2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
7 * This file is released under the GPL.
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/bio.h>
16 #include <linux/blkdev.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/crypto.h>
20 #include <linux/workqueue.h>
21 #include <linux/backing-dev.h>
22 #include <linux/percpu.h>
23 #include <linux/atomic.h>
24 #include <linux/scatterlist.h>
26 #include <asm/unaligned.h>
27 #include <crypto/hash.h>
28 #include <crypto/md5.h>
29 #include <crypto/algapi.h>
31 #include <linux/device-mapper.h>
33 #define DM_MSG_PREFIX "crypt"
36 * context holding the current state of a multi-part conversion
38 struct convert_context
{
39 struct completion restart
;
42 struct bvec_iter iter_in
;
43 struct bvec_iter iter_out
;
49 * per bio private data
52 struct crypt_config
*cc
;
54 struct work_struct work
;
56 struct convert_context ctx
;
61 struct dm_crypt_io
*base_io
;
64 struct dm_crypt_request
{
65 struct convert_context
*ctx
;
66 struct scatterlist sg_in
;
67 struct scatterlist sg_out
;
73 struct crypt_iv_operations
{
74 int (*ctr
)(struct crypt_config
*cc
, struct dm_target
*ti
,
76 void (*dtr
)(struct crypt_config
*cc
);
77 int (*init
)(struct crypt_config
*cc
);
78 int (*wipe
)(struct crypt_config
*cc
);
79 int (*generator
)(struct crypt_config
*cc
, u8
*iv
,
80 struct dm_crypt_request
*dmreq
);
81 int (*post
)(struct crypt_config
*cc
, u8
*iv
,
82 struct dm_crypt_request
*dmreq
);
85 struct iv_essiv_private
{
86 struct crypto_hash
*hash_tfm
;
90 struct iv_benbi_private
{
94 #define LMK_SEED_SIZE 64 /* hash + 0 */
95 struct iv_lmk_private
{
96 struct crypto_shash
*hash_tfm
;
100 #define TCW_WHITENING_SIZE 16
101 struct iv_tcw_private
{
102 struct crypto_shash
*crc32_tfm
;
108 * Crypt: maps a linear range of a block device
109 * and encrypts / decrypts at the same time.
111 enum flags
{ DM_CRYPT_SUSPENDED
, DM_CRYPT_KEY_VALID
};
114 * Duplicated per-CPU state for cipher.
117 struct ablkcipher_request
*req
;
121 * The fields in here must be read only after initialization,
122 * changing state should be in crypt_cpu.
124 struct crypt_config
{
129 * pool for per bio private data, crypto requests and
130 * encryption requeusts/buffer pages
134 mempool_t
*page_pool
;
137 struct workqueue_struct
*io_queue
;
138 struct workqueue_struct
*crypt_queue
;
143 struct crypt_iv_operations
*iv_gen_ops
;
145 struct iv_essiv_private essiv
;
146 struct iv_benbi_private benbi
;
147 struct iv_lmk_private lmk
;
148 struct iv_tcw_private tcw
;
151 unsigned int iv_size
;
154 * Duplicated per cpu state. Access through
155 * per_cpu_ptr() only.
157 struct crypt_cpu __percpu
*cpu
;
159 /* ESSIV: struct crypto_cipher *essiv_tfm */
161 struct crypto_ablkcipher
**tfms
;
165 * Layout of each crypto request:
167 * struct ablkcipher_request
170 * struct dm_crypt_request
174 * The padding is added so that dm_crypt_request and the IV are
177 unsigned int dmreq_start
;
180 unsigned int key_size
;
181 unsigned int key_parts
; /* independent parts in key buffer */
182 unsigned int key_extra_size
; /* additional keys length */
187 #define MIN_POOL_PAGES 32
189 static struct kmem_cache
*_crypt_io_pool
;
191 static void clone_init(struct dm_crypt_io
*, struct bio
*);
192 static void kcryptd_queue_crypt(struct dm_crypt_io
*io
);
193 static u8
*iv_of_dmreq(struct crypt_config
*cc
, struct dm_crypt_request
*dmreq
);
195 static struct crypt_cpu
*this_crypt_config(struct crypt_config
*cc
)
197 return this_cpu_ptr(cc
->cpu
);
201 * Use this to access cipher attributes that are the same for each CPU.
203 static struct crypto_ablkcipher
*any_tfm(struct crypt_config
*cc
)
209 * Different IV generation algorithms:
211 * plain: the initial vector is the 32-bit little-endian version of the sector
212 * number, padded with zeros if necessary.
214 * plain64: the initial vector is the 64-bit little-endian version of the sector
215 * number, padded with zeros if necessary.
217 * essiv: "encrypted sector|salt initial vector", the sector number is
218 * encrypted with the bulk cipher using a salt as key. The salt
219 * should be derived from the bulk cipher's key via hashing.
221 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
222 * (needed for LRW-32-AES and possible other narrow block modes)
224 * null: the initial vector is always zero. Provides compatibility with
225 * obsolete loop_fish2 devices. Do not use for new devices.
227 * lmk: Compatible implementation of the block chaining mode used
228 * by the Loop-AES block device encryption system
229 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
230 * It operates on full 512 byte sectors and uses CBC
231 * with an IV derived from the sector number, the data and
232 * optionally extra IV seed.
233 * This means that after decryption the first block
234 * of sector must be tweaked according to decrypted data.
235 * Loop-AES can use three encryption schemes:
236 * version 1: is plain aes-cbc mode
237 * version 2: uses 64 multikey scheme with lmk IV generator
238 * version 3: the same as version 2 with additional IV seed
239 * (it uses 65 keys, last key is used as IV seed)
241 * tcw: Compatible implementation of the block chaining mode used
242 * by the TrueCrypt device encryption system (prior to version 4.1).
243 * For more info see: http://www.truecrypt.org
244 * It operates on full 512 byte sectors and uses CBC
245 * with an IV derived from initial key and the sector number.
246 * In addition, whitening value is applied on every sector, whitening
247 * is calculated from initial key, sector number and mixed using CRC32.
248 * Note that this encryption scheme is vulnerable to watermarking attacks
249 * and should be used for old compatible containers access only.
251 * plumb: unimplemented, see:
252 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
255 static int crypt_iv_plain_gen(struct crypt_config
*cc
, u8
*iv
,
256 struct dm_crypt_request
*dmreq
)
258 memset(iv
, 0, cc
->iv_size
);
259 *(__le32
*)iv
= cpu_to_le32(dmreq
->iv_sector
& 0xffffffff);
264 static int crypt_iv_plain64_gen(struct crypt_config
*cc
, u8
*iv
,
265 struct dm_crypt_request
*dmreq
)
267 memset(iv
, 0, cc
->iv_size
);
268 *(__le64
*)iv
= cpu_to_le64(dmreq
->iv_sector
);
273 /* Initialise ESSIV - compute salt but no local memory allocations */
274 static int crypt_iv_essiv_init(struct crypt_config
*cc
)
276 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
277 struct hash_desc desc
;
278 struct scatterlist sg
;
279 struct crypto_cipher
*essiv_tfm
;
282 sg_init_one(&sg
, cc
->key
, cc
->key_size
);
283 desc
.tfm
= essiv
->hash_tfm
;
284 desc
.flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
286 err
= crypto_hash_digest(&desc
, &sg
, cc
->key_size
, essiv
->salt
);
290 essiv_tfm
= cc
->iv_private
;
292 err
= crypto_cipher_setkey(essiv_tfm
, essiv
->salt
,
293 crypto_hash_digestsize(essiv
->hash_tfm
));
300 /* Wipe salt and reset key derived from volume key */
301 static int crypt_iv_essiv_wipe(struct crypt_config
*cc
)
303 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
304 unsigned salt_size
= crypto_hash_digestsize(essiv
->hash_tfm
);
305 struct crypto_cipher
*essiv_tfm
;
308 memset(essiv
->salt
, 0, salt_size
);
310 essiv_tfm
= cc
->iv_private
;
311 r
= crypto_cipher_setkey(essiv_tfm
, essiv
->salt
, salt_size
);
318 /* Set up per cpu cipher state */
319 static struct crypto_cipher
*setup_essiv_cpu(struct crypt_config
*cc
,
320 struct dm_target
*ti
,
321 u8
*salt
, unsigned saltsize
)
323 struct crypto_cipher
*essiv_tfm
;
326 /* Setup the essiv_tfm with the given salt */
327 essiv_tfm
= crypto_alloc_cipher(cc
->cipher
, 0, CRYPTO_ALG_ASYNC
);
328 if (IS_ERR(essiv_tfm
)) {
329 ti
->error
= "Error allocating crypto tfm for ESSIV";
333 if (crypto_cipher_blocksize(essiv_tfm
) !=
334 crypto_ablkcipher_ivsize(any_tfm(cc
))) {
335 ti
->error
= "Block size of ESSIV cipher does "
336 "not match IV size of block cipher";
337 crypto_free_cipher(essiv_tfm
);
338 return ERR_PTR(-EINVAL
);
341 err
= crypto_cipher_setkey(essiv_tfm
, salt
, saltsize
);
343 ti
->error
= "Failed to set key for ESSIV cipher";
344 crypto_free_cipher(essiv_tfm
);
351 static void crypt_iv_essiv_dtr(struct crypt_config
*cc
)
353 struct crypto_cipher
*essiv_tfm
;
354 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
356 crypto_free_hash(essiv
->hash_tfm
);
357 essiv
->hash_tfm
= NULL
;
362 essiv_tfm
= cc
->iv_private
;
365 crypto_free_cipher(essiv_tfm
);
367 cc
->iv_private
= NULL
;
370 static int crypt_iv_essiv_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
373 struct crypto_cipher
*essiv_tfm
= NULL
;
374 struct crypto_hash
*hash_tfm
= NULL
;
379 ti
->error
= "Digest algorithm missing for ESSIV mode";
383 /* Allocate hash algorithm */
384 hash_tfm
= crypto_alloc_hash(opts
, 0, CRYPTO_ALG_ASYNC
);
385 if (IS_ERR(hash_tfm
)) {
386 ti
->error
= "Error initializing ESSIV hash";
387 err
= PTR_ERR(hash_tfm
);
391 salt
= kzalloc(crypto_hash_digestsize(hash_tfm
), GFP_KERNEL
);
393 ti
->error
= "Error kmallocing salt storage in ESSIV";
398 cc
->iv_gen_private
.essiv
.salt
= salt
;
399 cc
->iv_gen_private
.essiv
.hash_tfm
= hash_tfm
;
401 essiv_tfm
= setup_essiv_cpu(cc
, ti
, salt
,
402 crypto_hash_digestsize(hash_tfm
));
403 if (IS_ERR(essiv_tfm
)) {
404 crypt_iv_essiv_dtr(cc
);
405 return PTR_ERR(essiv_tfm
);
407 cc
->iv_private
= essiv_tfm
;
412 if (hash_tfm
&& !IS_ERR(hash_tfm
))
413 crypto_free_hash(hash_tfm
);
418 static int crypt_iv_essiv_gen(struct crypt_config
*cc
, u8
*iv
,
419 struct dm_crypt_request
*dmreq
)
421 struct crypto_cipher
*essiv_tfm
= cc
->iv_private
;
423 memset(iv
, 0, cc
->iv_size
);
424 *(__le64
*)iv
= cpu_to_le64(dmreq
->iv_sector
);
425 crypto_cipher_encrypt_one(essiv_tfm
, iv
, iv
);
430 static int crypt_iv_benbi_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
433 unsigned bs
= crypto_ablkcipher_blocksize(any_tfm(cc
));
436 /* we need to calculate how far we must shift the sector count
437 * to get the cipher block count, we use this shift in _gen */
439 if (1 << log
!= bs
) {
440 ti
->error
= "cypher blocksize is not a power of 2";
445 ti
->error
= "cypher blocksize is > 512";
449 cc
->iv_gen_private
.benbi
.shift
= 9 - log
;
454 static void crypt_iv_benbi_dtr(struct crypt_config
*cc
)
458 static int crypt_iv_benbi_gen(struct crypt_config
*cc
, u8
*iv
,
459 struct dm_crypt_request
*dmreq
)
463 memset(iv
, 0, cc
->iv_size
- sizeof(u64
)); /* rest is cleared below */
465 val
= cpu_to_be64(((u64
)dmreq
->iv_sector
<< cc
->iv_gen_private
.benbi
.shift
) + 1);
466 put_unaligned(val
, (__be64
*)(iv
+ cc
->iv_size
- sizeof(u64
)));
471 static int crypt_iv_null_gen(struct crypt_config
*cc
, u8
*iv
,
472 struct dm_crypt_request
*dmreq
)
474 memset(iv
, 0, cc
->iv_size
);
479 static void crypt_iv_lmk_dtr(struct crypt_config
*cc
)
481 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
483 if (lmk
->hash_tfm
&& !IS_ERR(lmk
->hash_tfm
))
484 crypto_free_shash(lmk
->hash_tfm
);
485 lmk
->hash_tfm
= NULL
;
491 static int crypt_iv_lmk_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
494 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
496 lmk
->hash_tfm
= crypto_alloc_shash("md5", 0, 0);
497 if (IS_ERR(lmk
->hash_tfm
)) {
498 ti
->error
= "Error initializing LMK hash";
499 return PTR_ERR(lmk
->hash_tfm
);
502 /* No seed in LMK version 2 */
503 if (cc
->key_parts
== cc
->tfms_count
) {
508 lmk
->seed
= kzalloc(LMK_SEED_SIZE
, GFP_KERNEL
);
510 crypt_iv_lmk_dtr(cc
);
511 ti
->error
= "Error kmallocing seed storage in LMK";
518 static int crypt_iv_lmk_init(struct crypt_config
*cc
)
520 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
521 int subkey_size
= cc
->key_size
/ cc
->key_parts
;
523 /* LMK seed is on the position of LMK_KEYS + 1 key */
525 memcpy(lmk
->seed
, cc
->key
+ (cc
->tfms_count
* subkey_size
),
526 crypto_shash_digestsize(lmk
->hash_tfm
));
531 static int crypt_iv_lmk_wipe(struct crypt_config
*cc
)
533 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
536 memset(lmk
->seed
, 0, LMK_SEED_SIZE
);
541 static int crypt_iv_lmk_one(struct crypt_config
*cc
, u8
*iv
,
542 struct dm_crypt_request
*dmreq
,
545 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
547 struct shash_desc desc
;
548 char ctx
[crypto_shash_descsize(lmk
->hash_tfm
)];
550 struct md5_state md5state
;
554 sdesc
.desc
.tfm
= lmk
->hash_tfm
;
555 sdesc
.desc
.flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
557 r
= crypto_shash_init(&sdesc
.desc
);
562 r
= crypto_shash_update(&sdesc
.desc
, lmk
->seed
, LMK_SEED_SIZE
);
567 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
568 r
= crypto_shash_update(&sdesc
.desc
, data
+ 16, 16 * 31);
572 /* Sector is cropped to 56 bits here */
573 buf
[0] = cpu_to_le32(dmreq
->iv_sector
& 0xFFFFFFFF);
574 buf
[1] = cpu_to_le32((((u64
)dmreq
->iv_sector
>> 32) & 0x00FFFFFF) | 0x80000000);
575 buf
[2] = cpu_to_le32(4024);
577 r
= crypto_shash_update(&sdesc
.desc
, (u8
*)buf
, sizeof(buf
));
581 /* No MD5 padding here */
582 r
= crypto_shash_export(&sdesc
.desc
, &md5state
);
586 for (i
= 0; i
< MD5_HASH_WORDS
; i
++)
587 __cpu_to_le32s(&md5state
.hash
[i
]);
588 memcpy(iv
, &md5state
.hash
, cc
->iv_size
);
593 static int crypt_iv_lmk_gen(struct crypt_config
*cc
, u8
*iv
,
594 struct dm_crypt_request
*dmreq
)
599 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
) {
600 src
= kmap_atomic(sg_page(&dmreq
->sg_in
));
601 r
= crypt_iv_lmk_one(cc
, iv
, dmreq
, src
+ dmreq
->sg_in
.offset
);
604 memset(iv
, 0, cc
->iv_size
);
609 static int crypt_iv_lmk_post(struct crypt_config
*cc
, u8
*iv
,
610 struct dm_crypt_request
*dmreq
)
615 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
)
618 dst
= kmap_atomic(sg_page(&dmreq
->sg_out
));
619 r
= crypt_iv_lmk_one(cc
, iv
, dmreq
, dst
+ dmreq
->sg_out
.offset
);
621 /* Tweak the first block of plaintext sector */
623 crypto_xor(dst
+ dmreq
->sg_out
.offset
, iv
, cc
->iv_size
);
629 static void crypt_iv_tcw_dtr(struct crypt_config
*cc
)
631 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
633 kzfree(tcw
->iv_seed
);
635 kzfree(tcw
->whitening
);
636 tcw
->whitening
= NULL
;
638 if (tcw
->crc32_tfm
&& !IS_ERR(tcw
->crc32_tfm
))
639 crypto_free_shash(tcw
->crc32_tfm
);
640 tcw
->crc32_tfm
= NULL
;
643 static int crypt_iv_tcw_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
646 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
648 if (cc
->key_size
<= (cc
->iv_size
+ TCW_WHITENING_SIZE
)) {
649 ti
->error
= "Wrong key size for TCW";
653 tcw
->crc32_tfm
= crypto_alloc_shash("crc32", 0, 0);
654 if (IS_ERR(tcw
->crc32_tfm
)) {
655 ti
->error
= "Error initializing CRC32 in TCW";
656 return PTR_ERR(tcw
->crc32_tfm
);
659 tcw
->iv_seed
= kzalloc(cc
->iv_size
, GFP_KERNEL
);
660 tcw
->whitening
= kzalloc(TCW_WHITENING_SIZE
, GFP_KERNEL
);
661 if (!tcw
->iv_seed
|| !tcw
->whitening
) {
662 crypt_iv_tcw_dtr(cc
);
663 ti
->error
= "Error allocating seed storage in TCW";
670 static int crypt_iv_tcw_init(struct crypt_config
*cc
)
672 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
673 int key_offset
= cc
->key_size
- cc
->iv_size
- TCW_WHITENING_SIZE
;
675 memcpy(tcw
->iv_seed
, &cc
->key
[key_offset
], cc
->iv_size
);
676 memcpy(tcw
->whitening
, &cc
->key
[key_offset
+ cc
->iv_size
],
682 static int crypt_iv_tcw_wipe(struct crypt_config
*cc
)
684 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
686 memset(tcw
->iv_seed
, 0, cc
->iv_size
);
687 memset(tcw
->whitening
, 0, TCW_WHITENING_SIZE
);
692 static int crypt_iv_tcw_whitening(struct crypt_config
*cc
,
693 struct dm_crypt_request
*dmreq
,
696 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
697 u64 sector
= cpu_to_le64((u64
)dmreq
->iv_sector
);
698 u8 buf
[TCW_WHITENING_SIZE
];
700 struct shash_desc desc
;
701 char ctx
[crypto_shash_descsize(tcw
->crc32_tfm
)];
705 /* xor whitening with sector number */
706 memcpy(buf
, tcw
->whitening
, TCW_WHITENING_SIZE
);
707 crypto_xor(buf
, (u8
*)§or
, 8);
708 crypto_xor(&buf
[8], (u8
*)§or
, 8);
710 /* calculate crc32 for every 32bit part and xor it */
711 sdesc
.desc
.tfm
= tcw
->crc32_tfm
;
712 sdesc
.desc
.flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
713 for (i
= 0; i
< 4; i
++) {
714 r
= crypto_shash_init(&sdesc
.desc
);
717 r
= crypto_shash_update(&sdesc
.desc
, &buf
[i
* 4], 4);
720 r
= crypto_shash_final(&sdesc
.desc
, &buf
[i
* 4]);
724 crypto_xor(&buf
[0], &buf
[12], 4);
725 crypto_xor(&buf
[4], &buf
[8], 4);
727 /* apply whitening (8 bytes) to whole sector */
728 for (i
= 0; i
< ((1 << SECTOR_SHIFT
) / 8); i
++)
729 crypto_xor(data
+ i
* 8, buf
, 8);
731 memset(buf
, 0, sizeof(buf
));
735 static int crypt_iv_tcw_gen(struct crypt_config
*cc
, u8
*iv
,
736 struct dm_crypt_request
*dmreq
)
738 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
739 u64 sector
= cpu_to_le64((u64
)dmreq
->iv_sector
);
743 /* Remove whitening from ciphertext */
744 if (bio_data_dir(dmreq
->ctx
->bio_in
) != WRITE
) {
745 src
= kmap_atomic(sg_page(&dmreq
->sg_in
));
746 r
= crypt_iv_tcw_whitening(cc
, dmreq
, src
+ dmreq
->sg_in
.offset
);
751 memcpy(iv
, tcw
->iv_seed
, cc
->iv_size
);
752 crypto_xor(iv
, (u8
*)§or
, 8);
754 crypto_xor(&iv
[8], (u8
*)§or
, cc
->iv_size
- 8);
759 static int crypt_iv_tcw_post(struct crypt_config
*cc
, u8
*iv
,
760 struct dm_crypt_request
*dmreq
)
765 if (bio_data_dir(dmreq
->ctx
->bio_in
) != WRITE
)
768 /* Apply whitening on ciphertext */
769 dst
= kmap_atomic(sg_page(&dmreq
->sg_out
));
770 r
= crypt_iv_tcw_whitening(cc
, dmreq
, dst
+ dmreq
->sg_out
.offset
);
776 static struct crypt_iv_operations crypt_iv_plain_ops
= {
777 .generator
= crypt_iv_plain_gen
780 static struct crypt_iv_operations crypt_iv_plain64_ops
= {
781 .generator
= crypt_iv_plain64_gen
784 static struct crypt_iv_operations crypt_iv_essiv_ops
= {
785 .ctr
= crypt_iv_essiv_ctr
,
786 .dtr
= crypt_iv_essiv_dtr
,
787 .init
= crypt_iv_essiv_init
,
788 .wipe
= crypt_iv_essiv_wipe
,
789 .generator
= crypt_iv_essiv_gen
792 static struct crypt_iv_operations crypt_iv_benbi_ops
= {
793 .ctr
= crypt_iv_benbi_ctr
,
794 .dtr
= crypt_iv_benbi_dtr
,
795 .generator
= crypt_iv_benbi_gen
798 static struct crypt_iv_operations crypt_iv_null_ops
= {
799 .generator
= crypt_iv_null_gen
802 static struct crypt_iv_operations crypt_iv_lmk_ops
= {
803 .ctr
= crypt_iv_lmk_ctr
,
804 .dtr
= crypt_iv_lmk_dtr
,
805 .init
= crypt_iv_lmk_init
,
806 .wipe
= crypt_iv_lmk_wipe
,
807 .generator
= crypt_iv_lmk_gen
,
808 .post
= crypt_iv_lmk_post
811 static struct crypt_iv_operations crypt_iv_tcw_ops
= {
812 .ctr
= crypt_iv_tcw_ctr
,
813 .dtr
= crypt_iv_tcw_dtr
,
814 .init
= crypt_iv_tcw_init
,
815 .wipe
= crypt_iv_tcw_wipe
,
816 .generator
= crypt_iv_tcw_gen
,
817 .post
= crypt_iv_tcw_post
820 static void crypt_convert_init(struct crypt_config
*cc
,
821 struct convert_context
*ctx
,
822 struct bio
*bio_out
, struct bio
*bio_in
,
825 ctx
->bio_in
= bio_in
;
826 ctx
->bio_out
= bio_out
;
828 ctx
->iter_in
= bio_in
->bi_iter
;
830 ctx
->iter_out
= bio_out
->bi_iter
;
831 ctx
->cc_sector
= sector
+ cc
->iv_offset
;
832 init_completion(&ctx
->restart
);
835 static struct dm_crypt_request
*dmreq_of_req(struct crypt_config
*cc
,
836 struct ablkcipher_request
*req
)
838 return (struct dm_crypt_request
*)((char *)req
+ cc
->dmreq_start
);
841 static struct ablkcipher_request
*req_of_dmreq(struct crypt_config
*cc
,
842 struct dm_crypt_request
*dmreq
)
844 return (struct ablkcipher_request
*)((char *)dmreq
- cc
->dmreq_start
);
847 static u8
*iv_of_dmreq(struct crypt_config
*cc
,
848 struct dm_crypt_request
*dmreq
)
850 return (u8
*)ALIGN((unsigned long)(dmreq
+ 1),
851 crypto_ablkcipher_alignmask(any_tfm(cc
)) + 1);
854 static int crypt_convert_block(struct crypt_config
*cc
,
855 struct convert_context
*ctx
,
856 struct ablkcipher_request
*req
)
858 struct bio_vec bv_in
= bio_iter_iovec(ctx
->bio_in
, ctx
->iter_in
);
859 struct bio_vec bv_out
= bio_iter_iovec(ctx
->bio_out
, ctx
->iter_out
);
860 struct dm_crypt_request
*dmreq
;
864 dmreq
= dmreq_of_req(cc
, req
);
865 iv
= iv_of_dmreq(cc
, dmreq
);
867 dmreq
->iv_sector
= ctx
->cc_sector
;
869 sg_init_table(&dmreq
->sg_in
, 1);
870 sg_set_page(&dmreq
->sg_in
, bv_in
.bv_page
, 1 << SECTOR_SHIFT
,
873 sg_init_table(&dmreq
->sg_out
, 1);
874 sg_set_page(&dmreq
->sg_out
, bv_out
.bv_page
, 1 << SECTOR_SHIFT
,
877 bio_advance_iter(ctx
->bio_in
, &ctx
->iter_in
, 1 << SECTOR_SHIFT
);
878 bio_advance_iter(ctx
->bio_out
, &ctx
->iter_out
, 1 << SECTOR_SHIFT
);
880 if (cc
->iv_gen_ops
) {
881 r
= cc
->iv_gen_ops
->generator(cc
, iv
, dmreq
);
886 ablkcipher_request_set_crypt(req
, &dmreq
->sg_in
, &dmreq
->sg_out
,
887 1 << SECTOR_SHIFT
, iv
);
889 if (bio_data_dir(ctx
->bio_in
) == WRITE
)
890 r
= crypto_ablkcipher_encrypt(req
);
892 r
= crypto_ablkcipher_decrypt(req
);
894 if (!r
&& cc
->iv_gen_ops
&& cc
->iv_gen_ops
->post
)
895 r
= cc
->iv_gen_ops
->post(cc
, iv
, dmreq
);
900 static void kcryptd_async_done(struct crypto_async_request
*async_req
,
903 static void crypt_alloc_req(struct crypt_config
*cc
,
904 struct convert_context
*ctx
)
906 struct crypt_cpu
*this_cc
= this_crypt_config(cc
);
907 unsigned key_index
= ctx
->cc_sector
& (cc
->tfms_count
- 1);
910 this_cc
->req
= mempool_alloc(cc
->req_pool
, GFP_NOIO
);
912 ablkcipher_request_set_tfm(this_cc
->req
, cc
->tfms
[key_index
]);
913 ablkcipher_request_set_callback(this_cc
->req
,
914 CRYPTO_TFM_REQ_MAY_BACKLOG
| CRYPTO_TFM_REQ_MAY_SLEEP
,
915 kcryptd_async_done
, dmreq_of_req(cc
, this_cc
->req
));
919 * Encrypt / decrypt data from one bio to another one (can be the same one)
921 static int crypt_convert(struct crypt_config
*cc
,
922 struct convert_context
*ctx
)
924 struct crypt_cpu
*this_cc
= this_crypt_config(cc
);
927 atomic_set(&ctx
->cc_pending
, 1);
929 while (ctx
->iter_in
.bi_size
&& ctx
->iter_out
.bi_size
) {
931 crypt_alloc_req(cc
, ctx
);
933 atomic_inc(&ctx
->cc_pending
);
935 r
= crypt_convert_block(cc
, ctx
, this_cc
->req
);
940 wait_for_completion(&ctx
->restart
);
941 reinit_completion(&ctx
->restart
);
950 atomic_dec(&ctx
->cc_pending
);
957 atomic_dec(&ctx
->cc_pending
);
966 * Generate a new unfragmented bio with the given size
967 * This should never violate the device limitations
968 * May return a smaller bio when running out of pages, indicated by
969 * *out_of_pages set to 1.
971 static struct bio
*crypt_alloc_buffer(struct dm_crypt_io
*io
, unsigned size
,
972 unsigned *out_of_pages
)
974 struct crypt_config
*cc
= io
->cc
;
976 unsigned int nr_iovecs
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
977 gfp_t gfp_mask
= GFP_NOIO
| __GFP_HIGHMEM
;
981 clone
= bio_alloc_bioset(GFP_NOIO
, nr_iovecs
, cc
->bs
);
985 clone_init(io
, clone
);
988 for (i
= 0; i
< nr_iovecs
; i
++) {
989 page
= mempool_alloc(cc
->page_pool
, gfp_mask
);
996 * If additional pages cannot be allocated without waiting,
997 * return a partially-allocated bio. The caller will then try
998 * to allocate more bios while submitting this partial bio.
1000 gfp_mask
= (gfp_mask
| __GFP_NOWARN
) & ~__GFP_WAIT
;
1002 len
= (size
> PAGE_SIZE
) ? PAGE_SIZE
: size
;
1004 if (!bio_add_page(clone
, page
, len
, 0)) {
1005 mempool_free(page
, cc
->page_pool
);
1012 if (!clone
->bi_iter
.bi_size
) {
1020 static void crypt_free_buffer_pages(struct crypt_config
*cc
, struct bio
*clone
)
1025 bio_for_each_segment_all(bv
, clone
, i
) {
1026 BUG_ON(!bv
->bv_page
);
1027 mempool_free(bv
->bv_page
, cc
->page_pool
);
1032 static struct dm_crypt_io
*crypt_io_alloc(struct crypt_config
*cc
,
1033 struct bio
*bio
, sector_t sector
)
1035 struct dm_crypt_io
*io
;
1037 io
= mempool_alloc(cc
->io_pool
, GFP_NOIO
);
1040 io
->sector
= sector
;
1043 atomic_set(&io
->io_pending
, 0);
1048 static void crypt_inc_pending(struct dm_crypt_io
*io
)
1050 atomic_inc(&io
->io_pending
);
1054 * One of the bios was finished. Check for completion of
1055 * the whole request and correctly clean up the buffer.
1056 * If base_io is set, wait for the last fragment to complete.
1058 static void crypt_dec_pending(struct dm_crypt_io
*io
)
1060 struct crypt_config
*cc
= io
->cc
;
1061 struct bio
*base_bio
= io
->base_bio
;
1062 struct dm_crypt_io
*base_io
= io
->base_io
;
1063 int error
= io
->error
;
1065 if (!atomic_dec_and_test(&io
->io_pending
))
1068 mempool_free(io
, cc
->io_pool
);
1070 if (likely(!base_io
))
1071 bio_endio(base_bio
, error
);
1073 if (error
&& !base_io
->error
)
1074 base_io
->error
= error
;
1075 crypt_dec_pending(base_io
);
1080 * kcryptd/kcryptd_io:
1082 * Needed because it would be very unwise to do decryption in an
1083 * interrupt context.
1085 * kcryptd performs the actual encryption or decryption.
1087 * kcryptd_io performs the IO submission.
1089 * They must be separated as otherwise the final stages could be
1090 * starved by new requests which can block in the first stages due
1091 * to memory allocation.
1093 * The work is done per CPU global for all dm-crypt instances.
1094 * They should not depend on each other and do not block.
1096 static void crypt_endio(struct bio
*clone
, int error
)
1098 struct dm_crypt_io
*io
= clone
->bi_private
;
1099 struct crypt_config
*cc
= io
->cc
;
1100 unsigned rw
= bio_data_dir(clone
);
1102 if (unlikely(!bio_flagged(clone
, BIO_UPTODATE
) && !error
))
1106 * free the processed pages
1109 crypt_free_buffer_pages(cc
, clone
);
1113 if (rw
== READ
&& !error
) {
1114 kcryptd_queue_crypt(io
);
1118 if (unlikely(error
))
1121 crypt_dec_pending(io
);
1124 static void clone_init(struct dm_crypt_io
*io
, struct bio
*clone
)
1126 struct crypt_config
*cc
= io
->cc
;
1128 clone
->bi_private
= io
;
1129 clone
->bi_end_io
= crypt_endio
;
1130 clone
->bi_bdev
= cc
->dev
->bdev
;
1131 clone
->bi_rw
= io
->base_bio
->bi_rw
;
1134 static int kcryptd_io_read(struct dm_crypt_io
*io
, gfp_t gfp
)
1136 struct crypt_config
*cc
= io
->cc
;
1137 struct bio
*base_bio
= io
->base_bio
;
1141 * The block layer might modify the bvec array, so always
1142 * copy the required bvecs because we need the original
1143 * one in order to decrypt the whole bio data *afterwards*.
1145 clone
= bio_clone_bioset(base_bio
, gfp
, cc
->bs
);
1149 crypt_inc_pending(io
);
1151 clone_init(io
, clone
);
1152 clone
->bi_iter
.bi_sector
= cc
->start
+ io
->sector
;
1154 generic_make_request(clone
);
1158 static void kcryptd_io_write(struct dm_crypt_io
*io
)
1160 struct bio
*clone
= io
->ctx
.bio_out
;
1161 generic_make_request(clone
);
1164 static void kcryptd_io(struct work_struct
*work
)
1166 struct dm_crypt_io
*io
= container_of(work
, struct dm_crypt_io
, work
);
1168 if (bio_data_dir(io
->base_bio
) == READ
) {
1169 crypt_inc_pending(io
);
1170 if (kcryptd_io_read(io
, GFP_NOIO
))
1171 io
->error
= -ENOMEM
;
1172 crypt_dec_pending(io
);
1174 kcryptd_io_write(io
);
1177 static void kcryptd_queue_io(struct dm_crypt_io
*io
)
1179 struct crypt_config
*cc
= io
->cc
;
1181 INIT_WORK(&io
->work
, kcryptd_io
);
1182 queue_work(cc
->io_queue
, &io
->work
);
1185 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io
*io
, int async
)
1187 struct bio
*clone
= io
->ctx
.bio_out
;
1188 struct crypt_config
*cc
= io
->cc
;
1190 if (unlikely(io
->error
< 0)) {
1191 crypt_free_buffer_pages(cc
, clone
);
1193 crypt_dec_pending(io
);
1197 /* crypt_convert should have filled the clone bio */
1198 BUG_ON(io
->ctx
.iter_out
.bi_size
);
1200 clone
->bi_iter
.bi_sector
= cc
->start
+ io
->sector
;
1203 kcryptd_queue_io(io
);
1205 generic_make_request(clone
);
1208 static void kcryptd_crypt_write_convert(struct dm_crypt_io
*io
)
1210 struct crypt_config
*cc
= io
->cc
;
1212 struct dm_crypt_io
*new_io
;
1214 unsigned out_of_pages
= 0;
1215 unsigned remaining
= io
->base_bio
->bi_iter
.bi_size
;
1216 sector_t sector
= io
->sector
;
1220 * Prevent io from disappearing until this function completes.
1222 crypt_inc_pending(io
);
1223 crypt_convert_init(cc
, &io
->ctx
, NULL
, io
->base_bio
, sector
);
1226 * The allocated buffers can be smaller than the whole bio,
1227 * so repeat the whole process until all the data can be handled.
1230 clone
= crypt_alloc_buffer(io
, remaining
, &out_of_pages
);
1231 if (unlikely(!clone
)) {
1232 io
->error
= -ENOMEM
;
1236 io
->ctx
.bio_out
= clone
;
1237 io
->ctx
.iter_out
= clone
->bi_iter
;
1239 remaining
-= clone
->bi_iter
.bi_size
;
1240 sector
+= bio_sectors(clone
);
1242 crypt_inc_pending(io
);
1244 r
= crypt_convert(cc
, &io
->ctx
);
1248 crypt_finished
= atomic_dec_and_test(&io
->ctx
.cc_pending
);
1250 /* Encryption was already finished, submit io now */
1251 if (crypt_finished
) {
1252 kcryptd_crypt_write_io_submit(io
, 0);
1255 * If there was an error, do not try next fragments.
1256 * For async, error is processed in async handler.
1258 if (unlikely(r
< 0))
1261 io
->sector
= sector
;
1265 * Out of memory -> run queues
1266 * But don't wait if split was due to the io size restriction
1268 if (unlikely(out_of_pages
))
1269 congestion_wait(BLK_RW_ASYNC
, HZ
/100);
1272 * With async crypto it is unsafe to share the crypto context
1273 * between fragments, so switch to a new dm_crypt_io structure.
1275 if (unlikely(!crypt_finished
&& remaining
)) {
1276 new_io
= crypt_io_alloc(io
->cc
, io
->base_bio
,
1278 crypt_inc_pending(new_io
);
1279 crypt_convert_init(cc
, &new_io
->ctx
, NULL
,
1280 io
->base_bio
, sector
);
1281 new_io
->ctx
.iter_in
= io
->ctx
.iter_in
;
1284 * Fragments after the first use the base_io
1288 new_io
->base_io
= io
;
1290 new_io
->base_io
= io
->base_io
;
1291 crypt_inc_pending(io
->base_io
);
1292 crypt_dec_pending(io
);
1299 crypt_dec_pending(io
);
1302 static void kcryptd_crypt_read_done(struct dm_crypt_io
*io
)
1304 crypt_dec_pending(io
);
1307 static void kcryptd_crypt_read_convert(struct dm_crypt_io
*io
)
1309 struct crypt_config
*cc
= io
->cc
;
1312 crypt_inc_pending(io
);
1314 crypt_convert_init(cc
, &io
->ctx
, io
->base_bio
, io
->base_bio
,
1317 r
= crypt_convert(cc
, &io
->ctx
);
1321 if (atomic_dec_and_test(&io
->ctx
.cc_pending
))
1322 kcryptd_crypt_read_done(io
);
1324 crypt_dec_pending(io
);
1327 static void kcryptd_async_done(struct crypto_async_request
*async_req
,
1330 struct dm_crypt_request
*dmreq
= async_req
->data
;
1331 struct convert_context
*ctx
= dmreq
->ctx
;
1332 struct dm_crypt_io
*io
= container_of(ctx
, struct dm_crypt_io
, ctx
);
1333 struct crypt_config
*cc
= io
->cc
;
1335 if (error
== -EINPROGRESS
) {
1336 complete(&ctx
->restart
);
1340 if (!error
&& cc
->iv_gen_ops
&& cc
->iv_gen_ops
->post
)
1341 error
= cc
->iv_gen_ops
->post(cc
, iv_of_dmreq(cc
, dmreq
), dmreq
);
1346 mempool_free(req_of_dmreq(cc
, dmreq
), cc
->req_pool
);
1348 if (!atomic_dec_and_test(&ctx
->cc_pending
))
1351 if (bio_data_dir(io
->base_bio
) == READ
)
1352 kcryptd_crypt_read_done(io
);
1354 kcryptd_crypt_write_io_submit(io
, 1);
1357 static void kcryptd_crypt(struct work_struct
*work
)
1359 struct dm_crypt_io
*io
= container_of(work
, struct dm_crypt_io
, work
);
1361 if (bio_data_dir(io
->base_bio
) == READ
)
1362 kcryptd_crypt_read_convert(io
);
1364 kcryptd_crypt_write_convert(io
);
1367 static void kcryptd_queue_crypt(struct dm_crypt_io
*io
)
1369 struct crypt_config
*cc
= io
->cc
;
1371 INIT_WORK(&io
->work
, kcryptd_crypt
);
1372 queue_work(cc
->crypt_queue
, &io
->work
);
1376 * Decode key from its hex representation
1378 static int crypt_decode_key(u8
*key
, char *hex
, unsigned int size
)
1385 for (i
= 0; i
< size
; i
++) {
1389 if (kstrtou8(buffer
, 16, &key
[i
]))
1399 static void crypt_free_tfms(struct crypt_config
*cc
)
1406 for (i
= 0; i
< cc
->tfms_count
; i
++)
1407 if (cc
->tfms
[i
] && !IS_ERR(cc
->tfms
[i
])) {
1408 crypto_free_ablkcipher(cc
->tfms
[i
]);
1416 static int crypt_alloc_tfms(struct crypt_config
*cc
, char *ciphermode
)
1421 cc
->tfms
= kmalloc(cc
->tfms_count
* sizeof(struct crypto_ablkcipher
*),
1426 for (i
= 0; i
< cc
->tfms_count
; i
++) {
1427 cc
->tfms
[i
] = crypto_alloc_ablkcipher(ciphermode
, 0, 0);
1428 if (IS_ERR(cc
->tfms
[i
])) {
1429 err
= PTR_ERR(cc
->tfms
[i
]);
1430 crypt_free_tfms(cc
);
1438 static int crypt_setkey_allcpus(struct crypt_config
*cc
)
1440 unsigned subkey_size
;
1443 /* Ignore extra keys (which are used for IV etc) */
1444 subkey_size
= (cc
->key_size
- cc
->key_extra_size
) >> ilog2(cc
->tfms_count
);
1446 for (i
= 0; i
< cc
->tfms_count
; i
++) {
1447 r
= crypto_ablkcipher_setkey(cc
->tfms
[i
],
1448 cc
->key
+ (i
* subkey_size
),
1457 static int crypt_set_key(struct crypt_config
*cc
, char *key
)
1460 int key_string_len
= strlen(key
);
1462 /* The key size may not be changed. */
1463 if (cc
->key_size
!= (key_string_len
>> 1))
1466 /* Hyphen (which gives a key_size of zero) means there is no key. */
1467 if (!cc
->key_size
&& strcmp(key
, "-"))
1470 if (cc
->key_size
&& crypt_decode_key(cc
->key
, key
, cc
->key_size
) < 0)
1473 set_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
1475 r
= crypt_setkey_allcpus(cc
);
1478 /* Hex key string not needed after here, so wipe it. */
1479 memset(key
, '0', key_string_len
);
1484 static int crypt_wipe_key(struct crypt_config
*cc
)
1486 clear_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
1487 memset(&cc
->key
, 0, cc
->key_size
* sizeof(u8
));
1489 return crypt_setkey_allcpus(cc
);
1492 static void crypt_dtr(struct dm_target
*ti
)
1494 struct crypt_config
*cc
= ti
->private;
1495 struct crypt_cpu
*cpu_cc
;
1504 destroy_workqueue(cc
->io_queue
);
1505 if (cc
->crypt_queue
)
1506 destroy_workqueue(cc
->crypt_queue
);
1509 for_each_possible_cpu(cpu
) {
1510 cpu_cc
= per_cpu_ptr(cc
->cpu
, cpu
);
1512 mempool_free(cpu_cc
->req
, cc
->req_pool
);
1515 crypt_free_tfms(cc
);
1518 bioset_free(cc
->bs
);
1521 mempool_destroy(cc
->page_pool
);
1523 mempool_destroy(cc
->req_pool
);
1525 mempool_destroy(cc
->io_pool
);
1527 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->dtr
)
1528 cc
->iv_gen_ops
->dtr(cc
);
1531 dm_put_device(ti
, cc
->dev
);
1534 free_percpu(cc
->cpu
);
1537 kzfree(cc
->cipher_string
);
1539 /* Must zero key material before freeing */
1543 static int crypt_ctr_cipher(struct dm_target
*ti
,
1544 char *cipher_in
, char *key
)
1546 struct crypt_config
*cc
= ti
->private;
1547 char *tmp
, *cipher
, *chainmode
, *ivmode
, *ivopts
, *keycount
;
1548 char *cipher_api
= NULL
;
1552 /* Convert to crypto api definition? */
1553 if (strchr(cipher_in
, '(')) {
1554 ti
->error
= "Bad cipher specification";
1558 cc
->cipher_string
= kstrdup(cipher_in
, GFP_KERNEL
);
1559 if (!cc
->cipher_string
)
1563 * Legacy dm-crypt cipher specification
1564 * cipher[:keycount]-mode-iv:ivopts
1567 keycount
= strsep(&tmp
, "-");
1568 cipher
= strsep(&keycount
, ":");
1572 else if (sscanf(keycount
, "%u%c", &cc
->tfms_count
, &dummy
) != 1 ||
1573 !is_power_of_2(cc
->tfms_count
)) {
1574 ti
->error
= "Bad cipher key count specification";
1577 cc
->key_parts
= cc
->tfms_count
;
1578 cc
->key_extra_size
= 0;
1580 cc
->cipher
= kstrdup(cipher
, GFP_KERNEL
);
1584 chainmode
= strsep(&tmp
, "-");
1585 ivopts
= strsep(&tmp
, "-");
1586 ivmode
= strsep(&ivopts
, ":");
1589 DMWARN("Ignoring unexpected additional cipher options");
1591 cc
->cpu
= __alloc_percpu(sizeof(*(cc
->cpu
)),
1592 __alignof__(struct crypt_cpu
));
1594 ti
->error
= "Cannot allocate per cpu state";
1599 * For compatibility with the original dm-crypt mapping format, if
1600 * only the cipher name is supplied, use cbc-plain.
1602 if (!chainmode
|| (!strcmp(chainmode
, "plain") && !ivmode
)) {
1607 if (strcmp(chainmode
, "ecb") && !ivmode
) {
1608 ti
->error
= "IV mechanism required";
1612 cipher_api
= kmalloc(CRYPTO_MAX_ALG_NAME
, GFP_KERNEL
);
1616 ret
= snprintf(cipher_api
, CRYPTO_MAX_ALG_NAME
,
1617 "%s(%s)", chainmode
, cipher
);
1623 /* Allocate cipher */
1624 ret
= crypt_alloc_tfms(cc
, cipher_api
);
1626 ti
->error
= "Error allocating crypto tfm";
1631 cc
->iv_size
= crypto_ablkcipher_ivsize(any_tfm(cc
));
1633 /* at least a 64 bit sector number should fit in our buffer */
1634 cc
->iv_size
= max(cc
->iv_size
,
1635 (unsigned int)(sizeof(u64
) / sizeof(u8
)));
1637 DMWARN("Selected cipher does not support IVs");
1641 /* Choose ivmode, see comments at iv code. */
1643 cc
->iv_gen_ops
= NULL
;
1644 else if (strcmp(ivmode
, "plain") == 0)
1645 cc
->iv_gen_ops
= &crypt_iv_plain_ops
;
1646 else if (strcmp(ivmode
, "plain64") == 0)
1647 cc
->iv_gen_ops
= &crypt_iv_plain64_ops
;
1648 else if (strcmp(ivmode
, "essiv") == 0)
1649 cc
->iv_gen_ops
= &crypt_iv_essiv_ops
;
1650 else if (strcmp(ivmode
, "benbi") == 0)
1651 cc
->iv_gen_ops
= &crypt_iv_benbi_ops
;
1652 else if (strcmp(ivmode
, "null") == 0)
1653 cc
->iv_gen_ops
= &crypt_iv_null_ops
;
1654 else if (strcmp(ivmode
, "lmk") == 0) {
1655 cc
->iv_gen_ops
= &crypt_iv_lmk_ops
;
1657 * Version 2 and 3 is recognised according
1658 * to length of provided multi-key string.
1659 * If present (version 3), last key is used as IV seed.
1660 * All keys (including IV seed) are always the same size.
1662 if (cc
->key_size
% cc
->key_parts
) {
1664 cc
->key_extra_size
= cc
->key_size
/ cc
->key_parts
;
1666 } else if (strcmp(ivmode
, "tcw") == 0) {
1667 cc
->iv_gen_ops
= &crypt_iv_tcw_ops
;
1668 cc
->key_parts
+= 2; /* IV + whitening */
1669 cc
->key_extra_size
= cc
->iv_size
+ TCW_WHITENING_SIZE
;
1672 ti
->error
= "Invalid IV mode";
1676 /* Initialize and set key */
1677 ret
= crypt_set_key(cc
, key
);
1679 ti
->error
= "Error decoding and setting key";
1684 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->ctr
) {
1685 ret
= cc
->iv_gen_ops
->ctr(cc
, ti
, ivopts
);
1687 ti
->error
= "Error creating IV";
1692 /* Initialize IV (set keys for ESSIV etc) */
1693 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->init
) {
1694 ret
= cc
->iv_gen_ops
->init(cc
);
1696 ti
->error
= "Error initialising IV";
1707 ti
->error
= "Cannot allocate cipher strings";
1712 * Construct an encryption mapping:
1713 * <cipher> <key> <iv_offset> <dev_path> <start>
1715 static int crypt_ctr(struct dm_target
*ti
, unsigned int argc
, char **argv
)
1717 struct crypt_config
*cc
;
1718 unsigned int key_size
, opt_params
;
1719 unsigned long long tmpll
;
1721 struct dm_arg_set as
;
1722 const char *opt_string
;
1725 static struct dm_arg _args
[] = {
1726 {0, 1, "Invalid number of feature args"},
1730 ti
->error
= "Not enough arguments";
1734 key_size
= strlen(argv
[1]) >> 1;
1736 cc
= kzalloc(sizeof(*cc
) + key_size
* sizeof(u8
), GFP_KERNEL
);
1738 ti
->error
= "Cannot allocate encryption context";
1741 cc
->key_size
= key_size
;
1744 ret
= crypt_ctr_cipher(ti
, argv
[0], argv
[1]);
1749 cc
->io_pool
= mempool_create_slab_pool(MIN_IOS
, _crypt_io_pool
);
1751 ti
->error
= "Cannot allocate crypt io mempool";
1755 cc
->dmreq_start
= sizeof(struct ablkcipher_request
);
1756 cc
->dmreq_start
+= crypto_ablkcipher_reqsize(any_tfm(cc
));
1757 cc
->dmreq_start
= ALIGN(cc
->dmreq_start
, crypto_tfm_ctx_alignment());
1758 cc
->dmreq_start
+= crypto_ablkcipher_alignmask(any_tfm(cc
)) &
1759 ~(crypto_tfm_ctx_alignment() - 1);
1761 cc
->req_pool
= mempool_create_kmalloc_pool(MIN_IOS
, cc
->dmreq_start
+
1762 sizeof(struct dm_crypt_request
) + cc
->iv_size
);
1763 if (!cc
->req_pool
) {
1764 ti
->error
= "Cannot allocate crypt request mempool";
1768 cc
->page_pool
= mempool_create_page_pool(MIN_POOL_PAGES
, 0);
1769 if (!cc
->page_pool
) {
1770 ti
->error
= "Cannot allocate page mempool";
1774 cc
->bs
= bioset_create(MIN_IOS
, 0);
1776 ti
->error
= "Cannot allocate crypt bioset";
1781 if (sscanf(argv
[2], "%llu%c", &tmpll
, &dummy
) != 1) {
1782 ti
->error
= "Invalid iv_offset sector";
1785 cc
->iv_offset
= tmpll
;
1787 if (dm_get_device(ti
, argv
[3], dm_table_get_mode(ti
->table
), &cc
->dev
)) {
1788 ti
->error
= "Device lookup failed";
1792 if (sscanf(argv
[4], "%llu%c", &tmpll
, &dummy
) != 1) {
1793 ti
->error
= "Invalid device sector";
1801 /* Optional parameters */
1806 ret
= dm_read_arg_group(_args
, &as
, &opt_params
, &ti
->error
);
1810 opt_string
= dm_shift_arg(&as
);
1812 if (opt_params
== 1 && opt_string
&&
1813 !strcasecmp(opt_string
, "allow_discards"))
1814 ti
->num_discard_bios
= 1;
1815 else if (opt_params
) {
1817 ti
->error
= "Invalid feature arguments";
1823 cc
->io_queue
= alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM
, 1);
1824 if (!cc
->io_queue
) {
1825 ti
->error
= "Couldn't create kcryptd io queue";
1829 cc
->crypt_queue
= alloc_workqueue("kcryptd",
1830 WQ_CPU_INTENSIVE
| WQ_MEM_RECLAIM
, 1);
1831 if (!cc
->crypt_queue
) {
1832 ti
->error
= "Couldn't create kcryptd queue";
1836 ti
->num_flush_bios
= 1;
1837 ti
->discard_zeroes_data_unsupported
= true;
1846 static int crypt_map(struct dm_target
*ti
, struct bio
*bio
)
1848 struct dm_crypt_io
*io
;
1849 struct crypt_config
*cc
= ti
->private;
1852 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1853 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1854 * - for REQ_DISCARD caller must use flush if IO ordering matters
1856 if (unlikely(bio
->bi_rw
& (REQ_FLUSH
| REQ_DISCARD
))) {
1857 bio
->bi_bdev
= cc
->dev
->bdev
;
1858 if (bio_sectors(bio
))
1859 bio
->bi_iter
.bi_sector
= cc
->start
+
1860 dm_target_offset(ti
, bio
->bi_iter
.bi_sector
);
1861 return DM_MAPIO_REMAPPED
;
1864 io
= crypt_io_alloc(cc
, bio
, dm_target_offset(ti
, bio
->bi_iter
.bi_sector
));
1866 if (bio_data_dir(io
->base_bio
) == READ
) {
1867 if (kcryptd_io_read(io
, GFP_NOWAIT
))
1868 kcryptd_queue_io(io
);
1870 kcryptd_queue_crypt(io
);
1872 return DM_MAPIO_SUBMITTED
;
1875 static void crypt_status(struct dm_target
*ti
, status_type_t type
,
1876 unsigned status_flags
, char *result
, unsigned maxlen
)
1878 struct crypt_config
*cc
= ti
->private;
1882 case STATUSTYPE_INFO
:
1886 case STATUSTYPE_TABLE
:
1887 DMEMIT("%s ", cc
->cipher_string
);
1889 if (cc
->key_size
> 0)
1890 for (i
= 0; i
< cc
->key_size
; i
++)
1891 DMEMIT("%02x", cc
->key
[i
]);
1895 DMEMIT(" %llu %s %llu", (unsigned long long)cc
->iv_offset
,
1896 cc
->dev
->name
, (unsigned long long)cc
->start
);
1898 if (ti
->num_discard_bios
)
1899 DMEMIT(" 1 allow_discards");
1905 static void crypt_postsuspend(struct dm_target
*ti
)
1907 struct crypt_config
*cc
= ti
->private;
1909 set_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
);
1912 static int crypt_preresume(struct dm_target
*ti
)
1914 struct crypt_config
*cc
= ti
->private;
1916 if (!test_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
)) {
1917 DMERR("aborting resume - crypt key is not set.");
1924 static void crypt_resume(struct dm_target
*ti
)
1926 struct crypt_config
*cc
= ti
->private;
1928 clear_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
);
1931 /* Message interface
1935 static int crypt_message(struct dm_target
*ti
, unsigned argc
, char **argv
)
1937 struct crypt_config
*cc
= ti
->private;
1943 if (!strcasecmp(argv
[0], "key")) {
1944 if (!test_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
)) {
1945 DMWARN("not suspended during key manipulation.");
1948 if (argc
== 3 && !strcasecmp(argv
[1], "set")) {
1949 ret
= crypt_set_key(cc
, argv
[2]);
1952 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->init
)
1953 ret
= cc
->iv_gen_ops
->init(cc
);
1956 if (argc
== 2 && !strcasecmp(argv
[1], "wipe")) {
1957 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->wipe
) {
1958 ret
= cc
->iv_gen_ops
->wipe(cc
);
1962 return crypt_wipe_key(cc
);
1967 DMWARN("unrecognised message received.");
1971 static int crypt_merge(struct dm_target
*ti
, struct bvec_merge_data
*bvm
,
1972 struct bio_vec
*biovec
, int max_size
)
1974 struct crypt_config
*cc
= ti
->private;
1975 struct request_queue
*q
= bdev_get_queue(cc
->dev
->bdev
);
1977 if (!q
->merge_bvec_fn
)
1980 bvm
->bi_bdev
= cc
->dev
->bdev
;
1981 bvm
->bi_sector
= cc
->start
+ dm_target_offset(ti
, bvm
->bi_sector
);
1983 return min(max_size
, q
->merge_bvec_fn(q
, bvm
, biovec
));
1986 static int crypt_iterate_devices(struct dm_target
*ti
,
1987 iterate_devices_callout_fn fn
, void *data
)
1989 struct crypt_config
*cc
= ti
->private;
1991 return fn(ti
, cc
->dev
, cc
->start
, ti
->len
, data
);
1994 static struct target_type crypt_target
= {
1996 .version
= {1, 13, 0},
1997 .module
= THIS_MODULE
,
2001 .status
= crypt_status
,
2002 .postsuspend
= crypt_postsuspend
,
2003 .preresume
= crypt_preresume
,
2004 .resume
= crypt_resume
,
2005 .message
= crypt_message
,
2006 .merge
= crypt_merge
,
2007 .iterate_devices
= crypt_iterate_devices
,
2010 static int __init
dm_crypt_init(void)
2014 _crypt_io_pool
= KMEM_CACHE(dm_crypt_io
, 0);
2015 if (!_crypt_io_pool
)
2018 r
= dm_register_target(&crypt_target
);
2020 DMERR("register failed %d", r
);
2021 kmem_cache_destroy(_crypt_io_pool
);
2027 static void __exit
dm_crypt_exit(void)
2029 dm_unregister_target(&crypt_target
);
2030 kmem_cache_destroy(_crypt_io_pool
);
2033 module_init(dm_crypt_init
);
2034 module_exit(dm_crypt_exit
);
2036 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
2037 MODULE_DESCRIPTION(DM_NAME
" target for transparent encryption / decryption");
2038 MODULE_LICENSE("GPL");