2 * IOMMU API for ARM architected SMMU implementations.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 * Copyright (C) 2013 ARM Limited
19 * Author: Will Deacon <will.deacon@arm.com>
21 * This driver currently supports:
22 * - SMMUv1 and v2 implementations
23 * - Stream-matching and stream-indexing
24 * - v7/v8 long-descriptor format
25 * - Non-secure access to the SMMU
26 * - 4k and 64k pages, with contiguous pte hints.
27 * - Up to 42-bit addressing (dependent on VA_BITS)
28 * - Context fault reporting
31 #define pr_fmt(fmt) "arm-smmu: " fmt
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/err.h>
36 #include <linux/interrupt.h>
38 #include <linux/iommu.h>
40 #include <linux/module.h>
42 #include <linux/platform_device.h>
43 #include <linux/slab.h>
44 #include <linux/spinlock.h>
46 #include <linux/amba/bus.h>
48 #include <asm/pgalloc.h>
50 /* Maximum number of stream IDs assigned to a single device */
51 #define MAX_MASTER_STREAMIDS 8
53 /* Maximum number of context banks per SMMU */
54 #define ARM_SMMU_MAX_CBS 128
56 /* Maximum number of mapping groups per SMMU */
57 #define ARM_SMMU_MAX_SMRS 128
59 /* SMMU global address space */
60 #define ARM_SMMU_GR0(smmu) ((smmu)->base)
61 #define ARM_SMMU_GR1(smmu) ((smmu)->base + (smmu)->pagesize)
64 #define ARM_SMMU_PTE_XN (((pteval_t)3) << 53)
65 #define ARM_SMMU_PTE_CONT (((pteval_t)1) << 52)
66 #define ARM_SMMU_PTE_AF (((pteval_t)1) << 10)
67 #define ARM_SMMU_PTE_SH_NS (((pteval_t)0) << 8)
68 #define ARM_SMMU_PTE_SH_OS (((pteval_t)2) << 8)
69 #define ARM_SMMU_PTE_SH_IS (((pteval_t)3) << 8)
70 #define ARM_SMMU_PTE_PAGE (((pteval_t)3) << 0)
72 #if PAGE_SIZE == SZ_4K
73 #define ARM_SMMU_PTE_CONT_ENTRIES 16
74 #elif PAGE_SIZE == SZ_64K
75 #define ARM_SMMU_PTE_CONT_ENTRIES 32
77 #define ARM_SMMU_PTE_CONT_ENTRIES 1
80 #define ARM_SMMU_PTE_CONT_SIZE (PAGE_SIZE * ARM_SMMU_PTE_CONT_ENTRIES)
81 #define ARM_SMMU_PTE_CONT_MASK (~(ARM_SMMU_PTE_CONT_SIZE - 1))
82 #define ARM_SMMU_PTE_HWTABLE_SIZE (PTRS_PER_PTE * sizeof(pte_t))
85 #define ARM_SMMU_PTE_AP_UNPRIV (((pteval_t)1) << 6)
86 #define ARM_SMMU_PTE_AP_RDONLY (((pteval_t)2) << 6)
87 #define ARM_SMMU_PTE_ATTRINDX_SHIFT 2
88 #define ARM_SMMU_PTE_nG (((pteval_t)1) << 11)
91 #define ARM_SMMU_PTE_HAP_FAULT (((pteval_t)0) << 6)
92 #define ARM_SMMU_PTE_HAP_READ (((pteval_t)1) << 6)
93 #define ARM_SMMU_PTE_HAP_WRITE (((pteval_t)2) << 6)
94 #define ARM_SMMU_PTE_MEMATTR_OIWB (((pteval_t)0xf) << 2)
95 #define ARM_SMMU_PTE_MEMATTR_NC (((pteval_t)0x5) << 2)
96 #define ARM_SMMU_PTE_MEMATTR_DEV (((pteval_t)0x1) << 2)
98 /* Configuration registers */
99 #define ARM_SMMU_GR0_sCR0 0x0
100 #define sCR0_CLIENTPD (1 << 0)
101 #define sCR0_GFRE (1 << 1)
102 #define sCR0_GFIE (1 << 2)
103 #define sCR0_GCFGFRE (1 << 4)
104 #define sCR0_GCFGFIE (1 << 5)
105 #define sCR0_USFCFG (1 << 10)
106 #define sCR0_VMIDPNE (1 << 11)
107 #define sCR0_PTM (1 << 12)
108 #define sCR0_FB (1 << 13)
109 #define sCR0_BSU_SHIFT 14
110 #define sCR0_BSU_MASK 0x3
112 /* Identification registers */
113 #define ARM_SMMU_GR0_ID0 0x20
114 #define ARM_SMMU_GR0_ID1 0x24
115 #define ARM_SMMU_GR0_ID2 0x28
116 #define ARM_SMMU_GR0_ID3 0x2c
117 #define ARM_SMMU_GR0_ID4 0x30
118 #define ARM_SMMU_GR0_ID5 0x34
119 #define ARM_SMMU_GR0_ID6 0x38
120 #define ARM_SMMU_GR0_ID7 0x3c
121 #define ARM_SMMU_GR0_sGFSR 0x48
122 #define ARM_SMMU_GR0_sGFSYNR0 0x50
123 #define ARM_SMMU_GR0_sGFSYNR1 0x54
124 #define ARM_SMMU_GR0_sGFSYNR2 0x58
125 #define ARM_SMMU_GR0_PIDR0 0xfe0
126 #define ARM_SMMU_GR0_PIDR1 0xfe4
127 #define ARM_SMMU_GR0_PIDR2 0xfe8
129 #define ID0_S1TS (1 << 30)
130 #define ID0_S2TS (1 << 29)
131 #define ID0_NTS (1 << 28)
132 #define ID0_SMS (1 << 27)
133 #define ID0_PTFS_SHIFT 24
134 #define ID0_PTFS_MASK 0x2
135 #define ID0_PTFS_V8_ONLY 0x2
136 #define ID0_CTTW (1 << 14)
137 #define ID0_NUMIRPT_SHIFT 16
138 #define ID0_NUMIRPT_MASK 0xff
139 #define ID0_NUMSMRG_SHIFT 0
140 #define ID0_NUMSMRG_MASK 0xff
142 #define ID1_PAGESIZE (1 << 31)
143 #define ID1_NUMPAGENDXB_SHIFT 28
144 #define ID1_NUMPAGENDXB_MASK 7
145 #define ID1_NUMS2CB_SHIFT 16
146 #define ID1_NUMS2CB_MASK 0xff
147 #define ID1_NUMCB_SHIFT 0
148 #define ID1_NUMCB_MASK 0xff
150 #define ID2_OAS_SHIFT 4
151 #define ID2_OAS_MASK 0xf
152 #define ID2_IAS_SHIFT 0
153 #define ID2_IAS_MASK 0xf
154 #define ID2_UBS_SHIFT 8
155 #define ID2_UBS_MASK 0xf
156 #define ID2_PTFS_4K (1 << 12)
157 #define ID2_PTFS_16K (1 << 13)
158 #define ID2_PTFS_64K (1 << 14)
160 #define PIDR2_ARCH_SHIFT 4
161 #define PIDR2_ARCH_MASK 0xf
163 /* Global TLB invalidation */
164 #define ARM_SMMU_GR0_STLBIALL 0x60
165 #define ARM_SMMU_GR0_TLBIVMID 0x64
166 #define ARM_SMMU_GR0_TLBIALLNSNH 0x68
167 #define ARM_SMMU_GR0_TLBIALLH 0x6c
168 #define ARM_SMMU_GR0_sTLBGSYNC 0x70
169 #define ARM_SMMU_GR0_sTLBGSTATUS 0x74
170 #define sTLBGSTATUS_GSACTIVE (1 << 0)
171 #define TLB_LOOP_TIMEOUT 1000000 /* 1s! */
173 /* Stream mapping registers */
174 #define ARM_SMMU_GR0_SMR(n) (0x800 + ((n) << 2))
175 #define SMR_VALID (1 << 31)
176 #define SMR_MASK_SHIFT 16
177 #define SMR_MASK_MASK 0x7fff
178 #define SMR_ID_SHIFT 0
179 #define SMR_ID_MASK 0x7fff
181 #define ARM_SMMU_GR0_S2CR(n) (0xc00 + ((n) << 2))
182 #define S2CR_CBNDX_SHIFT 0
183 #define S2CR_CBNDX_MASK 0xff
184 #define S2CR_TYPE_SHIFT 16
185 #define S2CR_TYPE_MASK 0x3
186 #define S2CR_TYPE_TRANS (0 << S2CR_TYPE_SHIFT)
187 #define S2CR_TYPE_BYPASS (1 << S2CR_TYPE_SHIFT)
188 #define S2CR_TYPE_FAULT (2 << S2CR_TYPE_SHIFT)
190 /* Context bank attribute registers */
191 #define ARM_SMMU_GR1_CBAR(n) (0x0 + ((n) << 2))
192 #define CBAR_VMID_SHIFT 0
193 #define CBAR_VMID_MASK 0xff
194 #define CBAR_S1_MEMATTR_SHIFT 12
195 #define CBAR_S1_MEMATTR_MASK 0xf
196 #define CBAR_S1_MEMATTR_WB 0xf
197 #define CBAR_TYPE_SHIFT 16
198 #define CBAR_TYPE_MASK 0x3
199 #define CBAR_TYPE_S2_TRANS (0 << CBAR_TYPE_SHIFT)
200 #define CBAR_TYPE_S1_TRANS_S2_BYPASS (1 << CBAR_TYPE_SHIFT)
201 #define CBAR_TYPE_S1_TRANS_S2_FAULT (2 << CBAR_TYPE_SHIFT)
202 #define CBAR_TYPE_S1_TRANS_S2_TRANS (3 << CBAR_TYPE_SHIFT)
203 #define CBAR_IRPTNDX_SHIFT 24
204 #define CBAR_IRPTNDX_MASK 0xff
206 #define ARM_SMMU_GR1_CBA2R(n) (0x800 + ((n) << 2))
207 #define CBA2R_RW64_32BIT (0 << 0)
208 #define CBA2R_RW64_64BIT (1 << 0)
210 /* Translation context bank */
211 #define ARM_SMMU_CB_BASE(smmu) ((smmu)->base + ((smmu)->size >> 1))
212 #define ARM_SMMU_CB(smmu, n) ((n) * (smmu)->pagesize)
214 #define ARM_SMMU_CB_SCTLR 0x0
215 #define ARM_SMMU_CB_RESUME 0x8
216 #define ARM_SMMU_CB_TTBCR2 0x10
217 #define ARM_SMMU_CB_TTBR0_LO 0x20
218 #define ARM_SMMU_CB_TTBR0_HI 0x24
219 #define ARM_SMMU_CB_TTBCR 0x30
220 #define ARM_SMMU_CB_S1_MAIR0 0x38
221 #define ARM_SMMU_CB_FSR 0x58
222 #define ARM_SMMU_CB_FAR_LO 0x60
223 #define ARM_SMMU_CB_FAR_HI 0x64
224 #define ARM_SMMU_CB_FSYNR0 0x68
225 #define ARM_SMMU_CB_S1_TLBIASID 0x610
227 #define SCTLR_S1_ASIDPNE (1 << 12)
228 #define SCTLR_CFCFG (1 << 7)
229 #define SCTLR_CFIE (1 << 6)
230 #define SCTLR_CFRE (1 << 5)
231 #define SCTLR_E (1 << 4)
232 #define SCTLR_AFE (1 << 2)
233 #define SCTLR_TRE (1 << 1)
234 #define SCTLR_M (1 << 0)
235 #define SCTLR_EAE_SBOP (SCTLR_AFE | SCTLR_TRE)
237 #define RESUME_RETRY (0 << 0)
238 #define RESUME_TERMINATE (1 << 0)
240 #define TTBCR_EAE (1 << 31)
242 #define TTBCR_PASIZE_SHIFT 16
243 #define TTBCR_PASIZE_MASK 0x7
245 #define TTBCR_TG0_4K (0 << 14)
246 #define TTBCR_TG0_64K (1 << 14)
248 #define TTBCR_SH0_SHIFT 12
249 #define TTBCR_SH0_MASK 0x3
250 #define TTBCR_SH_NS 0
251 #define TTBCR_SH_OS 2
252 #define TTBCR_SH_IS 3
254 #define TTBCR_ORGN0_SHIFT 10
255 #define TTBCR_IRGN0_SHIFT 8
256 #define TTBCR_RGN_MASK 0x3
257 #define TTBCR_RGN_NC 0
258 #define TTBCR_RGN_WBWA 1
259 #define TTBCR_RGN_WT 2
260 #define TTBCR_RGN_WB 3
262 #define TTBCR_SL0_SHIFT 6
263 #define TTBCR_SL0_MASK 0x3
264 #define TTBCR_SL0_LVL_2 0
265 #define TTBCR_SL0_LVL_1 1
267 #define TTBCR_T1SZ_SHIFT 16
268 #define TTBCR_T0SZ_SHIFT 0
269 #define TTBCR_SZ_MASK 0xf
271 #define TTBCR2_SEP_SHIFT 15
272 #define TTBCR2_SEP_MASK 0x7
274 #define TTBCR2_PASIZE_SHIFT 0
275 #define TTBCR2_PASIZE_MASK 0x7
277 /* Common definitions for PASize and SEP fields */
278 #define TTBCR2_ADDR_32 0
279 #define TTBCR2_ADDR_36 1
280 #define TTBCR2_ADDR_40 2
281 #define TTBCR2_ADDR_42 3
282 #define TTBCR2_ADDR_44 4
283 #define TTBCR2_ADDR_48 5
285 #define TTBRn_HI_ASID_SHIFT 16
287 #define MAIR_ATTR_SHIFT(n) ((n) << 3)
288 #define MAIR_ATTR_MASK 0xff
289 #define MAIR_ATTR_DEVICE 0x04
290 #define MAIR_ATTR_NC 0x44
291 #define MAIR_ATTR_WBRWA 0xff
292 #define MAIR_ATTR_IDX_NC 0
293 #define MAIR_ATTR_IDX_CACHE 1
294 #define MAIR_ATTR_IDX_DEV 2
296 #define FSR_MULTI (1 << 31)
297 #define FSR_SS (1 << 30)
298 #define FSR_UUT (1 << 8)
299 #define FSR_ASF (1 << 7)
300 #define FSR_TLBLKF (1 << 6)
301 #define FSR_TLBMCF (1 << 5)
302 #define FSR_EF (1 << 4)
303 #define FSR_PF (1 << 3)
304 #define FSR_AFF (1 << 2)
305 #define FSR_TF (1 << 1)
307 #define FSR_IGN (FSR_AFF | FSR_ASF | FSR_TLBMCF | \
309 #define FSR_FAULT (FSR_MULTI | FSR_SS | FSR_UUT | \
310 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
312 #define FSYNR0_WNR (1 << 4)
314 struct arm_smmu_smr
{
320 struct arm_smmu_master
{
321 struct device_node
*of_node
;
324 * The following is specific to the master's position in the
329 u16 streamids
[MAX_MASTER_STREAMIDS
];
332 * We only need to allocate these on the root SMMU, as we
333 * configure unmatched streams to bypass translation.
335 struct arm_smmu_smr
*smrs
;
338 struct arm_smmu_device
{
340 struct device_node
*parent_of_node
;
344 unsigned long pagesize
;
346 #define ARM_SMMU_FEAT_COHERENT_WALK (1 << 0)
347 #define ARM_SMMU_FEAT_STREAM_MATCH (1 << 1)
348 #define ARM_SMMU_FEAT_TRANS_S1 (1 << 2)
349 #define ARM_SMMU_FEAT_TRANS_S2 (1 << 3)
350 #define ARM_SMMU_FEAT_TRANS_NESTED (1 << 4)
354 u32 num_context_banks
;
355 u32 num_s2_context_banks
;
356 DECLARE_BITMAP(context_map
, ARM_SMMU_MAX_CBS
);
359 u32 num_mapping_groups
;
360 DECLARE_BITMAP(smr_map
, ARM_SMMU_MAX_SMRS
);
362 unsigned long input_size
;
363 unsigned long s1_output_size
;
364 unsigned long s2_output_size
;
367 u32 num_context_irqs
;
370 struct list_head list
;
371 struct rb_root masters
;
374 struct arm_smmu_cfg
{
375 struct arm_smmu_device
*smmu
;
381 #define INVALID_IRPTNDX 0xff
383 #define ARM_SMMU_CB_ASID(cfg) ((cfg)->cbndx)
384 #define ARM_SMMU_CB_VMID(cfg) ((cfg)->cbndx + 1)
386 struct arm_smmu_domain
{
388 * A domain can span across multiple, chained SMMUs and requires
389 * all devices within the domain to follow the same translation
392 struct arm_smmu_device
*leaf_smmu
;
393 struct arm_smmu_cfg root_cfg
;
394 phys_addr_t output_mask
;
399 static DEFINE_SPINLOCK(arm_smmu_devices_lock
);
400 static LIST_HEAD(arm_smmu_devices
);
402 static struct arm_smmu_master
*find_smmu_master(struct arm_smmu_device
*smmu
,
403 struct device_node
*dev_node
)
405 struct rb_node
*node
= smmu
->masters
.rb_node
;
408 struct arm_smmu_master
*master
;
409 master
= container_of(node
, struct arm_smmu_master
, node
);
411 if (dev_node
< master
->of_node
)
412 node
= node
->rb_left
;
413 else if (dev_node
> master
->of_node
)
414 node
= node
->rb_right
;
422 static int insert_smmu_master(struct arm_smmu_device
*smmu
,
423 struct arm_smmu_master
*master
)
425 struct rb_node
**new, *parent
;
427 new = &smmu
->masters
.rb_node
;
430 struct arm_smmu_master
*this;
431 this = container_of(*new, struct arm_smmu_master
, node
);
434 if (master
->of_node
< this->of_node
)
435 new = &((*new)->rb_left
);
436 else if (master
->of_node
> this->of_node
)
437 new = &((*new)->rb_right
);
442 rb_link_node(&master
->node
, parent
, new);
443 rb_insert_color(&master
->node
, &smmu
->masters
);
447 static int register_smmu_master(struct arm_smmu_device
*smmu
,
449 struct of_phandle_args
*masterspec
)
452 struct arm_smmu_master
*master
;
454 master
= find_smmu_master(smmu
, masterspec
->np
);
457 "rejecting multiple registrations for master device %s\n",
458 masterspec
->np
->name
);
462 if (masterspec
->args_count
> MAX_MASTER_STREAMIDS
) {
464 "reached maximum number (%d) of stream IDs for master device %s\n",
465 MAX_MASTER_STREAMIDS
, masterspec
->np
->name
);
469 master
= devm_kzalloc(dev
, sizeof(*master
), GFP_KERNEL
);
473 master
->of_node
= masterspec
->np
;
474 master
->num_streamids
= masterspec
->args_count
;
476 for (i
= 0; i
< master
->num_streamids
; ++i
)
477 master
->streamids
[i
] = masterspec
->args
[i
];
479 return insert_smmu_master(smmu
, master
);
482 static struct arm_smmu_device
*find_parent_smmu(struct arm_smmu_device
*smmu
)
484 struct arm_smmu_device
*parent
;
486 if (!smmu
->parent_of_node
)
489 spin_lock(&arm_smmu_devices_lock
);
490 list_for_each_entry(parent
, &arm_smmu_devices
, list
)
491 if (parent
->dev
->of_node
== smmu
->parent_of_node
)
496 "Failed to find SMMU parent despite parent in DT\n");
498 spin_unlock(&arm_smmu_devices_lock
);
502 static int __arm_smmu_alloc_bitmap(unsigned long *map
, int start
, int end
)
507 idx
= find_next_zero_bit(map
, end
, start
);
510 } while (test_and_set_bit(idx
, map
));
515 static void __arm_smmu_free_bitmap(unsigned long *map
, int idx
)
520 /* Wait for any pending TLB invalidations to complete */
521 static void arm_smmu_tlb_sync(struct arm_smmu_device
*smmu
)
524 void __iomem
*gr0_base
= ARM_SMMU_GR0(smmu
);
526 writel_relaxed(0, gr0_base
+ ARM_SMMU_GR0_sTLBGSYNC
);
527 while (readl_relaxed(gr0_base
+ ARM_SMMU_GR0_sTLBGSTATUS
)
528 & sTLBGSTATUS_GSACTIVE
) {
530 if (++count
== TLB_LOOP_TIMEOUT
) {
531 dev_err_ratelimited(smmu
->dev
,
532 "TLB sync timed out -- SMMU may be deadlocked\n");
539 static void arm_smmu_tlb_inv_context(struct arm_smmu_cfg
*cfg
)
541 struct arm_smmu_device
*smmu
= cfg
->smmu
;
542 void __iomem
*base
= ARM_SMMU_GR0(smmu
);
543 bool stage1
= cfg
->cbar
!= CBAR_TYPE_S2_TRANS
;
546 base
= ARM_SMMU_CB_BASE(smmu
) + ARM_SMMU_CB(smmu
, cfg
->cbndx
);
547 writel_relaxed(ARM_SMMU_CB_ASID(cfg
),
548 base
+ ARM_SMMU_CB_S1_TLBIASID
);
550 base
= ARM_SMMU_GR0(smmu
);
551 writel_relaxed(ARM_SMMU_CB_VMID(cfg
),
552 base
+ ARM_SMMU_GR0_TLBIVMID
);
555 arm_smmu_tlb_sync(smmu
);
558 static irqreturn_t
arm_smmu_context_fault(int irq
, void *dev
)
561 u32 fsr
, far
, fsynr
, resume
;
563 struct iommu_domain
*domain
= dev
;
564 struct arm_smmu_domain
*smmu_domain
= domain
->priv
;
565 struct arm_smmu_cfg
*root_cfg
= &smmu_domain
->root_cfg
;
566 struct arm_smmu_device
*smmu
= root_cfg
->smmu
;
567 void __iomem
*cb_base
;
569 cb_base
= ARM_SMMU_CB_BASE(smmu
) + ARM_SMMU_CB(smmu
, root_cfg
->cbndx
);
570 fsr
= readl_relaxed(cb_base
+ ARM_SMMU_CB_FSR
);
572 if (!(fsr
& FSR_FAULT
))
576 dev_err_ratelimited(smmu
->dev
,
577 "Unexpected context fault (fsr 0x%u)\n",
580 fsynr
= readl_relaxed(cb_base
+ ARM_SMMU_CB_FSYNR0
);
581 flags
= fsynr
& FSYNR0_WNR
? IOMMU_FAULT_WRITE
: IOMMU_FAULT_READ
;
583 far
= readl_relaxed(cb_base
+ ARM_SMMU_CB_FAR_LO
);
586 far
= readl_relaxed(cb_base
+ ARM_SMMU_CB_FAR_HI
);
587 iova
|= ((unsigned long)far
<< 32);
590 if (!report_iommu_fault(domain
, smmu
->dev
, iova
, flags
)) {
592 resume
= RESUME_RETRY
;
594 dev_err_ratelimited(smmu
->dev
,
595 "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
596 iova
, fsynr
, root_cfg
->cbndx
);
598 resume
= RESUME_TERMINATE
;
601 /* Clear the faulting FSR */
602 writel(fsr
, cb_base
+ ARM_SMMU_CB_FSR
);
604 /* Retry or terminate any stalled transactions */
606 writel_relaxed(resume
, cb_base
+ ARM_SMMU_CB_RESUME
);
611 static irqreturn_t
arm_smmu_global_fault(int irq
, void *dev
)
613 u32 gfsr
, gfsynr0
, gfsynr1
, gfsynr2
;
614 struct arm_smmu_device
*smmu
= dev
;
615 void __iomem
*gr0_base
= ARM_SMMU_GR0(smmu
);
617 gfsr
= readl_relaxed(gr0_base
+ ARM_SMMU_GR0_sGFSR
);
621 gfsynr0
= readl_relaxed(gr0_base
+ ARM_SMMU_GR0_sGFSYNR0
);
622 gfsynr1
= readl_relaxed(gr0_base
+ ARM_SMMU_GR0_sGFSYNR1
);
623 gfsynr2
= readl_relaxed(gr0_base
+ ARM_SMMU_GR0_sGFSYNR2
);
625 dev_err_ratelimited(smmu
->dev
,
626 "Unexpected global fault, this could be serious\n");
627 dev_err_ratelimited(smmu
->dev
,
628 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
629 gfsr
, gfsynr0
, gfsynr1
, gfsynr2
);
631 writel(gfsr
, gr0_base
+ ARM_SMMU_GR0_sGFSR
);
635 static void arm_smmu_init_context_bank(struct arm_smmu_domain
*smmu_domain
)
639 struct arm_smmu_cfg
*root_cfg
= &smmu_domain
->root_cfg
;
640 struct arm_smmu_device
*smmu
= root_cfg
->smmu
;
641 void __iomem
*cb_base
, *gr0_base
, *gr1_base
;
643 gr0_base
= ARM_SMMU_GR0(smmu
);
644 gr1_base
= ARM_SMMU_GR1(smmu
);
645 stage1
= root_cfg
->cbar
!= CBAR_TYPE_S2_TRANS
;
646 cb_base
= ARM_SMMU_CB_BASE(smmu
) + ARM_SMMU_CB(smmu
, root_cfg
->cbndx
);
649 reg
= root_cfg
->cbar
;
650 if (smmu
->version
== 1)
651 reg
|= root_cfg
->irptndx
<< CBAR_IRPTNDX_SHIFT
;
653 /* Use the weakest memory type, so it is overridden by the pte */
655 reg
|= (CBAR_S1_MEMATTR_WB
<< CBAR_S1_MEMATTR_SHIFT
);
657 reg
|= ARM_SMMU_CB_VMID(root_cfg
) << CBAR_VMID_SHIFT
;
658 writel_relaxed(reg
, gr1_base
+ ARM_SMMU_GR1_CBAR(root_cfg
->cbndx
));
660 if (smmu
->version
> 1) {
663 reg
= CBA2R_RW64_64BIT
;
665 reg
= CBA2R_RW64_32BIT
;
668 gr1_base
+ ARM_SMMU_GR1_CBA2R(root_cfg
->cbndx
));
671 switch (smmu
->input_size
) {
673 reg
= (TTBCR2_ADDR_32
<< TTBCR2_SEP_SHIFT
);
676 reg
= (TTBCR2_ADDR_36
<< TTBCR2_SEP_SHIFT
);
679 reg
= (TTBCR2_ADDR_40
<< TTBCR2_SEP_SHIFT
);
682 reg
= (TTBCR2_ADDR_42
<< TTBCR2_SEP_SHIFT
);
685 reg
= (TTBCR2_ADDR_44
<< TTBCR2_SEP_SHIFT
);
688 reg
= (TTBCR2_ADDR_48
<< TTBCR2_SEP_SHIFT
);
692 switch (smmu
->s1_output_size
) {
694 reg
|= (TTBCR2_ADDR_32
<< TTBCR2_PASIZE_SHIFT
);
697 reg
|= (TTBCR2_ADDR_36
<< TTBCR2_PASIZE_SHIFT
);
700 reg
|= (TTBCR2_ADDR_40
<< TTBCR2_PASIZE_SHIFT
);
703 reg
|= (TTBCR2_ADDR_42
<< TTBCR2_PASIZE_SHIFT
);
706 reg
|= (TTBCR2_ADDR_44
<< TTBCR2_PASIZE_SHIFT
);
709 reg
|= (TTBCR2_ADDR_48
<< TTBCR2_PASIZE_SHIFT
);
714 writel_relaxed(reg
, cb_base
+ ARM_SMMU_CB_TTBCR2
);
718 reg
= __pa(root_cfg
->pgd
);
719 writel_relaxed(reg
, cb_base
+ ARM_SMMU_CB_TTBR0_LO
);
720 reg
= (phys_addr_t
)__pa(root_cfg
->pgd
) >> 32;
722 reg
|= ARM_SMMU_CB_ASID(root_cfg
) << TTBRn_HI_ASID_SHIFT
;
723 writel_relaxed(reg
, cb_base
+ ARM_SMMU_CB_TTBR0_HI
);
727 * We use long descriptor, with inner-shareable WBWA tables in TTBR0.
729 if (smmu
->version
> 1) {
730 if (PAGE_SIZE
== SZ_4K
)
736 switch (smmu
->s2_output_size
) {
738 reg
|= (TTBCR2_ADDR_32
<< TTBCR_PASIZE_SHIFT
);
741 reg
|= (TTBCR2_ADDR_36
<< TTBCR_PASIZE_SHIFT
);
744 reg
|= (TTBCR2_ADDR_40
<< TTBCR_PASIZE_SHIFT
);
747 reg
|= (TTBCR2_ADDR_42
<< TTBCR_PASIZE_SHIFT
);
750 reg
|= (TTBCR2_ADDR_44
<< TTBCR_PASIZE_SHIFT
);
753 reg
|= (TTBCR2_ADDR_48
<< TTBCR_PASIZE_SHIFT
);
757 reg
|= (64 - smmu
->s1_output_size
) << TTBCR_T0SZ_SHIFT
;
764 (TTBCR_SH_IS
<< TTBCR_SH0_SHIFT
) |
765 (TTBCR_RGN_WBWA
<< TTBCR_ORGN0_SHIFT
) |
766 (TTBCR_RGN_WBWA
<< TTBCR_IRGN0_SHIFT
) |
767 (TTBCR_SL0_LVL_1
<< TTBCR_SL0_SHIFT
);
768 writel_relaxed(reg
, cb_base
+ ARM_SMMU_CB_TTBCR
);
770 /* MAIR0 (stage-1 only) */
772 reg
= (MAIR_ATTR_NC
<< MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_NC
)) |
773 (MAIR_ATTR_WBRWA
<< MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_CACHE
)) |
774 (MAIR_ATTR_DEVICE
<< MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_DEV
));
775 writel_relaxed(reg
, cb_base
+ ARM_SMMU_CB_S1_MAIR0
);
779 reg
= SCTLR_CFCFG
| SCTLR_CFIE
| SCTLR_CFRE
| SCTLR_M
| SCTLR_EAE_SBOP
;
781 reg
|= SCTLR_S1_ASIDPNE
;
785 writel_relaxed(reg
, cb_base
+ ARM_SMMU_CB_SCTLR
);
788 static int arm_smmu_init_domain_context(struct iommu_domain
*domain
,
792 struct arm_smmu_domain
*smmu_domain
= domain
->priv
;
793 struct arm_smmu_cfg
*root_cfg
= &smmu_domain
->root_cfg
;
794 struct arm_smmu_device
*smmu
, *parent
;
797 * Walk the SMMU chain to find the root device for this chain.
798 * We assume that no masters have translations which terminate
799 * early, and therefore check that the root SMMU does indeed have
800 * a StreamID for the master in question.
802 parent
= dev
->archdata
.iommu
;
803 smmu_domain
->output_mask
= -1;
806 smmu_domain
->output_mask
&= (1ULL << smmu
->s2_output_size
) - 1;
807 } while ((parent
= find_parent_smmu(smmu
)));
809 if (!find_smmu_master(smmu
, dev
->of_node
)) {
810 dev_err(dev
, "unable to find root SMMU for device\n");
814 if (smmu
->features
& ARM_SMMU_FEAT_TRANS_NESTED
) {
816 * We will likely want to change this if/when KVM gets
819 root_cfg
->cbar
= CBAR_TYPE_S1_TRANS_S2_BYPASS
;
820 start
= smmu
->num_s2_context_banks
;
821 } else if (smmu
->features
& ARM_SMMU_FEAT_TRANS_S2
) {
822 root_cfg
->cbar
= CBAR_TYPE_S2_TRANS
;
825 root_cfg
->cbar
= CBAR_TYPE_S1_TRANS_S2_BYPASS
;
826 start
= smmu
->num_s2_context_banks
;
829 ret
= __arm_smmu_alloc_bitmap(smmu
->context_map
, start
,
830 smmu
->num_context_banks
);
831 if (IS_ERR_VALUE(ret
))
834 root_cfg
->cbndx
= ret
;
835 if (smmu
->version
== 1) {
836 root_cfg
->irptndx
= atomic_inc_return(&smmu
->irptndx
);
837 root_cfg
->irptndx
%= smmu
->num_context_irqs
;
839 root_cfg
->irptndx
= root_cfg
->cbndx
;
842 irq
= smmu
->irqs
[smmu
->num_global_irqs
+ root_cfg
->irptndx
];
843 ret
= request_irq(irq
, arm_smmu_context_fault
, IRQF_SHARED
,
844 "arm-smmu-context-fault", domain
);
845 if (IS_ERR_VALUE(ret
)) {
846 dev_err(smmu
->dev
, "failed to request context IRQ %d (%u)\n",
847 root_cfg
->irptndx
, irq
);
848 root_cfg
->irptndx
= INVALID_IRPTNDX
;
849 goto out_free_context
;
852 root_cfg
->smmu
= smmu
;
853 arm_smmu_init_context_bank(smmu_domain
);
857 __arm_smmu_free_bitmap(smmu
->context_map
, root_cfg
->cbndx
);
861 static void arm_smmu_destroy_domain_context(struct iommu_domain
*domain
)
863 struct arm_smmu_domain
*smmu_domain
= domain
->priv
;
864 struct arm_smmu_cfg
*root_cfg
= &smmu_domain
->root_cfg
;
865 struct arm_smmu_device
*smmu
= root_cfg
->smmu
;
866 void __iomem
*cb_base
;
872 /* Disable the context bank and nuke the TLB before freeing it. */
873 cb_base
= ARM_SMMU_CB_BASE(smmu
) + ARM_SMMU_CB(smmu
, root_cfg
->cbndx
);
874 writel_relaxed(0, cb_base
+ ARM_SMMU_CB_SCTLR
);
875 arm_smmu_tlb_inv_context(root_cfg
);
877 if (root_cfg
->irptndx
!= INVALID_IRPTNDX
) {
878 irq
= smmu
->irqs
[smmu
->num_global_irqs
+ root_cfg
->irptndx
];
879 free_irq(irq
, domain
);
882 __arm_smmu_free_bitmap(smmu
->context_map
, root_cfg
->cbndx
);
885 static int arm_smmu_domain_init(struct iommu_domain
*domain
)
887 struct arm_smmu_domain
*smmu_domain
;
891 * Allocate the domain and initialise some of its data structures.
892 * We can't really do anything meaningful until we've added a
895 smmu_domain
= kzalloc(sizeof(*smmu_domain
), GFP_KERNEL
);
899 pgd
= kzalloc(PTRS_PER_PGD
* sizeof(pgd_t
), GFP_KERNEL
);
901 goto out_free_domain
;
902 smmu_domain
->root_cfg
.pgd
= pgd
;
904 mutex_init(&smmu_domain
->lock
);
905 domain
->priv
= smmu_domain
;
913 static void arm_smmu_free_ptes(pmd_t
*pmd
)
915 pgtable_t table
= pmd_pgtable(*pmd
);
916 pgtable_page_dtor(table
);
920 static void arm_smmu_free_pmds(pud_t
*pud
)
923 pmd_t
*pmd
, *pmd_base
= pmd_offset(pud
, 0);
926 for (i
= 0; i
< PTRS_PER_PMD
; ++i
) {
930 arm_smmu_free_ptes(pmd
);
934 pmd_free(NULL
, pmd_base
);
937 static void arm_smmu_free_puds(pgd_t
*pgd
)
940 pud_t
*pud
, *pud_base
= pud_offset(pgd
, 0);
943 for (i
= 0; i
< PTRS_PER_PUD
; ++i
) {
947 arm_smmu_free_pmds(pud
);
951 pud_free(NULL
, pud_base
);
954 static void arm_smmu_free_pgtables(struct arm_smmu_domain
*smmu_domain
)
957 struct arm_smmu_cfg
*root_cfg
= &smmu_domain
->root_cfg
;
958 pgd_t
*pgd
, *pgd_base
= root_cfg
->pgd
;
961 * Recursively free the page tables for this domain. We don't
962 * care about speculative TLB filling, because the TLB will be
963 * nuked next time this context bank is re-allocated and no devices
964 * currently map to these tables.
967 for (i
= 0; i
< PTRS_PER_PGD
; ++i
) {
970 arm_smmu_free_puds(pgd
);
977 static void arm_smmu_domain_destroy(struct iommu_domain
*domain
)
979 struct arm_smmu_domain
*smmu_domain
= domain
->priv
;
982 * Free the domain resources. We assume that all devices have
983 * already been detached.
985 arm_smmu_destroy_domain_context(domain
);
986 arm_smmu_free_pgtables(smmu_domain
);
990 static int arm_smmu_master_configure_smrs(struct arm_smmu_device
*smmu
,
991 struct arm_smmu_master
*master
)
994 struct arm_smmu_smr
*smrs
;
995 void __iomem
*gr0_base
= ARM_SMMU_GR0(smmu
);
997 if (!(smmu
->features
& ARM_SMMU_FEAT_STREAM_MATCH
))
1003 smrs
= kmalloc(sizeof(*smrs
) * master
->num_streamids
, GFP_KERNEL
);
1005 dev_err(smmu
->dev
, "failed to allocate %d SMRs for master %s\n",
1006 master
->num_streamids
, master
->of_node
->name
);
1010 /* Allocate the SMRs on the root SMMU */
1011 for (i
= 0; i
< master
->num_streamids
; ++i
) {
1012 int idx
= __arm_smmu_alloc_bitmap(smmu
->smr_map
, 0,
1013 smmu
->num_mapping_groups
);
1014 if (IS_ERR_VALUE(idx
)) {
1015 dev_err(smmu
->dev
, "failed to allocate free SMR\n");
1019 smrs
[i
] = (struct arm_smmu_smr
) {
1021 .mask
= 0, /* We don't currently share SMRs */
1022 .id
= master
->streamids
[i
],
1026 /* It worked! Now, poke the actual hardware */
1027 for (i
= 0; i
< master
->num_streamids
; ++i
) {
1028 u32 reg
= SMR_VALID
| smrs
[i
].id
<< SMR_ID_SHIFT
|
1029 smrs
[i
].mask
<< SMR_MASK_SHIFT
;
1030 writel_relaxed(reg
, gr0_base
+ ARM_SMMU_GR0_SMR(smrs
[i
].idx
));
1033 master
->smrs
= smrs
;
1038 __arm_smmu_free_bitmap(smmu
->smr_map
, smrs
[i
].idx
);
1043 static void arm_smmu_master_free_smrs(struct arm_smmu_device
*smmu
,
1044 struct arm_smmu_master
*master
)
1047 void __iomem
*gr0_base
= ARM_SMMU_GR0(smmu
);
1048 struct arm_smmu_smr
*smrs
= master
->smrs
;
1050 /* Invalidate the SMRs before freeing back to the allocator */
1051 for (i
= 0; i
< master
->num_streamids
; ++i
) {
1052 u8 idx
= smrs
[i
].idx
;
1053 writel_relaxed(~SMR_VALID
, gr0_base
+ ARM_SMMU_GR0_SMR(idx
));
1054 __arm_smmu_free_bitmap(smmu
->smr_map
, idx
);
1057 master
->smrs
= NULL
;
1061 static void arm_smmu_bypass_stream_mapping(struct arm_smmu_device
*smmu
,
1062 struct arm_smmu_master
*master
)
1065 void __iomem
*gr0_base
= ARM_SMMU_GR0(smmu
);
1067 for (i
= 0; i
< master
->num_streamids
; ++i
) {
1068 u16 sid
= master
->streamids
[i
];
1069 writel_relaxed(S2CR_TYPE_BYPASS
,
1070 gr0_base
+ ARM_SMMU_GR0_S2CR(sid
));
1074 static int arm_smmu_domain_add_master(struct arm_smmu_domain
*smmu_domain
,
1075 struct arm_smmu_master
*master
)
1078 struct arm_smmu_device
*parent
, *smmu
= smmu_domain
->root_cfg
.smmu
;
1079 void __iomem
*gr0_base
= ARM_SMMU_GR0(smmu
);
1081 ret
= arm_smmu_master_configure_smrs(smmu
, master
);
1085 /* Bypass the leaves */
1086 smmu
= smmu_domain
->leaf_smmu
;
1087 while ((parent
= find_parent_smmu(smmu
))) {
1089 * We won't have a StreamID match for anything but the root
1090 * smmu, so we only need to worry about StreamID indexing,
1091 * where we must install bypass entries in the S2CRs.
1093 if (smmu
->features
& ARM_SMMU_FEAT_STREAM_MATCH
)
1096 arm_smmu_bypass_stream_mapping(smmu
, master
);
1100 /* Now we're at the root, time to point at our context bank */
1101 for (i
= 0; i
< master
->num_streamids
; ++i
) {
1103 idx
= master
->smrs
? master
->smrs
[i
].idx
: master
->streamids
[i
];
1104 s2cr
= (S2CR_TYPE_TRANS
<< S2CR_TYPE_SHIFT
) |
1105 (smmu_domain
->root_cfg
.cbndx
<< S2CR_CBNDX_SHIFT
);
1106 writel_relaxed(s2cr
, gr0_base
+ ARM_SMMU_GR0_S2CR(idx
));
1112 static void arm_smmu_domain_remove_master(struct arm_smmu_domain
*smmu_domain
,
1113 struct arm_smmu_master
*master
)
1115 struct arm_smmu_device
*smmu
= smmu_domain
->root_cfg
.smmu
;
1118 * We *must* clear the S2CR first, because freeing the SMR means
1119 * that it can be re-allocated immediately.
1121 arm_smmu_bypass_stream_mapping(smmu
, master
);
1122 arm_smmu_master_free_smrs(smmu
, master
);
1125 static int arm_smmu_attach_dev(struct iommu_domain
*domain
, struct device
*dev
)
1128 struct arm_smmu_domain
*smmu_domain
= domain
->priv
;
1129 struct arm_smmu_device
*device_smmu
= dev
->archdata
.iommu
;
1130 struct arm_smmu_master
*master
;
1133 dev_err(dev
, "cannot attach to SMMU, is it on the same bus?\n");
1138 * Sanity check the domain. We don't currently support domains
1139 * that cross between different SMMU chains.
1141 mutex_lock(&smmu_domain
->lock
);
1142 if (!smmu_domain
->leaf_smmu
) {
1143 /* Now that we have a master, we can finalise the domain */
1144 ret
= arm_smmu_init_domain_context(domain
, dev
);
1145 if (IS_ERR_VALUE(ret
))
1148 smmu_domain
->leaf_smmu
= device_smmu
;
1149 } else if (smmu_domain
->leaf_smmu
!= device_smmu
) {
1151 "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1152 dev_name(smmu_domain
->leaf_smmu
->dev
),
1153 dev_name(device_smmu
->dev
));
1156 mutex_unlock(&smmu_domain
->lock
);
1158 /* Looks ok, so add the device to the domain */
1159 master
= find_smmu_master(smmu_domain
->leaf_smmu
, dev
->of_node
);
1163 return arm_smmu_domain_add_master(smmu_domain
, master
);
1166 mutex_unlock(&smmu_domain
->lock
);
1170 static void arm_smmu_detach_dev(struct iommu_domain
*domain
, struct device
*dev
)
1172 struct arm_smmu_domain
*smmu_domain
= domain
->priv
;
1173 struct arm_smmu_master
*master
;
1175 master
= find_smmu_master(smmu_domain
->leaf_smmu
, dev
->of_node
);
1177 arm_smmu_domain_remove_master(smmu_domain
, master
);
1180 static void arm_smmu_flush_pgtable(struct arm_smmu_device
*smmu
, void *addr
,
1183 unsigned long offset
= (unsigned long)addr
& ~PAGE_MASK
;
1186 * If the SMMU can't walk tables in the CPU caches, treat them
1187 * like non-coherent DMA since we need to flush the new entries
1188 * all the way out to memory. There's no possibility of recursion
1189 * here as the SMMU table walker will not be wired through another
1192 if (!(smmu
->features
& ARM_SMMU_FEAT_COHERENT_WALK
))
1193 dma_map_page(smmu
->dev
, virt_to_page(addr
), offset
, size
,
1197 static bool arm_smmu_pte_is_contiguous_range(unsigned long addr
,
1200 return !(addr
& ~ARM_SMMU_PTE_CONT_MASK
) &&
1201 (addr
+ ARM_SMMU_PTE_CONT_SIZE
<= end
);
1204 static int arm_smmu_alloc_init_pte(struct arm_smmu_device
*smmu
, pmd_t
*pmd
,
1205 unsigned long addr
, unsigned long end
,
1206 unsigned long pfn
, int flags
, int stage
)
1209 pteval_t pteval
= ARM_SMMU_PTE_PAGE
| ARM_SMMU_PTE_AF
| ARM_SMMU_PTE_XN
;
1211 if (pmd_none(*pmd
)) {
1212 /* Allocate a new set of tables */
1213 pgtable_t table
= alloc_page(PGALLOC_GFP
);
1217 arm_smmu_flush_pgtable(smmu
, page_address(table
),
1218 ARM_SMMU_PTE_HWTABLE_SIZE
);
1219 if (!pgtable_page_ctor(table
)) {
1223 pmd_populate(NULL
, pmd
, table
);
1224 arm_smmu_flush_pgtable(smmu
, pmd
, sizeof(*pmd
));
1228 pteval
|= ARM_SMMU_PTE_AP_UNPRIV
| ARM_SMMU_PTE_nG
;
1229 if (!(flags
& IOMMU_WRITE
) && (flags
& IOMMU_READ
))
1230 pteval
|= ARM_SMMU_PTE_AP_RDONLY
;
1232 if (flags
& IOMMU_CACHE
)
1233 pteval
|= (MAIR_ATTR_IDX_CACHE
<<
1234 ARM_SMMU_PTE_ATTRINDX_SHIFT
);
1236 pteval
|= ARM_SMMU_PTE_HAP_FAULT
;
1237 if (flags
& IOMMU_READ
)
1238 pteval
|= ARM_SMMU_PTE_HAP_READ
;
1239 if (flags
& IOMMU_WRITE
)
1240 pteval
|= ARM_SMMU_PTE_HAP_WRITE
;
1241 if (flags
& IOMMU_CACHE
)
1242 pteval
|= ARM_SMMU_PTE_MEMATTR_OIWB
;
1244 pteval
|= ARM_SMMU_PTE_MEMATTR_NC
;
1247 /* If no access, create a faulting entry to avoid TLB fills */
1248 if (flags
& IOMMU_EXEC
)
1249 pteval
&= ~ARM_SMMU_PTE_XN
;
1250 else if (!(flags
& (IOMMU_READ
| IOMMU_WRITE
)))
1251 pteval
&= ~ARM_SMMU_PTE_PAGE
;
1253 pteval
|= ARM_SMMU_PTE_SH_IS
;
1254 start
= pmd_page_vaddr(*pmd
) + pte_index(addr
);
1258 * Install the page table entries. This is fairly complicated
1259 * since we attempt to make use of the contiguous hint in the
1260 * ptes where possible. The contiguous hint indicates a series
1261 * of ARM_SMMU_PTE_CONT_ENTRIES ptes mapping a physically
1262 * contiguous region with the following constraints:
1264 * - The region start is aligned to ARM_SMMU_PTE_CONT_SIZE
1265 * - Each pte in the region has the contiguous hint bit set
1267 * This complicates unmapping (also handled by this code, when
1268 * neither IOMMU_READ or IOMMU_WRITE are set) because it is
1269 * possible, yet highly unlikely, that a client may unmap only
1270 * part of a contiguous range. This requires clearing of the
1271 * contiguous hint bits in the range before installing the new
1274 * Note that re-mapping an address range without first unmapping
1275 * it is not supported, so TLB invalidation is not required here
1276 * and is instead performed at unmap and domain-init time.
1280 pteval
&= ~ARM_SMMU_PTE_CONT
;
1282 if (arm_smmu_pte_is_contiguous_range(addr
, end
)) {
1283 i
= ARM_SMMU_PTE_CONT_ENTRIES
;
1284 pteval
|= ARM_SMMU_PTE_CONT
;
1285 } else if (pte_val(*pte
) &
1286 (ARM_SMMU_PTE_CONT
| ARM_SMMU_PTE_PAGE
)) {
1289 unsigned long idx
= pte_index(addr
);
1291 idx
&= ~(ARM_SMMU_PTE_CONT_ENTRIES
- 1);
1292 cont_start
= pmd_page_vaddr(*pmd
) + idx
;
1293 for (j
= 0; j
< ARM_SMMU_PTE_CONT_ENTRIES
; ++j
)
1294 pte_val(*(cont_start
+ j
)) &= ~ARM_SMMU_PTE_CONT
;
1296 arm_smmu_flush_pgtable(smmu
, cont_start
,
1298 ARM_SMMU_PTE_CONT_ENTRIES
);
1302 *pte
= pfn_pte(pfn
, __pgprot(pteval
));
1303 } while (pte
++, pfn
++, addr
+= PAGE_SIZE
, --i
);
1304 } while (addr
!= end
);
1306 arm_smmu_flush_pgtable(smmu
, start
, sizeof(*pte
) * (pte
- start
));
1310 static int arm_smmu_alloc_init_pmd(struct arm_smmu_device
*smmu
, pud_t
*pud
,
1311 unsigned long addr
, unsigned long end
,
1312 phys_addr_t phys
, int flags
, int stage
)
1316 unsigned long next
, pfn
= __phys_to_pfn(phys
);
1318 #ifndef __PAGETABLE_PMD_FOLDED
1319 if (pud_none(*pud
)) {
1320 pmd
= pmd_alloc_one(NULL
, addr
);
1325 pmd
= pmd_offset(pud
, addr
);
1328 next
= pmd_addr_end(addr
, end
);
1329 ret
= arm_smmu_alloc_init_pte(smmu
, pmd
, addr
, end
, pfn
,
1331 pud_populate(NULL
, pud
, pmd
);
1332 arm_smmu_flush_pgtable(smmu
, pud
, sizeof(*pud
));
1333 phys
+= next
- addr
;
1334 } while (pmd
++, addr
= next
, addr
< end
);
1339 static int arm_smmu_alloc_init_pud(struct arm_smmu_device
*smmu
, pgd_t
*pgd
,
1340 unsigned long addr
, unsigned long end
,
1341 phys_addr_t phys
, int flags
, int stage
)
1347 #ifndef __PAGETABLE_PUD_FOLDED
1348 if (pgd_none(*pgd
)) {
1349 pud
= pud_alloc_one(NULL
, addr
);
1354 pud
= pud_offset(pgd
, addr
);
1357 next
= pud_addr_end(addr
, end
);
1358 ret
= arm_smmu_alloc_init_pmd(smmu
, pud
, addr
, next
, phys
,
1360 pgd_populate(NULL
, pud
, pgd
);
1361 arm_smmu_flush_pgtable(smmu
, pgd
, sizeof(*pgd
));
1362 phys
+= next
- addr
;
1363 } while (pud
++, addr
= next
, addr
< end
);
1368 static int arm_smmu_handle_mapping(struct arm_smmu_domain
*smmu_domain
,
1369 unsigned long iova
, phys_addr_t paddr
,
1370 size_t size
, int flags
)
1374 phys_addr_t input_mask
, output_mask
;
1375 struct arm_smmu_cfg
*root_cfg
= &smmu_domain
->root_cfg
;
1376 pgd_t
*pgd
= root_cfg
->pgd
;
1377 struct arm_smmu_device
*smmu
= root_cfg
->smmu
;
1379 if (root_cfg
->cbar
== CBAR_TYPE_S2_TRANS
) {
1381 output_mask
= (1ULL << smmu
->s2_output_size
) - 1;
1384 output_mask
= (1ULL << smmu
->s1_output_size
) - 1;
1390 if (size
& ~PAGE_MASK
)
1393 input_mask
= (1ULL << smmu
->input_size
) - 1;
1394 if ((phys_addr_t
)iova
& ~input_mask
)
1397 if (paddr
& ~output_mask
)
1400 mutex_lock(&smmu_domain
->lock
);
1401 pgd
+= pgd_index(iova
);
1404 unsigned long next
= pgd_addr_end(iova
, end
);
1406 ret
= arm_smmu_alloc_init_pud(smmu
, pgd
, iova
, next
, paddr
,
1411 paddr
+= next
- iova
;
1413 } while (pgd
++, iova
!= end
);
1416 mutex_unlock(&smmu_domain
->lock
);
1418 /* Ensure new page tables are visible to the hardware walker */
1419 if (smmu
->features
& ARM_SMMU_FEAT_COHERENT_WALK
)
1425 static int arm_smmu_map(struct iommu_domain
*domain
, unsigned long iova
,
1426 phys_addr_t paddr
, size_t size
, int flags
)
1428 struct arm_smmu_domain
*smmu_domain
= domain
->priv
;
1433 /* Check for silent address truncation up the SMMU chain. */
1434 if ((phys_addr_t
)iova
& ~smmu_domain
->output_mask
)
1437 return arm_smmu_handle_mapping(smmu_domain
, iova
, paddr
, size
, flags
);
1440 static size_t arm_smmu_unmap(struct iommu_domain
*domain
, unsigned long iova
,
1444 struct arm_smmu_domain
*smmu_domain
= domain
->priv
;
1446 ret
= arm_smmu_handle_mapping(smmu_domain
, iova
, 0, size
, 0);
1447 arm_smmu_tlb_inv_context(&smmu_domain
->root_cfg
);
1448 return ret
? ret
: size
;
1451 static phys_addr_t
arm_smmu_iova_to_phys(struct iommu_domain
*domain
,
1458 struct arm_smmu_domain
*smmu_domain
= domain
->priv
;
1459 struct arm_smmu_cfg
*root_cfg
= &smmu_domain
->root_cfg
;
1461 pgdp
= root_cfg
->pgd
;
1465 pgd
= *(pgdp
+ pgd_index(iova
));
1469 pud
= *pud_offset(&pgd
, iova
);
1473 pmd
= *pmd_offset(&pud
, iova
);
1477 pte
= *(pmd_page_vaddr(pmd
) + pte_index(iova
));
1481 return __pfn_to_phys(pte_pfn(pte
)) | (iova
& ~PAGE_MASK
);
1484 static int arm_smmu_domain_has_cap(struct iommu_domain
*domain
,
1487 unsigned long caps
= 0;
1488 struct arm_smmu_domain
*smmu_domain
= domain
->priv
;
1490 if (smmu_domain
->root_cfg
.smmu
->features
& ARM_SMMU_FEAT_COHERENT_WALK
)
1491 caps
|= IOMMU_CAP_CACHE_COHERENCY
;
1493 return !!(cap
& caps
);
1496 static int arm_smmu_add_device(struct device
*dev
)
1498 struct arm_smmu_device
*child
, *parent
, *smmu
;
1499 struct arm_smmu_master
*master
= NULL
;
1500 struct iommu_group
*group
;
1503 if (dev
->archdata
.iommu
) {
1504 dev_warn(dev
, "IOMMU driver already assigned to device\n");
1508 spin_lock(&arm_smmu_devices_lock
);
1509 list_for_each_entry(parent
, &arm_smmu_devices
, list
) {
1512 /* Try to find a child of the current SMMU. */
1513 list_for_each_entry(child
, &arm_smmu_devices
, list
) {
1514 if (child
->parent_of_node
== parent
->dev
->of_node
) {
1515 /* Does the child sit above our master? */
1516 master
= find_smmu_master(child
, dev
->of_node
);
1524 /* We found some children, so keep searching. */
1530 master
= find_smmu_master(smmu
, dev
->of_node
);
1534 spin_unlock(&arm_smmu_devices_lock
);
1539 group
= iommu_group_alloc();
1540 if (IS_ERR(group
)) {
1541 dev_err(dev
, "Failed to allocate IOMMU group\n");
1542 return PTR_ERR(group
);
1545 ret
= iommu_group_add_device(group
, dev
);
1546 iommu_group_put(group
);
1547 dev
->archdata
.iommu
= smmu
;
1552 static void arm_smmu_remove_device(struct device
*dev
)
1554 dev
->archdata
.iommu
= NULL
;
1555 iommu_group_remove_device(dev
);
1558 static struct iommu_ops arm_smmu_ops
= {
1559 .domain_init
= arm_smmu_domain_init
,
1560 .domain_destroy
= arm_smmu_domain_destroy
,
1561 .attach_dev
= arm_smmu_attach_dev
,
1562 .detach_dev
= arm_smmu_detach_dev
,
1563 .map
= arm_smmu_map
,
1564 .unmap
= arm_smmu_unmap
,
1565 .iova_to_phys
= arm_smmu_iova_to_phys
,
1566 .domain_has_cap
= arm_smmu_domain_has_cap
,
1567 .add_device
= arm_smmu_add_device
,
1568 .remove_device
= arm_smmu_remove_device
,
1569 .pgsize_bitmap
= (SECTION_SIZE
|
1570 ARM_SMMU_PTE_CONT_SIZE
|
1574 static void arm_smmu_device_reset(struct arm_smmu_device
*smmu
)
1576 void __iomem
*gr0_base
= ARM_SMMU_GR0(smmu
);
1577 void __iomem
*cb_base
;
1581 /* Clear Global FSR */
1582 reg
= readl_relaxed(gr0_base
+ ARM_SMMU_GR0_sGFSR
);
1583 writel(reg
, gr0_base
+ ARM_SMMU_GR0_sGFSR
);
1585 /* Mark all SMRn as invalid and all S2CRn as bypass */
1586 for (i
= 0; i
< smmu
->num_mapping_groups
; ++i
) {
1587 writel_relaxed(~SMR_VALID
, gr0_base
+ ARM_SMMU_GR0_SMR(i
));
1588 writel_relaxed(S2CR_TYPE_BYPASS
, gr0_base
+ ARM_SMMU_GR0_S2CR(i
));
1591 /* Make sure all context banks are disabled and clear CB_FSR */
1592 for (i
= 0; i
< smmu
->num_context_banks
; ++i
) {
1593 cb_base
= ARM_SMMU_CB_BASE(smmu
) + ARM_SMMU_CB(smmu
, i
);
1594 writel_relaxed(0, cb_base
+ ARM_SMMU_CB_SCTLR
);
1595 writel_relaxed(FSR_FAULT
, cb_base
+ ARM_SMMU_CB_FSR
);
1598 /* Invalidate the TLB, just in case */
1599 writel_relaxed(0, gr0_base
+ ARM_SMMU_GR0_STLBIALL
);
1600 writel_relaxed(0, gr0_base
+ ARM_SMMU_GR0_TLBIALLH
);
1601 writel_relaxed(0, gr0_base
+ ARM_SMMU_GR0_TLBIALLNSNH
);
1603 reg
= readl_relaxed(gr0_base
+ ARM_SMMU_GR0_sCR0
);
1605 /* Enable fault reporting */
1606 reg
|= (sCR0_GFRE
| sCR0_GFIE
| sCR0_GCFGFRE
| sCR0_GCFGFIE
);
1608 /* Disable TLB broadcasting. */
1609 reg
|= (sCR0_VMIDPNE
| sCR0_PTM
);
1611 /* Enable client access, but bypass when no mapping is found */
1612 reg
&= ~(sCR0_CLIENTPD
| sCR0_USFCFG
);
1614 /* Disable forced broadcasting */
1617 /* Don't upgrade barriers */
1618 reg
&= ~(sCR0_BSU_MASK
<< sCR0_BSU_SHIFT
);
1620 /* Push the button */
1621 arm_smmu_tlb_sync(smmu
);
1622 writel_relaxed(reg
, gr0_base
+ ARM_SMMU_GR0_sCR0
);
1625 static int arm_smmu_id_size_to_bits(int size
)
1644 static int arm_smmu_device_cfg_probe(struct arm_smmu_device
*smmu
)
1647 void __iomem
*gr0_base
= ARM_SMMU_GR0(smmu
);
1650 dev_notice(smmu
->dev
, "probing hardware configuration...\n");
1653 id
= readl_relaxed(gr0_base
+ ARM_SMMU_GR0_PIDR2
);
1654 smmu
->version
= ((id
>> PIDR2_ARCH_SHIFT
) & PIDR2_ARCH_MASK
) + 1;
1655 dev_notice(smmu
->dev
, "SMMUv%d with:\n", smmu
->version
);
1658 id
= readl_relaxed(gr0_base
+ ARM_SMMU_GR0_ID0
);
1659 #ifndef CONFIG_64BIT
1660 if (((id
>> ID0_PTFS_SHIFT
) & ID0_PTFS_MASK
) == ID0_PTFS_V8_ONLY
) {
1661 dev_err(smmu
->dev
, "\tno v7 descriptor support!\n");
1665 if (id
& ID0_S1TS
) {
1666 smmu
->features
|= ARM_SMMU_FEAT_TRANS_S1
;
1667 dev_notice(smmu
->dev
, "\tstage 1 translation\n");
1670 if (id
& ID0_S2TS
) {
1671 smmu
->features
|= ARM_SMMU_FEAT_TRANS_S2
;
1672 dev_notice(smmu
->dev
, "\tstage 2 translation\n");
1676 smmu
->features
|= ARM_SMMU_FEAT_TRANS_NESTED
;
1677 dev_notice(smmu
->dev
, "\tnested translation\n");
1680 if (!(smmu
->features
&
1681 (ARM_SMMU_FEAT_TRANS_S1
| ARM_SMMU_FEAT_TRANS_S2
|
1682 ARM_SMMU_FEAT_TRANS_NESTED
))) {
1683 dev_err(smmu
->dev
, "\tno translation support!\n");
1687 if (id
& ID0_CTTW
) {
1688 smmu
->features
|= ARM_SMMU_FEAT_COHERENT_WALK
;
1689 dev_notice(smmu
->dev
, "\tcoherent table walk\n");
1695 smmu
->features
|= ARM_SMMU_FEAT_STREAM_MATCH
;
1696 smmu
->num_mapping_groups
= (id
>> ID0_NUMSMRG_SHIFT
) &
1698 if (smmu
->num_mapping_groups
== 0) {
1700 "stream-matching supported, but no SMRs present!\n");
1704 smr
= SMR_MASK_MASK
<< SMR_MASK_SHIFT
;
1705 smr
|= (SMR_ID_MASK
<< SMR_ID_SHIFT
);
1706 writel_relaxed(smr
, gr0_base
+ ARM_SMMU_GR0_SMR(0));
1707 smr
= readl_relaxed(gr0_base
+ ARM_SMMU_GR0_SMR(0));
1709 mask
= (smr
>> SMR_MASK_SHIFT
) & SMR_MASK_MASK
;
1710 sid
= (smr
>> SMR_ID_SHIFT
) & SMR_ID_MASK
;
1711 if ((mask
& sid
) != sid
) {
1713 "SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
1718 dev_notice(smmu
->dev
,
1719 "\tstream matching with %u register groups, mask 0x%x",
1720 smmu
->num_mapping_groups
, mask
);
1724 id
= readl_relaxed(gr0_base
+ ARM_SMMU_GR0_ID1
);
1725 smmu
->pagesize
= (id
& ID1_PAGESIZE
) ? SZ_64K
: SZ_4K
;
1727 /* Check for size mismatch of SMMU address space from mapped region */
1728 size
= 1 << (((id
>> ID1_NUMPAGENDXB_SHIFT
) & ID1_NUMPAGENDXB_MASK
) + 1);
1729 size
*= (smmu
->pagesize
<< 1);
1730 if (smmu
->size
!= size
)
1731 dev_warn(smmu
->dev
, "SMMU address space size (0x%lx) differs "
1732 "from mapped region size (0x%lx)!\n", size
, smmu
->size
);
1734 smmu
->num_s2_context_banks
= (id
>> ID1_NUMS2CB_SHIFT
) &
1736 smmu
->num_context_banks
= (id
>> ID1_NUMCB_SHIFT
) & ID1_NUMCB_MASK
;
1737 if (smmu
->num_s2_context_banks
> smmu
->num_context_banks
) {
1738 dev_err(smmu
->dev
, "impossible number of S2 context banks!\n");
1741 dev_notice(smmu
->dev
, "\t%u context banks (%u stage-2 only)\n",
1742 smmu
->num_context_banks
, smmu
->num_s2_context_banks
);
1745 id
= readl_relaxed(gr0_base
+ ARM_SMMU_GR0_ID2
);
1746 size
= arm_smmu_id_size_to_bits((id
>> ID2_IAS_SHIFT
) & ID2_IAS_MASK
);
1749 * Stage-1 output limited by stage-2 input size due to pgd
1750 * allocation (PTRS_PER_PGD).
1753 smmu
->s1_output_size
= min(39UL, size
);
1755 smmu
->s1_output_size
= min(32UL, size
);
1758 /* The stage-2 output mask is also applied for bypass */
1759 size
= arm_smmu_id_size_to_bits((id
>> ID2_OAS_SHIFT
) & ID2_OAS_MASK
);
1760 smmu
->s2_output_size
= min((unsigned long)PHYS_MASK_SHIFT
, size
);
1762 if (smmu
->version
== 1) {
1763 smmu
->input_size
= 32;
1766 size
= (id
>> ID2_UBS_SHIFT
) & ID2_UBS_MASK
;
1767 size
= min(VA_BITS
, arm_smmu_id_size_to_bits(size
));
1771 smmu
->input_size
= size
;
1773 if ((PAGE_SIZE
== SZ_4K
&& !(id
& ID2_PTFS_4K
)) ||
1774 (PAGE_SIZE
== SZ_64K
&& !(id
& ID2_PTFS_64K
)) ||
1775 (PAGE_SIZE
!= SZ_4K
&& PAGE_SIZE
!= SZ_64K
)) {
1776 dev_err(smmu
->dev
, "CPU page size 0x%lx unsupported\n",
1782 dev_notice(smmu
->dev
,
1783 "\t%lu-bit VA, %lu-bit IPA, %lu-bit PA\n",
1784 smmu
->input_size
, smmu
->s1_output_size
, smmu
->s2_output_size
);
1788 static int arm_smmu_device_dt_probe(struct platform_device
*pdev
)
1790 struct resource
*res
;
1791 struct arm_smmu_device
*smmu
;
1792 struct device_node
*dev_node
;
1793 struct device
*dev
= &pdev
->dev
;
1794 struct rb_node
*node
;
1795 struct of_phandle_args masterspec
;
1796 int num_irqs
, i
, err
;
1798 smmu
= devm_kzalloc(dev
, sizeof(*smmu
), GFP_KERNEL
);
1800 dev_err(dev
, "failed to allocate arm_smmu_device\n");
1805 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1806 smmu
->base
= devm_ioremap_resource(dev
, res
);
1807 if (IS_ERR(smmu
->base
))
1808 return PTR_ERR(smmu
->base
);
1809 smmu
->size
= resource_size(res
);
1811 if (of_property_read_u32(dev
->of_node
, "#global-interrupts",
1812 &smmu
->num_global_irqs
)) {
1813 dev_err(dev
, "missing #global-interrupts property\n");
1818 while ((res
= platform_get_resource(pdev
, IORESOURCE_IRQ
, num_irqs
))) {
1820 if (num_irqs
> smmu
->num_global_irqs
)
1821 smmu
->num_context_irqs
++;
1824 if (!smmu
->num_context_irqs
) {
1825 dev_err(dev
, "found %d interrupts but expected at least %d\n",
1826 num_irqs
, smmu
->num_global_irqs
+ 1);
1830 smmu
->irqs
= devm_kzalloc(dev
, sizeof(*smmu
->irqs
) * num_irqs
,
1833 dev_err(dev
, "failed to allocate %d irqs\n", num_irqs
);
1837 for (i
= 0; i
< num_irqs
; ++i
) {
1838 int irq
= platform_get_irq(pdev
, i
);
1840 dev_err(dev
, "failed to get irq index %d\n", i
);
1843 smmu
->irqs
[i
] = irq
;
1847 smmu
->masters
= RB_ROOT
;
1848 while (!of_parse_phandle_with_args(dev
->of_node
, "mmu-masters",
1849 "#stream-id-cells", i
,
1851 err
= register_smmu_master(smmu
, dev
, &masterspec
);
1853 dev_err(dev
, "failed to add master %s\n",
1854 masterspec
.np
->name
);
1855 goto out_put_masters
;
1860 dev_notice(dev
, "registered %d master devices\n", i
);
1862 if ((dev_node
= of_parse_phandle(dev
->of_node
, "smmu-parent", 0)))
1863 smmu
->parent_of_node
= dev_node
;
1865 err
= arm_smmu_device_cfg_probe(smmu
);
1867 goto out_put_parent
;
1869 if (smmu
->version
> 1 &&
1870 smmu
->num_context_banks
!= smmu
->num_context_irqs
) {
1872 "found only %d context interrupt(s) but %d required\n",
1873 smmu
->num_context_irqs
, smmu
->num_context_banks
);
1875 goto out_put_parent
;
1878 for (i
= 0; i
< smmu
->num_global_irqs
; ++i
) {
1879 err
= request_irq(smmu
->irqs
[i
],
1880 arm_smmu_global_fault
,
1882 "arm-smmu global fault",
1885 dev_err(dev
, "failed to request global IRQ %d (%u)\n",
1891 INIT_LIST_HEAD(&smmu
->list
);
1892 spin_lock(&arm_smmu_devices_lock
);
1893 list_add(&smmu
->list
, &arm_smmu_devices
);
1894 spin_unlock(&arm_smmu_devices_lock
);
1896 arm_smmu_device_reset(smmu
);
1901 free_irq(smmu
->irqs
[i
], smmu
);
1904 if (smmu
->parent_of_node
)
1905 of_node_put(smmu
->parent_of_node
);
1908 for (node
= rb_first(&smmu
->masters
); node
; node
= rb_next(node
)) {
1909 struct arm_smmu_master
*master
;
1910 master
= container_of(node
, struct arm_smmu_master
, node
);
1911 of_node_put(master
->of_node
);
1917 static int arm_smmu_device_remove(struct platform_device
*pdev
)
1920 struct device
*dev
= &pdev
->dev
;
1921 struct arm_smmu_device
*curr
, *smmu
= NULL
;
1922 struct rb_node
*node
;
1924 spin_lock(&arm_smmu_devices_lock
);
1925 list_for_each_entry(curr
, &arm_smmu_devices
, list
) {
1926 if (curr
->dev
== dev
) {
1928 list_del(&smmu
->list
);
1932 spin_unlock(&arm_smmu_devices_lock
);
1937 if (smmu
->parent_of_node
)
1938 of_node_put(smmu
->parent_of_node
);
1940 for (node
= rb_first(&smmu
->masters
); node
; node
= rb_next(node
)) {
1941 struct arm_smmu_master
*master
;
1942 master
= container_of(node
, struct arm_smmu_master
, node
);
1943 of_node_put(master
->of_node
);
1946 if (!bitmap_empty(smmu
->context_map
, ARM_SMMU_MAX_CBS
))
1947 dev_err(dev
, "removing device with active domains!\n");
1949 for (i
= 0; i
< smmu
->num_global_irqs
; ++i
)
1950 free_irq(smmu
->irqs
[i
], smmu
);
1952 /* Turn the thing off */
1953 writel_relaxed(sCR0_CLIENTPD
, ARM_SMMU_GR0(smmu
) + ARM_SMMU_GR0_sCR0
);
1958 static struct of_device_id arm_smmu_of_match
[] = {
1959 { .compatible
= "arm,smmu-v1", },
1960 { .compatible
= "arm,smmu-v2", },
1961 { .compatible
= "arm,mmu-400", },
1962 { .compatible
= "arm,mmu-500", },
1965 MODULE_DEVICE_TABLE(of
, arm_smmu_of_match
);
1968 static struct platform_driver arm_smmu_driver
= {
1970 .owner
= THIS_MODULE
,
1972 .of_match_table
= of_match_ptr(arm_smmu_of_match
),
1974 .probe
= arm_smmu_device_dt_probe
,
1975 .remove
= arm_smmu_device_remove
,
1978 static int __init
arm_smmu_init(void)
1982 ret
= platform_driver_register(&arm_smmu_driver
);
1986 /* Oh, for a proper bus abstraction */
1987 if (!iommu_present(&platform_bus_type
))
1988 bus_set_iommu(&platform_bus_type
, &arm_smmu_ops
);
1990 if (!iommu_present(&amba_bustype
))
1991 bus_set_iommu(&amba_bustype
, &arm_smmu_ops
);
1996 static void __exit
arm_smmu_exit(void)
1998 return platform_driver_unregister(&arm_smmu_driver
);
2001 subsys_initcall(arm_smmu_init
);
2002 module_exit(arm_smmu_exit
);
2004 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
2005 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2006 MODULE_LICENSE("GPL v2");