2 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4 * Uses a block device as cache for other block devices; optimized for SSDs.
5 * All allocation is done in buckets, which should match the erase block size
8 * Buckets containing cached data are kept on a heap sorted by priority;
9 * bucket priority is increased on cache hit, and periodically all the buckets
10 * on the heap have their priority scaled down. This currently is just used as
11 * an LRU but in the future should allow for more intelligent heuristics.
13 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
14 * counter. Garbage collection is used to remove stale pointers.
16 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
17 * as keys are inserted we only sort the pages that have not yet been written.
18 * When garbage collection is run, we resort the entire node.
20 * All configuration is done via sysfs; see Documentation/bcache.txt.
28 #include <linux/slab.h>
29 #include <linux/bitops.h>
30 #include <linux/freezer.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <trace/events/bcache.h>
40 * register_bcache: Return errors out to userspace correctly
42 * Writeback: don't undirty key until after a cache flush
44 * Create an iterator for key pointers
46 * On btree write error, mark bucket such that it won't be freed from the cache
49 * Check for bad keys in replay
51 * Refcount journal entries in journal_replay
54 * Finish incremental gc
55 * Gc should free old UUIDs, data for invalid UUIDs
57 * Provide a way to list backing device UUIDs we have data cached for, and
58 * probably how long it's been since we've seen them, and a way to invalidate
59 * dirty data for devices that will never be attached again
61 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
62 * that based on that and how much dirty data we have we can keep writeback
65 * Add a tracepoint or somesuch to watch for writeback starvation
67 * When btree depth > 1 and splitting an interior node, we have to make sure
68 * alloc_bucket() cannot fail. This should be true but is not completely
71 * Make sure all allocations get charged to the root cgroup
75 * If data write is less than hard sector size of ssd, round up offset in open
76 * bucket to the next whole sector
78 * Also lookup by cgroup in get_open_bucket()
80 * Superblock needs to be fleshed out for multiple cache devices
82 * Add a sysfs tunable for the number of writeback IOs in flight
84 * Add a sysfs tunable for the number of open data buckets
86 * IO tracking: Can we track when one process is doing io on behalf of another?
87 * IO tracking: Don't use just an average, weigh more recent stuff higher
89 * Test module load/unload
92 #define MAX_NEED_GC 64
93 #define MAX_SAVE_PRIO 72
95 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
97 #define PTR_HASH(c, k) \
98 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
100 static struct workqueue_struct
*btree_io_wq
;
102 #define insert_lock(s, b) ((b)->level <= (s)->lock)
105 * These macros are for recursing down the btree - they handle the details of
106 * locking and looking up nodes in the cache for you. They're best treated as
107 * mere syntax when reading code that uses them.
109 * op->lock determines whether we take a read or a write lock at a given depth.
110 * If you've got a read lock and find that you need a write lock (i.e. you're
111 * going to have to split), set op->lock and return -EINTR; btree_root() will
112 * call you again and you'll have the correct lock.
116 * btree - recurse down the btree on a specified key
117 * @fn: function to call, which will be passed the child node
118 * @key: key to recurse on
119 * @b: parent btree node
120 * @op: pointer to struct btree_op
122 #define btree(fn, key, b, op, ...) \
124 int _r, l = (b)->level - 1; \
125 bool _w = l <= (op)->lock; \
126 struct btree *_child = bch_btree_node_get((b)->c, key, l, _w); \
127 if (!IS_ERR(_child)) { \
128 _child->parent = (b); \
129 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
130 rw_unlock(_w, _child); \
132 _r = PTR_ERR(_child); \
137 * btree_root - call a function on the root of the btree
138 * @fn: function to call, which will be passed the child node
140 * @op: pointer to struct btree_op
142 #define btree_root(fn, c, op, ...) \
146 struct btree *_b = (c)->root; \
147 bool _w = insert_lock(op, _b); \
148 rw_lock(_w, _b, _b->level); \
149 if (_b == (c)->root && \
150 _w == insert_lock(op, _b)) { \
152 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
157 bch_cannibalize_unlock(c); \
158 if (_r == -ENOSPC) { \
159 wait_event((c)->try_wait, \
163 } while (_r == -EINTR); \
165 finish_wait(&(c)->bucket_wait, &(op)->wait); \
169 static inline struct bset
*write_block(struct btree
*b
)
171 return ((void *) btree_bset_first(b
)) + b
->written
* block_bytes(b
->c
);
174 /* Btree key manipulation */
176 void bkey_put(struct cache_set
*c
, struct bkey
*k
)
180 for (i
= 0; i
< KEY_PTRS(k
); i
++)
181 if (ptr_available(c
, k
, i
))
182 atomic_dec_bug(&PTR_BUCKET(c
, k
, i
)->pin
);
187 static uint64_t btree_csum_set(struct btree
*b
, struct bset
*i
)
189 uint64_t crc
= b
->key
.ptr
[0];
190 void *data
= (void *) i
+ 8, *end
= bset_bkey_last(i
);
192 crc
= bch_crc64_update(crc
, data
, end
- data
);
193 return crc
^ 0xffffffffffffffffULL
;
196 void bch_btree_node_read_done(struct btree
*b
)
198 const char *err
= "bad btree header";
199 struct bset
*i
= btree_bset_first(b
);
200 struct btree_iter
*iter
;
202 iter
= mempool_alloc(b
->c
->fill_iter
, GFP_NOWAIT
);
203 iter
->size
= b
->c
->sb
.bucket_size
/ b
->c
->sb
.block_size
;
206 #ifdef CONFIG_BCACHE_DEBUG
214 b
->written
< btree_blocks(b
) && i
->seq
== b
->keys
.set
[0].data
->seq
;
215 i
= write_block(b
)) {
216 err
= "unsupported bset version";
217 if (i
->version
> BCACHE_BSET_VERSION
)
220 err
= "bad btree header";
221 if (b
->written
+ set_blocks(i
, block_bytes(b
->c
)) >
226 if (i
->magic
!= bset_magic(&b
->c
->sb
))
229 err
= "bad checksum";
230 switch (i
->version
) {
232 if (i
->csum
!= csum_set(i
))
235 case BCACHE_BSET_VERSION
:
236 if (i
->csum
!= btree_csum_set(b
, i
))
242 if (i
!= b
->keys
.set
[0].data
&& !i
->keys
)
245 bch_btree_iter_push(iter
, i
->start
, bset_bkey_last(i
));
247 b
->written
+= set_blocks(i
, block_bytes(b
->c
));
250 err
= "corrupted btree";
251 for (i
= write_block(b
);
252 bset_sector_offset(&b
->keys
, i
) < KEY_SIZE(&b
->key
);
253 i
= ((void *) i
) + block_bytes(b
->c
))
254 if (i
->seq
== b
->keys
.set
[0].data
->seq
)
257 bch_btree_sort_and_fix_extents(&b
->keys
, iter
, &b
->c
->sort
);
259 i
= b
->keys
.set
[0].data
;
260 err
= "short btree key";
261 if (b
->keys
.set
[0].size
&&
262 bkey_cmp(&b
->key
, &b
->keys
.set
[0].end
) < 0)
265 if (b
->written
< btree_blocks(b
))
266 bch_bset_init_next(&b
->keys
, write_block(b
),
267 bset_magic(&b
->c
->sb
));
269 mempool_free(iter
, b
->c
->fill_iter
);
272 set_btree_node_io_error(b
);
273 bch_cache_set_error(b
->c
, "%s at bucket %zu, block %u, %u keys",
274 err
, PTR_BUCKET_NR(b
->c
, &b
->key
, 0),
275 bset_block_offset(b
, i
), i
->keys
);
279 static void btree_node_read_endio(struct bio
*bio
, int error
)
281 struct closure
*cl
= bio
->bi_private
;
285 static void bch_btree_node_read(struct btree
*b
)
287 uint64_t start_time
= local_clock();
291 trace_bcache_btree_read(b
);
293 closure_init_stack(&cl
);
295 bio
= bch_bbio_alloc(b
->c
);
296 bio
->bi_rw
= REQ_META
|READ_SYNC
;
297 bio
->bi_iter
.bi_size
= KEY_SIZE(&b
->key
) << 9;
298 bio
->bi_end_io
= btree_node_read_endio
;
299 bio
->bi_private
= &cl
;
301 bch_bio_map(bio
, b
->keys
.set
[0].data
);
303 bch_submit_bbio(bio
, b
->c
, &b
->key
, 0);
306 if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
307 set_btree_node_io_error(b
);
309 bch_bbio_free(bio
, b
->c
);
311 if (btree_node_io_error(b
))
314 bch_btree_node_read_done(b
);
315 bch_time_stats_update(&b
->c
->btree_read_time
, start_time
);
319 bch_cache_set_error(b
->c
, "io error reading bucket %zu",
320 PTR_BUCKET_NR(b
->c
, &b
->key
, 0));
323 static void btree_complete_write(struct btree
*b
, struct btree_write
*w
)
325 if (w
->prio_blocked
&&
326 !atomic_sub_return(w
->prio_blocked
, &b
->c
->prio_blocked
))
327 wake_up_allocators(b
->c
);
330 atomic_dec_bug(w
->journal
);
331 __closure_wake_up(&b
->c
->journal
.wait
);
338 static void btree_node_write_unlock(struct closure
*cl
)
340 struct btree
*b
= container_of(cl
, struct btree
, io
);
345 static void __btree_node_write_done(struct closure
*cl
)
347 struct btree
*b
= container_of(cl
, struct btree
, io
);
348 struct btree_write
*w
= btree_prev_write(b
);
350 bch_bbio_free(b
->bio
, b
->c
);
352 btree_complete_write(b
, w
);
354 if (btree_node_dirty(b
))
355 queue_delayed_work(btree_io_wq
, &b
->work
,
356 msecs_to_jiffies(30000));
358 closure_return_with_destructor(cl
, btree_node_write_unlock
);
361 static void btree_node_write_done(struct closure
*cl
)
363 struct btree
*b
= container_of(cl
, struct btree
, io
);
367 bio_for_each_segment_all(bv
, b
->bio
, n
)
368 __free_page(bv
->bv_page
);
370 __btree_node_write_done(cl
);
373 static void btree_node_write_endio(struct bio
*bio
, int error
)
375 struct closure
*cl
= bio
->bi_private
;
376 struct btree
*b
= container_of(cl
, struct btree
, io
);
379 set_btree_node_io_error(b
);
381 bch_bbio_count_io_errors(b
->c
, bio
, error
, "writing btree");
385 static void do_btree_node_write(struct btree
*b
)
387 struct closure
*cl
= &b
->io
;
388 struct bset
*i
= btree_bset_last(b
);
391 i
->version
= BCACHE_BSET_VERSION
;
392 i
->csum
= btree_csum_set(b
, i
);
395 b
->bio
= bch_bbio_alloc(b
->c
);
397 b
->bio
->bi_end_io
= btree_node_write_endio
;
398 b
->bio
->bi_private
= cl
;
399 b
->bio
->bi_rw
= REQ_META
|WRITE_SYNC
|REQ_FUA
;
400 b
->bio
->bi_iter
.bi_size
= roundup(set_bytes(i
), block_bytes(b
->c
));
401 bch_bio_map(b
->bio
, i
);
404 * If we're appending to a leaf node, we don't technically need FUA -
405 * this write just needs to be persisted before the next journal write,
406 * which will be marked FLUSH|FUA.
408 * Similarly if we're writing a new btree root - the pointer is going to
409 * be in the next journal entry.
411 * But if we're writing a new btree node (that isn't a root) or
412 * appending to a non leaf btree node, we need either FUA or a flush
413 * when we write the parent with the new pointer. FUA is cheaper than a
414 * flush, and writes appending to leaf nodes aren't blocking anything so
415 * just make all btree node writes FUA to keep things sane.
418 bkey_copy(&k
.key
, &b
->key
);
419 SET_PTR_OFFSET(&k
.key
, 0, PTR_OFFSET(&k
.key
, 0) +
420 bset_sector_offset(&b
->keys
, i
));
422 if (!bio_alloc_pages(b
->bio
, GFP_NOIO
)) {
425 void *base
= (void *) ((unsigned long) i
& ~(PAGE_SIZE
- 1));
427 bio_for_each_segment_all(bv
, b
->bio
, j
)
428 memcpy(page_address(bv
->bv_page
),
429 base
+ j
* PAGE_SIZE
, PAGE_SIZE
);
431 bch_submit_bbio(b
->bio
, b
->c
, &k
.key
, 0);
433 continue_at(cl
, btree_node_write_done
, NULL
);
436 bch_bio_map(b
->bio
, i
);
438 bch_submit_bbio(b
->bio
, b
->c
, &k
.key
, 0);
441 continue_at_nobarrier(cl
, __btree_node_write_done
, NULL
);
445 void bch_btree_node_write(struct btree
*b
, struct closure
*parent
)
447 struct bset
*i
= btree_bset_last(b
);
449 trace_bcache_btree_write(b
);
451 BUG_ON(current
->bio_list
);
452 BUG_ON(b
->written
>= btree_blocks(b
));
453 BUG_ON(b
->written
&& !i
->keys
);
454 BUG_ON(btree_bset_first(b
)->seq
!= i
->seq
);
455 bch_check_keys(&b
->keys
, "writing");
457 cancel_delayed_work(&b
->work
);
459 /* If caller isn't waiting for write, parent refcount is cache set */
461 closure_init(&b
->io
, parent
?: &b
->c
->cl
);
463 clear_bit(BTREE_NODE_dirty
, &b
->flags
);
464 change_bit(BTREE_NODE_write_idx
, &b
->flags
);
466 do_btree_node_write(b
);
468 atomic_long_add(set_blocks(i
, block_bytes(b
->c
)) * b
->c
->sb
.block_size
,
469 &PTR_CACHE(b
->c
, &b
->key
, 0)->btree_sectors_written
);
471 b
->written
+= set_blocks(i
, block_bytes(b
->c
));
473 /* If not a leaf node, always sort */
474 if (b
->level
&& b
->keys
.nsets
)
475 bch_btree_sort(&b
->keys
, &b
->c
->sort
);
477 bch_btree_sort_lazy(&b
->keys
, &b
->c
->sort
);
480 * do verify if there was more than one set initially (i.e. we did a
481 * sort) and we sorted down to a single set:
483 if (i
!= b
->keys
.set
->data
&& !b
->keys
.nsets
)
486 if (b
->written
< btree_blocks(b
))
487 bch_bset_init_next(&b
->keys
, write_block(b
),
488 bset_magic(&b
->c
->sb
));
491 static void bch_btree_node_write_sync(struct btree
*b
)
495 closure_init_stack(&cl
);
496 bch_btree_node_write(b
, &cl
);
500 static void btree_node_write_work(struct work_struct
*w
)
502 struct btree
*b
= container_of(to_delayed_work(w
), struct btree
, work
);
504 rw_lock(true, b
, b
->level
);
506 if (btree_node_dirty(b
))
507 bch_btree_node_write(b
, NULL
);
511 static void bch_btree_leaf_dirty(struct btree
*b
, atomic_t
*journal_ref
)
513 struct bset
*i
= btree_bset_last(b
);
514 struct btree_write
*w
= btree_current_write(b
);
519 if (!btree_node_dirty(b
))
520 queue_delayed_work(btree_io_wq
, &b
->work
, 30 * HZ
);
522 set_btree_node_dirty(b
);
526 journal_pin_cmp(b
->c
, w
->journal
, journal_ref
)) {
527 atomic_dec_bug(w
->journal
);
532 w
->journal
= journal_ref
;
533 atomic_inc(w
->journal
);
537 /* Force write if set is too big */
538 if (set_bytes(i
) > PAGE_SIZE
- 48 &&
540 bch_btree_node_write(b
, NULL
);
544 * Btree in memory cache - allocation/freeing
545 * mca -> memory cache
548 #define mca_reserve(c) (((c->root && c->root->level) \
549 ? c->root->level : 1) * 8 + 16)
550 #define mca_can_free(c) \
551 max_t(int, 0, c->bucket_cache_used - mca_reserve(c))
553 static void mca_data_free(struct btree
*b
)
555 BUG_ON(b
->io_mutex
.count
!= 1);
557 bch_btree_keys_free(&b
->keys
);
559 b
->c
->bucket_cache_used
--;
560 list_move(&b
->list
, &b
->c
->btree_cache_freed
);
563 static void mca_bucket_free(struct btree
*b
)
565 BUG_ON(btree_node_dirty(b
));
568 hlist_del_init_rcu(&b
->hash
);
569 list_move(&b
->list
, &b
->c
->btree_cache_freeable
);
572 static unsigned btree_order(struct bkey
*k
)
574 return ilog2(KEY_SIZE(k
) / PAGE_SECTORS
?: 1);
577 static void mca_data_alloc(struct btree
*b
, struct bkey
*k
, gfp_t gfp
)
579 if (!bch_btree_keys_alloc(&b
->keys
,
581 ilog2(b
->c
->btree_pages
),
584 b
->c
->bucket_cache_used
++;
585 list_move(&b
->list
, &b
->c
->btree_cache
);
587 list_move(&b
->list
, &b
->c
->btree_cache_freed
);
591 static struct btree
*mca_bucket_alloc(struct cache_set
*c
,
592 struct bkey
*k
, gfp_t gfp
)
594 struct btree
*b
= kzalloc(sizeof(struct btree
), gfp
);
598 init_rwsem(&b
->lock
);
599 lockdep_set_novalidate_class(&b
->lock
);
600 INIT_LIST_HEAD(&b
->list
);
601 INIT_DELAYED_WORK(&b
->work
, btree_node_write_work
);
603 sema_init(&b
->io_mutex
, 1);
605 mca_data_alloc(b
, k
, gfp
);
609 static int mca_reap(struct btree
*b
, unsigned min_order
, bool flush
)
613 closure_init_stack(&cl
);
614 lockdep_assert_held(&b
->c
->bucket_lock
);
616 if (!down_write_trylock(&b
->lock
))
619 BUG_ON(btree_node_dirty(b
) && !b
->keys
.set
[0].data
);
621 if (b
->keys
.page_order
< min_order
)
625 if (btree_node_dirty(b
))
628 if (down_trylock(&b
->io_mutex
))
633 if (btree_node_dirty(b
))
634 bch_btree_node_write_sync(b
);
636 /* wait for any in flight btree write */
646 static unsigned long bch_mca_scan(struct shrinker
*shrink
,
647 struct shrink_control
*sc
)
649 struct cache_set
*c
= container_of(shrink
, struct cache_set
, shrink
);
651 unsigned long i
, nr
= sc
->nr_to_scan
;
652 unsigned long freed
= 0;
654 if (c
->shrinker_disabled
)
660 /* Return -1 if we can't do anything right now */
661 if (sc
->gfp_mask
& __GFP_IO
)
662 mutex_lock(&c
->bucket_lock
);
663 else if (!mutex_trylock(&c
->bucket_lock
))
667 * It's _really_ critical that we don't free too many btree nodes - we
668 * have to always leave ourselves a reserve. The reserve is how we
669 * guarantee that allocating memory for a new btree node can always
670 * succeed, so that inserting keys into the btree can always succeed and
671 * IO can always make forward progress:
673 nr
/= c
->btree_pages
;
674 nr
= min_t(unsigned long, nr
, mca_can_free(c
));
677 list_for_each_entry_safe(b
, t
, &c
->btree_cache_freeable
, list
) {
682 !mca_reap(b
, 0, false)) {
689 for (i
= 0; (nr
--) && i
< c
->bucket_cache_used
; i
++) {
690 if (list_empty(&c
->btree_cache
))
693 b
= list_first_entry(&c
->btree_cache
, struct btree
, list
);
694 list_rotate_left(&c
->btree_cache
);
697 !mca_reap(b
, 0, false)) {
706 mutex_unlock(&c
->bucket_lock
);
710 static unsigned long bch_mca_count(struct shrinker
*shrink
,
711 struct shrink_control
*sc
)
713 struct cache_set
*c
= container_of(shrink
, struct cache_set
, shrink
);
715 if (c
->shrinker_disabled
)
721 return mca_can_free(c
) * c
->btree_pages
;
724 void bch_btree_cache_free(struct cache_set
*c
)
728 closure_init_stack(&cl
);
730 if (c
->shrink
.list
.next
)
731 unregister_shrinker(&c
->shrink
);
733 mutex_lock(&c
->bucket_lock
);
735 #ifdef CONFIG_BCACHE_DEBUG
737 list_move(&c
->verify_data
->list
, &c
->btree_cache
);
739 free_pages((unsigned long) c
->verify_ondisk
, ilog2(bucket_pages(c
)));
742 list_splice(&c
->btree_cache_freeable
,
745 while (!list_empty(&c
->btree_cache
)) {
746 b
= list_first_entry(&c
->btree_cache
, struct btree
, list
);
748 if (btree_node_dirty(b
))
749 btree_complete_write(b
, btree_current_write(b
));
750 clear_bit(BTREE_NODE_dirty
, &b
->flags
);
755 while (!list_empty(&c
->btree_cache_freed
)) {
756 b
= list_first_entry(&c
->btree_cache_freed
,
759 cancel_delayed_work_sync(&b
->work
);
763 mutex_unlock(&c
->bucket_lock
);
766 int bch_btree_cache_alloc(struct cache_set
*c
)
770 for (i
= 0; i
< mca_reserve(c
); i
++)
771 if (!mca_bucket_alloc(c
, &ZERO_KEY
, GFP_KERNEL
))
774 list_splice_init(&c
->btree_cache
,
775 &c
->btree_cache_freeable
);
777 #ifdef CONFIG_BCACHE_DEBUG
778 mutex_init(&c
->verify_lock
);
780 c
->verify_ondisk
= (void *)
781 __get_free_pages(GFP_KERNEL
, ilog2(bucket_pages(c
)));
783 c
->verify_data
= mca_bucket_alloc(c
, &ZERO_KEY
, GFP_KERNEL
);
785 if (c
->verify_data
&&
786 c
->verify_data
->keys
.set
->data
)
787 list_del_init(&c
->verify_data
->list
);
789 c
->verify_data
= NULL
;
792 c
->shrink
.count_objects
= bch_mca_count
;
793 c
->shrink
.scan_objects
= bch_mca_scan
;
795 c
->shrink
.batch
= c
->btree_pages
* 2;
796 register_shrinker(&c
->shrink
);
801 /* Btree in memory cache - hash table */
803 static struct hlist_head
*mca_hash(struct cache_set
*c
, struct bkey
*k
)
805 return &c
->bucket_hash
[hash_32(PTR_HASH(c
, k
), BUCKET_HASH_BITS
)];
808 static struct btree
*mca_find(struct cache_set
*c
, struct bkey
*k
)
813 hlist_for_each_entry_rcu(b
, mca_hash(c
, k
), hash
)
814 if (PTR_HASH(c
, &b
->key
) == PTR_HASH(c
, k
))
822 static struct btree
*mca_cannibalize(struct cache_set
*c
, struct bkey
*k
)
826 trace_bcache_btree_cache_cannibalize(c
);
828 if (!c
->try_harder
) {
829 c
->try_harder
= current
;
830 c
->try_harder_start
= local_clock();
831 } else if (c
->try_harder
!= current
)
832 return ERR_PTR(-ENOSPC
);
834 list_for_each_entry_reverse(b
, &c
->btree_cache
, list
)
835 if (!mca_reap(b
, btree_order(k
), false))
838 list_for_each_entry_reverse(b
, &c
->btree_cache
, list
)
839 if (!mca_reap(b
, btree_order(k
), true))
842 return ERR_PTR(-ENOMEM
);
846 * We can only have one thread cannibalizing other cached btree nodes at a time,
847 * or we'll deadlock. We use an open coded mutex to ensure that, which a
848 * cannibalize_bucket() will take. This means every time we unlock the root of
849 * the btree, we need to release this lock if we have it held.
851 static void bch_cannibalize_unlock(struct cache_set
*c
)
853 if (c
->try_harder
== current
) {
854 bch_time_stats_update(&c
->try_harder_time
, c
->try_harder_start
);
855 c
->try_harder
= NULL
;
856 wake_up(&c
->try_wait
);
860 static struct btree
*mca_alloc(struct cache_set
*c
, struct bkey
*k
, int level
)
864 BUG_ON(current
->bio_list
);
866 lockdep_assert_held(&c
->bucket_lock
);
871 /* btree_free() doesn't free memory; it sticks the node on the end of
872 * the list. Check if there's any freed nodes there:
874 list_for_each_entry(b
, &c
->btree_cache_freeable
, list
)
875 if (!mca_reap(b
, btree_order(k
), false))
878 /* We never free struct btree itself, just the memory that holds the on
879 * disk node. Check the freed list before allocating a new one:
881 list_for_each_entry(b
, &c
->btree_cache_freed
, list
)
882 if (!mca_reap(b
, 0, false)) {
883 mca_data_alloc(b
, k
, __GFP_NOWARN
|GFP_NOIO
);
884 if (!b
->keys
.set
[0].data
)
890 b
= mca_bucket_alloc(c
, k
, __GFP_NOWARN
|GFP_NOIO
);
894 BUG_ON(!down_write_trylock(&b
->lock
));
895 if (!b
->keys
.set
->data
)
898 BUG_ON(b
->io_mutex
.count
!= 1);
900 bkey_copy(&b
->key
, k
);
901 list_move(&b
->list
, &c
->btree_cache
);
902 hlist_del_init_rcu(&b
->hash
);
903 hlist_add_head_rcu(&b
->hash
, mca_hash(c
, k
));
905 lock_set_subclass(&b
->lock
.dep_map
, level
+ 1, _THIS_IP_
);
906 b
->parent
= (void *) ~0UL;
912 bch_btree_keys_init(&b
->keys
, &bch_extent_keys_ops
,
913 &b
->c
->expensive_debug_checks
);
915 bch_btree_keys_init(&b
->keys
, &bch_btree_keys_ops
,
916 &b
->c
->expensive_debug_checks
);
923 b
= mca_cannibalize(c
, k
);
931 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
932 * in from disk if necessary.
934 * If IO is necessary and running under generic_make_request, returns -EAGAIN.
936 * The btree node will have either a read or a write lock held, depending on
937 * level and op->lock.
939 struct btree
*bch_btree_node_get(struct cache_set
*c
, struct bkey
*k
,
940 int level
, bool write
)
950 if (current
->bio_list
)
951 return ERR_PTR(-EAGAIN
);
953 mutex_lock(&c
->bucket_lock
);
954 b
= mca_alloc(c
, k
, level
);
955 mutex_unlock(&c
->bucket_lock
);
962 bch_btree_node_read(b
);
965 downgrade_write(&b
->lock
);
967 rw_lock(write
, b
, level
);
968 if (PTR_HASH(c
, &b
->key
) != PTR_HASH(c
, k
)) {
972 BUG_ON(b
->level
!= level
);
977 for (; i
<= b
->keys
.nsets
&& b
->keys
.set
[i
].size
; i
++) {
978 prefetch(b
->keys
.set
[i
].tree
);
979 prefetch(b
->keys
.set
[i
].data
);
982 for (; i
<= b
->keys
.nsets
; i
++)
983 prefetch(b
->keys
.set
[i
].data
);
985 if (btree_node_io_error(b
)) {
987 return ERR_PTR(-EIO
);
995 static void btree_node_prefetch(struct cache_set
*c
, struct bkey
*k
, int level
)
999 mutex_lock(&c
->bucket_lock
);
1000 b
= mca_alloc(c
, k
, level
);
1001 mutex_unlock(&c
->bucket_lock
);
1003 if (!IS_ERR_OR_NULL(b
)) {
1004 bch_btree_node_read(b
);
1011 static void btree_node_free(struct btree
*b
)
1015 trace_bcache_btree_node_free(b
);
1017 BUG_ON(b
== b
->c
->root
);
1019 if (btree_node_dirty(b
))
1020 btree_complete_write(b
, btree_current_write(b
));
1021 clear_bit(BTREE_NODE_dirty
, &b
->flags
);
1023 cancel_delayed_work(&b
->work
);
1025 mutex_lock(&b
->c
->bucket_lock
);
1027 for (i
= 0; i
< KEY_PTRS(&b
->key
); i
++) {
1028 BUG_ON(atomic_read(&PTR_BUCKET(b
->c
, &b
->key
, i
)->pin
));
1030 bch_inc_gen(PTR_CACHE(b
->c
, &b
->key
, i
),
1031 PTR_BUCKET(b
->c
, &b
->key
, i
));
1034 bch_bucket_free(b
->c
, &b
->key
);
1036 mutex_unlock(&b
->c
->bucket_lock
);
1039 struct btree
*bch_btree_node_alloc(struct cache_set
*c
, int level
, bool wait
)
1042 struct btree
*b
= ERR_PTR(-EAGAIN
);
1044 mutex_lock(&c
->bucket_lock
);
1046 if (__bch_bucket_alloc_set(c
, RESERVE_BTREE
, &k
.key
, 1, wait
))
1049 bkey_put(c
, &k
.key
);
1050 SET_KEY_SIZE(&k
.key
, c
->btree_pages
* PAGE_SECTORS
);
1052 b
= mca_alloc(c
, &k
.key
, level
);
1058 "Tried to allocate bucket that was in btree cache");
1063 bch_bset_init_next(&b
->keys
, b
->keys
.set
->data
, bset_magic(&b
->c
->sb
));
1065 mutex_unlock(&c
->bucket_lock
);
1067 trace_bcache_btree_node_alloc(b
);
1070 bch_bucket_free(c
, &k
.key
);
1072 mutex_unlock(&c
->bucket_lock
);
1074 trace_bcache_btree_node_alloc_fail(b
);
1078 static struct btree
*btree_node_alloc_replacement(struct btree
*b
, bool wait
)
1080 struct btree
*n
= bch_btree_node_alloc(b
->c
, b
->level
, wait
);
1081 if (!IS_ERR_OR_NULL(n
)) {
1082 bch_btree_sort_into(&b
->keys
, &n
->keys
, &b
->c
->sort
);
1083 bkey_copy_key(&n
->key
, &b
->key
);
1089 static void make_btree_freeing_key(struct btree
*b
, struct bkey
*k
)
1093 bkey_copy(k
, &b
->key
);
1094 bkey_copy_key(k
, &ZERO_KEY
);
1096 for (i
= 0; i
< KEY_PTRS(k
); i
++) {
1097 uint8_t g
= PTR_BUCKET(b
->c
, k
, i
)->gen
+ 1;
1099 SET_PTR_GEN(k
, i
, g
);
1102 atomic_inc(&b
->c
->prio_blocked
);
1105 static int btree_check_reserve(struct btree
*b
, struct btree_op
*op
)
1107 struct cache_set
*c
= b
->c
;
1109 unsigned i
, reserve
= c
->root
->level
* 2 + 1;
1112 mutex_lock(&c
->bucket_lock
);
1114 for_each_cache(ca
, c
, i
)
1115 if (fifo_used(&ca
->free
[RESERVE_BTREE
]) < reserve
) {
1117 prepare_to_wait(&c
->bucket_wait
, &op
->wait
,
1118 TASK_UNINTERRUPTIBLE
);
1123 mutex_unlock(&c
->bucket_lock
);
1127 /* Garbage collection */
1129 uint8_t __bch_btree_mark_key(struct cache_set
*c
, int level
, struct bkey
*k
)
1136 * ptr_invalid() can't return true for the keys that mark btree nodes as
1137 * freed, but since ptr_bad() returns true we'll never actually use them
1138 * for anything and thus we don't want mark their pointers here
1140 if (!bkey_cmp(k
, &ZERO_KEY
))
1143 for (i
= 0; i
< KEY_PTRS(k
); i
++) {
1144 if (!ptr_available(c
, k
, i
))
1147 g
= PTR_BUCKET(c
, k
, i
);
1149 if (gen_after(g
->gc_gen
, PTR_GEN(k
, i
)))
1150 g
->gc_gen
= PTR_GEN(k
, i
);
1152 if (ptr_stale(c
, k
, i
)) {
1153 stale
= max(stale
, ptr_stale(c
, k
, i
));
1157 cache_bug_on(GC_MARK(g
) &&
1158 (GC_MARK(g
) == GC_MARK_METADATA
) != (level
!= 0),
1159 c
, "inconsistent ptrs: mark = %llu, level = %i",
1163 SET_GC_MARK(g
, GC_MARK_METADATA
);
1164 else if (KEY_DIRTY(k
))
1165 SET_GC_MARK(g
, GC_MARK_DIRTY
);
1167 /* guard against overflow */
1168 SET_GC_SECTORS_USED(g
, min_t(unsigned,
1169 GC_SECTORS_USED(g
) + KEY_SIZE(k
),
1170 MAX_GC_SECTORS_USED
));
1172 BUG_ON(!GC_SECTORS_USED(g
));
1178 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1180 static bool btree_gc_mark_node(struct btree
*b
, struct gc_stat
*gc
)
1183 unsigned keys
= 0, good_keys
= 0;
1185 struct btree_iter iter
;
1186 struct bset_tree
*t
;
1190 for_each_key_filter(&b
->keys
, k
, &iter
, bch_ptr_invalid
) {
1191 stale
= max(stale
, btree_mark_key(b
, k
));
1194 if (bch_ptr_bad(&b
->keys
, k
))
1197 gc
->key_bytes
+= bkey_u64s(k
);
1201 gc
->data
+= KEY_SIZE(k
);
1204 for (t
= b
->keys
.set
; t
<= &b
->keys
.set
[b
->keys
.nsets
]; t
++)
1205 btree_bug_on(t
->size
&&
1206 bset_written(&b
->keys
, t
) &&
1207 bkey_cmp(&b
->key
, &t
->end
) < 0,
1208 b
, "found short btree key in gc");
1210 if (b
->c
->gc_always_rewrite
)
1216 if ((keys
- good_keys
) * 2 > keys
)
1222 #define GC_MERGE_NODES 4U
1224 struct gc_merge_info
{
1229 static int bch_btree_insert_node(struct btree
*, struct btree_op
*,
1230 struct keylist
*, atomic_t
*, struct bkey
*);
1232 static int btree_gc_coalesce(struct btree
*b
, struct btree_op
*op
,
1233 struct keylist
*keylist
, struct gc_stat
*gc
,
1234 struct gc_merge_info
*r
)
1236 unsigned i
, nodes
= 0, keys
= 0, blocks
;
1237 struct btree
*new_nodes
[GC_MERGE_NODES
];
1241 memset(new_nodes
, 0, sizeof(new_nodes
));
1242 closure_init_stack(&cl
);
1244 while (nodes
< GC_MERGE_NODES
&& !IS_ERR_OR_NULL(r
[nodes
].b
))
1245 keys
+= r
[nodes
++].keys
;
1247 blocks
= btree_default_blocks(b
->c
) * 2 / 3;
1250 __set_blocks(b
->keys
.set
[0].data
, keys
,
1251 block_bytes(b
->c
)) > blocks
* (nodes
- 1))
1254 for (i
= 0; i
< nodes
; i
++) {
1255 new_nodes
[i
] = btree_node_alloc_replacement(r
[i
].b
, false);
1256 if (IS_ERR_OR_NULL(new_nodes
[i
]))
1257 goto out_nocoalesce
;
1260 for (i
= nodes
- 1; i
> 0; --i
) {
1261 struct bset
*n1
= btree_bset_first(new_nodes
[i
]);
1262 struct bset
*n2
= btree_bset_first(new_nodes
[i
- 1]);
1263 struct bkey
*k
, *last
= NULL
;
1269 k
< bset_bkey_last(n2
);
1271 if (__set_blocks(n1
, n1
->keys
+ keys
+
1273 block_bytes(b
->c
)) > blocks
)
1277 keys
+= bkey_u64s(k
);
1281 * Last node we're not getting rid of - we're getting
1282 * rid of the node at r[0]. Have to try and fit all of
1283 * the remaining keys into this node; we can't ensure
1284 * they will always fit due to rounding and variable
1285 * length keys (shouldn't be possible in practice,
1288 if (__set_blocks(n1
, n1
->keys
+ n2
->keys
,
1289 block_bytes(b
->c
)) >
1290 btree_blocks(new_nodes
[i
]))
1291 goto out_nocoalesce
;
1294 /* Take the key of the node we're getting rid of */
1298 BUG_ON(__set_blocks(n1
, n1
->keys
+ keys
, block_bytes(b
->c
)) >
1299 btree_blocks(new_nodes
[i
]));
1302 bkey_copy_key(&new_nodes
[i
]->key
, last
);
1304 memcpy(bset_bkey_last(n1
),
1306 (void *) bset_bkey_idx(n2
, keys
) - (void *) n2
->start
);
1309 r
[i
].keys
= n1
->keys
;
1312 bset_bkey_idx(n2
, keys
),
1313 (void *) bset_bkey_last(n2
) -
1314 (void *) bset_bkey_idx(n2
, keys
));
1318 if (__bch_keylist_realloc(keylist
,
1319 bkey_u64s(&new_nodes
[i
]->key
)))
1320 goto out_nocoalesce
;
1322 bch_btree_node_write(new_nodes
[i
], &cl
);
1323 bch_keylist_add(keylist
, &new_nodes
[i
]->key
);
1326 for (i
= 0; i
< nodes
; i
++) {
1327 if (__bch_keylist_realloc(keylist
, bkey_u64s(&r
[i
].b
->key
)))
1328 goto out_nocoalesce
;
1330 make_btree_freeing_key(r
[i
].b
, keylist
->top
);
1331 bch_keylist_push(keylist
);
1334 /* We emptied out this node */
1335 BUG_ON(btree_bset_first(new_nodes
[0])->keys
);
1336 btree_node_free(new_nodes
[0]);
1337 rw_unlock(true, new_nodes
[0]);
1341 for (i
= 0; i
< nodes
; i
++) {
1342 btree_node_free(r
[i
].b
);
1343 rw_unlock(true, r
[i
].b
);
1345 r
[i
].b
= new_nodes
[i
];
1348 bch_btree_insert_node(b
, op
, keylist
, NULL
, NULL
);
1349 BUG_ON(!bch_keylist_empty(keylist
));
1351 memmove(r
, r
+ 1, sizeof(r
[0]) * (nodes
- 1));
1352 r
[nodes
- 1].b
= ERR_PTR(-EINTR
);
1354 trace_bcache_btree_gc_coalesce(nodes
);
1357 /* Invalidated our iterator */
1363 while ((k
= bch_keylist_pop(keylist
)))
1364 if (!bkey_cmp(k
, &ZERO_KEY
))
1365 atomic_dec(&b
->c
->prio_blocked
);
1367 for (i
= 0; i
< nodes
; i
++)
1368 if (!IS_ERR_OR_NULL(new_nodes
[i
])) {
1369 btree_node_free(new_nodes
[i
]);
1370 rw_unlock(true, new_nodes
[i
]);
1375 static unsigned btree_gc_count_keys(struct btree
*b
)
1378 struct btree_iter iter
;
1381 for_each_key_filter(&b
->keys
, k
, &iter
, bch_ptr_bad
)
1382 ret
+= bkey_u64s(k
);
1387 static int btree_gc_recurse(struct btree
*b
, struct btree_op
*op
,
1388 struct closure
*writes
, struct gc_stat
*gc
)
1392 bool should_rewrite
;
1395 struct keylist keys
;
1396 struct btree_iter iter
;
1397 struct gc_merge_info r
[GC_MERGE_NODES
];
1398 struct gc_merge_info
*last
= r
+ GC_MERGE_NODES
- 1;
1400 bch_keylist_init(&keys
);
1401 bch_btree_iter_init(&b
->keys
, &iter
, &b
->c
->gc_done
);
1403 for (i
= 0; i
< GC_MERGE_NODES
; i
++)
1404 r
[i
].b
= ERR_PTR(-EINTR
);
1407 k
= bch_btree_iter_next_filter(&iter
, &b
->keys
, bch_ptr_bad
);
1409 r
->b
= bch_btree_node_get(b
->c
, k
, b
->level
- 1, true);
1411 ret
= PTR_ERR(r
->b
);
1415 r
->keys
= btree_gc_count_keys(r
->b
);
1417 ret
= btree_gc_coalesce(b
, op
, &keys
, gc
, r
);
1425 if (!IS_ERR(last
->b
)) {
1426 should_rewrite
= btree_gc_mark_node(last
->b
, gc
);
1427 if (should_rewrite
&&
1428 !btree_check_reserve(b
, NULL
)) {
1429 n
= btree_node_alloc_replacement(last
->b
,
1432 if (!IS_ERR_OR_NULL(n
)) {
1433 bch_btree_node_write_sync(n
);
1434 bch_keylist_add(&keys
, &n
->key
);
1436 make_btree_freeing_key(last
->b
,
1438 bch_keylist_push(&keys
);
1440 btree_node_free(last
->b
);
1442 bch_btree_insert_node(b
, op
, &keys
,
1444 BUG_ON(!bch_keylist_empty(&keys
));
1446 rw_unlock(true, last
->b
);
1449 /* Invalidated our iterator */
1455 if (last
->b
->level
) {
1456 ret
= btree_gc_recurse(last
->b
, op
, writes
, gc
);
1461 bkey_copy_key(&b
->c
->gc_done
, &last
->b
->key
);
1464 * Must flush leaf nodes before gc ends, since replace
1465 * operations aren't journalled
1467 if (btree_node_dirty(last
->b
))
1468 bch_btree_node_write(last
->b
, writes
);
1469 rw_unlock(true, last
->b
);
1472 memmove(r
+ 1, r
, sizeof(r
[0]) * (GC_MERGE_NODES
- 1));
1475 if (need_resched()) {
1481 for (i
= 0; i
< GC_MERGE_NODES
; i
++)
1482 if (!IS_ERR_OR_NULL(r
[i
].b
)) {
1483 if (btree_node_dirty(r
[i
].b
))
1484 bch_btree_node_write(r
[i
].b
, writes
);
1485 rw_unlock(true, r
[i
].b
);
1488 bch_keylist_free(&keys
);
1493 static int bch_btree_gc_root(struct btree
*b
, struct btree_op
*op
,
1494 struct closure
*writes
, struct gc_stat
*gc
)
1496 struct btree
*n
= NULL
;
1498 bool should_rewrite
;
1500 should_rewrite
= btree_gc_mark_node(b
, gc
);
1501 if (should_rewrite
) {
1502 n
= btree_node_alloc_replacement(b
, false);
1504 if (!IS_ERR_OR_NULL(n
)) {
1505 bch_btree_node_write_sync(n
);
1506 bch_btree_set_root(n
);
1515 ret
= btree_gc_recurse(b
, op
, writes
, gc
);
1520 bkey_copy_key(&b
->c
->gc_done
, &b
->key
);
1525 static void btree_gc_start(struct cache_set
*c
)
1531 if (!c
->gc_mark_valid
)
1534 mutex_lock(&c
->bucket_lock
);
1536 c
->gc_mark_valid
= 0;
1537 c
->gc_done
= ZERO_KEY
;
1539 for_each_cache(ca
, c
, i
)
1540 for_each_bucket(b
, ca
) {
1542 if (!atomic_read(&b
->pin
)) {
1543 SET_GC_MARK(b
, GC_MARK_RECLAIMABLE
);
1544 SET_GC_SECTORS_USED(b
, 0);
1548 mutex_unlock(&c
->bucket_lock
);
1551 size_t bch_btree_gc_finish(struct cache_set
*c
)
1553 size_t available
= 0;
1558 mutex_lock(&c
->bucket_lock
);
1561 c
->gc_mark_valid
= 1;
1565 for (i
= 0; i
< KEY_PTRS(&c
->root
->key
); i
++)
1566 SET_GC_MARK(PTR_BUCKET(c
, &c
->root
->key
, i
),
1569 for (i
= 0; i
< KEY_PTRS(&c
->uuid_bucket
); i
++)
1570 SET_GC_MARK(PTR_BUCKET(c
, &c
->uuid_bucket
, i
),
1573 /* don't reclaim buckets to which writeback keys point */
1575 for (i
= 0; i
< c
->nr_uuids
; i
++) {
1576 struct bcache_device
*d
= c
->devices
[i
];
1577 struct cached_dev
*dc
;
1578 struct keybuf_key
*w
, *n
;
1581 if (!d
|| UUID_FLASH_ONLY(&c
->uuids
[i
]))
1583 dc
= container_of(d
, struct cached_dev
, disk
);
1585 spin_lock(&dc
->writeback_keys
.lock
);
1586 rbtree_postorder_for_each_entry_safe(w
, n
,
1587 &dc
->writeback_keys
.keys
, node
)
1588 for (j
= 0; j
< KEY_PTRS(&w
->key
); j
++)
1589 SET_GC_MARK(PTR_BUCKET(c
, &w
->key
, j
),
1591 spin_unlock(&dc
->writeback_keys
.lock
);
1595 for_each_cache(ca
, c
, i
) {
1598 ca
->invalidate_needs_gc
= 0;
1600 for (i
= ca
->sb
.d
; i
< ca
->sb
.d
+ ca
->sb
.keys
; i
++)
1601 SET_GC_MARK(ca
->buckets
+ *i
, GC_MARK_METADATA
);
1603 for (i
= ca
->prio_buckets
;
1604 i
< ca
->prio_buckets
+ prio_buckets(ca
) * 2; i
++)
1605 SET_GC_MARK(ca
->buckets
+ *i
, GC_MARK_METADATA
);
1607 for_each_bucket(b
, ca
) {
1608 b
->last_gc
= b
->gc_gen
;
1609 c
->need_gc
= max(c
->need_gc
, bucket_gc_gen(b
));
1611 if (!atomic_read(&b
->pin
) &&
1612 GC_MARK(b
) == GC_MARK_RECLAIMABLE
) {
1614 if (!GC_SECTORS_USED(b
))
1615 bch_bucket_add_unused(ca
, b
);
1620 mutex_unlock(&c
->bucket_lock
);
1624 static void bch_btree_gc(struct cache_set
*c
)
1627 unsigned long available
;
1628 struct gc_stat stats
;
1629 struct closure writes
;
1631 uint64_t start_time
= local_clock();
1633 trace_bcache_gc_start(c
);
1635 memset(&stats
, 0, sizeof(struct gc_stat
));
1636 closure_init_stack(&writes
);
1637 bch_btree_op_init(&op
, SHRT_MAX
);
1642 ret
= btree_root(gc_root
, c
, &op
, &writes
, &stats
);
1643 closure_sync(&writes
);
1645 if (ret
&& ret
!= -EAGAIN
)
1646 pr_warn("gc failed!");
1649 available
= bch_btree_gc_finish(c
);
1650 wake_up_allocators(c
);
1652 bch_time_stats_update(&c
->btree_gc_time
, start_time
);
1654 stats
.key_bytes
*= sizeof(uint64_t);
1656 stats
.in_use
= (c
->nbuckets
- available
) * 100 / c
->nbuckets
;
1657 memcpy(&c
->gc_stats
, &stats
, sizeof(struct gc_stat
));
1659 trace_bcache_gc_end(c
);
1664 static int bch_gc_thread(void *arg
)
1666 struct cache_set
*c
= arg
;
1674 set_current_state(TASK_INTERRUPTIBLE
);
1675 if (kthread_should_stop())
1678 mutex_lock(&c
->bucket_lock
);
1680 for_each_cache(ca
, c
, i
)
1681 if (ca
->invalidate_needs_gc
) {
1682 mutex_unlock(&c
->bucket_lock
);
1683 set_current_state(TASK_RUNNING
);
1687 mutex_unlock(&c
->bucket_lock
);
1696 int bch_gc_thread_start(struct cache_set
*c
)
1698 c
->gc_thread
= kthread_create(bch_gc_thread
, c
, "bcache_gc");
1699 if (IS_ERR(c
->gc_thread
))
1700 return PTR_ERR(c
->gc_thread
);
1702 set_task_state(c
->gc_thread
, TASK_INTERRUPTIBLE
);
1706 /* Initial partial gc */
1708 static int bch_btree_check_recurse(struct btree
*b
, struct btree_op
*op
,
1709 unsigned long **seen
)
1713 struct bkey
*k
, *p
= NULL
;
1715 struct btree_iter iter
;
1717 for_each_key_filter(&b
->keys
, k
, &iter
, bch_ptr_invalid
) {
1718 for (i
= 0; i
< KEY_PTRS(k
); i
++) {
1719 if (!ptr_available(b
->c
, k
, i
))
1722 g
= PTR_BUCKET(b
->c
, k
, i
);
1724 if (!__test_and_set_bit(PTR_BUCKET_NR(b
->c
, k
, i
),
1725 seen
[PTR_DEV(k
, i
)]) ||
1726 !ptr_stale(b
->c
, k
, i
)) {
1727 g
->gen
= PTR_GEN(k
, i
);
1730 g
->prio
= BTREE_PRIO
;
1731 else if (g
->prio
== BTREE_PRIO
)
1732 g
->prio
= INITIAL_PRIO
;
1736 btree_mark_key(b
, k
);
1740 bch_btree_iter_init(&b
->keys
, &iter
, NULL
);
1743 k
= bch_btree_iter_next_filter(&iter
, &b
->keys
,
1746 btree_node_prefetch(b
->c
, k
, b
->level
- 1);
1749 ret
= btree(check_recurse
, p
, b
, op
, seen
);
1752 } while (p
&& !ret
);
1758 int bch_btree_check(struct cache_set
*c
)
1762 unsigned long *seen
[MAX_CACHES_PER_SET
];
1765 memset(seen
, 0, sizeof(seen
));
1766 bch_btree_op_init(&op
, SHRT_MAX
);
1768 for (i
= 0; c
->cache
[i
]; i
++) {
1769 size_t n
= DIV_ROUND_UP(c
->cache
[i
]->sb
.nbuckets
, 8);
1770 seen
[i
] = kmalloc(n
, GFP_KERNEL
);
1774 /* Disables the seen array until prio_read() uses it too */
1775 memset(seen
[i
], 0xFF, n
);
1778 ret
= btree_root(check_recurse
, c
, &op
, seen
);
1780 for (i
= 0; i
< MAX_CACHES_PER_SET
; i
++)
1785 /* Btree insertion */
1787 static bool btree_insert_key(struct btree
*b
, struct bkey
*k
,
1788 struct bkey
*replace_key
)
1792 BUG_ON(bkey_cmp(k
, &b
->key
) > 0);
1794 status
= bch_btree_insert_key(&b
->keys
, k
, replace_key
);
1795 if (status
!= BTREE_INSERT_STATUS_NO_INSERT
) {
1796 bch_check_keys(&b
->keys
, "%u for %s", status
,
1797 replace_key
? "replace" : "insert");
1799 trace_bcache_btree_insert_key(b
, k
, replace_key
!= NULL
,
1806 static size_t insert_u64s_remaining(struct btree
*b
)
1808 long ret
= bch_btree_keys_u64s_remaining(&b
->keys
);
1811 * Might land in the middle of an existing extent and have to split it
1813 if (b
->keys
.ops
->is_extents
)
1814 ret
-= KEY_MAX_U64S
;
1816 return max(ret
, 0L);
1819 static bool bch_btree_insert_keys(struct btree
*b
, struct btree_op
*op
,
1820 struct keylist
*insert_keys
,
1821 struct bkey
*replace_key
)
1824 int oldsize
= bch_count_data(&b
->keys
);
1826 while (!bch_keylist_empty(insert_keys
)) {
1827 struct bkey
*k
= insert_keys
->keys
;
1829 if (bkey_u64s(k
) > insert_u64s_remaining(b
))
1832 if (bkey_cmp(k
, &b
->key
) <= 0) {
1836 ret
|= btree_insert_key(b
, k
, replace_key
);
1837 bch_keylist_pop_front(insert_keys
);
1838 } else if (bkey_cmp(&START_KEY(k
), &b
->key
) < 0) {
1839 BKEY_PADDED(key
) temp
;
1840 bkey_copy(&temp
.key
, insert_keys
->keys
);
1842 bch_cut_back(&b
->key
, &temp
.key
);
1843 bch_cut_front(&b
->key
, insert_keys
->keys
);
1845 ret
|= btree_insert_key(b
, &temp
.key
, replace_key
);
1853 op
->insert_collision
= true;
1855 BUG_ON(!bch_keylist_empty(insert_keys
) && b
->level
);
1857 BUG_ON(bch_count_data(&b
->keys
) < oldsize
);
1861 static int btree_split(struct btree
*b
, struct btree_op
*op
,
1862 struct keylist
*insert_keys
,
1863 struct bkey
*replace_key
)
1866 struct btree
*n1
, *n2
= NULL
, *n3
= NULL
;
1867 uint64_t start_time
= local_clock();
1869 struct keylist parent_keys
;
1871 closure_init_stack(&cl
);
1872 bch_keylist_init(&parent_keys
);
1875 btree_check_reserve(b
, op
))
1878 n1
= btree_node_alloc_replacement(b
, true);
1882 split
= set_blocks(btree_bset_first(n1
),
1883 block_bytes(n1
->c
)) > (btree_blocks(b
) * 4) / 5;
1888 trace_bcache_btree_node_split(b
, btree_bset_first(n1
)->keys
);
1890 n2
= bch_btree_node_alloc(b
->c
, b
->level
, true);
1895 n3
= bch_btree_node_alloc(b
->c
, b
->level
+ 1, true);
1900 bch_btree_insert_keys(n1
, op
, insert_keys
, replace_key
);
1903 * Has to be a linear search because we don't have an auxiliary
1907 while (keys
< (btree_bset_first(n1
)->keys
* 3) / 5)
1908 keys
+= bkey_u64s(bset_bkey_idx(btree_bset_first(n1
),
1911 bkey_copy_key(&n1
->key
,
1912 bset_bkey_idx(btree_bset_first(n1
), keys
));
1913 keys
+= bkey_u64s(bset_bkey_idx(btree_bset_first(n1
), keys
));
1915 btree_bset_first(n2
)->keys
= btree_bset_first(n1
)->keys
- keys
;
1916 btree_bset_first(n1
)->keys
= keys
;
1918 memcpy(btree_bset_first(n2
)->start
,
1919 bset_bkey_last(btree_bset_first(n1
)),
1920 btree_bset_first(n2
)->keys
* sizeof(uint64_t));
1922 bkey_copy_key(&n2
->key
, &b
->key
);
1924 bch_keylist_add(&parent_keys
, &n2
->key
);
1925 bch_btree_node_write(n2
, &cl
);
1926 rw_unlock(true, n2
);
1928 trace_bcache_btree_node_compact(b
, btree_bset_first(n1
)->keys
);
1930 bch_btree_insert_keys(n1
, op
, insert_keys
, replace_key
);
1933 bch_keylist_add(&parent_keys
, &n1
->key
);
1934 bch_btree_node_write(n1
, &cl
);
1937 /* Depth increases, make a new root */
1938 bkey_copy_key(&n3
->key
, &MAX_KEY
);
1939 bch_btree_insert_keys(n3
, op
, &parent_keys
, NULL
);
1940 bch_btree_node_write(n3
, &cl
);
1943 bch_btree_set_root(n3
);
1944 rw_unlock(true, n3
);
1947 } else if (!b
->parent
) {
1948 /* Root filled up but didn't need to be split */
1950 bch_btree_set_root(n1
);
1954 /* Split a non root node */
1956 make_btree_freeing_key(b
, parent_keys
.top
);
1957 bch_keylist_push(&parent_keys
);
1961 bch_btree_insert_node(b
->parent
, op
, &parent_keys
, NULL
, NULL
);
1962 BUG_ON(!bch_keylist_empty(&parent_keys
));
1965 rw_unlock(true, n1
);
1967 bch_time_stats_update(&b
->c
->btree_split_time
, start_time
);
1971 bkey_put(b
->c
, &n2
->key
);
1972 btree_node_free(n2
);
1973 rw_unlock(true, n2
);
1975 bkey_put(b
->c
, &n1
->key
);
1976 btree_node_free(n1
);
1977 rw_unlock(true, n1
);
1979 WARN(1, "bcache: btree split failed");
1981 if (n3
== ERR_PTR(-EAGAIN
) ||
1982 n2
== ERR_PTR(-EAGAIN
) ||
1983 n1
== ERR_PTR(-EAGAIN
))
1989 static int bch_btree_insert_node(struct btree
*b
, struct btree_op
*op
,
1990 struct keylist
*insert_keys
,
1991 atomic_t
*journal_ref
,
1992 struct bkey
*replace_key
)
1994 BUG_ON(b
->level
&& replace_key
);
1996 if (bch_keylist_nkeys(insert_keys
) > insert_u64s_remaining(b
)) {
1997 if (current
->bio_list
) {
1998 op
->lock
= b
->c
->root
->level
+ 1;
2000 } else if (op
->lock
<= b
->c
->root
->level
) {
2001 op
->lock
= b
->c
->root
->level
+ 1;
2004 /* Invalidated all iterators */
2005 int ret
= btree_split(b
, op
, insert_keys
, replace_key
);
2007 return bch_keylist_empty(insert_keys
) ?
2011 BUG_ON(write_block(b
) != btree_bset_last(b
));
2013 if (bch_btree_insert_keys(b
, op
, insert_keys
, replace_key
)) {
2015 bch_btree_leaf_dirty(b
, journal_ref
);
2017 bch_btree_node_write_sync(b
);
2024 int bch_btree_insert_check_key(struct btree
*b
, struct btree_op
*op
,
2025 struct bkey
*check_key
)
2028 uint64_t btree_ptr
= b
->key
.ptr
[0];
2029 unsigned long seq
= b
->seq
;
2030 struct keylist insert
;
2031 bool upgrade
= op
->lock
== -1;
2033 bch_keylist_init(&insert
);
2036 rw_unlock(false, b
);
2037 rw_lock(true, b
, b
->level
);
2039 if (b
->key
.ptr
[0] != btree_ptr
||
2044 SET_KEY_PTRS(check_key
, 1);
2045 get_random_bytes(&check_key
->ptr
[0], sizeof(uint64_t));
2047 SET_PTR_DEV(check_key
, 0, PTR_CHECK_DEV
);
2049 bch_keylist_add(&insert
, check_key
);
2051 ret
= bch_btree_insert_node(b
, op
, &insert
, NULL
, NULL
);
2053 BUG_ON(!ret
&& !bch_keylist_empty(&insert
));
2056 downgrade_write(&b
->lock
);
2060 struct btree_insert_op
{
2062 struct keylist
*keys
;
2063 atomic_t
*journal_ref
;
2064 struct bkey
*replace_key
;
2067 static int btree_insert_fn(struct btree_op
*b_op
, struct btree
*b
)
2069 struct btree_insert_op
*op
= container_of(b_op
,
2070 struct btree_insert_op
, op
);
2072 int ret
= bch_btree_insert_node(b
, &op
->op
, op
->keys
,
2073 op
->journal_ref
, op
->replace_key
);
2074 if (ret
&& !bch_keylist_empty(op
->keys
))
2080 int bch_btree_insert(struct cache_set
*c
, struct keylist
*keys
,
2081 atomic_t
*journal_ref
, struct bkey
*replace_key
)
2083 struct btree_insert_op op
;
2086 BUG_ON(current
->bio_list
);
2087 BUG_ON(bch_keylist_empty(keys
));
2089 bch_btree_op_init(&op
.op
, 0);
2091 op
.journal_ref
= journal_ref
;
2092 op
.replace_key
= replace_key
;
2094 while (!ret
&& !bch_keylist_empty(keys
)) {
2096 ret
= bch_btree_map_leaf_nodes(&op
.op
, c
,
2097 &START_KEY(keys
->keys
),
2104 pr_err("error %i", ret
);
2106 while ((k
= bch_keylist_pop(keys
)))
2108 } else if (op
.op
.insert_collision
)
2114 void bch_btree_set_root(struct btree
*b
)
2119 closure_init_stack(&cl
);
2121 trace_bcache_btree_set_root(b
);
2123 BUG_ON(!b
->written
);
2125 for (i
= 0; i
< KEY_PTRS(&b
->key
); i
++)
2126 BUG_ON(PTR_BUCKET(b
->c
, &b
->key
, i
)->prio
!= BTREE_PRIO
);
2128 mutex_lock(&b
->c
->bucket_lock
);
2129 list_del_init(&b
->list
);
2130 mutex_unlock(&b
->c
->bucket_lock
);
2134 bch_journal_meta(b
->c
, &cl
);
2138 /* Map across nodes or keys */
2140 static int bch_btree_map_nodes_recurse(struct btree
*b
, struct btree_op
*op
,
2142 btree_map_nodes_fn
*fn
, int flags
)
2144 int ret
= MAP_CONTINUE
;
2148 struct btree_iter iter
;
2150 bch_btree_iter_init(&b
->keys
, &iter
, from
);
2152 while ((k
= bch_btree_iter_next_filter(&iter
, &b
->keys
,
2154 ret
= btree(map_nodes_recurse
, k
, b
,
2155 op
, from
, fn
, flags
);
2158 if (ret
!= MAP_CONTINUE
)
2163 if (!b
->level
|| flags
== MAP_ALL_NODES
)
2169 int __bch_btree_map_nodes(struct btree_op
*op
, struct cache_set
*c
,
2170 struct bkey
*from
, btree_map_nodes_fn
*fn
, int flags
)
2172 return btree_root(map_nodes_recurse
, c
, op
, from
, fn
, flags
);
2175 static int bch_btree_map_keys_recurse(struct btree
*b
, struct btree_op
*op
,
2176 struct bkey
*from
, btree_map_keys_fn
*fn
,
2179 int ret
= MAP_CONTINUE
;
2181 struct btree_iter iter
;
2183 bch_btree_iter_init(&b
->keys
, &iter
, from
);
2185 while ((k
= bch_btree_iter_next_filter(&iter
, &b
->keys
, bch_ptr_bad
))) {
2188 : btree(map_keys_recurse
, k
, b
, op
, from
, fn
, flags
);
2191 if (ret
!= MAP_CONTINUE
)
2195 if (!b
->level
&& (flags
& MAP_END_KEY
))
2196 ret
= fn(op
, b
, &KEY(KEY_INODE(&b
->key
),
2197 KEY_OFFSET(&b
->key
), 0));
2202 int bch_btree_map_keys(struct btree_op
*op
, struct cache_set
*c
,
2203 struct bkey
*from
, btree_map_keys_fn
*fn
, int flags
)
2205 return btree_root(map_keys_recurse
, c
, op
, from
, fn
, flags
);
2210 static inline int keybuf_cmp(struct keybuf_key
*l
, struct keybuf_key
*r
)
2212 /* Overlapping keys compare equal */
2213 if (bkey_cmp(&l
->key
, &START_KEY(&r
->key
)) <= 0)
2215 if (bkey_cmp(&START_KEY(&l
->key
), &r
->key
) >= 0)
2220 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key
*l
,
2221 struct keybuf_key
*r
)
2223 return clamp_t(int64_t, bkey_cmp(&l
->key
, &r
->key
), -1, 1);
2231 keybuf_pred_fn
*pred
;
2234 static int refill_keybuf_fn(struct btree_op
*op
, struct btree
*b
,
2237 struct refill
*refill
= container_of(op
, struct refill
, op
);
2238 struct keybuf
*buf
= refill
->buf
;
2239 int ret
= MAP_CONTINUE
;
2241 if (bkey_cmp(k
, refill
->end
) >= 0) {
2246 if (!KEY_SIZE(k
)) /* end key */
2249 if (refill
->pred(buf
, k
)) {
2250 struct keybuf_key
*w
;
2252 spin_lock(&buf
->lock
);
2254 w
= array_alloc(&buf
->freelist
);
2256 spin_unlock(&buf
->lock
);
2261 bkey_copy(&w
->key
, k
);
2263 if (RB_INSERT(&buf
->keys
, w
, node
, keybuf_cmp
))
2264 array_free(&buf
->freelist
, w
);
2268 if (array_freelist_empty(&buf
->freelist
))
2271 spin_unlock(&buf
->lock
);
2274 buf
->last_scanned
= *k
;
2278 void bch_refill_keybuf(struct cache_set
*c
, struct keybuf
*buf
,
2279 struct bkey
*end
, keybuf_pred_fn
*pred
)
2281 struct bkey start
= buf
->last_scanned
;
2282 struct refill refill
;
2286 bch_btree_op_init(&refill
.op
, -1);
2287 refill
.nr_found
= 0;
2292 bch_btree_map_keys(&refill
.op
, c
, &buf
->last_scanned
,
2293 refill_keybuf_fn
, MAP_END_KEY
);
2295 trace_bcache_keyscan(refill
.nr_found
,
2296 KEY_INODE(&start
), KEY_OFFSET(&start
),
2297 KEY_INODE(&buf
->last_scanned
),
2298 KEY_OFFSET(&buf
->last_scanned
));
2300 spin_lock(&buf
->lock
);
2302 if (!RB_EMPTY_ROOT(&buf
->keys
)) {
2303 struct keybuf_key
*w
;
2304 w
= RB_FIRST(&buf
->keys
, struct keybuf_key
, node
);
2305 buf
->start
= START_KEY(&w
->key
);
2307 w
= RB_LAST(&buf
->keys
, struct keybuf_key
, node
);
2310 buf
->start
= MAX_KEY
;
2314 spin_unlock(&buf
->lock
);
2317 static void __bch_keybuf_del(struct keybuf
*buf
, struct keybuf_key
*w
)
2319 rb_erase(&w
->node
, &buf
->keys
);
2320 array_free(&buf
->freelist
, w
);
2323 void bch_keybuf_del(struct keybuf
*buf
, struct keybuf_key
*w
)
2325 spin_lock(&buf
->lock
);
2326 __bch_keybuf_del(buf
, w
);
2327 spin_unlock(&buf
->lock
);
2330 bool bch_keybuf_check_overlapping(struct keybuf
*buf
, struct bkey
*start
,
2334 struct keybuf_key
*p
, *w
, s
;
2337 if (bkey_cmp(end
, &buf
->start
) <= 0 ||
2338 bkey_cmp(start
, &buf
->end
) >= 0)
2341 spin_lock(&buf
->lock
);
2342 w
= RB_GREATER(&buf
->keys
, s
, node
, keybuf_nonoverlapping_cmp
);
2344 while (w
&& bkey_cmp(&START_KEY(&w
->key
), end
) < 0) {
2346 w
= RB_NEXT(w
, node
);
2351 __bch_keybuf_del(buf
, p
);
2354 spin_unlock(&buf
->lock
);
2358 struct keybuf_key
*bch_keybuf_next(struct keybuf
*buf
)
2360 struct keybuf_key
*w
;
2361 spin_lock(&buf
->lock
);
2363 w
= RB_FIRST(&buf
->keys
, struct keybuf_key
, node
);
2365 while (w
&& w
->private)
2366 w
= RB_NEXT(w
, node
);
2369 w
->private = ERR_PTR(-EINTR
);
2371 spin_unlock(&buf
->lock
);
2375 struct keybuf_key
*bch_keybuf_next_rescan(struct cache_set
*c
,
2378 keybuf_pred_fn
*pred
)
2380 struct keybuf_key
*ret
;
2383 ret
= bch_keybuf_next(buf
);
2387 if (bkey_cmp(&buf
->last_scanned
, end
) >= 0) {
2388 pr_debug("scan finished");
2392 bch_refill_keybuf(c
, buf
, end
, pred
);
2398 void bch_keybuf_init(struct keybuf
*buf
)
2400 buf
->last_scanned
= MAX_KEY
;
2401 buf
->keys
= RB_ROOT
;
2403 spin_lock_init(&buf
->lock
);
2404 array_allocator_init(&buf
->freelist
);
2407 void bch_btree_exit(void)
2410 destroy_workqueue(btree_io_wq
);
2413 int __init
bch_btree_init(void)
2415 btree_io_wq
= create_singlethread_workqueue("bch_btree_io");