PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / infiniband / ulp / srpt / ib_srpt.c
blob0e537d8d0e4774312d632f68f0cedd0aaa406b7d
1 /*
2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved.
3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <scsi/scsi_tcq.h>
45 #include <target/configfs_macros.h>
46 #include <target/target_core_base.h>
47 #include <target/target_core_fabric_configfs.h>
48 #include <target/target_core_fabric.h>
49 #include <target/target_core_configfs.h>
50 #include "ib_srpt.h"
52 /* Name of this kernel module. */
53 #define DRV_NAME "ib_srpt"
54 #define DRV_VERSION "2.0.0"
55 #define DRV_RELDATE "2011-02-14"
57 #define SRPT_ID_STRING "Linux SRP target"
59 #undef pr_fmt
60 #define pr_fmt(fmt) DRV_NAME " " fmt
62 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
63 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
64 "v" DRV_VERSION " (" DRV_RELDATE ")");
65 MODULE_LICENSE("Dual BSD/GPL");
68 * Global Variables
71 static u64 srpt_service_guid;
72 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */
73 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */
75 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
76 module_param(srp_max_req_size, int, 0444);
77 MODULE_PARM_DESC(srp_max_req_size,
78 "Maximum size of SRP request messages in bytes.");
80 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
81 module_param(srpt_srq_size, int, 0444);
82 MODULE_PARM_DESC(srpt_srq_size,
83 "Shared receive queue (SRQ) size.");
85 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
87 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
89 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
90 0444);
91 MODULE_PARM_DESC(srpt_service_guid,
92 "Using this value for ioc_guid, id_ext, and cm_listen_id"
93 " instead of using the node_guid of the first HCA.");
95 static struct ib_client srpt_client;
96 static struct target_fabric_configfs *srpt_target;
97 static void srpt_release_channel(struct srpt_rdma_ch *ch);
98 static int srpt_queue_status(struct se_cmd *cmd);
101 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
103 static inline
104 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir)
106 switch (dir) {
107 case DMA_TO_DEVICE: return DMA_FROM_DEVICE;
108 case DMA_FROM_DEVICE: return DMA_TO_DEVICE;
109 default: return dir;
114 * srpt_sdev_name() - Return the name associated with the HCA.
116 * Examples are ib0, ib1, ...
118 static inline const char *srpt_sdev_name(struct srpt_device *sdev)
120 return sdev->device->name;
123 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch)
125 unsigned long flags;
126 enum rdma_ch_state state;
128 spin_lock_irqsave(&ch->spinlock, flags);
129 state = ch->state;
130 spin_unlock_irqrestore(&ch->spinlock, flags);
131 return state;
134 static enum rdma_ch_state
135 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state)
137 unsigned long flags;
138 enum rdma_ch_state prev;
140 spin_lock_irqsave(&ch->spinlock, flags);
141 prev = ch->state;
142 ch->state = new_state;
143 spin_unlock_irqrestore(&ch->spinlock, flags);
144 return prev;
148 * srpt_test_and_set_ch_state() - Test and set the channel state.
150 * Returns true if and only if the channel state has been set to the new state.
152 static bool
153 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old,
154 enum rdma_ch_state new)
156 unsigned long flags;
157 enum rdma_ch_state prev;
159 spin_lock_irqsave(&ch->spinlock, flags);
160 prev = ch->state;
161 if (prev == old)
162 ch->state = new;
163 spin_unlock_irqrestore(&ch->spinlock, flags);
164 return prev == old;
168 * srpt_event_handler() - Asynchronous IB event callback function.
170 * Callback function called by the InfiniBand core when an asynchronous IB
171 * event occurs. This callback may occur in interrupt context. See also
172 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
173 * Architecture Specification.
175 static void srpt_event_handler(struct ib_event_handler *handler,
176 struct ib_event *event)
178 struct srpt_device *sdev;
179 struct srpt_port *sport;
181 sdev = ib_get_client_data(event->device, &srpt_client);
182 if (!sdev || sdev->device != event->device)
183 return;
185 pr_debug("ASYNC event= %d on device= %s\n", event->event,
186 srpt_sdev_name(sdev));
188 switch (event->event) {
189 case IB_EVENT_PORT_ERR:
190 if (event->element.port_num <= sdev->device->phys_port_cnt) {
191 sport = &sdev->port[event->element.port_num - 1];
192 sport->lid = 0;
193 sport->sm_lid = 0;
195 break;
196 case IB_EVENT_PORT_ACTIVE:
197 case IB_EVENT_LID_CHANGE:
198 case IB_EVENT_PKEY_CHANGE:
199 case IB_EVENT_SM_CHANGE:
200 case IB_EVENT_CLIENT_REREGISTER:
201 /* Refresh port data asynchronously. */
202 if (event->element.port_num <= sdev->device->phys_port_cnt) {
203 sport = &sdev->port[event->element.port_num - 1];
204 if (!sport->lid && !sport->sm_lid)
205 schedule_work(&sport->work);
207 break;
208 default:
209 printk(KERN_ERR "received unrecognized IB event %d\n",
210 event->event);
211 break;
216 * srpt_srq_event() - SRQ event callback function.
218 static void srpt_srq_event(struct ib_event *event, void *ctx)
220 printk(KERN_INFO "SRQ event %d\n", event->event);
224 * srpt_qp_event() - QP event callback function.
226 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
228 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
229 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch));
231 switch (event->event) {
232 case IB_EVENT_COMM_EST:
233 ib_cm_notify(ch->cm_id, event->event);
234 break;
235 case IB_EVENT_QP_LAST_WQE_REACHED:
236 if (srpt_test_and_set_ch_state(ch, CH_DRAINING,
237 CH_RELEASING))
238 srpt_release_channel(ch);
239 else
240 pr_debug("%s: state %d - ignored LAST_WQE.\n",
241 ch->sess_name, srpt_get_ch_state(ch));
242 break;
243 default:
244 printk(KERN_ERR "received unrecognized IB QP event %d\n",
245 event->event);
246 break;
251 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
253 * @slot: one-based slot number.
254 * @value: four-bit value.
256 * Copies the lowest four bits of value in element slot of the array of four
257 * bit elements called c_list (controller list). The index slot is one-based.
259 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
261 u16 id;
262 u8 tmp;
264 id = (slot - 1) / 2;
265 if (slot & 0x1) {
266 tmp = c_list[id] & 0xf;
267 c_list[id] = (value << 4) | tmp;
268 } else {
269 tmp = c_list[id] & 0xf0;
270 c_list[id] = (value & 0xf) | tmp;
275 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
277 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
278 * Specification.
280 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
282 struct ib_class_port_info *cif;
284 cif = (struct ib_class_port_info *)mad->data;
285 memset(cif, 0, sizeof *cif);
286 cif->base_version = 1;
287 cif->class_version = 1;
288 cif->resp_time_value = 20;
290 mad->mad_hdr.status = 0;
294 * srpt_get_iou() - Write IOUnitInfo to a management datagram.
296 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
297 * Specification. See also section B.7, table B.6 in the SRP r16a document.
299 static void srpt_get_iou(struct ib_dm_mad *mad)
301 struct ib_dm_iou_info *ioui;
302 u8 slot;
303 int i;
305 ioui = (struct ib_dm_iou_info *)mad->data;
306 ioui->change_id = __constant_cpu_to_be16(1);
307 ioui->max_controllers = 16;
309 /* set present for slot 1 and empty for the rest */
310 srpt_set_ioc(ioui->controller_list, 1, 1);
311 for (i = 1, slot = 2; i < 16; i++, slot++)
312 srpt_set_ioc(ioui->controller_list, slot, 0);
314 mad->mad_hdr.status = 0;
318 * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
320 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
321 * Architecture Specification. See also section B.7, table B.7 in the SRP
322 * r16a document.
324 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
325 struct ib_dm_mad *mad)
327 struct srpt_device *sdev = sport->sdev;
328 struct ib_dm_ioc_profile *iocp;
330 iocp = (struct ib_dm_ioc_profile *)mad->data;
332 if (!slot || slot > 16) {
333 mad->mad_hdr.status
334 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
335 return;
338 if (slot > 2) {
339 mad->mad_hdr.status
340 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
341 return;
344 memset(iocp, 0, sizeof *iocp);
345 strcpy(iocp->id_string, SRPT_ID_STRING);
346 iocp->guid = cpu_to_be64(srpt_service_guid);
347 iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
348 iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id);
349 iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver);
350 iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
351 iocp->subsys_device_id = 0x0;
352 iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
353 iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS);
354 iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL);
355 iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION);
356 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
357 iocp->rdma_read_depth = 4;
358 iocp->send_size = cpu_to_be32(srp_max_req_size);
359 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
360 1U << 24));
361 iocp->num_svc_entries = 1;
362 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
363 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
365 mad->mad_hdr.status = 0;
369 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
371 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
372 * Specification. See also section B.7, table B.8 in the SRP r16a document.
374 static void srpt_get_svc_entries(u64 ioc_guid,
375 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
377 struct ib_dm_svc_entries *svc_entries;
379 WARN_ON(!ioc_guid);
381 if (!slot || slot > 16) {
382 mad->mad_hdr.status
383 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
384 return;
387 if (slot > 2 || lo > hi || hi > 1) {
388 mad->mad_hdr.status
389 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
390 return;
393 svc_entries = (struct ib_dm_svc_entries *)mad->data;
394 memset(svc_entries, 0, sizeof *svc_entries);
395 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
396 snprintf(svc_entries->service_entries[0].name,
397 sizeof(svc_entries->service_entries[0].name),
398 "%s%016llx",
399 SRP_SERVICE_NAME_PREFIX,
400 ioc_guid);
402 mad->mad_hdr.status = 0;
406 * srpt_mgmt_method_get() - Process a received management datagram.
407 * @sp: source port through which the MAD has been received.
408 * @rq_mad: received MAD.
409 * @rsp_mad: response MAD.
411 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
412 struct ib_dm_mad *rsp_mad)
414 u16 attr_id;
415 u32 slot;
416 u8 hi, lo;
418 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
419 switch (attr_id) {
420 case DM_ATTR_CLASS_PORT_INFO:
421 srpt_get_class_port_info(rsp_mad);
422 break;
423 case DM_ATTR_IOU_INFO:
424 srpt_get_iou(rsp_mad);
425 break;
426 case DM_ATTR_IOC_PROFILE:
427 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
428 srpt_get_ioc(sp, slot, rsp_mad);
429 break;
430 case DM_ATTR_SVC_ENTRIES:
431 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
432 hi = (u8) ((slot >> 8) & 0xff);
433 lo = (u8) (slot & 0xff);
434 slot = (u16) ((slot >> 16) & 0xffff);
435 srpt_get_svc_entries(srpt_service_guid,
436 slot, hi, lo, rsp_mad);
437 break;
438 default:
439 rsp_mad->mad_hdr.status =
440 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
441 break;
446 * srpt_mad_send_handler() - Post MAD-send callback function.
448 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
449 struct ib_mad_send_wc *mad_wc)
451 ib_destroy_ah(mad_wc->send_buf->ah);
452 ib_free_send_mad(mad_wc->send_buf);
456 * srpt_mad_recv_handler() - MAD reception callback function.
458 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
459 struct ib_mad_recv_wc *mad_wc)
461 struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
462 struct ib_ah *ah;
463 struct ib_mad_send_buf *rsp;
464 struct ib_dm_mad *dm_mad;
466 if (!mad_wc || !mad_wc->recv_buf.mad)
467 return;
469 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
470 mad_wc->recv_buf.grh, mad_agent->port_num);
471 if (IS_ERR(ah))
472 goto err;
474 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
476 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
477 mad_wc->wc->pkey_index, 0,
478 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
479 GFP_KERNEL);
480 if (IS_ERR(rsp))
481 goto err_rsp;
483 rsp->ah = ah;
485 dm_mad = rsp->mad;
486 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad);
487 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
488 dm_mad->mad_hdr.status = 0;
490 switch (mad_wc->recv_buf.mad->mad_hdr.method) {
491 case IB_MGMT_METHOD_GET:
492 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
493 break;
494 case IB_MGMT_METHOD_SET:
495 dm_mad->mad_hdr.status =
496 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
497 break;
498 default:
499 dm_mad->mad_hdr.status =
500 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
501 break;
504 if (!ib_post_send_mad(rsp, NULL)) {
505 ib_free_recv_mad(mad_wc);
506 /* will destroy_ah & free_send_mad in send completion */
507 return;
510 ib_free_send_mad(rsp);
512 err_rsp:
513 ib_destroy_ah(ah);
514 err:
515 ib_free_recv_mad(mad_wc);
519 * srpt_refresh_port() - Configure a HCA port.
521 * Enable InfiniBand management datagram processing, update the cached sm_lid,
522 * lid and gid values, and register a callback function for processing MADs
523 * on the specified port.
525 * Note: It is safe to call this function more than once for the same port.
527 static int srpt_refresh_port(struct srpt_port *sport)
529 struct ib_mad_reg_req reg_req;
530 struct ib_port_modify port_modify;
531 struct ib_port_attr port_attr;
532 int ret;
534 memset(&port_modify, 0, sizeof port_modify);
535 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
536 port_modify.clr_port_cap_mask = 0;
538 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
539 if (ret)
540 goto err_mod_port;
542 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
543 if (ret)
544 goto err_query_port;
546 sport->sm_lid = port_attr.sm_lid;
547 sport->lid = port_attr.lid;
549 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
550 if (ret)
551 goto err_query_port;
553 if (!sport->mad_agent) {
554 memset(&reg_req, 0, sizeof reg_req);
555 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
556 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
557 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
558 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
560 sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
561 sport->port,
562 IB_QPT_GSI,
563 &reg_req, 0,
564 srpt_mad_send_handler,
565 srpt_mad_recv_handler,
566 sport);
567 if (IS_ERR(sport->mad_agent)) {
568 ret = PTR_ERR(sport->mad_agent);
569 sport->mad_agent = NULL;
570 goto err_query_port;
574 return 0;
576 err_query_port:
578 port_modify.set_port_cap_mask = 0;
579 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
580 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
582 err_mod_port:
584 return ret;
588 * srpt_unregister_mad_agent() - Unregister MAD callback functions.
590 * Note: It is safe to call this function more than once for the same device.
592 static void srpt_unregister_mad_agent(struct srpt_device *sdev)
594 struct ib_port_modify port_modify = {
595 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
597 struct srpt_port *sport;
598 int i;
600 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
601 sport = &sdev->port[i - 1];
602 WARN_ON(sport->port != i);
603 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
604 printk(KERN_ERR "disabling MAD processing failed.\n");
605 if (sport->mad_agent) {
606 ib_unregister_mad_agent(sport->mad_agent);
607 sport->mad_agent = NULL;
613 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
615 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
616 int ioctx_size, int dma_size,
617 enum dma_data_direction dir)
619 struct srpt_ioctx *ioctx;
621 ioctx = kmalloc(ioctx_size, GFP_KERNEL);
622 if (!ioctx)
623 goto err;
625 ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
626 if (!ioctx->buf)
627 goto err_free_ioctx;
629 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
630 if (ib_dma_mapping_error(sdev->device, ioctx->dma))
631 goto err_free_buf;
633 return ioctx;
635 err_free_buf:
636 kfree(ioctx->buf);
637 err_free_ioctx:
638 kfree(ioctx);
639 err:
640 return NULL;
644 * srpt_free_ioctx() - Free an SRPT I/O context structure.
646 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
647 int dma_size, enum dma_data_direction dir)
649 if (!ioctx)
650 return;
652 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
653 kfree(ioctx->buf);
654 kfree(ioctx);
658 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
659 * @sdev: Device to allocate the I/O context ring for.
660 * @ring_size: Number of elements in the I/O context ring.
661 * @ioctx_size: I/O context size.
662 * @dma_size: DMA buffer size.
663 * @dir: DMA data direction.
665 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
666 int ring_size, int ioctx_size,
667 int dma_size, enum dma_data_direction dir)
669 struct srpt_ioctx **ring;
670 int i;
672 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
673 && ioctx_size != sizeof(struct srpt_send_ioctx));
675 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
676 if (!ring)
677 goto out;
678 for (i = 0; i < ring_size; ++i) {
679 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
680 if (!ring[i])
681 goto err;
682 ring[i]->index = i;
684 goto out;
686 err:
687 while (--i >= 0)
688 srpt_free_ioctx(sdev, ring[i], dma_size, dir);
689 kfree(ring);
690 ring = NULL;
691 out:
692 return ring;
696 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
698 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
699 struct srpt_device *sdev, int ring_size,
700 int dma_size, enum dma_data_direction dir)
702 int i;
704 for (i = 0; i < ring_size; ++i)
705 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
706 kfree(ioctx_ring);
710 * srpt_get_cmd_state() - Get the state of a SCSI command.
712 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
714 enum srpt_command_state state;
715 unsigned long flags;
717 BUG_ON(!ioctx);
719 spin_lock_irqsave(&ioctx->spinlock, flags);
720 state = ioctx->state;
721 spin_unlock_irqrestore(&ioctx->spinlock, flags);
722 return state;
726 * srpt_set_cmd_state() - Set the state of a SCSI command.
728 * Does not modify the state of aborted commands. Returns the previous command
729 * state.
731 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
732 enum srpt_command_state new)
734 enum srpt_command_state previous;
735 unsigned long flags;
737 BUG_ON(!ioctx);
739 spin_lock_irqsave(&ioctx->spinlock, flags);
740 previous = ioctx->state;
741 if (previous != SRPT_STATE_DONE)
742 ioctx->state = new;
743 spin_unlock_irqrestore(&ioctx->spinlock, flags);
745 return previous;
749 * srpt_test_and_set_cmd_state() - Test and set the state of a command.
751 * Returns true if and only if the previous command state was equal to 'old'.
753 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
754 enum srpt_command_state old,
755 enum srpt_command_state new)
757 enum srpt_command_state previous;
758 unsigned long flags;
760 WARN_ON(!ioctx);
761 WARN_ON(old == SRPT_STATE_DONE);
762 WARN_ON(new == SRPT_STATE_NEW);
764 spin_lock_irqsave(&ioctx->spinlock, flags);
765 previous = ioctx->state;
766 if (previous == old)
767 ioctx->state = new;
768 spin_unlock_irqrestore(&ioctx->spinlock, flags);
769 return previous == old;
773 * srpt_post_recv() - Post an IB receive request.
775 static int srpt_post_recv(struct srpt_device *sdev,
776 struct srpt_recv_ioctx *ioctx)
778 struct ib_sge list;
779 struct ib_recv_wr wr, *bad_wr;
781 BUG_ON(!sdev);
782 wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index);
784 list.addr = ioctx->ioctx.dma;
785 list.length = srp_max_req_size;
786 list.lkey = sdev->mr->lkey;
788 wr.next = NULL;
789 wr.sg_list = &list;
790 wr.num_sge = 1;
792 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
796 * srpt_post_send() - Post an IB send request.
798 * Returns zero upon success and a non-zero value upon failure.
800 static int srpt_post_send(struct srpt_rdma_ch *ch,
801 struct srpt_send_ioctx *ioctx, int len)
803 struct ib_sge list;
804 struct ib_send_wr wr, *bad_wr;
805 struct srpt_device *sdev = ch->sport->sdev;
806 int ret;
808 atomic_inc(&ch->req_lim);
810 ret = -ENOMEM;
811 if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
812 printk(KERN_WARNING "IB send queue full (needed 1)\n");
813 goto out;
816 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
817 DMA_TO_DEVICE);
819 list.addr = ioctx->ioctx.dma;
820 list.length = len;
821 list.lkey = sdev->mr->lkey;
823 wr.next = NULL;
824 wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index);
825 wr.sg_list = &list;
826 wr.num_sge = 1;
827 wr.opcode = IB_WR_SEND;
828 wr.send_flags = IB_SEND_SIGNALED;
830 ret = ib_post_send(ch->qp, &wr, &bad_wr);
832 out:
833 if (ret < 0) {
834 atomic_inc(&ch->sq_wr_avail);
835 atomic_dec(&ch->req_lim);
837 return ret;
841 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
842 * @ioctx: Pointer to the I/O context associated with the request.
843 * @srp_cmd: Pointer to the SRP_CMD request data.
844 * @dir: Pointer to the variable to which the transfer direction will be
845 * written.
846 * @data_len: Pointer to the variable to which the total data length of all
847 * descriptors in the SRP_CMD request will be written.
849 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
851 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
852 * -ENOMEM when memory allocation fails and zero upon success.
854 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
855 struct srp_cmd *srp_cmd,
856 enum dma_data_direction *dir, u64 *data_len)
858 struct srp_indirect_buf *idb;
859 struct srp_direct_buf *db;
860 unsigned add_cdb_offset;
861 int ret;
864 * The pointer computations below will only be compiled correctly
865 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
866 * whether srp_cmd::add_data has been declared as a byte pointer.
868 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
869 && !__same_type(srp_cmd->add_data[0], (u8)0));
871 BUG_ON(!dir);
872 BUG_ON(!data_len);
874 ret = 0;
875 *data_len = 0;
878 * The lower four bits of the buffer format field contain the DATA-IN
879 * buffer descriptor format, and the highest four bits contain the
880 * DATA-OUT buffer descriptor format.
882 *dir = DMA_NONE;
883 if (srp_cmd->buf_fmt & 0xf)
884 /* DATA-IN: transfer data from target to initiator (read). */
885 *dir = DMA_FROM_DEVICE;
886 else if (srp_cmd->buf_fmt >> 4)
887 /* DATA-OUT: transfer data from initiator to target (write). */
888 *dir = DMA_TO_DEVICE;
891 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
892 * CDB LENGTH' field are reserved and the size in bytes of this field
893 * is four times the value specified in bits 3..7. Hence the "& ~3".
895 add_cdb_offset = srp_cmd->add_cdb_len & ~3;
896 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
897 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
898 ioctx->n_rbuf = 1;
899 ioctx->rbufs = &ioctx->single_rbuf;
901 db = (struct srp_direct_buf *)(srp_cmd->add_data
902 + add_cdb_offset);
903 memcpy(ioctx->rbufs, db, sizeof *db);
904 *data_len = be32_to_cpu(db->len);
905 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
906 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
907 idb = (struct srp_indirect_buf *)(srp_cmd->add_data
908 + add_cdb_offset);
910 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db;
912 if (ioctx->n_rbuf >
913 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
914 printk(KERN_ERR "received unsupported SRP_CMD request"
915 " type (%u out + %u in != %u / %zu)\n",
916 srp_cmd->data_out_desc_cnt,
917 srp_cmd->data_in_desc_cnt,
918 be32_to_cpu(idb->table_desc.len),
919 sizeof(*db));
920 ioctx->n_rbuf = 0;
921 ret = -EINVAL;
922 goto out;
925 if (ioctx->n_rbuf == 1)
926 ioctx->rbufs = &ioctx->single_rbuf;
927 else {
928 ioctx->rbufs =
929 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC);
930 if (!ioctx->rbufs) {
931 ioctx->n_rbuf = 0;
932 ret = -ENOMEM;
933 goto out;
937 db = idb->desc_list;
938 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db);
939 *data_len = be32_to_cpu(idb->len);
941 out:
942 return ret;
946 * srpt_init_ch_qp() - Initialize queue pair attributes.
948 * Initialized the attributes of queue pair 'qp' by allowing local write,
949 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
951 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
953 struct ib_qp_attr *attr;
954 int ret;
956 attr = kzalloc(sizeof *attr, GFP_KERNEL);
957 if (!attr)
958 return -ENOMEM;
960 attr->qp_state = IB_QPS_INIT;
961 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
962 IB_ACCESS_REMOTE_WRITE;
963 attr->port_num = ch->sport->port;
964 attr->pkey_index = 0;
966 ret = ib_modify_qp(qp, attr,
967 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
968 IB_QP_PKEY_INDEX);
970 kfree(attr);
971 return ret;
975 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
976 * @ch: channel of the queue pair.
977 * @qp: queue pair to change the state of.
979 * Returns zero upon success and a negative value upon failure.
981 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
982 * If this structure ever becomes larger, it might be necessary to allocate
983 * it dynamically instead of on the stack.
985 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
987 struct ib_qp_attr qp_attr;
988 int attr_mask;
989 int ret;
991 qp_attr.qp_state = IB_QPS_RTR;
992 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
993 if (ret)
994 goto out;
996 qp_attr.max_dest_rd_atomic = 4;
998 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1000 out:
1001 return ret;
1005 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1006 * @ch: channel of the queue pair.
1007 * @qp: queue pair to change the state of.
1009 * Returns zero upon success and a negative value upon failure.
1011 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1012 * If this structure ever becomes larger, it might be necessary to allocate
1013 * it dynamically instead of on the stack.
1015 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1017 struct ib_qp_attr qp_attr;
1018 int attr_mask;
1019 int ret;
1021 qp_attr.qp_state = IB_QPS_RTS;
1022 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1023 if (ret)
1024 goto out;
1026 qp_attr.max_rd_atomic = 4;
1028 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1030 out:
1031 return ret;
1035 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1037 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1039 struct ib_qp_attr qp_attr;
1041 qp_attr.qp_state = IB_QPS_ERR;
1042 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1046 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
1048 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1049 struct srpt_send_ioctx *ioctx)
1051 struct scatterlist *sg;
1052 enum dma_data_direction dir;
1054 BUG_ON(!ch);
1055 BUG_ON(!ioctx);
1056 BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius);
1058 while (ioctx->n_rdma)
1059 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge);
1061 kfree(ioctx->rdma_ius);
1062 ioctx->rdma_ius = NULL;
1064 if (ioctx->mapped_sg_count) {
1065 sg = ioctx->sg;
1066 WARN_ON(!sg);
1067 dir = ioctx->cmd.data_direction;
1068 BUG_ON(dir == DMA_NONE);
1069 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
1070 opposite_dma_dir(dir));
1071 ioctx->mapped_sg_count = 0;
1076 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
1078 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1079 struct srpt_send_ioctx *ioctx)
1081 struct se_cmd *cmd;
1082 struct scatterlist *sg, *sg_orig;
1083 int sg_cnt;
1084 enum dma_data_direction dir;
1085 struct rdma_iu *riu;
1086 struct srp_direct_buf *db;
1087 dma_addr_t dma_addr;
1088 struct ib_sge *sge;
1089 u64 raddr;
1090 u32 rsize;
1091 u32 tsize;
1092 u32 dma_len;
1093 int count, nrdma;
1094 int i, j, k;
1096 BUG_ON(!ch);
1097 BUG_ON(!ioctx);
1098 cmd = &ioctx->cmd;
1099 dir = cmd->data_direction;
1100 BUG_ON(dir == DMA_NONE);
1102 ioctx->sg = sg = sg_orig = cmd->t_data_sg;
1103 ioctx->sg_cnt = sg_cnt = cmd->t_data_nents;
1105 count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
1106 opposite_dma_dir(dir));
1107 if (unlikely(!count))
1108 return -EAGAIN;
1110 ioctx->mapped_sg_count = count;
1112 if (ioctx->rdma_ius && ioctx->n_rdma_ius)
1113 nrdma = ioctx->n_rdma_ius;
1114 else {
1115 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
1116 + ioctx->n_rbuf;
1118 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL);
1119 if (!ioctx->rdma_ius)
1120 goto free_mem;
1122 ioctx->n_rdma_ius = nrdma;
1125 db = ioctx->rbufs;
1126 tsize = cmd->data_length;
1127 dma_len = sg_dma_len(&sg[0]);
1128 riu = ioctx->rdma_ius;
1131 * For each remote desc - calculate the #ib_sge.
1132 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
1133 * each remote desc rdma_iu is required a rdma wr;
1134 * else
1135 * we need to allocate extra rdma_iu to carry extra #ib_sge in
1136 * another rdma wr
1138 for (i = 0, j = 0;
1139 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1140 rsize = be32_to_cpu(db->len);
1141 raddr = be64_to_cpu(db->va);
1142 riu->raddr = raddr;
1143 riu->rkey = be32_to_cpu(db->key);
1144 riu->sge_cnt = 0;
1146 /* calculate how many sge required for this remote_buf */
1147 while (rsize > 0 && tsize > 0) {
1149 if (rsize >= dma_len) {
1150 tsize -= dma_len;
1151 rsize -= dma_len;
1152 raddr += dma_len;
1154 if (tsize > 0) {
1155 ++j;
1156 if (j < count) {
1157 sg = sg_next(sg);
1158 dma_len = sg_dma_len(sg);
1161 } else {
1162 tsize -= rsize;
1163 dma_len -= rsize;
1164 rsize = 0;
1167 ++riu->sge_cnt;
1169 if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) {
1170 ++ioctx->n_rdma;
1171 riu->sge =
1172 kmalloc(riu->sge_cnt * sizeof *riu->sge,
1173 GFP_KERNEL);
1174 if (!riu->sge)
1175 goto free_mem;
1177 ++riu;
1178 riu->sge_cnt = 0;
1179 riu->raddr = raddr;
1180 riu->rkey = be32_to_cpu(db->key);
1184 ++ioctx->n_rdma;
1185 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge,
1186 GFP_KERNEL);
1187 if (!riu->sge)
1188 goto free_mem;
1191 db = ioctx->rbufs;
1192 tsize = cmd->data_length;
1193 riu = ioctx->rdma_ius;
1194 sg = sg_orig;
1195 dma_len = sg_dma_len(&sg[0]);
1196 dma_addr = sg_dma_address(&sg[0]);
1198 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
1199 for (i = 0, j = 0;
1200 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1201 rsize = be32_to_cpu(db->len);
1202 sge = riu->sge;
1203 k = 0;
1205 while (rsize > 0 && tsize > 0) {
1206 sge->addr = dma_addr;
1207 sge->lkey = ch->sport->sdev->mr->lkey;
1209 if (rsize >= dma_len) {
1210 sge->length =
1211 (tsize < dma_len) ? tsize : dma_len;
1212 tsize -= dma_len;
1213 rsize -= dma_len;
1215 if (tsize > 0) {
1216 ++j;
1217 if (j < count) {
1218 sg = sg_next(sg);
1219 dma_len = sg_dma_len(sg);
1220 dma_addr = sg_dma_address(sg);
1223 } else {
1224 sge->length = (tsize < rsize) ? tsize : rsize;
1225 tsize -= rsize;
1226 dma_len -= rsize;
1227 dma_addr += rsize;
1228 rsize = 0;
1231 ++k;
1232 if (k == riu->sge_cnt && rsize > 0 && tsize > 0) {
1233 ++riu;
1234 sge = riu->sge;
1235 k = 0;
1236 } else if (rsize > 0 && tsize > 0)
1237 ++sge;
1241 return 0;
1243 free_mem:
1244 srpt_unmap_sg_to_ib_sge(ch, ioctx);
1246 return -ENOMEM;
1250 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1252 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1254 struct srpt_send_ioctx *ioctx;
1255 unsigned long flags;
1257 BUG_ON(!ch);
1259 ioctx = NULL;
1260 spin_lock_irqsave(&ch->spinlock, flags);
1261 if (!list_empty(&ch->free_list)) {
1262 ioctx = list_first_entry(&ch->free_list,
1263 struct srpt_send_ioctx, free_list);
1264 list_del(&ioctx->free_list);
1266 spin_unlock_irqrestore(&ch->spinlock, flags);
1268 if (!ioctx)
1269 return ioctx;
1271 BUG_ON(ioctx->ch != ch);
1272 spin_lock_init(&ioctx->spinlock);
1273 ioctx->state = SRPT_STATE_NEW;
1274 ioctx->n_rbuf = 0;
1275 ioctx->rbufs = NULL;
1276 ioctx->n_rdma = 0;
1277 ioctx->n_rdma_ius = 0;
1278 ioctx->rdma_ius = NULL;
1279 ioctx->mapped_sg_count = 0;
1280 init_completion(&ioctx->tx_done);
1281 ioctx->queue_status_only = false;
1283 * transport_init_se_cmd() does not initialize all fields, so do it
1284 * here.
1286 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1287 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1289 return ioctx;
1293 * srpt_abort_cmd() - Abort a SCSI command.
1294 * @ioctx: I/O context associated with the SCSI command.
1295 * @context: Preferred execution context.
1297 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1299 enum srpt_command_state state;
1300 unsigned long flags;
1302 BUG_ON(!ioctx);
1305 * If the command is in a state where the target core is waiting for
1306 * the ib_srpt driver, change the state to the next state. Changing
1307 * the state of the command from SRPT_STATE_NEED_DATA to
1308 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
1309 * function a second time.
1312 spin_lock_irqsave(&ioctx->spinlock, flags);
1313 state = ioctx->state;
1314 switch (state) {
1315 case SRPT_STATE_NEED_DATA:
1316 ioctx->state = SRPT_STATE_DATA_IN;
1317 break;
1318 case SRPT_STATE_DATA_IN:
1319 case SRPT_STATE_CMD_RSP_SENT:
1320 case SRPT_STATE_MGMT_RSP_SENT:
1321 ioctx->state = SRPT_STATE_DONE;
1322 break;
1323 default:
1324 break;
1326 spin_unlock_irqrestore(&ioctx->spinlock, flags);
1328 if (state == SRPT_STATE_DONE) {
1329 struct srpt_rdma_ch *ch = ioctx->ch;
1331 BUG_ON(ch->sess == NULL);
1333 target_put_sess_cmd(ch->sess, &ioctx->cmd);
1334 goto out;
1337 pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1338 ioctx->tag);
1340 switch (state) {
1341 case SRPT_STATE_NEW:
1342 case SRPT_STATE_DATA_IN:
1343 case SRPT_STATE_MGMT:
1345 * Do nothing - defer abort processing until
1346 * srpt_queue_response() is invoked.
1348 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false));
1349 break;
1350 case SRPT_STATE_NEED_DATA:
1351 /* DMA_TO_DEVICE (write) - RDMA read error. */
1353 /* XXX(hch): this is a horrible layering violation.. */
1354 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1355 ioctx->cmd.transport_state &= ~CMD_T_ACTIVE;
1356 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
1357 break;
1358 case SRPT_STATE_CMD_RSP_SENT:
1360 * SRP_RSP sending failed or the SRP_RSP send completion has
1361 * not been received in time.
1363 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1364 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
1365 break;
1366 case SRPT_STATE_MGMT_RSP_SENT:
1367 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1368 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
1369 break;
1370 default:
1371 WARN(1, "Unexpected command state (%d)", state);
1372 break;
1375 out:
1376 return state;
1380 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
1382 static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id)
1384 struct srpt_send_ioctx *ioctx;
1385 enum srpt_command_state state;
1386 struct se_cmd *cmd;
1387 u32 index;
1389 atomic_inc(&ch->sq_wr_avail);
1391 index = idx_from_wr_id(wr_id);
1392 ioctx = ch->ioctx_ring[index];
1393 state = srpt_get_cmd_state(ioctx);
1394 cmd = &ioctx->cmd;
1396 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1397 && state != SRPT_STATE_MGMT_RSP_SENT
1398 && state != SRPT_STATE_NEED_DATA
1399 && state != SRPT_STATE_DONE);
1401 /* If SRP_RSP sending failed, undo the ch->req_lim change. */
1402 if (state == SRPT_STATE_CMD_RSP_SENT
1403 || state == SRPT_STATE_MGMT_RSP_SENT)
1404 atomic_dec(&ch->req_lim);
1406 srpt_abort_cmd(ioctx);
1410 * srpt_handle_send_comp() - Process an IB send completion notification.
1412 static void srpt_handle_send_comp(struct srpt_rdma_ch *ch,
1413 struct srpt_send_ioctx *ioctx)
1415 enum srpt_command_state state;
1417 atomic_inc(&ch->sq_wr_avail);
1419 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1421 if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1422 && state != SRPT_STATE_MGMT_RSP_SENT
1423 && state != SRPT_STATE_DONE))
1424 pr_debug("state = %d\n", state);
1426 if (state != SRPT_STATE_DONE) {
1427 srpt_unmap_sg_to_ib_sge(ch, ioctx);
1428 transport_generic_free_cmd(&ioctx->cmd, 0);
1429 } else {
1430 printk(KERN_ERR "IB completion has been received too late for"
1431 " wr_id = %u.\n", ioctx->ioctx.index);
1436 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
1438 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1439 * the data that has been transferred via IB RDMA had to be postponed until the
1440 * check_stop_free() callback. None of this is necessary anymore and needs to
1441 * be cleaned up.
1443 static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch,
1444 struct srpt_send_ioctx *ioctx,
1445 enum srpt_opcode opcode)
1447 WARN_ON(ioctx->n_rdma <= 0);
1448 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1450 if (opcode == SRPT_RDMA_READ_LAST) {
1451 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1452 SRPT_STATE_DATA_IN))
1453 target_execute_cmd(&ioctx->cmd);
1454 else
1455 printk(KERN_ERR "%s[%d]: wrong state = %d\n", __func__,
1456 __LINE__, srpt_get_cmd_state(ioctx));
1457 } else if (opcode == SRPT_RDMA_ABORT) {
1458 ioctx->rdma_aborted = true;
1459 } else {
1460 WARN(true, "unexpected opcode %d\n", opcode);
1465 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
1467 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch,
1468 struct srpt_send_ioctx *ioctx,
1469 enum srpt_opcode opcode)
1471 struct se_cmd *cmd;
1472 enum srpt_command_state state;
1474 cmd = &ioctx->cmd;
1475 state = srpt_get_cmd_state(ioctx);
1476 switch (opcode) {
1477 case SRPT_RDMA_READ_LAST:
1478 if (ioctx->n_rdma <= 0) {
1479 printk(KERN_ERR "Received invalid RDMA read"
1480 " error completion with idx %d\n",
1481 ioctx->ioctx.index);
1482 break;
1484 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1485 if (state == SRPT_STATE_NEED_DATA)
1486 srpt_abort_cmd(ioctx);
1487 else
1488 printk(KERN_ERR "%s[%d]: wrong state = %d\n",
1489 __func__, __LINE__, state);
1490 break;
1491 case SRPT_RDMA_WRITE_LAST:
1492 break;
1493 default:
1494 printk(KERN_ERR "%s[%d]: opcode = %u\n", __func__,
1495 __LINE__, opcode);
1496 break;
1501 * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1502 * @ch: RDMA channel through which the request has been received.
1503 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1504 * be built in the buffer ioctx->buf points at and hence this function will
1505 * overwrite the request data.
1506 * @tag: tag of the request for which this response is being generated.
1507 * @status: value for the STATUS field of the SRP_RSP information unit.
1509 * Returns the size in bytes of the SRP_RSP response.
1511 * An SRP_RSP response contains a SCSI status or service response. See also
1512 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1513 * response. See also SPC-2 for more information about sense data.
1515 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1516 struct srpt_send_ioctx *ioctx, u64 tag,
1517 int status)
1519 struct srp_rsp *srp_rsp;
1520 const u8 *sense_data;
1521 int sense_data_len, max_sense_len;
1524 * The lowest bit of all SAM-3 status codes is zero (see also
1525 * paragraph 5.3 in SAM-3).
1527 WARN_ON(status & 1);
1529 srp_rsp = ioctx->ioctx.buf;
1530 BUG_ON(!srp_rsp);
1532 sense_data = ioctx->sense_data;
1533 sense_data_len = ioctx->cmd.scsi_sense_length;
1534 WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1536 memset(srp_rsp, 0, sizeof *srp_rsp);
1537 srp_rsp->opcode = SRP_RSP;
1538 srp_rsp->req_lim_delta =
1539 __constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1540 srp_rsp->tag = tag;
1541 srp_rsp->status = status;
1543 if (sense_data_len) {
1544 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1545 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1546 if (sense_data_len > max_sense_len) {
1547 printk(KERN_WARNING "truncated sense data from %d to %d"
1548 " bytes\n", sense_data_len, max_sense_len);
1549 sense_data_len = max_sense_len;
1552 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1553 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1554 memcpy(srp_rsp + 1, sense_data, sense_data_len);
1557 return sizeof(*srp_rsp) + sense_data_len;
1561 * srpt_build_tskmgmt_rsp() - Build a task management response.
1562 * @ch: RDMA channel through which the request has been received.
1563 * @ioctx: I/O context in which the SRP_RSP response will be built.
1564 * @rsp_code: RSP_CODE that will be stored in the response.
1565 * @tag: Tag of the request for which this response is being generated.
1567 * Returns the size in bytes of the SRP_RSP response.
1569 * An SRP_RSP response contains a SCSI status or service response. See also
1570 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1571 * response.
1573 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1574 struct srpt_send_ioctx *ioctx,
1575 u8 rsp_code, u64 tag)
1577 struct srp_rsp *srp_rsp;
1578 int resp_data_len;
1579 int resp_len;
1581 resp_data_len = 4;
1582 resp_len = sizeof(*srp_rsp) + resp_data_len;
1584 srp_rsp = ioctx->ioctx.buf;
1585 BUG_ON(!srp_rsp);
1586 memset(srp_rsp, 0, sizeof *srp_rsp);
1588 srp_rsp->opcode = SRP_RSP;
1589 srp_rsp->req_lim_delta = __constant_cpu_to_be32(1
1590 + atomic_xchg(&ch->req_lim_delta, 0));
1591 srp_rsp->tag = tag;
1593 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1594 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1595 srp_rsp->data[3] = rsp_code;
1597 return resp_len;
1600 #define NO_SUCH_LUN ((uint64_t)-1LL)
1603 * SCSI LUN addressing method. See also SAM-2 and the section about
1604 * eight byte LUNs.
1606 enum scsi_lun_addr_method {
1607 SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0,
1608 SCSI_LUN_ADDR_METHOD_FLAT = 1,
1609 SCSI_LUN_ADDR_METHOD_LUN = 2,
1610 SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3,
1614 * srpt_unpack_lun() - Convert from network LUN to linear LUN.
1616 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
1617 * order (big endian) to a linear LUN. Supports three LUN addressing methods:
1618 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
1620 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len)
1622 uint64_t res = NO_SUCH_LUN;
1623 int addressing_method;
1625 if (unlikely(len < 2)) {
1626 printk(KERN_ERR "Illegal LUN length %d, expected 2 bytes or "
1627 "more", len);
1628 goto out;
1631 switch (len) {
1632 case 8:
1633 if ((*((__be64 *)lun) &
1634 __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0)
1635 goto out_err;
1636 break;
1637 case 4:
1638 if (*((__be16 *)&lun[2]) != 0)
1639 goto out_err;
1640 break;
1641 case 6:
1642 if (*((__be32 *)&lun[2]) != 0)
1643 goto out_err;
1644 break;
1645 case 2:
1646 break;
1647 default:
1648 goto out_err;
1651 addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */
1652 switch (addressing_method) {
1653 case SCSI_LUN_ADDR_METHOD_PERIPHERAL:
1654 case SCSI_LUN_ADDR_METHOD_FLAT:
1655 case SCSI_LUN_ADDR_METHOD_LUN:
1656 res = *(lun + 1) | (((*lun) & 0x3f) << 8);
1657 break;
1659 case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN:
1660 default:
1661 printk(KERN_ERR "Unimplemented LUN addressing method %u",
1662 addressing_method);
1663 break;
1666 out:
1667 return res;
1669 out_err:
1670 printk(KERN_ERR "Support for multi-level LUNs has not yet been"
1671 " implemented");
1672 goto out;
1675 static int srpt_check_stop_free(struct se_cmd *cmd)
1677 struct srpt_send_ioctx *ioctx = container_of(cmd,
1678 struct srpt_send_ioctx, cmd);
1680 return target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
1684 * srpt_handle_cmd() - Process SRP_CMD.
1686 static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
1687 struct srpt_recv_ioctx *recv_ioctx,
1688 struct srpt_send_ioctx *send_ioctx)
1690 struct se_cmd *cmd;
1691 struct srp_cmd *srp_cmd;
1692 uint64_t unpacked_lun;
1693 u64 data_len;
1694 enum dma_data_direction dir;
1695 sense_reason_t ret;
1696 int rc;
1698 BUG_ON(!send_ioctx);
1700 srp_cmd = recv_ioctx->ioctx.buf;
1701 cmd = &send_ioctx->cmd;
1702 send_ioctx->tag = srp_cmd->tag;
1704 switch (srp_cmd->task_attr) {
1705 case SRP_CMD_SIMPLE_Q:
1706 cmd->sam_task_attr = MSG_SIMPLE_TAG;
1707 break;
1708 case SRP_CMD_ORDERED_Q:
1709 default:
1710 cmd->sam_task_attr = MSG_ORDERED_TAG;
1711 break;
1712 case SRP_CMD_HEAD_OF_Q:
1713 cmd->sam_task_attr = MSG_HEAD_TAG;
1714 break;
1715 case SRP_CMD_ACA:
1716 cmd->sam_task_attr = MSG_ACA_TAG;
1717 break;
1720 if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) {
1721 printk(KERN_ERR "0x%llx: parsing SRP descriptor table failed.\n",
1722 srp_cmd->tag);
1723 ret = TCM_INVALID_CDB_FIELD;
1724 goto send_sense;
1727 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun,
1728 sizeof(srp_cmd->lun));
1729 rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb,
1730 &send_ioctx->sense_data[0], unpacked_lun, data_len,
1731 MSG_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF);
1732 if (rc != 0) {
1733 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1734 goto send_sense;
1736 return 0;
1738 send_sense:
1739 transport_send_check_condition_and_sense(cmd, ret, 0);
1740 return -1;
1744 * srpt_rx_mgmt_fn_tag() - Process a task management function by tag.
1745 * @ch: RDMA channel of the task management request.
1746 * @fn: Task management function to perform.
1747 * @req_tag: Tag of the SRP task management request.
1748 * @mgmt_ioctx: I/O context of the task management request.
1750 * Returns zero if the target core will process the task management
1751 * request asynchronously.
1753 * Note: It is assumed that the initiator serializes tag-based task management
1754 * requests.
1756 static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag)
1758 struct srpt_device *sdev;
1759 struct srpt_rdma_ch *ch;
1760 struct srpt_send_ioctx *target;
1761 int ret, i;
1763 ret = -EINVAL;
1764 ch = ioctx->ch;
1765 BUG_ON(!ch);
1766 BUG_ON(!ch->sport);
1767 sdev = ch->sport->sdev;
1768 BUG_ON(!sdev);
1769 spin_lock_irq(&sdev->spinlock);
1770 for (i = 0; i < ch->rq_size; ++i) {
1771 target = ch->ioctx_ring[i];
1772 if (target->cmd.se_lun == ioctx->cmd.se_lun &&
1773 target->tag == tag &&
1774 srpt_get_cmd_state(target) != SRPT_STATE_DONE) {
1775 ret = 0;
1776 /* now let the target core abort &target->cmd; */
1777 break;
1780 spin_unlock_irq(&sdev->spinlock);
1781 return ret;
1784 static int srp_tmr_to_tcm(int fn)
1786 switch (fn) {
1787 case SRP_TSK_ABORT_TASK:
1788 return TMR_ABORT_TASK;
1789 case SRP_TSK_ABORT_TASK_SET:
1790 return TMR_ABORT_TASK_SET;
1791 case SRP_TSK_CLEAR_TASK_SET:
1792 return TMR_CLEAR_TASK_SET;
1793 case SRP_TSK_LUN_RESET:
1794 return TMR_LUN_RESET;
1795 case SRP_TSK_CLEAR_ACA:
1796 return TMR_CLEAR_ACA;
1797 default:
1798 return -1;
1803 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1805 * Returns 0 if and only if the request will be processed by the target core.
1807 * For more information about SRP_TSK_MGMT information units, see also section
1808 * 6.7 in the SRP r16a document.
1810 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1811 struct srpt_recv_ioctx *recv_ioctx,
1812 struct srpt_send_ioctx *send_ioctx)
1814 struct srp_tsk_mgmt *srp_tsk;
1815 struct se_cmd *cmd;
1816 struct se_session *sess = ch->sess;
1817 uint64_t unpacked_lun;
1818 uint32_t tag = 0;
1819 int tcm_tmr;
1820 int rc;
1822 BUG_ON(!send_ioctx);
1824 srp_tsk = recv_ioctx->ioctx.buf;
1825 cmd = &send_ioctx->cmd;
1827 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1828 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1829 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1831 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1832 send_ioctx->tag = srp_tsk->tag;
1833 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1834 if (tcm_tmr < 0) {
1835 send_ioctx->cmd.se_tmr_req->response =
1836 TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
1837 goto fail;
1839 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
1840 sizeof(srp_tsk->lun));
1842 if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) {
1843 rc = srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag);
1844 if (rc < 0) {
1845 send_ioctx->cmd.se_tmr_req->response =
1846 TMR_TASK_DOES_NOT_EXIST;
1847 goto fail;
1849 tag = srp_tsk->task_tag;
1851 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun,
1852 srp_tsk, tcm_tmr, GFP_KERNEL, tag,
1853 TARGET_SCF_ACK_KREF);
1854 if (rc != 0) {
1855 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1856 goto fail;
1858 return;
1859 fail:
1860 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1864 * srpt_handle_new_iu() - Process a newly received information unit.
1865 * @ch: RDMA channel through which the information unit has been received.
1866 * @ioctx: SRPT I/O context associated with the information unit.
1868 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1869 struct srpt_recv_ioctx *recv_ioctx,
1870 struct srpt_send_ioctx *send_ioctx)
1872 struct srp_cmd *srp_cmd;
1873 enum rdma_ch_state ch_state;
1875 BUG_ON(!ch);
1876 BUG_ON(!recv_ioctx);
1878 ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1879 recv_ioctx->ioctx.dma, srp_max_req_size,
1880 DMA_FROM_DEVICE);
1882 ch_state = srpt_get_ch_state(ch);
1883 if (unlikely(ch_state == CH_CONNECTING)) {
1884 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1885 goto out;
1888 if (unlikely(ch_state != CH_LIVE))
1889 goto out;
1891 srp_cmd = recv_ioctx->ioctx.buf;
1892 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1893 if (!send_ioctx)
1894 send_ioctx = srpt_get_send_ioctx(ch);
1895 if (unlikely(!send_ioctx)) {
1896 list_add_tail(&recv_ioctx->wait_list,
1897 &ch->cmd_wait_list);
1898 goto out;
1902 switch (srp_cmd->opcode) {
1903 case SRP_CMD:
1904 srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1905 break;
1906 case SRP_TSK_MGMT:
1907 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1908 break;
1909 case SRP_I_LOGOUT:
1910 printk(KERN_ERR "Not yet implemented: SRP_I_LOGOUT\n");
1911 break;
1912 case SRP_CRED_RSP:
1913 pr_debug("received SRP_CRED_RSP\n");
1914 break;
1915 case SRP_AER_RSP:
1916 pr_debug("received SRP_AER_RSP\n");
1917 break;
1918 case SRP_RSP:
1919 printk(KERN_ERR "Received SRP_RSP\n");
1920 break;
1921 default:
1922 printk(KERN_ERR "received IU with unknown opcode 0x%x\n",
1923 srp_cmd->opcode);
1924 break;
1927 srpt_post_recv(ch->sport->sdev, recv_ioctx);
1928 out:
1929 return;
1932 static void srpt_process_rcv_completion(struct ib_cq *cq,
1933 struct srpt_rdma_ch *ch,
1934 struct ib_wc *wc)
1936 struct srpt_device *sdev = ch->sport->sdev;
1937 struct srpt_recv_ioctx *ioctx;
1938 u32 index;
1940 index = idx_from_wr_id(wc->wr_id);
1941 if (wc->status == IB_WC_SUCCESS) {
1942 int req_lim;
1944 req_lim = atomic_dec_return(&ch->req_lim);
1945 if (unlikely(req_lim < 0))
1946 printk(KERN_ERR "req_lim = %d < 0\n", req_lim);
1947 ioctx = sdev->ioctx_ring[index];
1948 srpt_handle_new_iu(ch, ioctx, NULL);
1949 } else {
1950 printk(KERN_INFO "receiving failed for idx %u with status %d\n",
1951 index, wc->status);
1956 * srpt_process_send_completion() - Process an IB send completion.
1958 * Note: Although this has not yet been observed during tests, at least in
1959 * theory it is possible that the srpt_get_send_ioctx() call invoked by
1960 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1961 * value in each response is set to one, and it is possible that this response
1962 * makes the initiator send a new request before the send completion for that
1963 * response has been processed. This could e.g. happen if the call to
1964 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1965 * if IB retransmission causes generation of the send completion to be
1966 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1967 * are queued on cmd_wait_list. The code below processes these delayed
1968 * requests one at a time.
1970 static void srpt_process_send_completion(struct ib_cq *cq,
1971 struct srpt_rdma_ch *ch,
1972 struct ib_wc *wc)
1974 struct srpt_send_ioctx *send_ioctx;
1975 uint32_t index;
1976 enum srpt_opcode opcode;
1978 index = idx_from_wr_id(wc->wr_id);
1979 opcode = opcode_from_wr_id(wc->wr_id);
1980 send_ioctx = ch->ioctx_ring[index];
1981 if (wc->status == IB_WC_SUCCESS) {
1982 if (opcode == SRPT_SEND)
1983 srpt_handle_send_comp(ch, send_ioctx);
1984 else {
1985 WARN_ON(opcode != SRPT_RDMA_ABORT &&
1986 wc->opcode != IB_WC_RDMA_READ);
1987 srpt_handle_rdma_comp(ch, send_ioctx, opcode);
1989 } else {
1990 if (opcode == SRPT_SEND) {
1991 printk(KERN_INFO "sending response for idx %u failed"
1992 " with status %d\n", index, wc->status);
1993 srpt_handle_send_err_comp(ch, wc->wr_id);
1994 } else if (opcode != SRPT_RDMA_MID) {
1995 printk(KERN_INFO "RDMA t %d for idx %u failed with"
1996 " status %d", opcode, index, wc->status);
1997 srpt_handle_rdma_err_comp(ch, send_ioctx, opcode);
2001 while (unlikely(opcode == SRPT_SEND
2002 && !list_empty(&ch->cmd_wait_list)
2003 && srpt_get_ch_state(ch) == CH_LIVE
2004 && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) {
2005 struct srpt_recv_ioctx *recv_ioctx;
2007 recv_ioctx = list_first_entry(&ch->cmd_wait_list,
2008 struct srpt_recv_ioctx,
2009 wait_list);
2010 list_del(&recv_ioctx->wait_list);
2011 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx);
2015 static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch)
2017 struct ib_wc *const wc = ch->wc;
2018 int i, n;
2020 WARN_ON(cq != ch->cq);
2022 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
2023 while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) {
2024 for (i = 0; i < n; i++) {
2025 if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV)
2026 srpt_process_rcv_completion(cq, ch, &wc[i]);
2027 else
2028 srpt_process_send_completion(cq, ch, &wc[i]);
2034 * srpt_completion() - IB completion queue callback function.
2036 * Notes:
2037 * - It is guaranteed that a completion handler will never be invoked
2038 * concurrently on two different CPUs for the same completion queue. See also
2039 * Documentation/infiniband/core_locking.txt and the implementation of
2040 * handle_edge_irq() in kernel/irq/chip.c.
2041 * - When threaded IRQs are enabled, completion handlers are invoked in thread
2042 * context instead of interrupt context.
2044 static void srpt_completion(struct ib_cq *cq, void *ctx)
2046 struct srpt_rdma_ch *ch = ctx;
2048 wake_up_interruptible(&ch->wait_queue);
2051 static int srpt_compl_thread(void *arg)
2053 struct srpt_rdma_ch *ch;
2055 /* Hibernation / freezing of the SRPT kernel thread is not supported. */
2056 current->flags |= PF_NOFREEZE;
2058 ch = arg;
2059 BUG_ON(!ch);
2060 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) started\n",
2061 ch->sess_name, ch->thread->comm, current->pid);
2062 while (!kthread_should_stop()) {
2063 wait_event_interruptible(ch->wait_queue,
2064 (srpt_process_completion(ch->cq, ch),
2065 kthread_should_stop()));
2067 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) stopped\n",
2068 ch->sess_name, ch->thread->comm, current->pid);
2069 return 0;
2073 * srpt_create_ch_ib() - Create receive and send completion queues.
2075 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
2077 struct ib_qp_init_attr *qp_init;
2078 struct srpt_port *sport = ch->sport;
2079 struct srpt_device *sdev = sport->sdev;
2080 u32 srp_sq_size = sport->port_attrib.srp_sq_size;
2081 int ret;
2083 WARN_ON(ch->rq_size < 1);
2085 ret = -ENOMEM;
2086 qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL);
2087 if (!qp_init)
2088 goto out;
2090 ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
2091 ch->rq_size + srp_sq_size, 0);
2092 if (IS_ERR(ch->cq)) {
2093 ret = PTR_ERR(ch->cq);
2094 printk(KERN_ERR "failed to create CQ cqe= %d ret= %d\n",
2095 ch->rq_size + srp_sq_size, ret);
2096 goto out;
2099 qp_init->qp_context = (void *)ch;
2100 qp_init->event_handler
2101 = (void(*)(struct ib_event *, void*))srpt_qp_event;
2102 qp_init->send_cq = ch->cq;
2103 qp_init->recv_cq = ch->cq;
2104 qp_init->srq = sdev->srq;
2105 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
2106 qp_init->qp_type = IB_QPT_RC;
2107 qp_init->cap.max_send_wr = srp_sq_size;
2108 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
2110 ch->qp = ib_create_qp(sdev->pd, qp_init);
2111 if (IS_ERR(ch->qp)) {
2112 ret = PTR_ERR(ch->qp);
2113 printk(KERN_ERR "failed to create_qp ret= %d\n", ret);
2114 goto err_destroy_cq;
2117 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
2119 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
2120 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
2121 qp_init->cap.max_send_wr, ch->cm_id);
2123 ret = srpt_init_ch_qp(ch, ch->qp);
2124 if (ret)
2125 goto err_destroy_qp;
2127 init_waitqueue_head(&ch->wait_queue);
2129 pr_debug("creating thread for session %s\n", ch->sess_name);
2131 ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl");
2132 if (IS_ERR(ch->thread)) {
2133 printk(KERN_ERR "failed to create kernel thread %ld\n",
2134 PTR_ERR(ch->thread));
2135 ch->thread = NULL;
2136 goto err_destroy_qp;
2139 out:
2140 kfree(qp_init);
2141 return ret;
2143 err_destroy_qp:
2144 ib_destroy_qp(ch->qp);
2145 err_destroy_cq:
2146 ib_destroy_cq(ch->cq);
2147 goto out;
2150 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
2152 if (ch->thread)
2153 kthread_stop(ch->thread);
2155 ib_destroy_qp(ch->qp);
2156 ib_destroy_cq(ch->cq);
2160 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
2162 * Reset the QP and make sure all resources associated with the channel will
2163 * be deallocated at an appropriate time.
2165 * Note: The caller must hold ch->sport->sdev->spinlock.
2167 static void __srpt_close_ch(struct srpt_rdma_ch *ch)
2169 struct srpt_device *sdev;
2170 enum rdma_ch_state prev_state;
2171 unsigned long flags;
2173 sdev = ch->sport->sdev;
2175 spin_lock_irqsave(&ch->spinlock, flags);
2176 prev_state = ch->state;
2177 switch (prev_state) {
2178 case CH_CONNECTING:
2179 case CH_LIVE:
2180 ch->state = CH_DISCONNECTING;
2181 break;
2182 default:
2183 break;
2185 spin_unlock_irqrestore(&ch->spinlock, flags);
2187 switch (prev_state) {
2188 case CH_CONNECTING:
2189 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0,
2190 NULL, 0);
2191 /* fall through */
2192 case CH_LIVE:
2193 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0)
2194 printk(KERN_ERR "sending CM DREQ failed.\n");
2195 break;
2196 case CH_DISCONNECTING:
2197 break;
2198 case CH_DRAINING:
2199 case CH_RELEASING:
2200 break;
2205 * srpt_close_ch() - Close an RDMA channel.
2207 static void srpt_close_ch(struct srpt_rdma_ch *ch)
2209 struct srpt_device *sdev;
2211 sdev = ch->sport->sdev;
2212 spin_lock_irq(&sdev->spinlock);
2213 __srpt_close_ch(ch);
2214 spin_unlock_irq(&sdev->spinlock);
2218 * srpt_shutdown_session() - Whether or not a session may be shut down.
2220 static int srpt_shutdown_session(struct se_session *se_sess)
2222 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
2223 unsigned long flags;
2225 spin_lock_irqsave(&ch->spinlock, flags);
2226 if (ch->in_shutdown) {
2227 spin_unlock_irqrestore(&ch->spinlock, flags);
2228 return true;
2231 ch->in_shutdown = true;
2232 target_sess_cmd_list_set_waiting(se_sess);
2233 spin_unlock_irqrestore(&ch->spinlock, flags);
2235 return true;
2239 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
2240 * @cm_id: Pointer to the CM ID of the channel to be drained.
2242 * Note: Must be called from inside srpt_cm_handler to avoid a race between
2243 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
2244 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
2245 * waits until all target sessions for the associated IB device have been
2246 * unregistered and target session registration involves a call to
2247 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
2248 * this function has finished).
2250 static void srpt_drain_channel(struct ib_cm_id *cm_id)
2252 struct srpt_device *sdev;
2253 struct srpt_rdma_ch *ch;
2254 int ret;
2255 bool do_reset = false;
2257 WARN_ON_ONCE(irqs_disabled());
2259 sdev = cm_id->context;
2260 BUG_ON(!sdev);
2261 spin_lock_irq(&sdev->spinlock);
2262 list_for_each_entry(ch, &sdev->rch_list, list) {
2263 if (ch->cm_id == cm_id) {
2264 do_reset = srpt_test_and_set_ch_state(ch,
2265 CH_CONNECTING, CH_DRAINING) ||
2266 srpt_test_and_set_ch_state(ch,
2267 CH_LIVE, CH_DRAINING) ||
2268 srpt_test_and_set_ch_state(ch,
2269 CH_DISCONNECTING, CH_DRAINING);
2270 break;
2273 spin_unlock_irq(&sdev->spinlock);
2275 if (do_reset) {
2276 if (ch->sess)
2277 srpt_shutdown_session(ch->sess);
2279 ret = srpt_ch_qp_err(ch);
2280 if (ret < 0)
2281 printk(KERN_ERR "Setting queue pair in error state"
2282 " failed: %d\n", ret);
2287 * srpt_find_channel() - Look up an RDMA channel.
2288 * @cm_id: Pointer to the CM ID of the channel to be looked up.
2290 * Return NULL if no matching RDMA channel has been found.
2292 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev,
2293 struct ib_cm_id *cm_id)
2295 struct srpt_rdma_ch *ch;
2296 bool found;
2298 WARN_ON_ONCE(irqs_disabled());
2299 BUG_ON(!sdev);
2301 found = false;
2302 spin_lock_irq(&sdev->spinlock);
2303 list_for_each_entry(ch, &sdev->rch_list, list) {
2304 if (ch->cm_id == cm_id) {
2305 found = true;
2306 break;
2309 spin_unlock_irq(&sdev->spinlock);
2311 return found ? ch : NULL;
2315 * srpt_release_channel() - Release channel resources.
2317 * Schedules the actual release because:
2318 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
2319 * trigger a deadlock.
2320 * - It is not safe to call TCM transport_* functions from interrupt context.
2322 static void srpt_release_channel(struct srpt_rdma_ch *ch)
2324 schedule_work(&ch->release_work);
2327 static void srpt_release_channel_work(struct work_struct *w)
2329 struct srpt_rdma_ch *ch;
2330 struct srpt_device *sdev;
2331 struct se_session *se_sess;
2333 ch = container_of(w, struct srpt_rdma_ch, release_work);
2334 pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess,
2335 ch->release_done);
2337 sdev = ch->sport->sdev;
2338 BUG_ON(!sdev);
2340 se_sess = ch->sess;
2341 BUG_ON(!se_sess);
2343 target_wait_for_sess_cmds(se_sess);
2345 transport_deregister_session_configfs(se_sess);
2346 transport_deregister_session(se_sess);
2347 ch->sess = NULL;
2349 ib_destroy_cm_id(ch->cm_id);
2351 srpt_destroy_ch_ib(ch);
2353 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2354 ch->sport->sdev, ch->rq_size,
2355 ch->rsp_size, DMA_TO_DEVICE);
2357 spin_lock_irq(&sdev->spinlock);
2358 list_del(&ch->list);
2359 spin_unlock_irq(&sdev->spinlock);
2361 if (ch->release_done)
2362 complete(ch->release_done);
2364 wake_up(&sdev->ch_releaseQ);
2366 kfree(ch);
2369 static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport,
2370 u8 i_port_id[16])
2372 struct srpt_node_acl *nacl;
2374 list_for_each_entry(nacl, &sport->port_acl_list, list)
2375 if (memcmp(nacl->i_port_id, i_port_id,
2376 sizeof(nacl->i_port_id)) == 0)
2377 return nacl;
2379 return NULL;
2382 static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport,
2383 u8 i_port_id[16])
2385 struct srpt_node_acl *nacl;
2387 spin_lock_irq(&sport->port_acl_lock);
2388 nacl = __srpt_lookup_acl(sport, i_port_id);
2389 spin_unlock_irq(&sport->port_acl_lock);
2391 return nacl;
2395 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
2397 * Ownership of the cm_id is transferred to the target session if this
2398 * functions returns zero. Otherwise the caller remains the owner of cm_id.
2400 static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
2401 struct ib_cm_req_event_param *param,
2402 void *private_data)
2404 struct srpt_device *sdev = cm_id->context;
2405 struct srpt_port *sport = &sdev->port[param->port - 1];
2406 struct srp_login_req *req;
2407 struct srp_login_rsp *rsp;
2408 struct srp_login_rej *rej;
2409 struct ib_cm_rep_param *rep_param;
2410 struct srpt_rdma_ch *ch, *tmp_ch;
2411 struct srpt_node_acl *nacl;
2412 u32 it_iu_len;
2413 int i;
2414 int ret = 0;
2416 WARN_ON_ONCE(irqs_disabled());
2418 if (WARN_ON(!sdev || !private_data))
2419 return -EINVAL;
2421 req = (struct srp_login_req *)private_data;
2423 it_iu_len = be32_to_cpu(req->req_it_iu_len);
2425 printk(KERN_INFO "Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
2426 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
2427 " (guid=0x%llx:0x%llx)\n",
2428 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
2429 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
2430 be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
2431 be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
2432 it_iu_len,
2433 param->port,
2434 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
2435 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
2437 rsp = kzalloc(sizeof *rsp, GFP_KERNEL);
2438 rej = kzalloc(sizeof *rej, GFP_KERNEL);
2439 rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL);
2441 if (!rsp || !rej || !rep_param) {
2442 ret = -ENOMEM;
2443 goto out;
2446 if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2447 rej->reason = __constant_cpu_to_be32(
2448 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2449 ret = -EINVAL;
2450 printk(KERN_ERR "rejected SRP_LOGIN_REQ because its"
2451 " length (%d bytes) is out of range (%d .. %d)\n",
2452 it_iu_len, 64, srp_max_req_size);
2453 goto reject;
2456 if (!sport->enabled) {
2457 rej->reason = __constant_cpu_to_be32(
2458 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2459 ret = -EINVAL;
2460 printk(KERN_ERR "rejected SRP_LOGIN_REQ because the target port"
2461 " has not yet been enabled\n");
2462 goto reject;
2465 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2466 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2468 spin_lock_irq(&sdev->spinlock);
2470 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
2471 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
2472 && !memcmp(ch->t_port_id, req->target_port_id, 16)
2473 && param->port == ch->sport->port
2474 && param->listen_id == ch->sport->sdev->cm_id
2475 && ch->cm_id) {
2476 enum rdma_ch_state ch_state;
2478 ch_state = srpt_get_ch_state(ch);
2479 if (ch_state != CH_CONNECTING
2480 && ch_state != CH_LIVE)
2481 continue;
2483 /* found an existing channel */
2484 pr_debug("Found existing channel %s"
2485 " cm_id= %p state= %d\n",
2486 ch->sess_name, ch->cm_id, ch_state);
2488 __srpt_close_ch(ch);
2490 rsp->rsp_flags =
2491 SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2495 spin_unlock_irq(&sdev->spinlock);
2497 } else
2498 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2500 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2501 || *(__be64 *)(req->target_port_id + 8) !=
2502 cpu_to_be64(srpt_service_guid)) {
2503 rej->reason = __constant_cpu_to_be32(
2504 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2505 ret = -ENOMEM;
2506 printk(KERN_ERR "rejected SRP_LOGIN_REQ because it"
2507 " has an invalid target port identifier.\n");
2508 goto reject;
2511 ch = kzalloc(sizeof *ch, GFP_KERNEL);
2512 if (!ch) {
2513 rej->reason = __constant_cpu_to_be32(
2514 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2515 printk(KERN_ERR "rejected SRP_LOGIN_REQ because no memory.\n");
2516 ret = -ENOMEM;
2517 goto reject;
2520 INIT_WORK(&ch->release_work, srpt_release_channel_work);
2521 memcpy(ch->i_port_id, req->initiator_port_id, 16);
2522 memcpy(ch->t_port_id, req->target_port_id, 16);
2523 ch->sport = &sdev->port[param->port - 1];
2524 ch->cm_id = cm_id;
2526 * Avoid QUEUE_FULL conditions by limiting the number of buffers used
2527 * for the SRP protocol to the command queue size.
2529 ch->rq_size = SRPT_RQ_SIZE;
2530 spin_lock_init(&ch->spinlock);
2531 ch->state = CH_CONNECTING;
2532 INIT_LIST_HEAD(&ch->cmd_wait_list);
2533 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2535 ch->ioctx_ring = (struct srpt_send_ioctx **)
2536 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2537 sizeof(*ch->ioctx_ring[0]),
2538 ch->rsp_size, DMA_TO_DEVICE);
2539 if (!ch->ioctx_ring)
2540 goto free_ch;
2542 INIT_LIST_HEAD(&ch->free_list);
2543 for (i = 0; i < ch->rq_size; i++) {
2544 ch->ioctx_ring[i]->ch = ch;
2545 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2548 ret = srpt_create_ch_ib(ch);
2549 if (ret) {
2550 rej->reason = __constant_cpu_to_be32(
2551 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2552 printk(KERN_ERR "rejected SRP_LOGIN_REQ because creating"
2553 " a new RDMA channel failed.\n");
2554 goto free_ring;
2557 ret = srpt_ch_qp_rtr(ch, ch->qp);
2558 if (ret) {
2559 rej->reason = __constant_cpu_to_be32(
2560 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2561 printk(KERN_ERR "rejected SRP_LOGIN_REQ because enabling"
2562 " RTR failed (error code = %d)\n", ret);
2563 goto destroy_ib;
2566 * Use the initator port identifier as the session name.
2568 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
2569 be64_to_cpu(*(__be64 *)ch->i_port_id),
2570 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
2572 pr_debug("registering session %s\n", ch->sess_name);
2574 nacl = srpt_lookup_acl(sport, ch->i_port_id);
2575 if (!nacl) {
2576 printk(KERN_INFO "Rejected login because no ACL has been"
2577 " configured yet for initiator %s.\n", ch->sess_name);
2578 rej->reason = __constant_cpu_to_be32(
2579 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2580 goto destroy_ib;
2583 ch->sess = transport_init_session();
2584 if (IS_ERR(ch->sess)) {
2585 rej->reason = __constant_cpu_to_be32(
2586 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2587 pr_debug("Failed to create session\n");
2588 goto deregister_session;
2590 ch->sess->se_node_acl = &nacl->nacl;
2591 transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch);
2593 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2594 ch->sess_name, ch->cm_id);
2596 /* create srp_login_response */
2597 rsp->opcode = SRP_LOGIN_RSP;
2598 rsp->tag = req->tag;
2599 rsp->max_it_iu_len = req->req_it_iu_len;
2600 rsp->max_ti_iu_len = req->req_it_iu_len;
2601 ch->max_ti_iu_len = it_iu_len;
2602 rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2603 | SRP_BUF_FORMAT_INDIRECT);
2604 rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2605 atomic_set(&ch->req_lim, ch->rq_size);
2606 atomic_set(&ch->req_lim_delta, 0);
2608 /* create cm reply */
2609 rep_param->qp_num = ch->qp->qp_num;
2610 rep_param->private_data = (void *)rsp;
2611 rep_param->private_data_len = sizeof *rsp;
2612 rep_param->rnr_retry_count = 7;
2613 rep_param->flow_control = 1;
2614 rep_param->failover_accepted = 0;
2615 rep_param->srq = 1;
2616 rep_param->responder_resources = 4;
2617 rep_param->initiator_depth = 4;
2619 ret = ib_send_cm_rep(cm_id, rep_param);
2620 if (ret) {
2621 printk(KERN_ERR "sending SRP_LOGIN_REQ response failed"
2622 " (error code = %d)\n", ret);
2623 goto release_channel;
2626 spin_lock_irq(&sdev->spinlock);
2627 list_add_tail(&ch->list, &sdev->rch_list);
2628 spin_unlock_irq(&sdev->spinlock);
2630 goto out;
2632 release_channel:
2633 srpt_set_ch_state(ch, CH_RELEASING);
2634 transport_deregister_session_configfs(ch->sess);
2636 deregister_session:
2637 transport_deregister_session(ch->sess);
2638 ch->sess = NULL;
2640 destroy_ib:
2641 srpt_destroy_ch_ib(ch);
2643 free_ring:
2644 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2645 ch->sport->sdev, ch->rq_size,
2646 ch->rsp_size, DMA_TO_DEVICE);
2647 free_ch:
2648 kfree(ch);
2650 reject:
2651 rej->opcode = SRP_LOGIN_REJ;
2652 rej->tag = req->tag;
2653 rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2654 | SRP_BUF_FORMAT_INDIRECT);
2656 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2657 (void *)rej, sizeof *rej);
2659 out:
2660 kfree(rep_param);
2661 kfree(rsp);
2662 kfree(rej);
2664 return ret;
2667 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id)
2669 printk(KERN_INFO "Received IB REJ for cm_id %p.\n", cm_id);
2670 srpt_drain_channel(cm_id);
2674 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2676 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2677 * and that the recipient may begin transmitting (RTU = ready to use).
2679 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id)
2681 struct srpt_rdma_ch *ch;
2682 int ret;
2684 ch = srpt_find_channel(cm_id->context, cm_id);
2685 BUG_ON(!ch);
2687 if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) {
2688 struct srpt_recv_ioctx *ioctx, *ioctx_tmp;
2690 ret = srpt_ch_qp_rts(ch, ch->qp);
2692 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
2693 wait_list) {
2694 list_del(&ioctx->wait_list);
2695 srpt_handle_new_iu(ch, ioctx, NULL);
2697 if (ret)
2698 srpt_close_ch(ch);
2702 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id)
2704 printk(KERN_INFO "Received IB TimeWait exit for cm_id %p.\n", cm_id);
2705 srpt_drain_channel(cm_id);
2708 static void srpt_cm_rep_error(struct ib_cm_id *cm_id)
2710 printk(KERN_INFO "Received IB REP error for cm_id %p.\n", cm_id);
2711 srpt_drain_channel(cm_id);
2715 * srpt_cm_dreq_recv() - Process reception of a DREQ message.
2717 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id)
2719 struct srpt_rdma_ch *ch;
2720 unsigned long flags;
2721 bool send_drep = false;
2723 ch = srpt_find_channel(cm_id->context, cm_id);
2724 BUG_ON(!ch);
2726 pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch));
2728 spin_lock_irqsave(&ch->spinlock, flags);
2729 switch (ch->state) {
2730 case CH_CONNECTING:
2731 case CH_LIVE:
2732 send_drep = true;
2733 ch->state = CH_DISCONNECTING;
2734 break;
2735 case CH_DISCONNECTING:
2736 case CH_DRAINING:
2737 case CH_RELEASING:
2738 WARN(true, "unexpected channel state %d\n", ch->state);
2739 break;
2741 spin_unlock_irqrestore(&ch->spinlock, flags);
2743 if (send_drep) {
2744 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0)
2745 printk(KERN_ERR "Sending IB DREP failed.\n");
2746 printk(KERN_INFO "Received DREQ and sent DREP for session %s.\n",
2747 ch->sess_name);
2752 * srpt_cm_drep_recv() - Process reception of a DREP message.
2754 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id)
2756 printk(KERN_INFO "Received InfiniBand DREP message for cm_id %p.\n",
2757 cm_id);
2758 srpt_drain_channel(cm_id);
2762 * srpt_cm_handler() - IB connection manager callback function.
2764 * A non-zero return value will cause the caller destroy the CM ID.
2766 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2767 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2768 * a non-zero value in any other case will trigger a race with the
2769 * ib_destroy_cm_id() call in srpt_release_channel().
2771 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2773 int ret;
2775 ret = 0;
2776 switch (event->event) {
2777 case IB_CM_REQ_RECEIVED:
2778 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2779 event->private_data);
2780 break;
2781 case IB_CM_REJ_RECEIVED:
2782 srpt_cm_rej_recv(cm_id);
2783 break;
2784 case IB_CM_RTU_RECEIVED:
2785 case IB_CM_USER_ESTABLISHED:
2786 srpt_cm_rtu_recv(cm_id);
2787 break;
2788 case IB_CM_DREQ_RECEIVED:
2789 srpt_cm_dreq_recv(cm_id);
2790 break;
2791 case IB_CM_DREP_RECEIVED:
2792 srpt_cm_drep_recv(cm_id);
2793 break;
2794 case IB_CM_TIMEWAIT_EXIT:
2795 srpt_cm_timewait_exit(cm_id);
2796 break;
2797 case IB_CM_REP_ERROR:
2798 srpt_cm_rep_error(cm_id);
2799 break;
2800 case IB_CM_DREQ_ERROR:
2801 printk(KERN_INFO "Received IB DREQ ERROR event.\n");
2802 break;
2803 case IB_CM_MRA_RECEIVED:
2804 printk(KERN_INFO "Received IB MRA event\n");
2805 break;
2806 default:
2807 printk(KERN_ERR "received unrecognized IB CM event %d\n",
2808 event->event);
2809 break;
2812 return ret;
2816 * srpt_perform_rdmas() - Perform IB RDMA.
2818 * Returns zero upon success or a negative number upon failure.
2820 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
2821 struct srpt_send_ioctx *ioctx)
2823 struct ib_send_wr wr;
2824 struct ib_send_wr *bad_wr;
2825 struct rdma_iu *riu;
2826 int i;
2827 int ret;
2828 int sq_wr_avail;
2829 enum dma_data_direction dir;
2830 const int n_rdma = ioctx->n_rdma;
2832 dir = ioctx->cmd.data_direction;
2833 if (dir == DMA_TO_DEVICE) {
2834 /* write */
2835 ret = -ENOMEM;
2836 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
2837 if (sq_wr_avail < 0) {
2838 printk(KERN_WARNING "IB send queue full (needed %d)\n",
2839 n_rdma);
2840 goto out;
2844 ioctx->rdma_aborted = false;
2845 ret = 0;
2846 riu = ioctx->rdma_ius;
2847 memset(&wr, 0, sizeof wr);
2849 for (i = 0; i < n_rdma; ++i, ++riu) {
2850 if (dir == DMA_FROM_DEVICE) {
2851 wr.opcode = IB_WR_RDMA_WRITE;
2852 wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2853 SRPT_RDMA_WRITE_LAST :
2854 SRPT_RDMA_MID,
2855 ioctx->ioctx.index);
2856 } else {
2857 wr.opcode = IB_WR_RDMA_READ;
2858 wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2859 SRPT_RDMA_READ_LAST :
2860 SRPT_RDMA_MID,
2861 ioctx->ioctx.index);
2863 wr.next = NULL;
2864 wr.wr.rdma.remote_addr = riu->raddr;
2865 wr.wr.rdma.rkey = riu->rkey;
2866 wr.num_sge = riu->sge_cnt;
2867 wr.sg_list = riu->sge;
2869 /* only get completion event for the last rdma write */
2870 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE)
2871 wr.send_flags = IB_SEND_SIGNALED;
2873 ret = ib_post_send(ch->qp, &wr, &bad_wr);
2874 if (ret)
2875 break;
2878 if (ret)
2879 printk(KERN_ERR "%s[%d]: ib_post_send() returned %d for %d/%d",
2880 __func__, __LINE__, ret, i, n_rdma);
2881 if (ret && i > 0) {
2882 wr.num_sge = 0;
2883 wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
2884 wr.send_flags = IB_SEND_SIGNALED;
2885 while (ch->state == CH_LIVE &&
2886 ib_post_send(ch->qp, &wr, &bad_wr) != 0) {
2887 printk(KERN_INFO "Trying to abort failed RDMA transfer [%d]",
2888 ioctx->ioctx.index);
2889 msleep(1000);
2891 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) {
2892 printk(KERN_INFO "Waiting until RDMA abort finished [%d]",
2893 ioctx->ioctx.index);
2894 msleep(1000);
2897 out:
2898 if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
2899 atomic_add(n_rdma, &ch->sq_wr_avail);
2900 return ret;
2904 * srpt_xfer_data() - Start data transfer from initiator to target.
2906 static int srpt_xfer_data(struct srpt_rdma_ch *ch,
2907 struct srpt_send_ioctx *ioctx)
2909 int ret;
2911 ret = srpt_map_sg_to_ib_sge(ch, ioctx);
2912 if (ret) {
2913 printk(KERN_ERR "%s[%d] ret=%d\n", __func__, __LINE__, ret);
2914 goto out;
2917 ret = srpt_perform_rdmas(ch, ioctx);
2918 if (ret) {
2919 if (ret == -EAGAIN || ret == -ENOMEM)
2920 printk(KERN_INFO "%s[%d] queue full -- ret=%d\n",
2921 __func__, __LINE__, ret);
2922 else
2923 printk(KERN_ERR "%s[%d] fatal error -- ret=%d\n",
2924 __func__, __LINE__, ret);
2925 goto out_unmap;
2928 out:
2929 return ret;
2930 out_unmap:
2931 srpt_unmap_sg_to_ib_sge(ch, ioctx);
2932 goto out;
2935 static int srpt_write_pending_status(struct se_cmd *se_cmd)
2937 struct srpt_send_ioctx *ioctx;
2939 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2940 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2944 * srpt_write_pending() - Start data transfer from initiator to target (write).
2946 static int srpt_write_pending(struct se_cmd *se_cmd)
2948 struct srpt_rdma_ch *ch;
2949 struct srpt_send_ioctx *ioctx;
2950 enum srpt_command_state new_state;
2951 enum rdma_ch_state ch_state;
2952 int ret;
2954 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2956 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2957 WARN_ON(new_state == SRPT_STATE_DONE);
2959 ch = ioctx->ch;
2960 BUG_ON(!ch);
2962 ch_state = srpt_get_ch_state(ch);
2963 switch (ch_state) {
2964 case CH_CONNECTING:
2965 WARN(true, "unexpected channel state %d\n", ch_state);
2966 ret = -EINVAL;
2967 goto out;
2968 case CH_LIVE:
2969 break;
2970 case CH_DISCONNECTING:
2971 case CH_DRAINING:
2972 case CH_RELEASING:
2973 pr_debug("cmd with tag %lld: channel disconnecting\n",
2974 ioctx->tag);
2975 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2976 ret = -EINVAL;
2977 goto out;
2979 ret = srpt_xfer_data(ch, ioctx);
2981 out:
2982 return ret;
2985 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2987 switch (tcm_mgmt_status) {
2988 case TMR_FUNCTION_COMPLETE:
2989 return SRP_TSK_MGMT_SUCCESS;
2990 case TMR_FUNCTION_REJECTED:
2991 return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2993 return SRP_TSK_MGMT_FAILED;
2997 * srpt_queue_response() - Transmits the response to a SCSI command.
2999 * Callback function called by the TCM core. Must not block since it can be
3000 * invoked on the context of the IB completion handler.
3002 static void srpt_queue_response(struct se_cmd *cmd)
3004 struct srpt_rdma_ch *ch;
3005 struct srpt_send_ioctx *ioctx;
3006 enum srpt_command_state state;
3007 unsigned long flags;
3008 int ret;
3009 enum dma_data_direction dir;
3010 int resp_len;
3011 u8 srp_tm_status;
3013 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3014 ch = ioctx->ch;
3015 BUG_ON(!ch);
3017 spin_lock_irqsave(&ioctx->spinlock, flags);
3018 state = ioctx->state;
3019 switch (state) {
3020 case SRPT_STATE_NEW:
3021 case SRPT_STATE_DATA_IN:
3022 ioctx->state = SRPT_STATE_CMD_RSP_SENT;
3023 break;
3024 case SRPT_STATE_MGMT:
3025 ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
3026 break;
3027 default:
3028 WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
3029 ch, ioctx->ioctx.index, ioctx->state);
3030 break;
3032 spin_unlock_irqrestore(&ioctx->spinlock, flags);
3034 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
3035 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
3036 atomic_inc(&ch->req_lim_delta);
3037 srpt_abort_cmd(ioctx);
3038 return;
3041 dir = ioctx->cmd.data_direction;
3043 /* For read commands, transfer the data to the initiator. */
3044 if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
3045 !ioctx->queue_status_only) {
3046 ret = srpt_xfer_data(ch, ioctx);
3047 if (ret) {
3048 printk(KERN_ERR "xfer_data failed for tag %llu\n",
3049 ioctx->tag);
3050 return;
3054 if (state != SRPT_STATE_MGMT)
3055 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag,
3056 cmd->scsi_status);
3057 else {
3058 srp_tm_status
3059 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
3060 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
3061 ioctx->tag);
3063 ret = srpt_post_send(ch, ioctx, resp_len);
3064 if (ret) {
3065 printk(KERN_ERR "sending cmd response failed for tag %llu\n",
3066 ioctx->tag);
3067 srpt_unmap_sg_to_ib_sge(ch, ioctx);
3068 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
3069 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
3073 static int srpt_queue_data_in(struct se_cmd *cmd)
3075 srpt_queue_response(cmd);
3076 return 0;
3079 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
3081 srpt_queue_response(cmd);
3084 static int srpt_queue_status(struct se_cmd *cmd)
3086 struct srpt_send_ioctx *ioctx;
3088 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3089 BUG_ON(ioctx->sense_data != cmd->sense_buffer);
3090 if (cmd->se_cmd_flags &
3091 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
3092 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
3093 ioctx->queue_status_only = true;
3094 srpt_queue_response(cmd);
3095 return 0;
3098 static void srpt_refresh_port_work(struct work_struct *work)
3100 struct srpt_port *sport = container_of(work, struct srpt_port, work);
3102 srpt_refresh_port(sport);
3105 static int srpt_ch_list_empty(struct srpt_device *sdev)
3107 int res;
3109 spin_lock_irq(&sdev->spinlock);
3110 res = list_empty(&sdev->rch_list);
3111 spin_unlock_irq(&sdev->spinlock);
3113 return res;
3117 * srpt_release_sdev() - Free the channel resources associated with a target.
3119 static int srpt_release_sdev(struct srpt_device *sdev)
3121 struct srpt_rdma_ch *ch, *tmp_ch;
3122 int res;
3124 WARN_ON_ONCE(irqs_disabled());
3126 BUG_ON(!sdev);
3128 spin_lock_irq(&sdev->spinlock);
3129 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list)
3130 __srpt_close_ch(ch);
3131 spin_unlock_irq(&sdev->spinlock);
3133 res = wait_event_interruptible(sdev->ch_releaseQ,
3134 srpt_ch_list_empty(sdev));
3135 if (res)
3136 printk(KERN_ERR "%s: interrupted.\n", __func__);
3138 return 0;
3141 static struct srpt_port *__srpt_lookup_port(const char *name)
3143 struct ib_device *dev;
3144 struct srpt_device *sdev;
3145 struct srpt_port *sport;
3146 int i;
3148 list_for_each_entry(sdev, &srpt_dev_list, list) {
3149 dev = sdev->device;
3150 if (!dev)
3151 continue;
3153 for (i = 0; i < dev->phys_port_cnt; i++) {
3154 sport = &sdev->port[i];
3156 if (!strcmp(sport->port_guid, name))
3157 return sport;
3161 return NULL;
3164 static struct srpt_port *srpt_lookup_port(const char *name)
3166 struct srpt_port *sport;
3168 spin_lock(&srpt_dev_lock);
3169 sport = __srpt_lookup_port(name);
3170 spin_unlock(&srpt_dev_lock);
3172 return sport;
3176 * srpt_add_one() - Infiniband device addition callback function.
3178 static void srpt_add_one(struct ib_device *device)
3180 struct srpt_device *sdev;
3181 struct srpt_port *sport;
3182 struct ib_srq_init_attr srq_attr;
3183 int i;
3185 pr_debug("device = %p, device->dma_ops = %p\n", device,
3186 device->dma_ops);
3188 sdev = kzalloc(sizeof *sdev, GFP_KERNEL);
3189 if (!sdev)
3190 goto err;
3192 sdev->device = device;
3193 INIT_LIST_HEAD(&sdev->rch_list);
3194 init_waitqueue_head(&sdev->ch_releaseQ);
3195 spin_lock_init(&sdev->spinlock);
3197 if (ib_query_device(device, &sdev->dev_attr))
3198 goto free_dev;
3200 sdev->pd = ib_alloc_pd(device);
3201 if (IS_ERR(sdev->pd))
3202 goto free_dev;
3204 sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE);
3205 if (IS_ERR(sdev->mr))
3206 goto err_pd;
3208 sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr);
3210 srq_attr.event_handler = srpt_srq_event;
3211 srq_attr.srq_context = (void *)sdev;
3212 srq_attr.attr.max_wr = sdev->srq_size;
3213 srq_attr.attr.max_sge = 1;
3214 srq_attr.attr.srq_limit = 0;
3215 srq_attr.srq_type = IB_SRQT_BASIC;
3217 sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
3218 if (IS_ERR(sdev->srq))
3219 goto err_mr;
3221 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
3222 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr,
3223 device->name);
3225 if (!srpt_service_guid)
3226 srpt_service_guid = be64_to_cpu(device->node_guid);
3228 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3229 if (IS_ERR(sdev->cm_id))
3230 goto err_srq;
3232 /* print out target login information */
3233 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3234 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3235 srpt_service_guid, srpt_service_guid);
3238 * We do not have a consistent service_id (ie. also id_ext of target_id)
3239 * to identify this target. We currently use the guid of the first HCA
3240 * in the system as service_id; therefore, the target_id will change
3241 * if this HCA is gone bad and replaced by different HCA
3243 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL))
3244 goto err_cm;
3246 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3247 srpt_event_handler);
3248 if (ib_register_event_handler(&sdev->event_handler))
3249 goto err_cm;
3251 sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3252 srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3253 sizeof(*sdev->ioctx_ring[0]),
3254 srp_max_req_size, DMA_FROM_DEVICE);
3255 if (!sdev->ioctx_ring)
3256 goto err_event;
3258 for (i = 0; i < sdev->srq_size; ++i)
3259 srpt_post_recv(sdev, sdev->ioctx_ring[i]);
3261 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
3263 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3264 sport = &sdev->port[i - 1];
3265 sport->sdev = sdev;
3266 sport->port = i;
3267 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3268 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3269 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3270 INIT_WORK(&sport->work, srpt_refresh_port_work);
3271 INIT_LIST_HEAD(&sport->port_acl_list);
3272 spin_lock_init(&sport->port_acl_lock);
3274 if (srpt_refresh_port(sport)) {
3275 printk(KERN_ERR "MAD registration failed for %s-%d.\n",
3276 srpt_sdev_name(sdev), i);
3277 goto err_ring;
3279 snprintf(sport->port_guid, sizeof(sport->port_guid),
3280 "0x%016llx%016llx",
3281 be64_to_cpu(sport->gid.global.subnet_prefix),
3282 be64_to_cpu(sport->gid.global.interface_id));
3285 spin_lock(&srpt_dev_lock);
3286 list_add_tail(&sdev->list, &srpt_dev_list);
3287 spin_unlock(&srpt_dev_lock);
3289 out:
3290 ib_set_client_data(device, &srpt_client, sdev);
3291 pr_debug("added %s.\n", device->name);
3292 return;
3294 err_ring:
3295 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3296 sdev->srq_size, srp_max_req_size,
3297 DMA_FROM_DEVICE);
3298 err_event:
3299 ib_unregister_event_handler(&sdev->event_handler);
3300 err_cm:
3301 ib_destroy_cm_id(sdev->cm_id);
3302 err_srq:
3303 ib_destroy_srq(sdev->srq);
3304 err_mr:
3305 ib_dereg_mr(sdev->mr);
3306 err_pd:
3307 ib_dealloc_pd(sdev->pd);
3308 free_dev:
3309 kfree(sdev);
3310 err:
3311 sdev = NULL;
3312 printk(KERN_INFO "%s(%s) failed.\n", __func__, device->name);
3313 goto out;
3317 * srpt_remove_one() - InfiniBand device removal callback function.
3319 static void srpt_remove_one(struct ib_device *device)
3321 struct srpt_device *sdev;
3322 int i;
3324 sdev = ib_get_client_data(device, &srpt_client);
3325 if (!sdev) {
3326 printk(KERN_INFO "%s(%s): nothing to do.\n", __func__,
3327 device->name);
3328 return;
3331 srpt_unregister_mad_agent(sdev);
3333 ib_unregister_event_handler(&sdev->event_handler);
3335 /* Cancel any work queued by the just unregistered IB event handler. */
3336 for (i = 0; i < sdev->device->phys_port_cnt; i++)
3337 cancel_work_sync(&sdev->port[i].work);
3339 ib_destroy_cm_id(sdev->cm_id);
3342 * Unregistering a target must happen after destroying sdev->cm_id
3343 * such that no new SRP_LOGIN_REQ information units can arrive while
3344 * destroying the target.
3346 spin_lock(&srpt_dev_lock);
3347 list_del(&sdev->list);
3348 spin_unlock(&srpt_dev_lock);
3349 srpt_release_sdev(sdev);
3351 ib_destroy_srq(sdev->srq);
3352 ib_dereg_mr(sdev->mr);
3353 ib_dealloc_pd(sdev->pd);
3355 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3356 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
3357 sdev->ioctx_ring = NULL;
3358 kfree(sdev);
3361 static struct ib_client srpt_client = {
3362 .name = DRV_NAME,
3363 .add = srpt_add_one,
3364 .remove = srpt_remove_one
3367 static int srpt_check_true(struct se_portal_group *se_tpg)
3369 return 1;
3372 static int srpt_check_false(struct se_portal_group *se_tpg)
3374 return 0;
3377 static char *srpt_get_fabric_name(void)
3379 return "srpt";
3382 static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg)
3384 return SCSI_TRANSPORTID_PROTOCOLID_SRP;
3387 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3389 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3391 return sport->port_guid;
3394 static u16 srpt_get_tag(struct se_portal_group *tpg)
3396 return 1;
3399 static u32 srpt_get_default_depth(struct se_portal_group *se_tpg)
3401 return 1;
3404 static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg,
3405 struct se_node_acl *se_nacl,
3406 struct t10_pr_registration *pr_reg,
3407 int *format_code, unsigned char *buf)
3409 struct srpt_node_acl *nacl;
3410 struct spc_rdma_transport_id *tr_id;
3412 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3413 tr_id = (void *)buf;
3414 tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP;
3415 memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id));
3416 return sizeof(*tr_id);
3419 static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg,
3420 struct se_node_acl *se_nacl,
3421 struct t10_pr_registration *pr_reg,
3422 int *format_code)
3424 *format_code = 0;
3425 return sizeof(struct spc_rdma_transport_id);
3428 static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg,
3429 const char *buf, u32 *out_tid_len,
3430 char **port_nexus_ptr)
3432 struct spc_rdma_transport_id *tr_id;
3434 *port_nexus_ptr = NULL;
3435 *out_tid_len = sizeof(struct spc_rdma_transport_id);
3436 tr_id = (void *)buf;
3437 return (char *)tr_id->i_port_id;
3440 static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg)
3442 struct srpt_node_acl *nacl;
3444 nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL);
3445 if (!nacl) {
3446 printk(KERN_ERR "Unable to allocate struct srpt_node_acl\n");
3447 return NULL;
3450 return &nacl->nacl;
3453 static void srpt_release_fabric_acl(struct se_portal_group *se_tpg,
3454 struct se_node_acl *se_nacl)
3456 struct srpt_node_acl *nacl;
3458 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3459 kfree(nacl);
3462 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3464 return 1;
3467 static void srpt_release_cmd(struct se_cmd *se_cmd)
3469 struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3470 struct srpt_send_ioctx, cmd);
3471 struct srpt_rdma_ch *ch = ioctx->ch;
3472 unsigned long flags;
3474 WARN_ON(ioctx->state != SRPT_STATE_DONE);
3475 WARN_ON(ioctx->mapped_sg_count != 0);
3477 if (ioctx->n_rbuf > 1) {
3478 kfree(ioctx->rbufs);
3479 ioctx->rbufs = NULL;
3480 ioctx->n_rbuf = 0;
3483 spin_lock_irqsave(&ch->spinlock, flags);
3484 list_add(&ioctx->free_list, &ch->free_list);
3485 spin_unlock_irqrestore(&ch->spinlock, flags);
3489 * srpt_close_session() - Forcibly close a session.
3491 * Callback function invoked by the TCM core to clean up sessions associated
3492 * with a node ACL when the user invokes
3493 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3495 static void srpt_close_session(struct se_session *se_sess)
3497 DECLARE_COMPLETION_ONSTACK(release_done);
3498 struct srpt_rdma_ch *ch;
3499 struct srpt_device *sdev;
3500 int res;
3502 ch = se_sess->fabric_sess_ptr;
3503 WARN_ON(ch->sess != se_sess);
3505 pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch));
3507 sdev = ch->sport->sdev;
3508 spin_lock_irq(&sdev->spinlock);
3509 BUG_ON(ch->release_done);
3510 ch->release_done = &release_done;
3511 __srpt_close_ch(ch);
3512 spin_unlock_irq(&sdev->spinlock);
3514 res = wait_for_completion_timeout(&release_done, 60 * HZ);
3515 WARN_ON(res <= 0);
3519 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
3521 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3522 * This object represents an arbitrary integer used to uniquely identify a
3523 * particular attached remote initiator port to a particular SCSI target port
3524 * within a particular SCSI target device within a particular SCSI instance.
3526 static u32 srpt_sess_get_index(struct se_session *se_sess)
3528 return 0;
3531 static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3535 static u32 srpt_get_task_tag(struct se_cmd *se_cmd)
3537 struct srpt_send_ioctx *ioctx;
3539 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3540 return ioctx->tag;
3543 /* Note: only used from inside debug printk's by the TCM core. */
3544 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3546 struct srpt_send_ioctx *ioctx;
3548 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3549 return srpt_get_cmd_state(ioctx);
3553 * srpt_parse_i_port_id() - Parse an initiator port ID.
3554 * @name: ASCII representation of a 128-bit initiator port ID.
3555 * @i_port_id: Binary 128-bit port ID.
3557 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3559 const char *p;
3560 unsigned len, count, leading_zero_bytes;
3561 int ret, rc;
3563 p = name;
3564 if (strnicmp(p, "0x", 2) == 0)
3565 p += 2;
3566 ret = -EINVAL;
3567 len = strlen(p);
3568 if (len % 2)
3569 goto out;
3570 count = min(len / 2, 16U);
3571 leading_zero_bytes = 16 - count;
3572 memset(i_port_id, 0, leading_zero_bytes);
3573 rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
3574 if (rc < 0)
3575 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
3576 ret = 0;
3577 out:
3578 return ret;
3582 * configfs callback function invoked for
3583 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3585 static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg,
3586 struct config_group *group,
3587 const char *name)
3589 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3590 struct se_node_acl *se_nacl, *se_nacl_new;
3591 struct srpt_node_acl *nacl;
3592 int ret = 0;
3593 u32 nexus_depth = 1;
3594 u8 i_port_id[16];
3596 if (srpt_parse_i_port_id(i_port_id, name) < 0) {
3597 printk(KERN_ERR "invalid initiator port ID %s\n", name);
3598 ret = -EINVAL;
3599 goto err;
3602 se_nacl_new = srpt_alloc_fabric_acl(tpg);
3603 if (!se_nacl_new) {
3604 ret = -ENOMEM;
3605 goto err;
3608 * nacl_new may be released by core_tpg_add_initiator_node_acl()
3609 * when converting a node ACL from demo mode to explict
3611 se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name,
3612 nexus_depth);
3613 if (IS_ERR(se_nacl)) {
3614 ret = PTR_ERR(se_nacl);
3615 goto err;
3617 /* Locate our struct srpt_node_acl and set sdev and i_port_id. */
3618 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3619 memcpy(&nacl->i_port_id[0], &i_port_id[0], 16);
3620 nacl->sport = sport;
3622 spin_lock_irq(&sport->port_acl_lock);
3623 list_add_tail(&nacl->list, &sport->port_acl_list);
3624 spin_unlock_irq(&sport->port_acl_lock);
3626 return se_nacl;
3627 err:
3628 return ERR_PTR(ret);
3632 * configfs callback function invoked for
3633 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3635 static void srpt_drop_nodeacl(struct se_node_acl *se_nacl)
3637 struct srpt_node_acl *nacl;
3638 struct srpt_device *sdev;
3639 struct srpt_port *sport;
3641 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3642 sport = nacl->sport;
3643 sdev = sport->sdev;
3644 spin_lock_irq(&sport->port_acl_lock);
3645 list_del(&nacl->list);
3646 spin_unlock_irq(&sport->port_acl_lock);
3647 core_tpg_del_initiator_node_acl(&sport->port_tpg_1, se_nacl, 1);
3648 srpt_release_fabric_acl(NULL, se_nacl);
3651 static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size(
3652 struct se_portal_group *se_tpg,
3653 char *page)
3655 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3657 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3660 static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size(
3661 struct se_portal_group *se_tpg,
3662 const char *page,
3663 size_t count)
3665 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3666 unsigned long val;
3667 int ret;
3669 ret = kstrtoul(page, 0, &val);
3670 if (ret < 0) {
3671 pr_err("kstrtoul() failed with ret: %d\n", ret);
3672 return -EINVAL;
3674 if (val > MAX_SRPT_RDMA_SIZE) {
3675 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3676 MAX_SRPT_RDMA_SIZE);
3677 return -EINVAL;
3679 if (val < DEFAULT_MAX_RDMA_SIZE) {
3680 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3681 val, DEFAULT_MAX_RDMA_SIZE);
3682 return -EINVAL;
3684 sport->port_attrib.srp_max_rdma_size = val;
3686 return count;
3689 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR);
3691 static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size(
3692 struct se_portal_group *se_tpg,
3693 char *page)
3695 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3697 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3700 static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size(
3701 struct se_portal_group *se_tpg,
3702 const char *page,
3703 size_t count)
3705 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3706 unsigned long val;
3707 int ret;
3709 ret = kstrtoul(page, 0, &val);
3710 if (ret < 0) {
3711 pr_err("kstrtoul() failed with ret: %d\n", ret);
3712 return -EINVAL;
3714 if (val > MAX_SRPT_RSP_SIZE) {
3715 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3716 MAX_SRPT_RSP_SIZE);
3717 return -EINVAL;
3719 if (val < MIN_MAX_RSP_SIZE) {
3720 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3721 MIN_MAX_RSP_SIZE);
3722 return -EINVAL;
3724 sport->port_attrib.srp_max_rsp_size = val;
3726 return count;
3729 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR);
3731 static ssize_t srpt_tpg_attrib_show_srp_sq_size(
3732 struct se_portal_group *se_tpg,
3733 char *page)
3735 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3737 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3740 static ssize_t srpt_tpg_attrib_store_srp_sq_size(
3741 struct se_portal_group *se_tpg,
3742 const char *page,
3743 size_t count)
3745 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3746 unsigned long val;
3747 int ret;
3749 ret = kstrtoul(page, 0, &val);
3750 if (ret < 0) {
3751 pr_err("kstrtoul() failed with ret: %d\n", ret);
3752 return -EINVAL;
3754 if (val > MAX_SRPT_SRQ_SIZE) {
3755 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3756 MAX_SRPT_SRQ_SIZE);
3757 return -EINVAL;
3759 if (val < MIN_SRPT_SRQ_SIZE) {
3760 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3761 MIN_SRPT_SRQ_SIZE);
3762 return -EINVAL;
3764 sport->port_attrib.srp_sq_size = val;
3766 return count;
3769 TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR);
3771 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3772 &srpt_tpg_attrib_srp_max_rdma_size.attr,
3773 &srpt_tpg_attrib_srp_max_rsp_size.attr,
3774 &srpt_tpg_attrib_srp_sq_size.attr,
3775 NULL,
3778 static ssize_t srpt_tpg_show_enable(
3779 struct se_portal_group *se_tpg,
3780 char *page)
3782 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3784 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3787 static ssize_t srpt_tpg_store_enable(
3788 struct se_portal_group *se_tpg,
3789 const char *page,
3790 size_t count)
3792 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3793 unsigned long tmp;
3794 int ret;
3796 ret = kstrtoul(page, 0, &tmp);
3797 if (ret < 0) {
3798 printk(KERN_ERR "Unable to extract srpt_tpg_store_enable\n");
3799 return -EINVAL;
3802 if ((tmp != 0) && (tmp != 1)) {
3803 printk(KERN_ERR "Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3804 return -EINVAL;
3806 if (tmp == 1)
3807 sport->enabled = true;
3808 else
3809 sport->enabled = false;
3811 return count;
3814 TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR);
3816 static struct configfs_attribute *srpt_tpg_attrs[] = {
3817 &srpt_tpg_enable.attr,
3818 NULL,
3822 * configfs callback invoked for
3823 * mkdir /sys/kernel/config/target/$driver/$port/$tpg
3825 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3826 struct config_group *group,
3827 const char *name)
3829 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3830 int res;
3832 /* Initialize sport->port_wwn and sport->port_tpg_1 */
3833 res = core_tpg_register(&srpt_target->tf_ops, &sport->port_wwn,
3834 &sport->port_tpg_1, sport, TRANSPORT_TPG_TYPE_NORMAL);
3835 if (res)
3836 return ERR_PTR(res);
3838 return &sport->port_tpg_1;
3842 * configfs callback invoked for
3843 * rmdir /sys/kernel/config/target/$driver/$port/$tpg
3845 static void srpt_drop_tpg(struct se_portal_group *tpg)
3847 struct srpt_port *sport = container_of(tpg,
3848 struct srpt_port, port_tpg_1);
3850 sport->enabled = false;
3851 core_tpg_deregister(&sport->port_tpg_1);
3855 * configfs callback invoked for
3856 * mkdir /sys/kernel/config/target/$driver/$port
3858 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3859 struct config_group *group,
3860 const char *name)
3862 struct srpt_port *sport;
3863 int ret;
3865 sport = srpt_lookup_port(name);
3866 pr_debug("make_tport(%s)\n", name);
3867 ret = -EINVAL;
3868 if (!sport)
3869 goto err;
3871 return &sport->port_wwn;
3873 err:
3874 return ERR_PTR(ret);
3878 * configfs callback invoked for
3879 * rmdir /sys/kernel/config/target/$driver/$port
3881 static void srpt_drop_tport(struct se_wwn *wwn)
3883 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3885 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
3888 static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf,
3889 char *buf)
3891 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3894 TF_WWN_ATTR_RO(srpt, version);
3896 static struct configfs_attribute *srpt_wwn_attrs[] = {
3897 &srpt_wwn_version.attr,
3898 NULL,
3901 static struct target_core_fabric_ops srpt_template = {
3902 .get_fabric_name = srpt_get_fabric_name,
3903 .get_fabric_proto_ident = srpt_get_fabric_proto_ident,
3904 .tpg_get_wwn = srpt_get_fabric_wwn,
3905 .tpg_get_tag = srpt_get_tag,
3906 .tpg_get_default_depth = srpt_get_default_depth,
3907 .tpg_get_pr_transport_id = srpt_get_pr_transport_id,
3908 .tpg_get_pr_transport_id_len = srpt_get_pr_transport_id_len,
3909 .tpg_parse_pr_out_transport_id = srpt_parse_pr_out_transport_id,
3910 .tpg_check_demo_mode = srpt_check_false,
3911 .tpg_check_demo_mode_cache = srpt_check_true,
3912 .tpg_check_demo_mode_write_protect = srpt_check_true,
3913 .tpg_check_prod_mode_write_protect = srpt_check_false,
3914 .tpg_alloc_fabric_acl = srpt_alloc_fabric_acl,
3915 .tpg_release_fabric_acl = srpt_release_fabric_acl,
3916 .tpg_get_inst_index = srpt_tpg_get_inst_index,
3917 .release_cmd = srpt_release_cmd,
3918 .check_stop_free = srpt_check_stop_free,
3919 .shutdown_session = srpt_shutdown_session,
3920 .close_session = srpt_close_session,
3921 .sess_get_index = srpt_sess_get_index,
3922 .sess_get_initiator_sid = NULL,
3923 .write_pending = srpt_write_pending,
3924 .write_pending_status = srpt_write_pending_status,
3925 .set_default_node_attributes = srpt_set_default_node_attrs,
3926 .get_task_tag = srpt_get_task_tag,
3927 .get_cmd_state = srpt_get_tcm_cmd_state,
3928 .queue_data_in = srpt_queue_data_in,
3929 .queue_status = srpt_queue_status,
3930 .queue_tm_rsp = srpt_queue_tm_rsp,
3932 * Setup function pointers for generic logic in
3933 * target_core_fabric_configfs.c
3935 .fabric_make_wwn = srpt_make_tport,
3936 .fabric_drop_wwn = srpt_drop_tport,
3937 .fabric_make_tpg = srpt_make_tpg,
3938 .fabric_drop_tpg = srpt_drop_tpg,
3939 .fabric_post_link = NULL,
3940 .fabric_pre_unlink = NULL,
3941 .fabric_make_np = NULL,
3942 .fabric_drop_np = NULL,
3943 .fabric_make_nodeacl = srpt_make_nodeacl,
3944 .fabric_drop_nodeacl = srpt_drop_nodeacl,
3948 * srpt_init_module() - Kernel module initialization.
3950 * Note: Since ib_register_client() registers callback functions, and since at
3951 * least one of these callback functions (srpt_add_one()) calls target core
3952 * functions, this driver must be registered with the target core before
3953 * ib_register_client() is called.
3955 static int __init srpt_init_module(void)
3957 int ret;
3959 ret = -EINVAL;
3960 if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3961 printk(KERN_ERR "invalid value %d for kernel module parameter"
3962 " srp_max_req_size -- must be at least %d.\n",
3963 srp_max_req_size, MIN_MAX_REQ_SIZE);
3964 goto out;
3967 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3968 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3969 printk(KERN_ERR "invalid value %d for kernel module parameter"
3970 " srpt_srq_size -- must be in the range [%d..%d].\n",
3971 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3972 goto out;
3975 srpt_target = target_fabric_configfs_init(THIS_MODULE, "srpt");
3976 if (IS_ERR(srpt_target)) {
3977 printk(KERN_ERR "couldn't register\n");
3978 ret = PTR_ERR(srpt_target);
3979 goto out;
3982 srpt_target->tf_ops = srpt_template;
3985 * Set up default attribute lists.
3987 srpt_target->tf_cit_tmpl.tfc_wwn_cit.ct_attrs = srpt_wwn_attrs;
3988 srpt_target->tf_cit_tmpl.tfc_tpg_base_cit.ct_attrs = srpt_tpg_attrs;
3989 srpt_target->tf_cit_tmpl.tfc_tpg_attrib_cit.ct_attrs = srpt_tpg_attrib_attrs;
3990 srpt_target->tf_cit_tmpl.tfc_tpg_param_cit.ct_attrs = NULL;
3991 srpt_target->tf_cit_tmpl.tfc_tpg_np_base_cit.ct_attrs = NULL;
3992 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_base_cit.ct_attrs = NULL;
3993 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_attrib_cit.ct_attrs = NULL;
3994 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_auth_cit.ct_attrs = NULL;
3995 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_param_cit.ct_attrs = NULL;
3997 ret = target_fabric_configfs_register(srpt_target);
3998 if (ret < 0) {
3999 printk(KERN_ERR "couldn't register\n");
4000 goto out_free_target;
4003 ret = ib_register_client(&srpt_client);
4004 if (ret) {
4005 printk(KERN_ERR "couldn't register IB client\n");
4006 goto out_unregister_target;
4009 return 0;
4011 out_unregister_target:
4012 target_fabric_configfs_deregister(srpt_target);
4013 srpt_target = NULL;
4014 out_free_target:
4015 if (srpt_target)
4016 target_fabric_configfs_free(srpt_target);
4017 out:
4018 return ret;
4021 static void __exit srpt_cleanup_module(void)
4023 ib_unregister_client(&srpt_client);
4024 target_fabric_configfs_deregister(srpt_target);
4025 srpt_target = NULL;
4028 module_init(srpt_init_module);
4029 module_exit(srpt_cleanup_module);