PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / isdn / hardware / mISDN / hfcsusb.c
blob114f3bcba1b0d90f2a05c64523ba7109014c6eea
1 /* hfcsusb.c
2 * mISDN driver for Colognechip HFC-S USB chip
4 * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
5 * Copyright 2008 by Martin Bachem (info@bachem-it.com)
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
10 * any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * module params
23 * debug=<n>, default=0, with n=0xHHHHGGGG
24 * H - l1 driver flags described in hfcsusb.h
25 * G - common mISDN debug flags described at mISDNhw.h
27 * poll=<n>, default 128
28 * n : burst size of PH_DATA_IND at transparent rx data
30 * Revision: 0.3.3 (socket), 2008-11-05
33 #include <linux/module.h>
34 #include <linux/delay.h>
35 #include <linux/usb.h>
36 #include <linux/mISDNhw.h>
37 #include <linux/slab.h>
38 #include "hfcsusb.h"
40 static unsigned int debug;
41 static int poll = DEFAULT_TRANSP_BURST_SZ;
43 static LIST_HEAD(HFClist);
44 static DEFINE_RWLOCK(HFClock);
47 MODULE_AUTHOR("Martin Bachem");
48 MODULE_LICENSE("GPL");
49 module_param(debug, uint, S_IRUGO | S_IWUSR);
50 module_param(poll, int, 0);
52 static int hfcsusb_cnt;
54 /* some function prototypes */
55 static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
56 static void release_hw(struct hfcsusb *hw);
57 static void reset_hfcsusb(struct hfcsusb *hw);
58 static void setPortMode(struct hfcsusb *hw);
59 static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
60 static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
61 static int hfcsusb_setup_bch(struct bchannel *bch, int protocol);
62 static void deactivate_bchannel(struct bchannel *bch);
63 static void hfcsusb_ph_info(struct hfcsusb *hw);
65 /* start next background transfer for control channel */
66 static void
67 ctrl_start_transfer(struct hfcsusb *hw)
69 if (debug & DBG_HFC_CALL_TRACE)
70 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
72 if (hw->ctrl_cnt) {
73 hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
74 hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
75 hw->ctrl_urb->transfer_buffer = NULL;
76 hw->ctrl_urb->transfer_buffer_length = 0;
77 hw->ctrl_write.wIndex =
78 cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
79 hw->ctrl_write.wValue =
80 cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
82 usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
87 * queue a control transfer request to write HFC-S USB
88 * chip register using CTRL resuest queue
90 static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
92 struct ctrl_buf *buf;
94 if (debug & DBG_HFC_CALL_TRACE)
95 printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
96 hw->name, __func__, reg, val);
98 spin_lock(&hw->ctrl_lock);
99 if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
100 spin_unlock(&hw->ctrl_lock);
101 return 1;
103 buf = &hw->ctrl_buff[hw->ctrl_in_idx];
104 buf->hfcs_reg = reg;
105 buf->reg_val = val;
106 if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
107 hw->ctrl_in_idx = 0;
108 if (++hw->ctrl_cnt == 1)
109 ctrl_start_transfer(hw);
110 spin_unlock(&hw->ctrl_lock);
112 return 0;
115 /* control completion routine handling background control cmds */
116 static void
117 ctrl_complete(struct urb *urb)
119 struct hfcsusb *hw = (struct hfcsusb *) urb->context;
121 if (debug & DBG_HFC_CALL_TRACE)
122 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
124 urb->dev = hw->dev;
125 if (hw->ctrl_cnt) {
126 hw->ctrl_cnt--; /* decrement actual count */
127 if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
128 hw->ctrl_out_idx = 0; /* pointer wrap */
130 ctrl_start_transfer(hw); /* start next transfer */
134 /* handle LED bits */
135 static void
136 set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
138 if (set_on) {
139 if (led_bits < 0)
140 hw->led_state &= ~abs(led_bits);
141 else
142 hw->led_state |= led_bits;
143 } else {
144 if (led_bits < 0)
145 hw->led_state |= abs(led_bits);
146 else
147 hw->led_state &= ~led_bits;
151 /* handle LED requests */
152 static void
153 handle_led(struct hfcsusb *hw, int event)
155 struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
156 hfcsusb_idtab[hw->vend_idx].driver_info;
157 __u8 tmpled;
159 if (driver_info->led_scheme == LED_OFF)
160 return;
161 tmpled = hw->led_state;
163 switch (event) {
164 case LED_POWER_ON:
165 set_led_bit(hw, driver_info->led_bits[0], 1);
166 set_led_bit(hw, driver_info->led_bits[1], 0);
167 set_led_bit(hw, driver_info->led_bits[2], 0);
168 set_led_bit(hw, driver_info->led_bits[3], 0);
169 break;
170 case LED_POWER_OFF:
171 set_led_bit(hw, driver_info->led_bits[0], 0);
172 set_led_bit(hw, driver_info->led_bits[1], 0);
173 set_led_bit(hw, driver_info->led_bits[2], 0);
174 set_led_bit(hw, driver_info->led_bits[3], 0);
175 break;
176 case LED_S0_ON:
177 set_led_bit(hw, driver_info->led_bits[1], 1);
178 break;
179 case LED_S0_OFF:
180 set_led_bit(hw, driver_info->led_bits[1], 0);
181 break;
182 case LED_B1_ON:
183 set_led_bit(hw, driver_info->led_bits[2], 1);
184 break;
185 case LED_B1_OFF:
186 set_led_bit(hw, driver_info->led_bits[2], 0);
187 break;
188 case LED_B2_ON:
189 set_led_bit(hw, driver_info->led_bits[3], 1);
190 break;
191 case LED_B2_OFF:
192 set_led_bit(hw, driver_info->led_bits[3], 0);
193 break;
196 if (hw->led_state != tmpled) {
197 if (debug & DBG_HFC_CALL_TRACE)
198 printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
199 hw->name, __func__,
200 HFCUSB_P_DATA, hw->led_state);
202 write_reg(hw, HFCUSB_P_DATA, hw->led_state);
207 * Layer2 -> Layer 1 Bchannel data
209 static int
210 hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
212 struct bchannel *bch = container_of(ch, struct bchannel, ch);
213 struct hfcsusb *hw = bch->hw;
214 int ret = -EINVAL;
215 struct mISDNhead *hh = mISDN_HEAD_P(skb);
216 u_long flags;
218 if (debug & DBG_HFC_CALL_TRACE)
219 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
221 switch (hh->prim) {
222 case PH_DATA_REQ:
223 spin_lock_irqsave(&hw->lock, flags);
224 ret = bchannel_senddata(bch, skb);
225 spin_unlock_irqrestore(&hw->lock, flags);
226 if (debug & DBG_HFC_CALL_TRACE)
227 printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
228 hw->name, __func__, ret);
229 if (ret > 0)
230 ret = 0;
231 return ret;
232 case PH_ACTIVATE_REQ:
233 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
234 hfcsusb_start_endpoint(hw, bch->nr - 1);
235 ret = hfcsusb_setup_bch(bch, ch->protocol);
236 } else
237 ret = 0;
238 if (!ret)
239 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
240 0, NULL, GFP_KERNEL);
241 break;
242 case PH_DEACTIVATE_REQ:
243 deactivate_bchannel(bch);
244 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
245 0, NULL, GFP_KERNEL);
246 ret = 0;
247 break;
249 if (!ret)
250 dev_kfree_skb(skb);
251 return ret;
255 * send full D/B channel status information
256 * as MPH_INFORMATION_IND
258 static void
259 hfcsusb_ph_info(struct hfcsusb *hw)
261 struct ph_info *phi;
262 struct dchannel *dch = &hw->dch;
263 int i;
265 phi = kzalloc(sizeof(struct ph_info) +
266 dch->dev.nrbchan * sizeof(struct ph_info_ch), GFP_ATOMIC);
267 phi->dch.ch.protocol = hw->protocol;
268 phi->dch.ch.Flags = dch->Flags;
269 phi->dch.state = dch->state;
270 phi->dch.num_bch = dch->dev.nrbchan;
271 for (i = 0; i < dch->dev.nrbchan; i++) {
272 phi->bch[i].protocol = hw->bch[i].ch.protocol;
273 phi->bch[i].Flags = hw->bch[i].Flags;
275 _queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
276 sizeof(struct ph_info_dch) + dch->dev.nrbchan *
277 sizeof(struct ph_info_ch), phi, GFP_ATOMIC);
278 kfree(phi);
282 * Layer2 -> Layer 1 Dchannel data
284 static int
285 hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
287 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
288 struct dchannel *dch = container_of(dev, struct dchannel, dev);
289 struct mISDNhead *hh = mISDN_HEAD_P(skb);
290 struct hfcsusb *hw = dch->hw;
291 int ret = -EINVAL;
292 u_long flags;
294 switch (hh->prim) {
295 case PH_DATA_REQ:
296 if (debug & DBG_HFC_CALL_TRACE)
297 printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
298 hw->name, __func__);
300 spin_lock_irqsave(&hw->lock, flags);
301 ret = dchannel_senddata(dch, skb);
302 spin_unlock_irqrestore(&hw->lock, flags);
303 if (ret > 0) {
304 ret = 0;
305 queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
307 break;
309 case PH_ACTIVATE_REQ:
310 if (debug & DBG_HFC_CALL_TRACE)
311 printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
312 hw->name, __func__,
313 (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
315 if (hw->protocol == ISDN_P_NT_S0) {
316 ret = 0;
317 if (test_bit(FLG_ACTIVE, &dch->Flags)) {
318 _queue_data(&dch->dev.D,
319 PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
320 NULL, GFP_ATOMIC);
321 } else {
322 hfcsusb_ph_command(hw,
323 HFC_L1_ACTIVATE_NT);
324 test_and_set_bit(FLG_L2_ACTIVATED,
325 &dch->Flags);
327 } else {
328 hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
329 ret = l1_event(dch->l1, hh->prim);
331 break;
333 case PH_DEACTIVATE_REQ:
334 if (debug & DBG_HFC_CALL_TRACE)
335 printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
336 hw->name, __func__);
337 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
339 if (hw->protocol == ISDN_P_NT_S0) {
340 hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
341 spin_lock_irqsave(&hw->lock, flags);
342 skb_queue_purge(&dch->squeue);
343 if (dch->tx_skb) {
344 dev_kfree_skb(dch->tx_skb);
345 dch->tx_skb = NULL;
347 dch->tx_idx = 0;
348 if (dch->rx_skb) {
349 dev_kfree_skb(dch->rx_skb);
350 dch->rx_skb = NULL;
352 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
353 spin_unlock_irqrestore(&hw->lock, flags);
354 #ifdef FIXME
355 if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
356 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
357 #endif
358 ret = 0;
359 } else
360 ret = l1_event(dch->l1, hh->prim);
361 break;
362 case MPH_INFORMATION_REQ:
363 hfcsusb_ph_info(hw);
364 ret = 0;
365 break;
368 return ret;
372 * Layer 1 callback function
374 static int
375 hfc_l1callback(struct dchannel *dch, u_int cmd)
377 struct hfcsusb *hw = dch->hw;
379 if (debug & DBG_HFC_CALL_TRACE)
380 printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
381 hw->name, __func__, cmd);
383 switch (cmd) {
384 case INFO3_P8:
385 case INFO3_P10:
386 case HW_RESET_REQ:
387 case HW_POWERUP_REQ:
388 break;
390 case HW_DEACT_REQ:
391 skb_queue_purge(&dch->squeue);
392 if (dch->tx_skb) {
393 dev_kfree_skb(dch->tx_skb);
394 dch->tx_skb = NULL;
396 dch->tx_idx = 0;
397 if (dch->rx_skb) {
398 dev_kfree_skb(dch->rx_skb);
399 dch->rx_skb = NULL;
401 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
402 break;
403 case PH_ACTIVATE_IND:
404 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
405 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
406 GFP_ATOMIC);
407 break;
408 case PH_DEACTIVATE_IND:
409 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
410 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
411 GFP_ATOMIC);
412 break;
413 default:
414 if (dch->debug & DEBUG_HW)
415 printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
416 hw->name, __func__, cmd);
417 return -1;
419 hfcsusb_ph_info(hw);
420 return 0;
423 static int
424 open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
425 struct channel_req *rq)
427 int err = 0;
429 if (debug & DEBUG_HW_OPEN)
430 printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
431 hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
432 __builtin_return_address(0));
433 if (rq->protocol == ISDN_P_NONE)
434 return -EINVAL;
436 test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
437 test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
438 hfcsusb_start_endpoint(hw, HFC_CHAN_D);
440 /* E-Channel logging */
441 if (rq->adr.channel == 1) {
442 if (hw->fifos[HFCUSB_PCM_RX].pipe) {
443 hfcsusb_start_endpoint(hw, HFC_CHAN_E);
444 set_bit(FLG_ACTIVE, &hw->ech.Flags);
445 _queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
446 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
447 } else
448 return -EINVAL;
451 if (!hw->initdone) {
452 hw->protocol = rq->protocol;
453 if (rq->protocol == ISDN_P_TE_S0) {
454 err = create_l1(&hw->dch, hfc_l1callback);
455 if (err)
456 return err;
458 setPortMode(hw);
459 ch->protocol = rq->protocol;
460 hw->initdone = 1;
461 } else {
462 if (rq->protocol != ch->protocol)
463 return -EPROTONOSUPPORT;
466 if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
467 ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
468 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
469 0, NULL, GFP_KERNEL);
470 rq->ch = ch;
471 if (!try_module_get(THIS_MODULE))
472 printk(KERN_WARNING "%s: %s: cannot get module\n",
473 hw->name, __func__);
474 return 0;
477 static int
478 open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
480 struct bchannel *bch;
482 if (rq->adr.channel == 0 || rq->adr.channel > 2)
483 return -EINVAL;
484 if (rq->protocol == ISDN_P_NONE)
485 return -EINVAL;
487 if (debug & DBG_HFC_CALL_TRACE)
488 printk(KERN_DEBUG "%s: %s B%i\n",
489 hw->name, __func__, rq->adr.channel);
491 bch = &hw->bch[rq->adr.channel - 1];
492 if (test_and_set_bit(FLG_OPEN, &bch->Flags))
493 return -EBUSY; /* b-channel can be only open once */
494 bch->ch.protocol = rq->protocol;
495 rq->ch = &bch->ch;
497 if (!try_module_get(THIS_MODULE))
498 printk(KERN_WARNING "%s: %s:cannot get module\n",
499 hw->name, __func__);
500 return 0;
503 static int
504 channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
506 int ret = 0;
508 if (debug & DBG_HFC_CALL_TRACE)
509 printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
510 hw->name, __func__, (cq->op), (cq->channel));
512 switch (cq->op) {
513 case MISDN_CTRL_GETOP:
514 cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
515 MISDN_CTRL_DISCONNECT;
516 break;
517 default:
518 printk(KERN_WARNING "%s: %s: unknown Op %x\n",
519 hw->name, __func__, cq->op);
520 ret = -EINVAL;
521 break;
523 return ret;
527 * device control function
529 static int
530 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
532 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
533 struct dchannel *dch = container_of(dev, struct dchannel, dev);
534 struct hfcsusb *hw = dch->hw;
535 struct channel_req *rq;
536 int err = 0;
538 if (dch->debug & DEBUG_HW)
539 printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
540 hw->name, __func__, cmd, arg);
541 switch (cmd) {
542 case OPEN_CHANNEL:
543 rq = arg;
544 if ((rq->protocol == ISDN_P_TE_S0) ||
545 (rq->protocol == ISDN_P_NT_S0))
546 err = open_dchannel(hw, ch, rq);
547 else
548 err = open_bchannel(hw, rq);
549 if (!err)
550 hw->open++;
551 break;
552 case CLOSE_CHANNEL:
553 hw->open--;
554 if (debug & DEBUG_HW_OPEN)
555 printk(KERN_DEBUG
556 "%s: %s: dev(%d) close from %p (open %d)\n",
557 hw->name, __func__, hw->dch.dev.id,
558 __builtin_return_address(0), hw->open);
559 if (!hw->open) {
560 hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
561 if (hw->fifos[HFCUSB_PCM_RX].pipe)
562 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
563 handle_led(hw, LED_POWER_ON);
565 module_put(THIS_MODULE);
566 break;
567 case CONTROL_CHANNEL:
568 err = channel_ctrl(hw, arg);
569 break;
570 default:
571 if (dch->debug & DEBUG_HW)
572 printk(KERN_DEBUG "%s: %s: unknown command %x\n",
573 hw->name, __func__, cmd);
574 return -EINVAL;
576 return err;
580 * S0 TE state change event handler
582 static void
583 ph_state_te(struct dchannel *dch)
585 struct hfcsusb *hw = dch->hw;
587 if (debug & DEBUG_HW) {
588 if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
589 printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
590 HFC_TE_LAYER1_STATES[dch->state]);
591 else
592 printk(KERN_DEBUG "%s: %s: TE F%d\n",
593 hw->name, __func__, dch->state);
596 switch (dch->state) {
597 case 0:
598 l1_event(dch->l1, HW_RESET_IND);
599 break;
600 case 3:
601 l1_event(dch->l1, HW_DEACT_IND);
602 break;
603 case 5:
604 case 8:
605 l1_event(dch->l1, ANYSIGNAL);
606 break;
607 case 6:
608 l1_event(dch->l1, INFO2);
609 break;
610 case 7:
611 l1_event(dch->l1, INFO4_P8);
612 break;
614 if (dch->state == 7)
615 handle_led(hw, LED_S0_ON);
616 else
617 handle_led(hw, LED_S0_OFF);
621 * S0 NT state change event handler
623 static void
624 ph_state_nt(struct dchannel *dch)
626 struct hfcsusb *hw = dch->hw;
628 if (debug & DEBUG_HW) {
629 if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
630 printk(KERN_DEBUG "%s: %s: %s\n",
631 hw->name, __func__,
632 HFC_NT_LAYER1_STATES[dch->state]);
634 else
635 printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
636 hw->name, __func__, dch->state);
639 switch (dch->state) {
640 case (1):
641 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
642 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
643 hw->nt_timer = 0;
644 hw->timers &= ~NT_ACTIVATION_TIMER;
645 handle_led(hw, LED_S0_OFF);
646 break;
648 case (2):
649 if (hw->nt_timer < 0) {
650 hw->nt_timer = 0;
651 hw->timers &= ~NT_ACTIVATION_TIMER;
652 hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
653 } else {
654 hw->timers |= NT_ACTIVATION_TIMER;
655 hw->nt_timer = NT_T1_COUNT;
656 /* allow G2 -> G3 transition */
657 write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
659 break;
660 case (3):
661 hw->nt_timer = 0;
662 hw->timers &= ~NT_ACTIVATION_TIMER;
663 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
664 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
665 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
666 handle_led(hw, LED_S0_ON);
667 break;
668 case (4):
669 hw->nt_timer = 0;
670 hw->timers &= ~NT_ACTIVATION_TIMER;
671 break;
672 default:
673 break;
675 hfcsusb_ph_info(hw);
678 static void
679 ph_state(struct dchannel *dch)
681 struct hfcsusb *hw = dch->hw;
683 if (hw->protocol == ISDN_P_NT_S0)
684 ph_state_nt(dch);
685 else if (hw->protocol == ISDN_P_TE_S0)
686 ph_state_te(dch);
690 * disable/enable BChannel for desired protocoll
692 static int
693 hfcsusb_setup_bch(struct bchannel *bch, int protocol)
695 struct hfcsusb *hw = bch->hw;
696 __u8 conhdlc, sctrl, sctrl_r;
698 if (debug & DEBUG_HW)
699 printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
700 hw->name, __func__, bch->state, protocol,
701 bch->nr);
703 /* setup val for CON_HDLC */
704 conhdlc = 0;
705 if (protocol > ISDN_P_NONE)
706 conhdlc = 8; /* enable FIFO */
708 switch (protocol) {
709 case (-1): /* used for init */
710 bch->state = -1;
711 /* fall through */
712 case (ISDN_P_NONE):
713 if (bch->state == ISDN_P_NONE)
714 return 0; /* already in idle state */
715 bch->state = ISDN_P_NONE;
716 clear_bit(FLG_HDLC, &bch->Flags);
717 clear_bit(FLG_TRANSPARENT, &bch->Flags);
718 break;
719 case (ISDN_P_B_RAW):
720 conhdlc |= 2;
721 bch->state = protocol;
722 set_bit(FLG_TRANSPARENT, &bch->Flags);
723 break;
724 case (ISDN_P_B_HDLC):
725 bch->state = protocol;
726 set_bit(FLG_HDLC, &bch->Flags);
727 break;
728 default:
729 if (debug & DEBUG_HW)
730 printk(KERN_DEBUG "%s: %s: prot not known %x\n",
731 hw->name, __func__, protocol);
732 return -ENOPROTOOPT;
735 if (protocol >= ISDN_P_NONE) {
736 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
737 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
738 write_reg(hw, HFCUSB_INC_RES_F, 2);
739 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
740 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
741 write_reg(hw, HFCUSB_INC_RES_F, 2);
743 sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
744 sctrl_r = 0x0;
745 if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
746 sctrl |= 1;
747 sctrl_r |= 1;
749 if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
750 sctrl |= 2;
751 sctrl_r |= 2;
753 write_reg(hw, HFCUSB_SCTRL, sctrl);
754 write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
756 if (protocol > ISDN_P_NONE)
757 handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
758 else
759 handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
760 LED_B2_OFF);
762 hfcsusb_ph_info(hw);
763 return 0;
766 static void
767 hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
769 if (debug & DEBUG_HW)
770 printk(KERN_DEBUG "%s: %s: %x\n",
771 hw->name, __func__, command);
773 switch (command) {
774 case HFC_L1_ACTIVATE_TE:
775 /* force sending sending INFO1 */
776 write_reg(hw, HFCUSB_STATES, 0x14);
777 /* start l1 activation */
778 write_reg(hw, HFCUSB_STATES, 0x04);
779 break;
781 case HFC_L1_FORCE_DEACTIVATE_TE:
782 write_reg(hw, HFCUSB_STATES, 0x10);
783 write_reg(hw, HFCUSB_STATES, 0x03);
784 break;
786 case HFC_L1_ACTIVATE_NT:
787 if (hw->dch.state == 3)
788 _queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
789 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
790 else
791 write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
792 HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
793 break;
795 case HFC_L1_DEACTIVATE_NT:
796 write_reg(hw, HFCUSB_STATES,
797 HFCUSB_DO_ACTION);
798 break;
803 * Layer 1 B-channel hardware access
805 static int
806 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
808 return mISDN_ctrl_bchannel(bch, cq);
811 /* collect data from incoming interrupt or isochron USB data */
812 static void
813 hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
814 int finish)
816 struct hfcsusb *hw = fifo->hw;
817 struct sk_buff *rx_skb = NULL;
818 int maxlen = 0;
819 int fifon = fifo->fifonum;
820 int i;
821 int hdlc = 0;
823 if (debug & DBG_HFC_CALL_TRACE)
824 printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
825 "dch(%p) bch(%p) ech(%p)\n",
826 hw->name, __func__, fifon, len,
827 fifo->dch, fifo->bch, fifo->ech);
829 if (!len)
830 return;
832 if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
833 printk(KERN_DEBUG "%s: %s: undefined channel\n",
834 hw->name, __func__);
835 return;
838 spin_lock(&hw->lock);
839 if (fifo->dch) {
840 rx_skb = fifo->dch->rx_skb;
841 maxlen = fifo->dch->maxlen;
842 hdlc = 1;
844 if (fifo->bch) {
845 if (test_bit(FLG_RX_OFF, &fifo->bch->Flags)) {
846 fifo->bch->dropcnt += len;
847 spin_unlock(&hw->lock);
848 return;
850 maxlen = bchannel_get_rxbuf(fifo->bch, len);
851 rx_skb = fifo->bch->rx_skb;
852 if (maxlen < 0) {
853 if (rx_skb)
854 skb_trim(rx_skb, 0);
855 pr_warning("%s.B%d: No bufferspace for %d bytes\n",
856 hw->name, fifo->bch->nr, len);
857 spin_unlock(&hw->lock);
858 return;
860 maxlen = fifo->bch->maxlen;
861 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
863 if (fifo->ech) {
864 rx_skb = fifo->ech->rx_skb;
865 maxlen = fifo->ech->maxlen;
866 hdlc = 1;
869 if (fifo->dch || fifo->ech) {
870 if (!rx_skb) {
871 rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
872 if (rx_skb) {
873 if (fifo->dch)
874 fifo->dch->rx_skb = rx_skb;
875 if (fifo->ech)
876 fifo->ech->rx_skb = rx_skb;
877 skb_trim(rx_skb, 0);
878 } else {
879 printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
880 hw->name, __func__);
881 spin_unlock(&hw->lock);
882 return;
885 /* D/E-Channel SKB range check */
886 if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
887 printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
888 "for fifo(%d) HFCUSB_D_RX\n",
889 hw->name, __func__, fifon);
890 skb_trim(rx_skb, 0);
891 spin_unlock(&hw->lock);
892 return;
896 memcpy(skb_put(rx_skb, len), data, len);
898 if (hdlc) {
899 /* we have a complete hdlc packet */
900 if (finish) {
901 if ((rx_skb->len > 3) &&
902 (!(rx_skb->data[rx_skb->len - 1]))) {
903 if (debug & DBG_HFC_FIFO_VERBOSE) {
904 printk(KERN_DEBUG "%s: %s: fifon(%i)"
905 " new RX len(%i): ",
906 hw->name, __func__, fifon,
907 rx_skb->len);
908 i = 0;
909 while (i < rx_skb->len)
910 printk("%02x ",
911 rx_skb->data[i++]);
912 printk("\n");
915 /* remove CRC & status */
916 skb_trim(rx_skb, rx_skb->len - 3);
918 if (fifo->dch)
919 recv_Dchannel(fifo->dch);
920 if (fifo->bch)
921 recv_Bchannel(fifo->bch, MISDN_ID_ANY,
923 if (fifo->ech)
924 recv_Echannel(fifo->ech,
925 &hw->dch);
926 } else {
927 if (debug & DBG_HFC_FIFO_VERBOSE) {
928 printk(KERN_DEBUG
929 "%s: CRC or minlen ERROR fifon(%i) "
930 "RX len(%i): ",
931 hw->name, fifon, rx_skb->len);
932 i = 0;
933 while (i < rx_skb->len)
934 printk("%02x ",
935 rx_skb->data[i++]);
936 printk("\n");
938 skb_trim(rx_skb, 0);
941 } else {
942 /* deliver transparent data to layer2 */
943 recv_Bchannel(fifo->bch, MISDN_ID_ANY, false);
945 spin_unlock(&hw->lock);
948 static void
949 fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
950 void *buf, int num_packets, int packet_size, int interval,
951 usb_complete_t complete, void *context)
953 int k;
955 usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
956 complete, context);
958 urb->number_of_packets = num_packets;
959 urb->transfer_flags = URB_ISO_ASAP;
960 urb->actual_length = 0;
961 urb->interval = interval;
963 for (k = 0; k < num_packets; k++) {
964 urb->iso_frame_desc[k].offset = packet_size * k;
965 urb->iso_frame_desc[k].length = packet_size;
966 urb->iso_frame_desc[k].actual_length = 0;
970 /* receive completion routine for all ISO tx fifos */
971 static void
972 rx_iso_complete(struct urb *urb)
974 struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
975 struct usb_fifo *fifo = context_iso_urb->owner_fifo;
976 struct hfcsusb *hw = fifo->hw;
977 int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
978 status, iso_status, i;
979 __u8 *buf;
980 static __u8 eof[8];
981 __u8 s0_state;
983 fifon = fifo->fifonum;
984 status = urb->status;
986 spin_lock(&hw->lock);
987 if (fifo->stop_gracefull) {
988 fifo->stop_gracefull = 0;
989 fifo->active = 0;
990 spin_unlock(&hw->lock);
991 return;
993 spin_unlock(&hw->lock);
996 * ISO transfer only partially completed,
997 * look at individual frame status for details
999 if (status == -EXDEV) {
1000 if (debug & DEBUG_HW)
1001 printk(KERN_DEBUG "%s: %s: with -EXDEV "
1002 "urb->status %d, fifonum %d\n",
1003 hw->name, __func__, status, fifon);
1005 /* clear status, so go on with ISO transfers */
1006 status = 0;
1009 s0_state = 0;
1010 if (fifo->active && !status) {
1011 num_isoc_packets = iso_packets[fifon];
1012 maxlen = fifo->usb_packet_maxlen;
1014 for (k = 0; k < num_isoc_packets; ++k) {
1015 len = urb->iso_frame_desc[k].actual_length;
1016 offset = urb->iso_frame_desc[k].offset;
1017 buf = context_iso_urb->buffer + offset;
1018 iso_status = urb->iso_frame_desc[k].status;
1020 if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1021 printk(KERN_DEBUG "%s: %s: "
1022 "ISO packet %i, status: %i\n",
1023 hw->name, __func__, k, iso_status);
1026 /* USB data log for every D ISO in */
1027 if ((fifon == HFCUSB_D_RX) &&
1028 (debug & DBG_HFC_USB_VERBOSE)) {
1029 printk(KERN_DEBUG
1030 "%s: %s: %d (%d/%d) len(%d) ",
1031 hw->name, __func__, urb->start_frame,
1032 k, num_isoc_packets - 1,
1033 len);
1034 for (i = 0; i < len; i++)
1035 printk("%x ", buf[i]);
1036 printk("\n");
1039 if (!iso_status) {
1040 if (fifo->last_urblen != maxlen) {
1042 * save fifo fill-level threshold bits
1043 * to use them later in TX ISO URB
1044 * completions
1046 hw->threshold_mask = buf[1];
1048 if (fifon == HFCUSB_D_RX)
1049 s0_state = (buf[0] >> 4);
1051 eof[fifon] = buf[0] & 1;
1052 if (len > 2)
1053 hfcsusb_rx_frame(fifo, buf + 2,
1054 len - 2, (len < maxlen)
1055 ? eof[fifon] : 0);
1056 } else
1057 hfcsusb_rx_frame(fifo, buf, len,
1058 (len < maxlen) ?
1059 eof[fifon] : 0);
1060 fifo->last_urblen = len;
1064 /* signal S0 layer1 state change */
1065 if ((s0_state) && (hw->initdone) &&
1066 (s0_state != hw->dch.state)) {
1067 hw->dch.state = s0_state;
1068 schedule_event(&hw->dch, FLG_PHCHANGE);
1071 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1072 context_iso_urb->buffer, num_isoc_packets,
1073 fifo->usb_packet_maxlen, fifo->intervall,
1074 (usb_complete_t)rx_iso_complete, urb->context);
1075 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1076 if (errcode < 0) {
1077 if (debug & DEBUG_HW)
1078 printk(KERN_DEBUG "%s: %s: error submitting "
1079 "ISO URB: %d\n",
1080 hw->name, __func__, errcode);
1082 } else {
1083 if (status && (debug & DBG_HFC_URB_INFO))
1084 printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1085 "urb->status %d, fifonum %d\n",
1086 hw->name, __func__, status, fifon);
1090 /* receive completion routine for all interrupt rx fifos */
1091 static void
1092 rx_int_complete(struct urb *urb)
1094 int len, status, i;
1095 __u8 *buf, maxlen, fifon;
1096 struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1097 struct hfcsusb *hw = fifo->hw;
1098 static __u8 eof[8];
1100 spin_lock(&hw->lock);
1101 if (fifo->stop_gracefull) {
1102 fifo->stop_gracefull = 0;
1103 fifo->active = 0;
1104 spin_unlock(&hw->lock);
1105 return;
1107 spin_unlock(&hw->lock);
1109 fifon = fifo->fifonum;
1110 if ((!fifo->active) || (urb->status)) {
1111 if (debug & DBG_HFC_URB_ERROR)
1112 printk(KERN_DEBUG
1113 "%s: %s: RX-Fifo %i is going down (%i)\n",
1114 hw->name, __func__, fifon, urb->status);
1116 fifo->urb->interval = 0; /* cancel automatic rescheduling */
1117 return;
1119 len = urb->actual_length;
1120 buf = fifo->buffer;
1121 maxlen = fifo->usb_packet_maxlen;
1123 /* USB data log for every D INT in */
1124 if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1125 printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1126 hw->name, __func__, len);
1127 for (i = 0; i < len; i++)
1128 printk("%02x ", buf[i]);
1129 printk("\n");
1132 if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1133 /* the threshold mask is in the 2nd status byte */
1134 hw->threshold_mask = buf[1];
1136 /* signal S0 layer1 state change */
1137 if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1138 hw->dch.state = (buf[0] >> 4);
1139 schedule_event(&hw->dch, FLG_PHCHANGE);
1142 eof[fifon] = buf[0] & 1;
1143 /* if we have more than the 2 status bytes -> collect data */
1144 if (len > 2)
1145 hfcsusb_rx_frame(fifo, buf + 2,
1146 urb->actual_length - 2,
1147 (len < maxlen) ? eof[fifon] : 0);
1148 } else {
1149 hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1150 (len < maxlen) ? eof[fifon] : 0);
1152 fifo->last_urblen = urb->actual_length;
1154 status = usb_submit_urb(urb, GFP_ATOMIC);
1155 if (status) {
1156 if (debug & DEBUG_HW)
1157 printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1158 hw->name, __func__);
1162 /* transmit completion routine for all ISO tx fifos */
1163 static void
1164 tx_iso_complete(struct urb *urb)
1166 struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1167 struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1168 struct hfcsusb *hw = fifo->hw;
1169 struct sk_buff *tx_skb;
1170 int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1171 errcode, hdlc, i;
1172 int *tx_idx;
1173 int frame_complete, fifon, status, fillempty = 0;
1174 __u8 threshbit, *p;
1176 spin_lock(&hw->lock);
1177 if (fifo->stop_gracefull) {
1178 fifo->stop_gracefull = 0;
1179 fifo->active = 0;
1180 spin_unlock(&hw->lock);
1181 return;
1184 if (fifo->dch) {
1185 tx_skb = fifo->dch->tx_skb;
1186 tx_idx = &fifo->dch->tx_idx;
1187 hdlc = 1;
1188 } else if (fifo->bch) {
1189 tx_skb = fifo->bch->tx_skb;
1190 tx_idx = &fifo->bch->tx_idx;
1191 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1192 if (!tx_skb && !hdlc &&
1193 test_bit(FLG_FILLEMPTY, &fifo->bch->Flags))
1194 fillempty = 1;
1195 } else {
1196 printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1197 hw->name, __func__);
1198 spin_unlock(&hw->lock);
1199 return;
1202 fifon = fifo->fifonum;
1203 status = urb->status;
1205 tx_offset = 0;
1208 * ISO transfer only partially completed,
1209 * look at individual frame status for details
1211 if (status == -EXDEV) {
1212 if (debug & DBG_HFC_URB_ERROR)
1213 printk(KERN_DEBUG "%s: %s: "
1214 "-EXDEV (%i) fifon (%d)\n",
1215 hw->name, __func__, status, fifon);
1217 /* clear status, so go on with ISO transfers */
1218 status = 0;
1221 if (fifo->active && !status) {
1222 /* is FifoFull-threshold set for our channel? */
1223 threshbit = (hw->threshold_mask & (1 << fifon));
1224 num_isoc_packets = iso_packets[fifon];
1226 /* predict dataflow to avoid fifo overflow */
1227 if (fifon >= HFCUSB_D_TX)
1228 sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1229 else
1230 sink = (threshbit) ? SINK_MIN : SINK_MAX;
1231 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1232 context_iso_urb->buffer, num_isoc_packets,
1233 fifo->usb_packet_maxlen, fifo->intervall,
1234 (usb_complete_t)tx_iso_complete, urb->context);
1235 memset(context_iso_urb->buffer, 0,
1236 sizeof(context_iso_urb->buffer));
1237 frame_complete = 0;
1239 for (k = 0; k < num_isoc_packets; ++k) {
1240 /* analyze tx success of previous ISO packets */
1241 if (debug & DBG_HFC_URB_ERROR) {
1242 errcode = urb->iso_frame_desc[k].status;
1243 if (errcode) {
1244 printk(KERN_DEBUG "%s: %s: "
1245 "ISO packet %i, status: %i\n",
1246 hw->name, __func__, k, errcode);
1250 /* Generate next ISO Packets */
1251 if (tx_skb)
1252 remain = tx_skb->len - *tx_idx;
1253 else if (fillempty)
1254 remain = 15; /* > not complete */
1255 else
1256 remain = 0;
1258 if (remain > 0) {
1259 fifo->bit_line -= sink;
1260 current_len = (0 - fifo->bit_line) / 8;
1261 if (current_len > 14)
1262 current_len = 14;
1263 if (current_len < 0)
1264 current_len = 0;
1265 if (remain < current_len)
1266 current_len = remain;
1268 /* how much bit do we put on the line? */
1269 fifo->bit_line += current_len * 8;
1271 context_iso_urb->buffer[tx_offset] = 0;
1272 if (current_len == remain) {
1273 if (hdlc) {
1274 /* signal frame completion */
1275 context_iso_urb->
1276 buffer[tx_offset] = 1;
1277 /* add 2 byte flags and 16bit
1278 * CRC at end of ISDN frame */
1279 fifo->bit_line += 32;
1281 frame_complete = 1;
1284 /* copy tx data to iso-urb buffer */
1285 p = context_iso_urb->buffer + tx_offset + 1;
1286 if (fillempty) {
1287 memset(p, fifo->bch->fill[0],
1288 current_len);
1289 } else {
1290 memcpy(p, (tx_skb->data + *tx_idx),
1291 current_len);
1292 *tx_idx += current_len;
1294 urb->iso_frame_desc[k].offset = tx_offset;
1295 urb->iso_frame_desc[k].length = current_len + 1;
1297 /* USB data log for every D ISO out */
1298 if ((fifon == HFCUSB_D_RX) && !fillempty &&
1299 (debug & DBG_HFC_USB_VERBOSE)) {
1300 printk(KERN_DEBUG
1301 "%s: %s (%d/%d) offs(%d) len(%d) ",
1302 hw->name, __func__,
1303 k, num_isoc_packets - 1,
1304 urb->iso_frame_desc[k].offset,
1305 urb->iso_frame_desc[k].length);
1307 for (i = urb->iso_frame_desc[k].offset;
1308 i < (urb->iso_frame_desc[k].offset
1309 + urb->iso_frame_desc[k].length);
1310 i++)
1311 printk("%x ",
1312 context_iso_urb->buffer[i]);
1314 printk(" skb->len(%i) tx-idx(%d)\n",
1315 tx_skb->len, *tx_idx);
1318 tx_offset += (current_len + 1);
1319 } else {
1320 urb->iso_frame_desc[k].offset = tx_offset++;
1321 urb->iso_frame_desc[k].length = 1;
1322 /* we lower data margin every msec */
1323 fifo->bit_line -= sink;
1324 if (fifo->bit_line < BITLINE_INF)
1325 fifo->bit_line = BITLINE_INF;
1328 if (frame_complete) {
1329 frame_complete = 0;
1331 if (debug & DBG_HFC_FIFO_VERBOSE) {
1332 printk(KERN_DEBUG "%s: %s: "
1333 "fifon(%i) new TX len(%i): ",
1334 hw->name, __func__,
1335 fifon, tx_skb->len);
1336 i = 0;
1337 while (i < tx_skb->len)
1338 printk("%02x ",
1339 tx_skb->data[i++]);
1340 printk("\n");
1343 dev_kfree_skb(tx_skb);
1344 tx_skb = NULL;
1345 if (fifo->dch && get_next_dframe(fifo->dch))
1346 tx_skb = fifo->dch->tx_skb;
1347 else if (fifo->bch &&
1348 get_next_bframe(fifo->bch))
1349 tx_skb = fifo->bch->tx_skb;
1352 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1353 if (errcode < 0) {
1354 if (debug & DEBUG_HW)
1355 printk(KERN_DEBUG
1356 "%s: %s: error submitting ISO URB: %d \n",
1357 hw->name, __func__, errcode);
1361 * abuse DChannel tx iso completion to trigger NT mode state
1362 * changes tx_iso_complete is assumed to be called every
1363 * fifo->intervall (ms)
1365 if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1366 && (hw->timers & NT_ACTIVATION_TIMER)) {
1367 if ((--hw->nt_timer) < 0)
1368 schedule_event(&hw->dch, FLG_PHCHANGE);
1371 } else {
1372 if (status && (debug & DBG_HFC_URB_ERROR))
1373 printk(KERN_DEBUG "%s: %s: urb->status %s (%i)"
1374 "fifonum=%d\n",
1375 hw->name, __func__,
1376 symbolic(urb_errlist, status), status, fifon);
1378 spin_unlock(&hw->lock);
1382 * allocs urbs and start isoc transfer with two pending urbs to avoid
1383 * gaps in the transfer chain
1385 static int
1386 start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1387 usb_complete_t complete, int packet_size)
1389 struct hfcsusb *hw = fifo->hw;
1390 int i, k, errcode;
1392 if (debug)
1393 printk(KERN_DEBUG "%s: %s: fifo %i\n",
1394 hw->name, __func__, fifo->fifonum);
1396 /* allocate Memory for Iso out Urbs */
1397 for (i = 0; i < 2; i++) {
1398 if (!(fifo->iso[i].urb)) {
1399 fifo->iso[i].urb =
1400 usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1401 if (!(fifo->iso[i].urb)) {
1402 printk(KERN_DEBUG
1403 "%s: %s: alloc urb for fifo %i failed",
1404 hw->name, __func__, fifo->fifonum);
1406 fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1407 fifo->iso[i].indx = i;
1409 /* Init the first iso */
1410 if (ISO_BUFFER_SIZE >=
1411 (fifo->usb_packet_maxlen *
1412 num_packets_per_urb)) {
1413 fill_isoc_urb(fifo->iso[i].urb,
1414 fifo->hw->dev, fifo->pipe,
1415 fifo->iso[i].buffer,
1416 num_packets_per_urb,
1417 fifo->usb_packet_maxlen,
1418 fifo->intervall, complete,
1419 &fifo->iso[i]);
1420 memset(fifo->iso[i].buffer, 0,
1421 sizeof(fifo->iso[i].buffer));
1423 for (k = 0; k < num_packets_per_urb; k++) {
1424 fifo->iso[i].urb->
1425 iso_frame_desc[k].offset =
1426 k * packet_size;
1427 fifo->iso[i].urb->
1428 iso_frame_desc[k].length =
1429 packet_size;
1431 } else {
1432 printk(KERN_DEBUG
1433 "%s: %s: ISO Buffer size to small!\n",
1434 hw->name, __func__);
1437 fifo->bit_line = BITLINE_INF;
1439 errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1440 fifo->active = (errcode >= 0) ? 1 : 0;
1441 fifo->stop_gracefull = 0;
1442 if (errcode < 0) {
1443 printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1444 hw->name, __func__,
1445 symbolic(urb_errlist, errcode), i);
1448 return fifo->active;
1451 static void
1452 stop_iso_gracefull(struct usb_fifo *fifo)
1454 struct hfcsusb *hw = fifo->hw;
1455 int i, timeout;
1456 u_long flags;
1458 for (i = 0; i < 2; i++) {
1459 spin_lock_irqsave(&hw->lock, flags);
1460 if (debug)
1461 printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1462 hw->name, __func__, fifo->fifonum, i);
1463 fifo->stop_gracefull = 1;
1464 spin_unlock_irqrestore(&hw->lock, flags);
1467 for (i = 0; i < 2; i++) {
1468 timeout = 3;
1469 while (fifo->stop_gracefull && timeout--)
1470 schedule_timeout_interruptible((HZ / 1000) * 16);
1471 if (debug && fifo->stop_gracefull)
1472 printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1473 hw->name, __func__, fifo->fifonum, i);
1477 static void
1478 stop_int_gracefull(struct usb_fifo *fifo)
1480 struct hfcsusb *hw = fifo->hw;
1481 int timeout;
1482 u_long flags;
1484 spin_lock_irqsave(&hw->lock, flags);
1485 if (debug)
1486 printk(KERN_DEBUG "%s: %s for fifo %i\n",
1487 hw->name, __func__, fifo->fifonum);
1488 fifo->stop_gracefull = 1;
1489 spin_unlock_irqrestore(&hw->lock, flags);
1491 timeout = 3;
1492 while (fifo->stop_gracefull && timeout--)
1493 schedule_timeout_interruptible((HZ / 1000) * 3);
1494 if (debug && fifo->stop_gracefull)
1495 printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1496 hw->name, __func__, fifo->fifonum);
1499 /* start the interrupt transfer for the given fifo */
1500 static void
1501 start_int_fifo(struct usb_fifo *fifo)
1503 struct hfcsusb *hw = fifo->hw;
1504 int errcode;
1506 if (debug)
1507 printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1508 hw->name, __func__, fifo->fifonum);
1510 if (!fifo->urb) {
1511 fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1512 if (!fifo->urb)
1513 return;
1515 usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1516 fifo->buffer, fifo->usb_packet_maxlen,
1517 (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1518 fifo->active = 1;
1519 fifo->stop_gracefull = 0;
1520 errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1521 if (errcode) {
1522 printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1523 hw->name, __func__, errcode);
1524 fifo->active = 0;
1528 static void
1529 setPortMode(struct hfcsusb *hw)
1531 if (debug & DEBUG_HW)
1532 printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1533 (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1535 if (hw->protocol == ISDN_P_TE_S0) {
1536 write_reg(hw, HFCUSB_SCTRL, 0x40);
1537 write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1538 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1539 write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1540 write_reg(hw, HFCUSB_STATES, 3);
1541 } else {
1542 write_reg(hw, HFCUSB_SCTRL, 0x44);
1543 write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1544 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1545 write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1546 write_reg(hw, HFCUSB_STATES, 1);
1550 static void
1551 reset_hfcsusb(struct hfcsusb *hw)
1553 struct usb_fifo *fifo;
1554 int i;
1556 if (debug & DEBUG_HW)
1557 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1559 /* do Chip reset */
1560 write_reg(hw, HFCUSB_CIRM, 8);
1562 /* aux = output, reset off */
1563 write_reg(hw, HFCUSB_CIRM, 0x10);
1565 /* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1566 write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1567 ((hw->packet_size / 8) << 4));
1569 /* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
1570 write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1572 /* enable PCM/GCI master mode */
1573 write_reg(hw, HFCUSB_MST_MODE1, 0); /* set default values */
1574 write_reg(hw, HFCUSB_MST_MODE0, 1); /* enable master mode */
1576 /* init the fifos */
1577 write_reg(hw, HFCUSB_F_THRES,
1578 (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1580 fifo = hw->fifos;
1581 for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1582 write_reg(hw, HFCUSB_FIFO, i); /* select the desired fifo */
1583 fifo[i].max_size =
1584 (i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1585 fifo[i].last_urblen = 0;
1587 /* set 2 bit for D- & E-channel */
1588 write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1590 /* enable all fifos */
1591 if (i == HFCUSB_D_TX)
1592 write_reg(hw, HFCUSB_CON_HDLC,
1593 (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1594 else
1595 write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1596 write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1599 write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1600 handle_led(hw, LED_POWER_ON);
1603 /* start USB data pipes dependand on device's endpoint configuration */
1604 static void
1605 hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1607 /* quick check if endpoint already running */
1608 if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1609 return;
1610 if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1611 return;
1612 if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1613 return;
1614 if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1615 return;
1617 /* start rx endpoints using USB INT IN method */
1618 if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1619 start_int_fifo(hw->fifos + channel * 2 + 1);
1621 /* start rx endpoints using USB ISO IN method */
1622 if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1623 switch (channel) {
1624 case HFC_CHAN_D:
1625 start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1626 ISOC_PACKETS_D,
1627 (usb_complete_t)rx_iso_complete,
1628 16);
1629 break;
1630 case HFC_CHAN_E:
1631 start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1632 ISOC_PACKETS_D,
1633 (usb_complete_t)rx_iso_complete,
1634 16);
1635 break;
1636 case HFC_CHAN_B1:
1637 start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1638 ISOC_PACKETS_B,
1639 (usb_complete_t)rx_iso_complete,
1640 16);
1641 break;
1642 case HFC_CHAN_B2:
1643 start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1644 ISOC_PACKETS_B,
1645 (usb_complete_t)rx_iso_complete,
1646 16);
1647 break;
1651 /* start tx endpoints using USB ISO OUT method */
1652 switch (channel) {
1653 case HFC_CHAN_D:
1654 start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1655 ISOC_PACKETS_B,
1656 (usb_complete_t)tx_iso_complete, 1);
1657 break;
1658 case HFC_CHAN_B1:
1659 start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1660 ISOC_PACKETS_D,
1661 (usb_complete_t)tx_iso_complete, 1);
1662 break;
1663 case HFC_CHAN_B2:
1664 start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1665 ISOC_PACKETS_B,
1666 (usb_complete_t)tx_iso_complete, 1);
1667 break;
1671 /* stop USB data pipes dependand on device's endpoint configuration */
1672 static void
1673 hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1675 /* quick check if endpoint currently running */
1676 if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1677 return;
1678 if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1679 return;
1680 if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1681 return;
1682 if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1683 return;
1685 /* rx endpoints using USB INT IN method */
1686 if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1687 stop_int_gracefull(hw->fifos + channel * 2 + 1);
1689 /* rx endpoints using USB ISO IN method */
1690 if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1691 stop_iso_gracefull(hw->fifos + channel * 2 + 1);
1693 /* tx endpoints using USB ISO OUT method */
1694 if (channel != HFC_CHAN_E)
1695 stop_iso_gracefull(hw->fifos + channel * 2);
1699 /* Hardware Initialization */
1700 static int
1701 setup_hfcsusb(struct hfcsusb *hw)
1703 u_char b;
1705 if (debug & DBG_HFC_CALL_TRACE)
1706 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1708 /* check the chip id */
1709 if (read_reg_atomic(hw, HFCUSB_CHIP_ID, &b) != 1) {
1710 printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1711 hw->name, __func__);
1712 return 1;
1714 if (b != HFCUSB_CHIPID) {
1715 printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1716 hw->name, __func__, b);
1717 return 1;
1720 /* first set the needed config, interface and alternate */
1721 (void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1723 hw->led_state = 0;
1725 /* init the background machinery for control requests */
1726 hw->ctrl_read.bRequestType = 0xc0;
1727 hw->ctrl_read.bRequest = 1;
1728 hw->ctrl_read.wLength = cpu_to_le16(1);
1729 hw->ctrl_write.bRequestType = 0x40;
1730 hw->ctrl_write.bRequest = 0;
1731 hw->ctrl_write.wLength = 0;
1732 usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1733 (u_char *)&hw->ctrl_write, NULL, 0,
1734 (usb_complete_t)ctrl_complete, hw);
1736 reset_hfcsusb(hw);
1737 return 0;
1740 static void
1741 release_hw(struct hfcsusb *hw)
1743 if (debug & DBG_HFC_CALL_TRACE)
1744 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1747 * stop all endpoints gracefully
1748 * TODO: mISDN_core should generate CLOSE_CHANNEL
1749 * signals after calling mISDN_unregister_device()
1751 hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1752 hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1753 hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1754 if (hw->fifos[HFCUSB_PCM_RX].pipe)
1755 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1756 if (hw->protocol == ISDN_P_TE_S0)
1757 l1_event(hw->dch.l1, CLOSE_CHANNEL);
1759 mISDN_unregister_device(&hw->dch.dev);
1760 mISDN_freebchannel(&hw->bch[1]);
1761 mISDN_freebchannel(&hw->bch[0]);
1762 mISDN_freedchannel(&hw->dch);
1764 if (hw->ctrl_urb) {
1765 usb_kill_urb(hw->ctrl_urb);
1766 usb_free_urb(hw->ctrl_urb);
1767 hw->ctrl_urb = NULL;
1770 if (hw->intf)
1771 usb_set_intfdata(hw->intf, NULL);
1772 list_del(&hw->list);
1773 kfree(hw);
1774 hw = NULL;
1777 static void
1778 deactivate_bchannel(struct bchannel *bch)
1780 struct hfcsusb *hw = bch->hw;
1781 u_long flags;
1783 if (bch->debug & DEBUG_HW)
1784 printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1785 hw->name, __func__, bch->nr);
1787 spin_lock_irqsave(&hw->lock, flags);
1788 mISDN_clear_bchannel(bch);
1789 spin_unlock_irqrestore(&hw->lock, flags);
1790 hfcsusb_setup_bch(bch, ISDN_P_NONE);
1791 hfcsusb_stop_endpoint(hw, bch->nr - 1);
1795 * Layer 1 B-channel hardware access
1797 static int
1798 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1800 struct bchannel *bch = container_of(ch, struct bchannel, ch);
1801 int ret = -EINVAL;
1803 if (bch->debug & DEBUG_HW)
1804 printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1806 switch (cmd) {
1807 case HW_TESTRX_RAW:
1808 case HW_TESTRX_HDLC:
1809 case HW_TESTRX_OFF:
1810 ret = -EINVAL;
1811 break;
1813 case CLOSE_CHANNEL:
1814 test_and_clear_bit(FLG_OPEN, &bch->Flags);
1815 deactivate_bchannel(bch);
1816 ch->protocol = ISDN_P_NONE;
1817 ch->peer = NULL;
1818 module_put(THIS_MODULE);
1819 ret = 0;
1820 break;
1821 case CONTROL_CHANNEL:
1822 ret = channel_bctrl(bch, arg);
1823 break;
1824 default:
1825 printk(KERN_WARNING "%s: unknown prim(%x)\n",
1826 __func__, cmd);
1828 return ret;
1831 static int
1832 setup_instance(struct hfcsusb *hw, struct device *parent)
1834 u_long flags;
1835 int err, i;
1837 if (debug & DBG_HFC_CALL_TRACE)
1838 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1840 spin_lock_init(&hw->ctrl_lock);
1841 spin_lock_init(&hw->lock);
1843 mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1844 hw->dch.debug = debug & 0xFFFF;
1845 hw->dch.hw = hw;
1846 hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1847 hw->dch.dev.D.send = hfcusb_l2l1D;
1848 hw->dch.dev.D.ctrl = hfc_dctrl;
1850 /* enable E-Channel logging */
1851 if (hw->fifos[HFCUSB_PCM_RX].pipe)
1852 mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1854 hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1855 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1856 hw->dch.dev.nrbchan = 2;
1857 for (i = 0; i < 2; i++) {
1858 hw->bch[i].nr = i + 1;
1859 set_channelmap(i + 1, hw->dch.dev.channelmap);
1860 hw->bch[i].debug = debug;
1861 mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM, poll >> 1);
1862 hw->bch[i].hw = hw;
1863 hw->bch[i].ch.send = hfcusb_l2l1B;
1864 hw->bch[i].ch.ctrl = hfc_bctrl;
1865 hw->bch[i].ch.nr = i + 1;
1866 list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1869 hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1870 hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1871 hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1872 hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1873 hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1874 hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1875 hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1876 hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1878 err = setup_hfcsusb(hw);
1879 if (err)
1880 goto out;
1882 snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1883 hfcsusb_cnt + 1);
1884 printk(KERN_INFO "%s: registered as '%s'\n",
1885 DRIVER_NAME, hw->name);
1887 err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1888 if (err)
1889 goto out;
1891 hfcsusb_cnt++;
1892 write_lock_irqsave(&HFClock, flags);
1893 list_add_tail(&hw->list, &HFClist);
1894 write_unlock_irqrestore(&HFClock, flags);
1895 return 0;
1897 out:
1898 mISDN_freebchannel(&hw->bch[1]);
1899 mISDN_freebchannel(&hw->bch[0]);
1900 mISDN_freedchannel(&hw->dch);
1901 kfree(hw);
1902 return err;
1905 static int
1906 hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1908 struct hfcsusb *hw;
1909 struct usb_device *dev = interface_to_usbdev(intf);
1910 struct usb_host_interface *iface = intf->cur_altsetting;
1911 struct usb_host_interface *iface_used = NULL;
1912 struct usb_host_endpoint *ep;
1913 struct hfcsusb_vdata *driver_info;
1914 int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1915 probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1916 ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1917 alt_used = 0;
1919 vend_idx = 0xffff;
1920 for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1921 if ((le16_to_cpu(dev->descriptor.idVendor)
1922 == hfcsusb_idtab[i].idVendor) &&
1923 (le16_to_cpu(dev->descriptor.idProduct)
1924 == hfcsusb_idtab[i].idProduct)) {
1925 vend_idx = i;
1926 continue;
1930 printk(KERN_DEBUG
1931 "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1932 __func__, ifnum, iface->desc.bAlternateSetting,
1933 intf->minor, vend_idx);
1935 if (vend_idx == 0xffff) {
1936 printk(KERN_WARNING
1937 "%s: no valid vendor found in USB descriptor\n",
1938 __func__);
1939 return -EIO;
1941 /* if vendor and product ID is OK, start probing alternate settings */
1942 alt_idx = 0;
1943 small_match = -1;
1945 /* default settings */
1946 iso_packet_size = 16;
1947 packet_size = 64;
1949 while (alt_idx < intf->num_altsetting) {
1950 iface = intf->altsetting + alt_idx;
1951 probe_alt_setting = iface->desc.bAlternateSetting;
1952 cfg_used = 0;
1954 while (validconf[cfg_used][0]) {
1955 cfg_found = 1;
1956 vcf = validconf[cfg_used];
1957 ep = iface->endpoint;
1958 memcpy(cmptbl, vcf, 16 * sizeof(int));
1960 /* check for all endpoints in this alternate setting */
1961 for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1962 ep_addr = ep->desc.bEndpointAddress;
1964 /* get endpoint base */
1965 idx = ((ep_addr & 0x7f) - 1) * 2;
1966 if (ep_addr & 0x80)
1967 idx++;
1968 attr = ep->desc.bmAttributes;
1970 if (cmptbl[idx] != EP_NOP) {
1971 if (cmptbl[idx] == EP_NUL)
1972 cfg_found = 0;
1973 if (attr == USB_ENDPOINT_XFER_INT
1974 && cmptbl[idx] == EP_INT)
1975 cmptbl[idx] = EP_NUL;
1976 if (attr == USB_ENDPOINT_XFER_BULK
1977 && cmptbl[idx] == EP_BLK)
1978 cmptbl[idx] = EP_NUL;
1979 if (attr == USB_ENDPOINT_XFER_ISOC
1980 && cmptbl[idx] == EP_ISO)
1981 cmptbl[idx] = EP_NUL;
1983 if (attr == USB_ENDPOINT_XFER_INT &&
1984 ep->desc.bInterval < vcf[17]) {
1985 cfg_found = 0;
1988 ep++;
1991 for (i = 0; i < 16; i++)
1992 if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
1993 cfg_found = 0;
1995 if (cfg_found) {
1996 if (small_match < cfg_used) {
1997 small_match = cfg_used;
1998 alt_used = probe_alt_setting;
1999 iface_used = iface;
2002 cfg_used++;
2004 alt_idx++;
2005 } /* (alt_idx < intf->num_altsetting) */
2007 /* not found a valid USB Ta Endpoint config */
2008 if (small_match == -1)
2009 return -EIO;
2011 iface = iface_used;
2012 hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2013 if (!hw)
2014 return -ENOMEM; /* got no mem */
2015 snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2017 ep = iface->endpoint;
2018 vcf = validconf[small_match];
2020 for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2021 struct usb_fifo *f;
2023 ep_addr = ep->desc.bEndpointAddress;
2024 /* get endpoint base */
2025 idx = ((ep_addr & 0x7f) - 1) * 2;
2026 if (ep_addr & 0x80)
2027 idx++;
2028 f = &hw->fifos[idx & 7];
2030 /* init Endpoints */
2031 if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2032 ep++;
2033 continue;
2035 switch (ep->desc.bmAttributes) {
2036 case USB_ENDPOINT_XFER_INT:
2037 f->pipe = usb_rcvintpipe(dev,
2038 ep->desc.bEndpointAddress);
2039 f->usb_transfer_mode = USB_INT;
2040 packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2041 break;
2042 case USB_ENDPOINT_XFER_BULK:
2043 if (ep_addr & 0x80)
2044 f->pipe = usb_rcvbulkpipe(dev,
2045 ep->desc.bEndpointAddress);
2046 else
2047 f->pipe = usb_sndbulkpipe(dev,
2048 ep->desc.bEndpointAddress);
2049 f->usb_transfer_mode = USB_BULK;
2050 packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2051 break;
2052 case USB_ENDPOINT_XFER_ISOC:
2053 if (ep_addr & 0x80)
2054 f->pipe = usb_rcvisocpipe(dev,
2055 ep->desc.bEndpointAddress);
2056 else
2057 f->pipe = usb_sndisocpipe(dev,
2058 ep->desc.bEndpointAddress);
2059 f->usb_transfer_mode = USB_ISOC;
2060 iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2061 break;
2062 default:
2063 f->pipe = 0;
2066 if (f->pipe) {
2067 f->fifonum = idx & 7;
2068 f->hw = hw;
2069 f->usb_packet_maxlen =
2070 le16_to_cpu(ep->desc.wMaxPacketSize);
2071 f->intervall = ep->desc.bInterval;
2073 ep++;
2075 hw->dev = dev; /* save device */
2076 hw->if_used = ifnum; /* save used interface */
2077 hw->alt_used = alt_used; /* and alternate config */
2078 hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2079 hw->cfg_used = vcf[16]; /* store used config */
2080 hw->vend_idx = vend_idx; /* store found vendor */
2081 hw->packet_size = packet_size;
2082 hw->iso_packet_size = iso_packet_size;
2084 /* create the control pipes needed for register access */
2085 hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2086 hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2088 driver_info = (struct hfcsusb_vdata *)
2089 hfcsusb_idtab[vend_idx].driver_info;
2091 hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2092 if (!hw->ctrl_urb) {
2093 pr_warn("%s: No memory for control urb\n",
2094 driver_info->vend_name);
2095 kfree(hw);
2096 return -ENOMEM;
2099 pr_info("%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2100 hw->name, __func__, driver_info->vend_name,
2101 conf_str[small_match], ifnum, alt_used);
2103 if (setup_instance(hw, dev->dev.parent))
2104 return -EIO;
2106 hw->intf = intf;
2107 usb_set_intfdata(hw->intf, hw);
2108 return 0;
2111 /* function called when an active device is removed */
2112 static void
2113 hfcsusb_disconnect(struct usb_interface *intf)
2115 struct hfcsusb *hw = usb_get_intfdata(intf);
2116 struct hfcsusb *next;
2117 int cnt = 0;
2119 printk(KERN_INFO "%s: device disconnected\n", hw->name);
2121 handle_led(hw, LED_POWER_OFF);
2122 release_hw(hw);
2124 list_for_each_entry_safe(hw, next, &HFClist, list)
2125 cnt++;
2126 if (!cnt)
2127 hfcsusb_cnt = 0;
2129 usb_set_intfdata(intf, NULL);
2132 static struct usb_driver hfcsusb_drv = {
2133 .name = DRIVER_NAME,
2134 .id_table = hfcsusb_idtab,
2135 .probe = hfcsusb_probe,
2136 .disconnect = hfcsusb_disconnect,
2137 .disable_hub_initiated_lpm = 1,
2140 module_usb_driver(hfcsusb_drv);