ctxtdata *rcd,
723 unsigned len, void *kvaddr, u32 write_ok, char *what)
725 struct qib_devdata *dd = rcd->dd;
726 unsigned long pfn;
727 int ret;
729 if ((vma->vm_end - vma->vm_start) > len) {
730 qib_devinfo(dd->pcidev,
731 "FAIL on %s: len %lx > %x\n", what,
732 vma->vm_end - vma->vm_start, len);
733 ret = -EFAULT;
734 goto bail;
738 * shared context user code requires rcvhdrq mapped r/w, others
739 * only allowed readonly mapping.
741 if (!write_ok) {
742 if (vma->vm_flags & VM_WRITE) {
743 qib_devinfo(dd->pcidev,
744 "%s must be mapped readonly\n", what);
745 ret = -EPERM;
746 goto bail;
749 /* don't allow them to later change with mprotect */
750 vma->vm_flags &= ~VM_MAYWRITE;
753 pfn = virt_to_phys(kvaddr) >> PAGE_SHIFT;
754 ret = remap_pfn_range(vma, vma->vm_start, pfn,
755 len, vma->vm_page_prot);
756 if (ret)
757 qib_devinfo(dd->pcidev,
758 "%s ctxt%u mmap of %lx, %x bytes failed: %d\n",
759 what, rcd->ctxt, pfn, len, ret);
760 bail:
761 return ret;
764 static int mmap_ureg(struct vm_area_struct *vma, struct qib_devdata *dd,
765 u64 ureg)
767 unsigned long phys;
768 unsigned long sz;
769 int ret;
772 * This is real hardware, so use io_remap. This is the mechanism
773 * for the user process to update the head registers for their ctxt
774 * in the chip.
776 sz = dd->flags & QIB_HAS_HDRSUPP ? 2 * PAGE_SIZE : PAGE_SIZE;
777 if ((vma->vm_end - vma->vm_start) > sz) {
778 qib_devinfo(dd->pcidev,
779 "FAIL mmap userreg: reqlen %lx > PAGE\n",
780 vma->vm_end - vma->vm_start);
781 ret = -EFAULT;
782 } else {
783 phys = dd->physaddr + ureg;
784 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
786 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND;
787 ret = io_remap_pfn_range(vma, vma->vm_start,
788 phys >> PAGE_SHIFT,
789 vma->vm_end - vma->vm_start,
790 vma->vm_page_prot);
792 return ret;
795 static int mmap_piobufs(struct vm_area_struct *vma,
796 struct qib_devdata *dd,
797 struct qib_ctxtdata *rcd,
798 unsigned piobufs, unsigned piocnt)
800 unsigned long phys;
801 int ret;
804 * When we map the PIO buffers in the chip, we want to map them as
805 * writeonly, no read possible; unfortunately, x86 doesn't allow
806 * for this in hardware, but we still prevent users from asking
807 * for it.
809 if ((vma->vm_end - vma->vm_start) > (piocnt * dd->palign)) {
810 qib_devinfo(dd->pcidev,
811 "FAIL mmap piobufs: reqlen %lx > PAGE\n",
812 vma->vm_end - vma->vm_start);
813 ret = -EINVAL;
814 goto bail;
817 phys = dd->physaddr + piobufs;
819 #if defined(__powerpc__)
820 /* There isn't a generic way to specify writethrough mappings */
821 pgprot_val(vma->vm_page_prot) |= _PAGE_NO_CACHE;
822 pgprot_val(vma->vm_page_prot) |= _PAGE_WRITETHRU;
823 pgprot_val(vma->vm_page_prot) &= ~_PAGE_GUARDED;
824 #endif
827 * don't allow them to later change to readable with mprotect (for when
828 * not initially mapped readable, as is normally the case)
830 vma->vm_flags &= ~VM_MAYREAD;
831 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND;
833 if (qib_wc_pat)
834 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
836 ret = io_remap_pfn_range(vma, vma->vm_start, phys >> PAGE_SHIFT,
837 vma->vm_end - vma->vm_start,
838 vma->vm_page_prot);
839 bail:
840 return ret;
843 static int mmap_rcvegrbufs(struct vm_area_struct *vma,
844 struct qib_ctxtdata *rcd)
846 struct qib_devdata *dd = rcd->dd;
847 unsigned long start, size;
848 size_t total_size, i;
849 unsigned long pfn;
850 int ret;
852 size = rcd->rcvegrbuf_size;
853 total_size = rcd->rcvegrbuf_chunks * size;
854 if ((vma->vm_end - vma->vm_start) > total_size) {
855 qib_devinfo(dd->pcidev,
856 "FAIL on egr bufs: reqlen %lx > actual %lx\n",
857 vma->vm_end - vma->vm_start,
858 (unsigned long) total_size);
859 ret = -EINVAL;
860 goto bail;
863 if (vma->vm_flags & VM_WRITE) {
864 qib_devinfo(dd->pcidev,
865 "Can't map eager buffers as writable (flags=%lx)\n",
866 vma->vm_flags);
867 ret = -EPERM;
868 goto bail;
870 /* don't allow them to later change to writeable with mprotect */
871 vma->vm_flags &= ~VM_MAYWRITE;
873 start = vma->vm_start;
875 for (i = 0; i < rcd->rcvegrbuf_chunks; i++, start += size) {
876 pfn = virt_to_phys(rcd->rcvegrbuf[i]) >> PAGE_SHIFT;
877 ret = remap_pfn_range(vma, start, pfn, size,
878 vma->vm_page_prot);
879 if (ret < 0)
880 goto bail;
882 ret = 0;
884 bail:
885 return ret;
889 * qib_file_vma_fault - handle a VMA page fault.
891 static int qib_file_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
893 struct page *page;
895 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
896 if (!page)
897 return VM_FAULT_SIGBUS;
899 get_page(page);
900 vmf->page = page;
902 return 0;
905 static struct vm_operations_struct qib_file_vm_ops = {
906 .fault = qib_file_vma_fault,
909 static int mmap_kvaddr(struct vm_area_struct *vma, u64 pgaddr,
910 struct qib_ctxtdata *rcd, unsigned subctxt)
912 struct qib_devdata *dd = rcd->dd;
913 unsigned subctxt_cnt;
914 unsigned long len;
915 void *addr;
916 size_t size;
917 int ret = 0;
919 subctxt_cnt = rcd->subctxt_cnt;
920 size = rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size;
923 * Each process has all the subctxt uregbase, rcvhdrq, and
924 * rcvegrbufs mmapped - as an array for all the processes,
925 * and also separately for this process.
927 if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase)) {
928 addr = rcd->subctxt_uregbase;
929 size = PAGE_SIZE * subctxt_cnt;
930 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base)) {
931 addr = rcd->subctxt_rcvhdr_base;
932 size = rcd->rcvhdrq_size * subctxt_cnt;
933 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf)) {
934 addr = rcd->subctxt_rcvegrbuf;
935 size *= subctxt_cnt;
936 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase +
937 PAGE_SIZE * subctxt)) {
938 addr = rcd->subctxt_uregbase + PAGE_SIZE * subctxt;
939 size = PAGE_SIZE;
940 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base +
941 rcd->rcvhdrq_size * subctxt)) {
942 addr = rcd->subctxt_rcvhdr_base +
943 rcd->rcvhdrq_size * subctxt;
944 size = rcd->rcvhdrq_size;
945 } else if (pgaddr == cvt_kvaddr(&rcd->user_event_mask[subctxt])) {
946 addr = rcd->user_event_mask;
947 size = PAGE_SIZE;
948 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf +
949 size * subctxt)) {
950 addr = rcd->subctxt_rcvegrbuf + size * subctxt;
951 /* rcvegrbufs are read-only on the slave */
952 if (vma->vm_flags & VM_WRITE) {
953 qib_devinfo(dd->pcidev,
954 "Can't map eager buffers as "
955 "writable (flags=%lx)\n", vma->vm_flags);
956 ret = -EPERM;
957 goto bail;
960 * Don't allow permission to later change to writeable
961 * with mprotect.
963 vma->vm_flags &= ~VM_MAYWRITE;
964 } else
965 goto bail;
966 len = vma->vm_end - vma->vm_start;
967 if (len > size) {
968 ret = -EINVAL;
969 goto bail;
972 vma->vm_pgoff = (unsigned long) addr >> PAGE_SHIFT;
973 vma->vm_ops = &qib_file_vm_ops;
974 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
975 ret = 1;
977 bail:
978 return ret;
982 * qib_mmapf - mmap various structures into user space
983 * @fp: the file pointer
984 * @vma: the VM area
986 * We use this to have a shared buffer between the kernel and the user code
987 * for the rcvhdr queue, egr buffers, and the per-context user regs and pio
988 * buffers in the chip. We have the open and close entries so we can bump
989 * the ref count and keep the driver from being unloaded while still mapped.
991 static int qib_mmapf(struct file *fp, struct vm_area_struct *vma)
993 struct qib_ctxtdata *rcd;
994 struct qib_devdata *dd;
995 u64 pgaddr, ureg;
996 unsigned piobufs, piocnt;
997 int ret, match = 1;
999 rcd = ctxt_fp(fp);
1000 if (!rcd || !(vma->vm_flags & VM_SHARED)) {
1001 ret = -EINVAL;
1002 goto bail;
1004 dd = rcd->dd;
1007 * This is the qib_do_user_init() code, mapping the shared buffers
1008 * and per-context user registers into the user process. The address
1009 * referred to by vm_pgoff is the file offset passed via mmap().
1010 * For shared contexts, this is the kernel vmalloc() address of the
1011 * pages to share with the master.
1012 * For non-shared or master ctxts, this is a physical address.
1013 * We only do one mmap for each space mapped.
1015 pgaddr = vma->vm_pgoff << PAGE_SHIFT;
1018 * Check for 0 in case one of the allocations failed, but user
1019 * called mmap anyway.
1021 if (!pgaddr) {
1022 ret = -EINVAL;
1023 goto bail;
1027 * Physical addresses must fit in 40 bits for our hardware.
1028 * Check for kernel virtual addresses first, anything else must
1029 * match a HW or memory address.
1031 ret = mmap_kvaddr(vma, pgaddr, rcd, subctxt_fp(fp));
1032 if (ret) {
1033 if (ret > 0)
1034 ret = 0;
1035 goto bail;
1038 ureg = dd->uregbase + dd->ureg_align * rcd->ctxt;
1039 if (!rcd->subctxt_cnt) {
1040 /* ctxt is not shared */
1041 piocnt = rcd->piocnt;
1042 piobufs = rcd->piobufs;
1043 } else if (!subctxt_fp(fp)) {
1044 /* caller is the master */
1045 piocnt = (rcd->piocnt / rcd->subctxt_cnt) +
1046 (rcd->piocnt % rcd->subctxt_cnt);
1047 piobufs = rcd->piobufs +
1048 dd->palign * (rcd->piocnt - piocnt);
1049 } else {
1050 unsigned slave = subctxt_fp(fp) - 1;
1052 /* caller is a slave */
1053 piocnt = rcd->piocnt / rcd->subctxt_cnt;
1054 piobufs = rcd->piobufs + dd->palign * piocnt * slave;
1057 if (pgaddr == ureg)
1058 ret = mmap_ureg(vma, dd, ureg);
1059 else if (pgaddr == piobufs)
1060 ret = mmap_piobufs(vma, dd, rcd, piobufs, piocnt);
1061 else if (pgaddr == dd->pioavailregs_phys)
1062 /* in-memory copy of pioavail registers */
1063 ret = qib_mmap_mem(vma, rcd, PAGE_SIZE,
1064 (void *) dd->pioavailregs_dma, 0,
1065 "pioavail registers");
1066 else if (pgaddr == rcd->rcvegr_phys)
1067 ret = mmap_rcvegrbufs(vma, rcd);
1068 else if (pgaddr == (u64) rcd->rcvhdrq_phys)
1070 * The rcvhdrq itself; multiple pages, contiguous
1071 * from an i/o perspective. Shared contexts need
1072 * to map r/w, so we allow writing.
1074 ret = qib_mmap_mem(vma, rcd, rcd->rcvhdrq_size,
1075 rcd->rcvhdrq, 1, "rcvhdrq");
1076 else if (pgaddr == (u64) rcd->rcvhdrqtailaddr_phys)
1077 /* in-memory copy of rcvhdrq tail register */
1078 ret = qib_mmap_mem(vma, rcd, PAGE_SIZE,
1079 rcd->rcvhdrtail_kvaddr, 0,
1080 "rcvhdrq tail");
1081 else
1082 match = 0;
1083 if (!match)
1084 ret = -EINVAL;
1086 vma->vm_private_data = NULL;
1088 if (ret < 0)
1089 qib_devinfo(dd->pcidev,
1090 "mmap Failure %d: off %llx len %lx\n",
1091 -ret, (unsigned long long)pgaddr,
1092 vma->vm_end - vma->vm_start);
1093 bail:
1094 return ret;
1097 static unsigned int qib_poll_urgent(struct qib_ctxtdata *rcd,
1098 struct file *fp,
1099 struct poll_table_struct *pt)
1101 struct qib_devdata *dd = rcd->dd;
1102 unsigned pollflag;
1104 poll_wait(fp, &rcd->wait, pt);
1106 spin_lock_irq(&dd->uctxt_lock);
1107 if (rcd->urgent != rcd->urgent_poll) {
1108 pollflag = POLLIN | POLLRDNORM;
1109 rcd->urgent_poll = rcd->urgent;
1110 } else {
1111 pollflag = 0;
1112 set_bit(QIB_CTXT_WAITING_URG, &rcd->flag);
1114 spin_unlock_irq(&dd->uctxt_lock);
1116 return pollflag;
1119 static unsigned int qib_poll_next(struct qib_ctxtdata *rcd,
1120 struct file *fp,
1121 struct poll_table_struct *pt)
1123 struct qib_devdata *dd = rcd->dd;
1124 unsigned pollflag;
1126 poll_wait(fp, &rcd->wait, pt);
1128 spin_lock_irq(&dd->uctxt_lock);
1129 if (dd->f_hdrqempty(rcd)) {
1130 set_bit(QIB_CTXT_WAITING_RCV, &rcd->flag);
1131 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_INTRAVAIL_ENB, rcd->ctxt);
1132 pollflag = 0;
1133 } else
1134 pollflag = POLLIN | POLLRDNORM;
1135 spin_unlock_irq(&dd->uctxt_lock);
1137 return pollflag;
1140 static unsigned int qib_poll(struct file *fp, struct poll_table_struct *pt)
1142 struct qib_ctxtdata *rcd;
1143 unsigned pollflag;
1145 rcd = ctxt_fp(fp);
1146 if (!rcd)
1147 pollflag = POLLERR;
1148 else if (rcd->poll_type == QIB_POLL_TYPE_URGENT)
1149 pollflag = qib_poll_urgent(rcd, fp, pt);
1150 else if (rcd->poll_type == QIB_POLL_TYPE_ANYRCV)
1151 pollflag = qib_poll_next(rcd, fp, pt);
1152 else /* invalid */
1153 pollflag = POLLERR;
1155 return pollflag;
1158 static void assign_ctxt_affinity(struct file *fp, struct qib_devdata *dd)
1160 struct qib_filedata *fd = fp->private_data;
1161 const unsigned int weight = cpumask_weight(&current->cpus_allowed);
1162 const struct cpumask *local_mask = cpumask_of_pcibus(dd->pcidev->bus);
1163 int local_cpu;
1166 * If process has NOT already set it's affinity, select and
1167 * reserve a processor for it on the local NUMA node.
1169 if ((weight >= qib_cpulist_count) &&
1170 (cpumask_weight(local_mask) <= qib_cpulist_count)) {
1171 for_each_cpu(local_cpu, local_mask)
1172 if (!test_and_set_bit(local_cpu, qib_cpulist)) {
1173 fd->rec_cpu_num = local_cpu;
1174 return;
1179 * If process has NOT already set it's affinity, select and
1180 * reserve a processor for it, as a rendevous for all
1181 * users of the driver. If they don't actually later
1182 * set affinity to this cpu, or set it to some other cpu,
1183 * it just means that sooner or later we don't recommend
1184 * a cpu, and let the scheduler do it's best.
1186 if (weight >= qib_cpulist_count) {
1187 int cpu;
1188 cpu = find_first_zero_bit(qib_cpulist,
1189 qib_cpulist_count);
1190 if (cpu == qib_cpulist_count)
1191 qib_dev_err(dd,
1192 "no cpus avail for affinity PID %u\n",
1193 current->pid);
1194 else {
1195 __set_bit(cpu, qib_cpulist);
1196 fd->rec_cpu_num = cpu;
1202 * Check that userland and driver are compatible for subcontexts.
1204 static int qib_compatible_subctxts(int user_swmajor, int user_swminor)
1206 /* this code is written long-hand for clarity */
1207 if (QIB_USER_SWMAJOR != user_swmajor) {
1208 /* no promise of compatibility if major mismatch */
1209 return 0;
1211 if (QIB_USER_SWMAJOR == 1) {
1212 switch (QIB_USER_SWMINOR) {
1213 case 0:
1214 case 1:
1215 case 2:
1216 /* no subctxt implementation so cannot be compatible */
1217 return 0;
1218 case 3:
1219 /* 3 is only compatible with itself */
1220 return user_swminor == 3;
1221 default:
1222 /* >= 4 are compatible (or are expected to be) */
1223 return user_swminor <= QIB_USER_SWMINOR;
1226 /* make no promises yet for future major versions */
1227 return 0;
1230 static int init_subctxts(struct qib_devdata *dd,
1231 struct qib_ctxtdata *rcd,
1232 const struct qib_user_info *uinfo)
1234 int ret = 0;
1235 unsigned num_subctxts;
1236 size_t size;
1239 * If the user is requesting zero subctxts,
1240 * skip the subctxt allocation.
1242 if (uinfo->spu_subctxt_cnt <= 0)
1243 goto bail;
1244 num_subctxts = uinfo->spu_subctxt_cnt;
1246 /* Check for subctxt compatibility */
1247 if (!qib_compatible_subctxts(uinfo->spu_userversion >> 16,
1248 uinfo->spu_userversion & 0xffff)) {
1249 qib_devinfo(dd->pcidev,
1250 "Mismatched user version (%d.%d) and driver "
1251 "version (%d.%d) while context sharing. Ensure "
1252 "that driver and library are from the same "
1253 "release.\n",
1254 (int) (uinfo->spu_userversion >> 16),
1255 (int) (uinfo->spu_userversion & 0xffff),
1256 QIB_USER_SWMAJOR, QIB_USER_SWMINOR);
1257 goto bail;
1259 if (num_subctxts > QLOGIC_IB_MAX_SUBCTXT) {
1260 ret = -EINVAL;
1261 goto bail;
1264 rcd->subctxt_uregbase = vmalloc_user(PAGE_SIZE * num_subctxts);
1265 if (!rcd->subctxt_uregbase) {
1266 ret = -ENOMEM;
1267 goto bail;
1269 /* Note: rcd->rcvhdrq_size isn't initialized yet. */
1270 size = ALIGN(dd->rcvhdrcnt * dd->rcvhdrentsize *
1271 sizeof(u32), PAGE_SIZE) * num_subctxts;
1272 rcd->subctxt_rcvhdr_base = vmalloc_user(size);
1273 if (!rcd->subctxt_rcvhdr_base) {
1274 ret = -ENOMEM;
1275 goto bail_ureg;
1278 rcd->subctxt_rcvegrbuf = vmalloc_user(rcd->rcvegrbuf_chunks *
1279 rcd->rcvegrbuf_size *
1280 num_subctxts);
1281 if (!rcd->subctxt_rcvegrbuf) {
1282 ret = -ENOMEM;
1283 goto bail_rhdr;
1286 rcd->subctxt_cnt = uinfo->spu_subctxt_cnt;
1287 rcd->subctxt_id = uinfo->spu_subctxt_id;
1288 rcd->active_slaves = 1;
1289 rcd->redirect_seq_cnt = 1;
1290 set_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag);
1291 goto bail;
1293 bail_rhdr:
1294 vfree(rcd->subctxt_rcvhdr_base);
1295 bail_ureg:
1296 vfree(rcd->subctxt_uregbase);
1297 rcd->subctxt_uregbase = NULL;
1298 bail:
1299 return ret;
1302 static int setup_ctxt(struct qib_pportdata *ppd, int ctxt,
1303 struct file *fp, const struct qib_user_info *uinfo)
1305 struct qib_filedata *fd = fp->private_data;
1306 struct qib_devdata *dd = ppd->dd;
1307 struct qib_ctxtdata *rcd;
1308 void *ptmp = NULL;
1309 int ret;
1310 int numa_id;
1312 assign_ctxt_affinity(fp, dd);
1314 numa_id = qib_numa_aware ? ((fd->rec_cpu_num != -1) ?
1315 cpu_to_node(fd->rec_cpu_num) :
1316 numa_node_id()) : dd->assigned_node_id;
1318 rcd = qib_create_ctxtdata(ppd, ctxt, numa_id);
1321 * Allocate memory for use in qib_tid_update() at open to
1322 * reduce cost of expected send setup per message segment
1324 if (rcd)
1325 ptmp = kmalloc(dd->rcvtidcnt * sizeof(u16) +
1326 dd->rcvtidcnt * sizeof(struct page **),
1327 GFP_KERNEL);
1329 if (!rcd || !ptmp) {
1330 qib_dev_err(dd,
1331 "Unable to allocate ctxtdata memory, failing open\n");
1332 ret = -ENOMEM;
1333 goto bailerr;
1335 rcd->userversion = uinfo->spu_userversion;
1336 ret = init_subctxts(dd, rcd, uinfo);
1337 if (ret)
1338 goto bailerr;
1339 rcd->tid_pg_list = ptmp;
1340 rcd->pid = current->pid;
1341 init_waitqueue_head(&dd->rcd[ctxt]->wait);
1342 strlcpy(rcd->comm, current->comm, sizeof(rcd->comm));
1343 ctxt_fp(fp) = rcd;
1344 qib_stats.sps_ctxts++;
1345 dd->freectxts--;
1346 ret = 0;
1347 goto bail;
1349 bailerr:
1350 if (fd->rec_cpu_num != -1)
1351 __clear_bit(fd->rec_cpu_num, qib_cpulist);
1353 dd->rcd[ctxt] = NULL;
1354 kfree(rcd);
1355 kfree(ptmp);
1356 bail:
1357 return ret;
1360 static inline int usable(struct qib_pportdata *ppd)
1362 struct qib_devdata *dd = ppd->dd;
1364 return dd && (dd->flags & QIB_PRESENT) && dd->kregbase && ppd->lid &&
1365 (ppd->lflags & QIBL_LINKACTIVE);
1369 * Select a context on the given device, either using a requested port
1370 * or the port based on the context number.
1372 static int choose_port_ctxt(struct file *fp, struct qib_devdata *dd, u32 port,
1373 const struct qib_user_info *uinfo)
1375 struct qib_pportdata *ppd = NULL;
1376 int ret, ctxt;
1378 if (port) {
1379 if (!usable(dd->pport + port - 1)) {
1380 ret = -ENETDOWN;
1381 goto done;
1382 } else
1383 ppd = dd->pport + port - 1;
1385 for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts && dd->rcd[ctxt];
1386 ctxt++)
1388 if (ctxt == dd->cfgctxts) {
1389 ret = -EBUSY;
1390 goto done;
1392 if (!ppd) {
1393 u32 pidx = ctxt % dd->num_pports;
1394 if (usable(dd->pport + pidx))
1395 ppd = dd->pport + pidx;
1396 else {
1397 for (pidx = 0; pidx < dd->num_pports && !ppd;
1398 pidx++)
1399 if (usable(dd->pport + pidx))
1400 ppd = dd->pport + pidx;
1403 ret = ppd ? setup_ctxt(ppd, ctxt, fp, uinfo) : -ENETDOWN;
1404 done:
1405 return ret;
1408 static int find_free_ctxt(int unit, struct file *fp,
1409 const struct qib_user_info *uinfo)
1411 struct qib_devdata *dd = qib_lookup(unit);
1412 int ret;
1414 if (!dd || (uinfo->spu_port && uinfo->spu_port > dd->num_pports))
1415 ret = -ENODEV;
1416 else
1417 ret = choose_port_ctxt(fp, dd, uinfo->spu_port, uinfo);
1419 return ret;
1422 static int get_a_ctxt(struct file *fp, const struct qib_user_info *uinfo,
1423 unsigned alg)
1425 struct qib_devdata *udd = NULL;
1426 int ret = 0, devmax, npresent, nup, ndev, dusable = 0, i;
1427 u32 port = uinfo->spu_port, ctxt;
1429 devmax = qib_count_units(&npresent, &nup);
1430 if (!npresent) {
1431 ret = -ENXIO;
1432 goto done;
1434 if (nup == 0) {
1435 ret = -ENETDOWN;
1436 goto done;
1439 if (alg == QIB_PORT_ALG_ACROSS) {
1440 unsigned inuse = ~0U;
1441 /* find device (with ACTIVE ports) with fewest ctxts in use */
1442 for (ndev = 0; ndev < devmax; ndev++) {
1443 struct qib_devdata *dd = qib_lookup(ndev);
1444 unsigned cused = 0, cfree = 0, pusable = 0;
1445 if (!dd)
1446 continue;
1447 if (port && port <= dd->num_pports &&
1448 usable(dd->pport + port - 1))
1449 pusable = 1;
1450 else
1451 for (i = 0; i < dd->num_pports; i++)
1452 if (usable(dd->pport + i))
1453 pusable++;
1454 if (!pusable)
1455 continue;
1456 for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts;
1457 ctxt++)
1458 if (dd->rcd[ctxt])
1459 cused++;
1460 else
1461 cfree++;
1462 if (pusable && cfree && cused < inuse) {
1463 udd = dd;
1464 inuse = cused;
1467 if (udd) {
1468 ret = choose_port_ctxt(fp, udd, port, uinfo);
1469 goto done;
1471 } else {
1472 for (ndev = 0; ndev < devmax; ndev++) {
1473 struct qib_devdata *dd = qib_lookup(ndev);
1474 if (dd) {
1475 ret = choose_port_ctxt(fp, dd, port, uinfo);
1476 if (!ret)
1477 goto done;
1478 if (ret == -EBUSY)
1479 dusable++;
1483 ret = dusable ? -EBUSY : -ENETDOWN;
1485 done:
1486 return ret;
1489 static int find_shared_ctxt(struct file *fp,
1490 const struct qib_user_info *uinfo)
1492 int devmax, ndev, i;
1493 int ret = 0;
1495 devmax = qib_count_units(NULL, NULL);
1497 for (ndev = 0; ndev < devmax; ndev++) {
1498 struct qib_devdata *dd = qib_lookup(ndev);
1500 /* device portion of usable() */
1501 if (!(dd && (dd->flags & QIB_PRESENT) && dd->kregbase))
1502 continue;
1503 for (i = dd->first_user_ctxt; i < dd->cfgctxts; i++) {
1504 struct qib_ctxtdata *rcd = dd->rcd[i];
1506 /* Skip ctxts which are not yet open */
1507 if (!rcd || !rcd->cnt)
1508 continue;
1509 /* Skip ctxt if it doesn't match the requested one */
1510 if (rcd->subctxt_id != uinfo->spu_subctxt_id)
1511 continue;
1512 /* Verify the sharing process matches the master */
1513 if (rcd->subctxt_cnt != uinfo->spu_subctxt_cnt ||
1514 rcd->userversion != uinfo->spu_userversion ||
1515 rcd->cnt >= rcd->subctxt_cnt) {
1516 ret = -EINVAL;
1517 goto done;
1519 ctxt_fp(fp) = rcd;
1520 subctxt_fp(fp) = rcd->cnt++;
1521 rcd->subpid[subctxt_fp(fp)] = current->pid;
1522 tidcursor_fp(fp) = 0;
1523 rcd->active_slaves |= 1 << subctxt_fp(fp);
1524 ret = 1;
1525 goto done;
1529 done:
1530 return ret;
1533 static int qib_open(struct inode *in, struct file *fp)
1535 /* The real work is performed later in qib_assign_ctxt() */
1536 fp->private_data = kzalloc(sizeof(struct qib_filedata), GFP_KERNEL);
1537 if (fp->private_data) /* no cpu affinity by default */
1538 ((struct qib_filedata *)fp->private_data)->rec_cpu_num = -1;
1539 return fp->private_data ? 0 : -ENOMEM;
1542 static int find_hca(unsigned int cpu, int *unit)
1544 int ret = 0, devmax, npresent, nup, ndev;
1546 *unit = -1;
1548 devmax = qib_count_units(&npresent, &nup);
1549 if (!npresent) {
1550 ret = -ENXIO;
1551 goto done;
1553 if (!nup) {
1554 ret = -ENETDOWN;
1555 goto done;
1557 for (ndev = 0; ndev < devmax; ndev++) {
1558 struct qib_devdata *dd = qib_lookup(ndev);
1559 if (dd) {
1560 if (pcibus_to_node(dd->pcidev->bus) < 0) {
1561 ret = -EINVAL;
1562 goto done;
1564 if (cpu_to_node(cpu) ==
1565 pcibus_to_node(dd->pcidev->bus)) {
1566 *unit = ndev;
1567 goto done;
1571 done:
1572 return ret;
1575 static int do_qib_user_sdma_queue_create(struct file *fp)
1577 struct qib_filedata *fd = fp->private_data;
1578 struct qib_ctxtdata *rcd = fd->rcd;
1579 struct qib_devdata *dd = rcd->dd;
1581 if (dd->flags & QIB_HAS_SEND_DMA)
1583 fd->pq = qib_user_sdma_queue_create(&dd->pcidev->dev,
1584 dd->unit,
1585 rcd->ctxt,
1586 fd->subctxt);
1587 if (!fd->pq)
1588 return -ENOMEM;
1590 return 0;
1594 * Get ctxt early, so can set affinity prior to memory allocation.
1596 static int qib_assign_ctxt(struct file *fp, const struct qib_user_info *uinfo)
1598 int ret;
1599 int i_minor;
1600 unsigned swmajor, swminor, alg = QIB_PORT_ALG_ACROSS;
1602 /* Check to be sure we haven't already initialized this file */
1603 if (ctxt_fp(fp)) {
1604 ret = -EINVAL;
1605 goto done;
1608 /* for now, if major version is different, bail */
1609 swmajor = uinfo->spu_userversion >> 16;
1610 if (swmajor != QIB_USER_SWMAJOR) {
1611 ret = -ENODEV;
1612 goto done;
1615 swminor = uinfo->spu_userversion & 0xffff;
1617 if (swminor >= 11 && uinfo->spu_port_alg < QIB_PORT_ALG_COUNT)
1618 alg = uinfo->spu_port_alg;
1620 mutex_lock(&qib_mutex);
1622 if (qib_compatible_subctxts(swmajor, swminor) &&
1623 uinfo->spu_subctxt_cnt) {
1624 ret = find_shared_ctxt(fp, uinfo);
1625 if (ret > 0) {
1626 ret = do_qib_user_sdma_queue_create(fp);
1627 if (!ret)
1628 assign_ctxt_affinity(fp, (ctxt_fp(fp))->dd);
1629 goto done_ok;
1633 i_minor = iminor(file_inode(fp)) - QIB_USER_MINOR_BASE;
1634 if (i_minor)
1635 ret = find_free_ctxt(i_minor - 1, fp, uinfo);
1636 else {
1637 int unit;
1638 const unsigned int cpu = cpumask_first(&current->cpus_allowed);
1639 const unsigned int weight =
1640 cpumask_weight(&current->cpus_allowed);
1642 if (weight == 1 && !test_bit(cpu, qib_cpulist))
1643 if (!find_hca(cpu, &unit) && unit >= 0)
1644 if (!find_free_ctxt(unit, fp, uinfo)) {
1645 ret = 0;
1646 goto done_chk_sdma;
1648 ret = get_a_ctxt(fp, uinfo, alg);
1651 done_chk_sdma:
1652 if (!ret)
1653 ret = do_qib_user_sdma_queue_create(fp);
1654 done_ok:
1655 mutex_unlock(&qib_mutex);
1657 done:
1658 return ret;
1662 static int qib_do_user_init(struct file *fp,
1663 const struct qib_user_info *uinfo)
1665 int ret;
1666 struct qib_ctxtdata *rcd = ctxt_fp(fp);
1667 struct qib_devdata *dd;
1668 unsigned uctxt;
1670 /* Subctxts don't need to initialize anything since master did it. */
1671 if (subctxt_fp(fp)) {
1672 ret = wait_event_interruptible(rcd->wait,
1673 !test_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag));
1674 goto bail;
1677 dd = rcd->dd;
1679 /* some ctxts may get extra buffers, calculate that here */
1680 uctxt = rcd->ctxt - dd->first_user_ctxt;
1681 if (uctxt < dd->ctxts_extrabuf) {
1682 rcd->piocnt = dd->pbufsctxt + 1;
1683 rcd->pio_base = rcd->piocnt * uctxt;
1684 } else {
1685 rcd->piocnt = dd->pbufsctxt;
1686 rcd->pio_base = rcd->piocnt * uctxt +
1687 dd->ctxts_extrabuf;
1691 * All user buffers are 2KB buffers. If we ever support
1692 * giving 4KB buffers to user processes, this will need some
1693 * work. Can't use piobufbase directly, because it has
1694 * both 2K and 4K buffer base values. So check and handle.
1696 if ((rcd->pio_base + rcd->piocnt) > dd->piobcnt2k) {
1697 if (rcd->pio_base >= dd->piobcnt2k) {
1698 qib_dev_err(dd,
1699 "%u:ctxt%u: no 2KB buffers available\n",
1700 dd->unit, rcd->ctxt);
1701 ret = -ENOBUFS;
1702 goto bail;
1704 rcd->piocnt = dd->piobcnt2k - rcd->pio_base;
1705 qib_dev_err(dd, "Ctxt%u: would use 4KB bufs, using %u\n",
1706 rcd->ctxt, rcd->piocnt);
1709 rcd->piobufs = dd->pio2k_bufbase + rcd->pio_base * dd->palign;
1710 qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt,
1711 TXCHK_CHG_TYPE_USER, rcd);
1713 * try to ensure that processes start up with consistent avail update
1714 * for their own range, at least. If system very quiet, it might
1715 * have the in-memory copy out of date at startup for this range of
1716 * buffers, when a context gets re-used. Do after the chg_pioavail
1717 * and before the rest of setup, so it's "almost certain" the dma
1718 * will have occurred (can't 100% guarantee, but should be many
1719 * decimals of 9s, with this ordering), given how much else happens
1720 * after this.
1722 dd->f_sendctrl(dd->pport, QIB_SENDCTRL_AVAIL_BLIP);
1725 * Now allocate the rcvhdr Q and eager TIDs; skip the TID
1726 * array for time being. If rcd->ctxt > chip-supported,
1727 * we need to do extra stuff here to handle by handling overflow
1728 * through ctxt 0, someday
1730 ret = qib_create_rcvhdrq(dd, rcd);
1731 if (!ret)
1732 ret = qib_setup_eagerbufs(rcd);
1733 if (ret)
1734 goto bail_pio;
1736 rcd->tidcursor = 0; /* start at beginning after open */
1738 /* initialize poll variables... */
1739 rcd->urgent = 0;
1740 rcd->urgent_poll = 0;
1743 * Now enable the ctxt for receive.
1744 * For chips that are set to DMA the tail register to memory
1745 * when they change (and when the update bit transitions from
1746 * 0 to 1. So for those chips, we turn it off and then back on.
1747 * This will (very briefly) affect any other open ctxts, but the
1748 * duration is very short, and therefore isn't an issue. We
1749 * explicitly set the in-memory tail copy to 0 beforehand, so we
1750 * don't have to wait to be sure the DMA update has happened
1751 * (chip resets head/tail to 0 on transition to enable).
1753 if (rcd->rcvhdrtail_kvaddr)
1754 qib_clear_rcvhdrtail(rcd);
1756 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_ENB | QIB_RCVCTRL_TIDFLOW_ENB,
1757 rcd->ctxt);
1759 /* Notify any waiting slaves */
1760 if (rcd->subctxt_cnt) {
1761 clear_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag);
1762 wake_up(&rcd->wait);
1764 return 0;
1766 bail_pio:
1767 qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt,
1768 TXCHK_CHG_TYPE_KERN, rcd);
1769 bail:
1770 return ret;
1774 * unlock_exptid - unlock any expected TID entries context still had in use
1775 * @rcd: ctxt
1777 * We don't actually update the chip here, because we do a bulk update
1778 * below, using f_clear_tids.
1780 static void unlock_expected_tids(struct qib_ctxtdata *rcd)
1782 struct qib_devdata *dd = rcd->dd;
1783 int ctxt_tidbase = rcd->ctxt * dd->rcvtidcnt;
1784 int i, cnt = 0, maxtid = ctxt_tidbase + dd->rcvtidcnt;
1786 for (i = ctxt_tidbase; i < maxtid; i++) {
1787 struct page *p = dd->pageshadow[i];
1788 dma_addr_t phys;
1790 if (!p)
1791 continue;
1793 phys = dd->physshadow[i];
1794 dd->physshadow[i] = dd->tidinvalid;
1795 dd->pageshadow[i] = NULL;
1796 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE,
1797 PCI_DMA_FROMDEVICE);
1798 qib_release_user_pages(&p, 1);
1799 cnt++;
1803 static int qib_close(struct inode *in, struct file *fp)
1805 int ret = 0;
1806 struct qib_filedata *fd;
1807 struct qib_ctxtdata *rcd;
1808 struct qib_devdata *dd;
1809 unsigned long flags;
1810 unsigned ctxt;
1811 pid_t pid;
1813 mutex_lock(&qib_mutex);
1815 fd = fp->private_data;
1816 fp->private_data = NULL;
1817 rcd = fd->rcd;
1818 if (!rcd) {
1819 mutex_unlock(&qib_mutex);
1820 goto bail;
1823 dd = rcd->dd;
1825 /* ensure all pio buffer writes in progress are flushed */
1826 qib_flush_wc();
1828 /* drain user sdma queue */
1829 if (fd->pq) {
1830 qib_user_sdma_queue_drain(rcd->ppd, fd->pq);
1831 qib_user_sdma_queue_destroy(fd->pq);
1834 if (fd->rec_cpu_num != -1)
1835 __clear_bit(fd->rec_cpu_num, qib_cpulist);
1837 if (--rcd->cnt) {
1839 * XXX If the master closes the context before the slave(s),
1840 * revoke the mmap for the eager receive queue so
1841 * the slave(s) don't wait for receive data forever.
1843 rcd->active_slaves &= ~(1 << fd->subctxt);
1844 rcd->subpid[fd->subctxt] = 0;
1845 mutex_unlock(&qib_mutex);
1846 goto bail;
1849 /* early; no interrupt users after this */
1850 spin_lock_irqsave(&dd->uctxt_lock, flags);
1851 ctxt = rcd->ctxt;
1852 dd->rcd[ctxt] = NULL;
1853 pid = rcd->pid;
1854 rcd->pid = 0;
1855 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1857 if (rcd->rcvwait_to || rcd->piowait_to ||
1858 rcd->rcvnowait || rcd->pionowait) {
1859 rcd->rcvwait_to = 0;
1860 rcd->piowait_to = 0;
1861 rcd->rcvnowait = 0;
1862 rcd->pionowait = 0;
1864 if (rcd->flag)
1865 rcd->flag = 0;
1867 if (dd->kregbase) {
1868 /* atomically clear receive enable ctxt and intr avail. */
1869 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_DIS |
1870 QIB_RCVCTRL_INTRAVAIL_DIS, ctxt);
1872 /* clean up the pkeys for this ctxt user */
1873 qib_clean_part_key(rcd, dd);
1874 qib_disarm_piobufs(dd, rcd->pio_base, rcd->piocnt);
1875 qib_chg_pioavailkernel(dd, rcd->pio_base,
1876 rcd->piocnt, TXCHK_CHG_TYPE_KERN, NULL);
1878 dd->f_clear_tids(dd, rcd);
1880 if (dd->pageshadow)
1881 unlock_expected_tids(rcd);
1882 qib_stats.sps_ctxts--;
1883 dd->freectxts++;
1886 mutex_unlock(&qib_mutex);
1887 qib_free_ctxtdata(dd, rcd); /* after releasing the mutex */
1889 bail:
1890 kfree(fd);
1891 return ret;
1894 static int qib_ctxt_info(struct file *fp, struct qib_ctxt_info __user *uinfo)
1896 struct qib_ctxt_info info;
1897 int ret;
1898 size_t sz;
1899 struct qib_ctxtdata *rcd = ctxt_fp(fp);
1900 struct qib_filedata *fd;
1902 fd = fp->private_data;
1904 info.num_active = qib_count_active_units();
1905 info.unit = rcd->dd->unit;
1906 info.port = rcd->ppd->port;
1907 info.ctxt = rcd->ctxt;
1908 info.subctxt = subctxt_fp(fp);
1909 /* Number of user ctxts available for this device. */
1910 info.num_ctxts = rcd->dd->cfgctxts - rcd->dd->first_user_ctxt;
1911 info.num_subctxts = rcd->subctxt_cnt;
1912 info.rec_cpu = fd->rec_cpu_num;
1913 sz = sizeof(info);
1915 if (copy_to_user(uinfo, &info, sz)) {
1916 ret = -EFAULT;
1917 goto bail;
1919 ret = 0;
1921 bail:
1922 return ret;
1925 static int qib_sdma_get_inflight(struct qib_user_sdma_queue *pq,
1926 u32 __user *inflightp)
1928 const u32 val = qib_user_sdma_inflight_counter(pq);
1930 if (put_user(val, inflightp))
1931 return -EFAULT;
1933 return 0;
1936 static int qib_sdma_get_complete(struct qib_pportdata *ppd,
1937 struct qib_user_sdma_queue *pq,
1938 u32 __user *completep)
1940 u32 val;
1941 int err;
1943 if (!pq)
1944 return -EINVAL;
1946 err = qib_user_sdma_make_progress(ppd, pq);
1947 if (err < 0)
1948 return err;
1950 val = qib_user_sdma_complete_counter(pq);
1951 if (put_user(val, completep))
1952 return -EFAULT;
1954 return 0;
1957 static int disarm_req_delay(struct qib_ctxtdata *rcd)
1959 int ret = 0;
1961 if (!usable(rcd->ppd)) {
1962 int i;
1964 * if link is down, or otherwise not usable, delay
1965 * the caller up to 30 seconds, so we don't thrash
1966 * in trying to get the chip back to ACTIVE, and
1967 * set flag so they make the call again.
1969 if (rcd->user_event_mask) {
1971 * subctxt_cnt is 0 if not shared, so do base
1972 * separately, first, then remaining subctxt, if any
1974 set_bit(_QIB_EVENT_DISARM_BUFS_BIT,
1975 &rcd->user_event_mask[0]);
1976 for (i = 1; i < rcd->subctxt_cnt; i++)
1977 set_bit(_QIB_EVENT_DISARM_BUFS_BIT,
1978 &rcd->user_event_mask[i]);
1980 for (i = 0; !usable(rcd->ppd) && i < 300; i++)
1981 msleep(100);
1982 ret = -ENETDOWN;
1984 return ret;
1988 * Find all user contexts in use, and set the specified bit in their
1989 * event mask.
1990 * See also find_ctxt() for a similar use, that is specific to send buffers.
1992 int qib_set_uevent_bits(struct qib_pportdata *ppd, const int evtbit)
1994 struct qib_ctxtdata *rcd;
1995 unsigned ctxt;
1996 int ret = 0;
1997 unsigned long flags;
1999 spin_lock_irqsave(&ppd->dd->uctxt_lock, flags);
2000 for (ctxt = ppd->dd->first_user_ctxt; ctxt < ppd->dd->cfgctxts;
2001 ctxt++) {
2002 rcd = ppd->dd->rcd[ctxt];
2003 if (!rcd)
2004 continue;
2005 if (rcd->user_event_mask) {
2006 int i;
2008 * subctxt_cnt is 0 if not shared, so do base
2009 * separately, first, then remaining subctxt, if any
2011 set_bit(evtbit, &rcd->user_event_mask[0]);
2012 for (i = 1; i < rcd->subctxt_cnt; i++)
2013 set_bit(evtbit, &rcd->user_event_mask[i]);
2015 ret = 1;
2016 break;
2018 spin_unlock_irqrestore(&ppd->dd->uctxt_lock, flags);
2020 return ret;
2024 * clear the event notifier events for this context.
2025 * For the DISARM_BUFS case, we also take action (this obsoletes
2026 * the older QIB_CMD_DISARM_BUFS, but we keep it for backwards
2027 * compatibility.
2028 * Other bits don't currently require actions, just atomically clear.
2029 * User process then performs actions appropriate to bit having been
2030 * set, if desired, and checks again in future.
2032 static int qib_user_event_ack(struct qib_ctxtdata *rcd, int subctxt,
2033 unsigned long events)
2035 int ret = 0, i;
2037 for (i = 0; i <= _QIB_MAX_EVENT_BIT; i++) {
2038 if (!test_bit(i, &events))
2039 continue;
2040 if (i == _QIB_EVENT_DISARM_BUFS_BIT) {
2041 (void)qib_disarm_piobufs_ifneeded(rcd);
2042 ret = disarm_req_delay(rcd);
2043 } else
2044 clear_bit(i, &rcd->user_event_mask[subctxt]);
2046 return ret;
2049 static ssize_t qib_write(struct file *fp, const char __user *data,
2050 size_t count, loff_t *off)
2052 const struct qib_cmd __user *ucmd;
2053 struct qib_ctxtdata *rcd;
2054 const void __user *src;
2055 size_t consumed, copy = 0;
2056 struct qib_cmd cmd;
2057 ssize_t ret = 0;
2058 void *dest;
2060 if (count < sizeof(cmd.type)) {
2061 ret = -EINVAL;
2062 goto bail;
2065 ucmd = (const struct qib_cmd __user *) data;
2067 if (copy_from_user(&cmd.type, &ucmd->type, sizeof(cmd.type))) {
2068 ret = -EFAULT;
2069 goto bail;
2072 consumed = sizeof(cmd.type);
2074 switch (cmd.type) {
2075 case QIB_CMD_ASSIGN_CTXT:
2076 case QIB_CMD_USER_INIT:
2077 copy = sizeof(cmd.cmd.user_info);
2078 dest = &cmd.cmd.user_info;
2079 src = &ucmd->cmd.user_info;
2080 break;
2082 case QIB_CMD_RECV_CTRL:
2083 copy = sizeof(cmd.cmd.recv_ctrl);
2084 dest = &cmd.cmd.recv_ctrl;
2085 src = &ucmd->cmd.recv_ctrl;
2086 break;
2088 case QIB_CMD_CTXT_INFO:
2089 copy = sizeof(cmd.cmd.ctxt_info);
2090 dest = &cmd.cmd.ctxt_info;
2091 src = &ucmd->cmd.ctxt_info;
2092 break;
2094 case QIB_CMD_TID_UPDATE:
2095 case QIB_CMD_TID_FREE:
2096 copy = sizeof(cmd.cmd.tid_info);
2097 dest = &cmd.cmd.tid_info;
2098 src = &ucmd->cmd.tid_info;
2099 break;
2101 case QIB_CMD_SET_PART_KEY:
2102 copy = sizeof(cmd.cmd.part_key);
2103 dest = &cmd.cmd.part_key;
2104 src = &ucmd->cmd.part_key;
2105 break;
2107 case QIB_CMD_DISARM_BUFS:
2108 case QIB_CMD_PIOAVAILUPD: /* force an update of PIOAvail reg */
2109 copy = 0;
2110 src = NULL;
2111 dest = NULL;
2112 break;
2114 case QIB_CMD_POLL_TYPE:
2115 copy = sizeof(cmd.cmd.poll_type);
2116 dest = &cmd.cmd.poll_type;
2117 src = &ucmd->cmd.poll_type;
2118 break;
2120 case QIB_CMD_ARMLAUNCH_CTRL:
2121 copy = sizeof(cmd.cmd.armlaunch_ctrl);
2122 dest = &cmd.cmd.armlaunch_ctrl;
2123 src = &ucmd->cmd.armlaunch_ctrl;
2124 break;
2126 case QIB_CMD_SDMA_INFLIGHT:
2127 copy = sizeof(cmd.cmd.sdma_inflight);
2128 dest = &cmd.cmd.sdma_inflight;
2129 src = &ucmd->cmd.sdma_inflight;
2130 break;
2132 case QIB_CMD_SDMA_COMPLETE:
2133 copy = sizeof(cmd.cmd.sdma_complete);
2134 dest = &cmd.cmd.sdma_complete;
2135 src = &ucmd->cmd.sdma_complete;
2136 break;
2138 case QIB_CMD_ACK_EVENT:
2139 copy = sizeof(cmd.cmd.event_mask);
2140 dest = &cmd.cmd.event_mask;
2141 src = &ucmd->cmd.event_mask;
2142 break;
2144 default:
2145 ret = -EINVAL;
2146 goto bail;
2149 if (copy) {
2150 if ((count - consumed) < copy) {
2151 ret = -EINVAL;
2152 goto bail;
2154 if (copy_from_user(dest, src, copy)) {
2155 ret = -EFAULT;
2156 goto bail;
2158 consumed += copy;
2161 rcd = ctxt_fp(fp);
2162 if (!rcd && cmd.type != QIB_CMD_ASSIGN_CTXT) {
2163 ret = -EINVAL;
2164 goto bail;
2167 switch (cmd.type) {
2168 case QIB_CMD_ASSIGN_CTXT:
2169 ret = qib_assign_ctxt(fp, &cmd.cmd.user_info);
2170 if (ret)
2171 goto bail;
2172 break;
2174 case QIB_CMD_USER_INIT:
2175 ret = qib_do_user_init(fp, &cmd.cmd.user_info);
2176 if (ret)
2177 goto bail;
2178 ret = qib_get_base_info(fp, (void __user *) (unsigned long)
2179 cmd.cmd.user_info.spu_base_info,
2180 cmd.cmd.user_info.spu_base_info_size);
2181 break;
2183 case QIB_CMD_RECV_CTRL:
2184 ret = qib_manage_rcvq(rcd, subctxt_fp(fp), cmd.cmd.recv_ctrl);
2185 break;
2187 case QIB_CMD_CTXT_INFO:
2188 ret = qib_ctxt_info(fp, (struct qib_ctxt_info __user *)
2189 (unsigned long) cmd.cmd.ctxt_info);
2190 break;
2192 case QIB_CMD_TID_UPDATE:
2193 ret = qib_tid_update(rcd, fp, &cmd.cmd.tid_info);
2194 break;
2196 case QIB_CMD_TID_FREE:
2197 ret = qib_tid_free(rcd, subctxt_fp(fp), &cmd.cmd.tid_info);
2198 break;
2200 case QIB_CMD_SET_PART_KEY:
2201 ret = qib_set_part_key(rcd, cmd.cmd.part_key);
2202 break;
2204 case QIB_CMD_DISARM_BUFS:
2205 (void)qib_disarm_piobufs_ifneeded(rcd);
2206 ret = disarm_req_delay(rcd);
2207 break;
2209 case QIB_CMD_PIOAVAILUPD:
2210 qib_force_pio_avail_update(rcd->dd);
2211 break;
2213 case QIB_CMD_POLL_TYPE:
2214 rcd->poll_type = cmd.cmd.poll_type;
2215 break;
2217 case QIB_CMD_ARMLAUNCH_CTRL:
2218 rcd->dd->f_set_armlaunch(rcd->dd, cmd.cmd.armlaunch_ctrl);
2219 break;
2221 case QIB_CMD_SDMA_INFLIGHT:
2222 ret = qib_sdma_get_inflight(user_sdma_queue_fp(fp),
2223 (u32 __user *) (unsigned long)
2224 cmd.cmd.sdma_inflight);
2225 break;
2227 case QIB_CMD_SDMA_COMPLETE:
2228 ret = qib_sdma_get_complete(rcd->ppd,
2229 user_sdma_queue_fp(fp),
2230 (u32 __user *) (unsigned long)
2231 cmd.cmd.sdma_complete);
2232 break;
2234 case QIB_CMD_ACK_EVENT:
2235 ret = qib_user_event_ack(rcd, subctxt_fp(fp),
2236 cmd.cmd.event_mask);
2237 break;
2240 if (ret >= 0)
2241 ret = consumed;
2243 bail:
2244 return ret;
2247 static ssize_t qib_aio_write(struct kiocb *iocb, const struct iovec *iov,
2248 unsigned long dim, loff_t off)
2250 struct qib_filedata *fp = iocb->ki_filp->private_data;
2251 struct qib_ctxtdata *rcd = ctxt_fp(iocb->ki_filp);
2252 struct qib_user_sdma_queue *pq = fp->pq;
2254 if (!dim || !pq)
2255 return -EINVAL;
2257 return qib_user_sdma_writev(rcd, pq, iov, dim);
2260 static struct class *qib_class;
2261 static dev_t qib_dev;
2263 int qib_cdev_init(int minor, const char *name,
2264 const struct file_operations *fops,
2265 struct cdev **cdevp, struct device **devp)
2267 const dev_t dev = MKDEV(MAJOR(qib_dev), minor);
2268 struct cdev *cdev;
2269 struct device *device = NULL;
2270 int ret;
2272 cdev = cdev_alloc();
2273 if (!cdev) {
2274 pr_err("Could not allocate cdev for minor %d, %s\n",
2275 minor, name);
2276 ret = -ENOMEM;
2277 goto done;
2280 cdev->owner = THIS_MODULE;
2281 cdev->ops = fops;
2282 kobject_set_name(&cdev->kobj, name);
2284 ret = cdev_add(cdev, dev, 1);
2285 if (ret < 0) {
2286 pr_err("Could not add cdev for minor %d, %s (err %d)\n",
2287 minor, name, -ret);
2288 goto err_cdev;
2291 device = device_create(qib_class, NULL, dev, NULL, "%s", name);
2292 if (!IS_ERR(device))
2293 goto done;
2294 ret = PTR_ERR(device);
2295 device = NULL;
2296 pr_err("Could not create device for minor %d, %s (err %d)\n",
2297 minor, name, -ret);
2298 err_cdev:
2299 cdev_del(cdev);
2300 cdev = NULL;
2301 done:
2302 *cdevp = cdev;
2303 *devp = device;
2304 return ret;
2307 void qib_cdev_cleanup(struct cdev **cdevp, struct device **devp)
2309 struct device *device = *devp;
2311 if (device) {
2312 device_unregister(device);
2313 *devp = NULL;
2316 if (*cdevp) {
2317 cdev_del(*cdevp);
2318 *cdevp = NULL;
2322 static struct cdev *wildcard_cdev;
2323 static struct device *wildcard_device;
2325 int __init qib_dev_init(void)
2327 int ret;
2329 ret = alloc_chrdev_region(&qib_dev, 0, QIB_NMINORS, QIB_DRV_NAME);
2330 if (ret < 0) {
2331 pr_err("Could not allocate chrdev region (err %d)\n", -ret);
2332 goto done;
2335 qib_class = class_create(THIS_MODULE, "ipath");
2336 if (IS_ERR(qib_class)) {
2337 ret = PTR_ERR(qib_class);
2338 pr_err("Could not create device class (err %d)\n", -ret);
2339 unregister_chrdev_region(qib_dev, QIB_NMINORS);
2342 done:
2343 return ret;
2346 void qib_dev_cleanup(void)
2348 if (qib_class) {
2349 class_destroy(qib_class);
2350 qib_class = NULL;
2353 unregister_chrdev_region(qib_dev, QIB_NMINORS);
2356 static atomic_t user_count = ATOMIC_INIT(0);
2358 static void qib_user_remove(struct qib_devdata *dd)
2360 if (atomic_dec_return(&user_count) == 0)
2361 qib_cdev_cleanup(&wildcard_cdev, &wildcard_device);
2363 qib_cdev_cleanup(&dd->user_cdev, &dd->user_device);
2366 static int qib_user_add(struct qib_devdata *dd)
2368 char name[10];
2369 int ret;
2371 if (atomic_inc_return(&user_count) == 1) {
2372 ret = qib_cdev_init(0, "ipath", &qib_file_ops,
2373 &wildcard_cdev, &wildcard_device);
2374 if (ret)
2375 goto done;
2378 snprintf(name, sizeof(name), "ipath%d", dd->unit);
2379 ret = qib_cdev_init(dd->unit + 1, name, &qib_file_ops,
2380 &dd->user_cdev, &dd->user_device);
2381 if (ret)
2382 qib_user_remove(dd);
2383 done:
2384 return ret;
2388 * Create per-unit files in /dev
2390 int qib_device_create(struct qib_devdata *dd)
2392 int r, ret;
2394 r = qib_user_add(dd);
2395 ret = qib_diag_add(dd);
2396 if (r && !ret)
2397 ret = r;
2398 return ret;
2402 * Remove per-unit files in /dev
2403 * void, core kernel returns no errors for this stuff
2405 void qib_device_remove(struct qib_devdata *dd)
2407 qib_user_remove(dd);
2408 qib_diag_remove(dd);