PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / md / dm-thin.c
blobfaaf944597ab7669b90f3ecb85152fbcd16cbe33
1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
4 * This file is released under the GPL.
5 */
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
19 #define DM_MSG_PREFIX "thin"
22 * Tunable constants
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30 "A percentage of time allocated for copy on write");
33 * The block size of the device holding pool data must be
34 * between 64KB and 1GB.
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
40 * Device id is restricted to 24 bits.
42 #define MAX_DEV_ID ((1 << 24) - 1)
45 * How do we handle breaking sharing of data blocks?
46 * =================================================
48 * We use a standard copy-on-write btree to store the mappings for the
49 * devices (note I'm talking about copy-on-write of the metadata here, not
50 * the data). When you take an internal snapshot you clone the root node
51 * of the origin btree. After this there is no concept of an origin or a
52 * snapshot. They are just two device trees that happen to point to the
53 * same data blocks.
55 * When we get a write in we decide if it's to a shared data block using
56 * some timestamp magic. If it is, we have to break sharing.
58 * Let's say we write to a shared block in what was the origin. The
59 * steps are:
61 * i) plug io further to this physical block. (see bio_prison code).
63 * ii) quiesce any read io to that shared data block. Obviously
64 * including all devices that share this block. (see dm_deferred_set code)
66 * iii) copy the data block to a newly allocate block. This step can be
67 * missed out if the io covers the block. (schedule_copy).
69 * iv) insert the new mapping into the origin's btree
70 * (process_prepared_mapping). This act of inserting breaks some
71 * sharing of btree nodes between the two devices. Breaking sharing only
72 * effects the btree of that specific device. Btrees for the other
73 * devices that share the block never change. The btree for the origin
74 * device as it was after the last commit is untouched, ie. we're using
75 * persistent data structures in the functional programming sense.
77 * v) unplug io to this physical block, including the io that triggered
78 * the breaking of sharing.
80 * Steps (ii) and (iii) occur in parallel.
82 * The metadata _doesn't_ need to be committed before the io continues. We
83 * get away with this because the io is always written to a _new_ block.
84 * If there's a crash, then:
86 * - The origin mapping will point to the old origin block (the shared
87 * one). This will contain the data as it was before the io that triggered
88 * the breaking of sharing came in.
90 * - The snap mapping still points to the old block. As it would after
91 * the commit.
93 * The downside of this scheme is the timestamp magic isn't perfect, and
94 * will continue to think that data block in the snapshot device is shared
95 * even after the write to the origin has broken sharing. I suspect data
96 * blocks will typically be shared by many different devices, so we're
97 * breaking sharing n + 1 times, rather than n, where n is the number of
98 * devices that reference this data block. At the moment I think the
99 * benefits far, far outweigh the disadvantages.
102 /*----------------------------------------------------------------*/
105 * Key building.
107 static void build_data_key(struct dm_thin_device *td,
108 dm_block_t b, struct dm_cell_key *key)
110 key->virtual = 0;
111 key->dev = dm_thin_dev_id(td);
112 key->block = b;
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116 struct dm_cell_key *key)
118 key->virtual = 1;
119 key->dev = dm_thin_dev_id(td);
120 key->block = b;
123 /*----------------------------------------------------------------*/
126 * A pool device ties together a metadata device and a data device. It
127 * also provides the interface for creating and destroying internal
128 * devices.
130 struct dm_thin_new_mapping;
133 * The pool runs in 3 modes. Ordered in degraded order for comparisons.
135 enum pool_mode {
136 PM_WRITE, /* metadata may be changed */
137 PM_READ_ONLY, /* metadata may not be changed */
138 PM_FAIL, /* all I/O fails */
141 struct pool_features {
142 enum pool_mode mode;
144 bool zero_new_blocks:1;
145 bool discard_enabled:1;
146 bool discard_passdown:1;
147 bool error_if_no_space:1;
150 struct thin_c;
151 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
152 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
154 struct pool {
155 struct list_head list;
156 struct dm_target *ti; /* Only set if a pool target is bound */
158 struct mapped_device *pool_md;
159 struct block_device *md_dev;
160 struct dm_pool_metadata *pmd;
162 dm_block_t low_water_blocks;
163 uint32_t sectors_per_block;
164 int sectors_per_block_shift;
166 struct pool_features pf;
167 bool low_water_triggered:1; /* A dm event has been sent */
169 struct dm_bio_prison *prison;
170 struct dm_kcopyd_client *copier;
172 struct workqueue_struct *wq;
173 struct work_struct worker;
174 struct delayed_work waker;
176 unsigned long last_commit_jiffies;
177 unsigned ref_count;
179 spinlock_t lock;
180 struct bio_list deferred_bios;
181 struct bio_list deferred_flush_bios;
182 struct list_head prepared_mappings;
183 struct list_head prepared_discards;
185 struct bio_list retry_on_resume_list;
187 struct dm_deferred_set *shared_read_ds;
188 struct dm_deferred_set *all_io_ds;
190 struct dm_thin_new_mapping *next_mapping;
191 mempool_t *mapping_pool;
193 process_bio_fn process_bio;
194 process_bio_fn process_discard;
196 process_mapping_fn process_prepared_mapping;
197 process_mapping_fn process_prepared_discard;
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void out_of_data_space(struct pool *pool);
202 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
205 * Target context for a pool.
207 struct pool_c {
208 struct dm_target *ti;
209 struct pool *pool;
210 struct dm_dev *data_dev;
211 struct dm_dev *metadata_dev;
212 struct dm_target_callbacks callbacks;
214 dm_block_t low_water_blocks;
215 struct pool_features requested_pf; /* Features requested during table load */
216 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
220 * Target context for a thin.
222 struct thin_c {
223 struct dm_dev *pool_dev;
224 struct dm_dev *origin_dev;
225 dm_thin_id dev_id;
227 struct pool *pool;
228 struct dm_thin_device *td;
231 /*----------------------------------------------------------------*/
234 * wake_worker() is used when new work is queued and when pool_resume is
235 * ready to continue deferred IO processing.
237 static void wake_worker(struct pool *pool)
239 queue_work(pool->wq, &pool->worker);
242 /*----------------------------------------------------------------*/
244 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
245 struct dm_bio_prison_cell **cell_result)
247 int r;
248 struct dm_bio_prison_cell *cell_prealloc;
251 * Allocate a cell from the prison's mempool.
252 * This might block but it can't fail.
254 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
256 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
257 if (r)
259 * We reused an old cell; we can get rid of
260 * the new one.
262 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
264 return r;
267 static void cell_release(struct pool *pool,
268 struct dm_bio_prison_cell *cell,
269 struct bio_list *bios)
271 dm_cell_release(pool->prison, cell, bios);
272 dm_bio_prison_free_cell(pool->prison, cell);
275 static void cell_release_no_holder(struct pool *pool,
276 struct dm_bio_prison_cell *cell,
277 struct bio_list *bios)
279 dm_cell_release_no_holder(pool->prison, cell, bios);
280 dm_bio_prison_free_cell(pool->prison, cell);
283 static void cell_defer_no_holder_no_free(struct thin_c *tc,
284 struct dm_bio_prison_cell *cell)
286 struct pool *pool = tc->pool;
287 unsigned long flags;
289 spin_lock_irqsave(&pool->lock, flags);
290 dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
291 spin_unlock_irqrestore(&pool->lock, flags);
293 wake_worker(pool);
296 static void cell_error(struct pool *pool,
297 struct dm_bio_prison_cell *cell)
299 dm_cell_error(pool->prison, cell);
300 dm_bio_prison_free_cell(pool->prison, cell);
303 /*----------------------------------------------------------------*/
306 * A global list of pools that uses a struct mapped_device as a key.
308 static struct dm_thin_pool_table {
309 struct mutex mutex;
310 struct list_head pools;
311 } dm_thin_pool_table;
313 static void pool_table_init(void)
315 mutex_init(&dm_thin_pool_table.mutex);
316 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
319 static void __pool_table_insert(struct pool *pool)
321 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
322 list_add(&pool->list, &dm_thin_pool_table.pools);
325 static void __pool_table_remove(struct pool *pool)
327 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
328 list_del(&pool->list);
331 static struct pool *__pool_table_lookup(struct mapped_device *md)
333 struct pool *pool = NULL, *tmp;
335 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
337 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
338 if (tmp->pool_md == md) {
339 pool = tmp;
340 break;
344 return pool;
347 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
349 struct pool *pool = NULL, *tmp;
351 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
353 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
354 if (tmp->md_dev == md_dev) {
355 pool = tmp;
356 break;
360 return pool;
363 /*----------------------------------------------------------------*/
365 struct dm_thin_endio_hook {
366 struct thin_c *tc;
367 struct dm_deferred_entry *shared_read_entry;
368 struct dm_deferred_entry *all_io_entry;
369 struct dm_thin_new_mapping *overwrite_mapping;
372 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
374 struct bio *bio;
375 struct bio_list bios;
377 bio_list_init(&bios);
378 bio_list_merge(&bios, master);
379 bio_list_init(master);
381 while ((bio = bio_list_pop(&bios))) {
382 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
384 if (h->tc == tc)
385 bio_endio(bio, DM_ENDIO_REQUEUE);
386 else
387 bio_list_add(master, bio);
391 static void requeue_io(struct thin_c *tc)
393 struct pool *pool = tc->pool;
394 unsigned long flags;
396 spin_lock_irqsave(&pool->lock, flags);
397 __requeue_bio_list(tc, &pool->deferred_bios);
398 __requeue_bio_list(tc, &pool->retry_on_resume_list);
399 spin_unlock_irqrestore(&pool->lock, flags);
403 * This section of code contains the logic for processing a thin device's IO.
404 * Much of the code depends on pool object resources (lists, workqueues, etc)
405 * but most is exclusively called from the thin target rather than the thin-pool
406 * target.
409 static bool block_size_is_power_of_two(struct pool *pool)
411 return pool->sectors_per_block_shift >= 0;
414 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
416 struct pool *pool = tc->pool;
417 sector_t block_nr = bio->bi_iter.bi_sector;
419 if (block_size_is_power_of_two(pool))
420 block_nr >>= pool->sectors_per_block_shift;
421 else
422 (void) sector_div(block_nr, pool->sectors_per_block);
424 return block_nr;
427 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
429 struct pool *pool = tc->pool;
430 sector_t bi_sector = bio->bi_iter.bi_sector;
432 bio->bi_bdev = tc->pool_dev->bdev;
433 if (block_size_is_power_of_two(pool))
434 bio->bi_iter.bi_sector =
435 (block << pool->sectors_per_block_shift) |
436 (bi_sector & (pool->sectors_per_block - 1));
437 else
438 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
439 sector_div(bi_sector, pool->sectors_per_block);
442 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
444 bio->bi_bdev = tc->origin_dev->bdev;
447 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
449 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
450 dm_thin_changed_this_transaction(tc->td);
453 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
455 struct dm_thin_endio_hook *h;
457 if (bio->bi_rw & REQ_DISCARD)
458 return;
460 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
461 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
464 static void issue(struct thin_c *tc, struct bio *bio)
466 struct pool *pool = tc->pool;
467 unsigned long flags;
469 if (!bio_triggers_commit(tc, bio)) {
470 generic_make_request(bio);
471 return;
475 * Complete bio with an error if earlier I/O caused changes to
476 * the metadata that can't be committed e.g, due to I/O errors
477 * on the metadata device.
479 if (dm_thin_aborted_changes(tc->td)) {
480 bio_io_error(bio);
481 return;
485 * Batch together any bios that trigger commits and then issue a
486 * single commit for them in process_deferred_bios().
488 spin_lock_irqsave(&pool->lock, flags);
489 bio_list_add(&pool->deferred_flush_bios, bio);
490 spin_unlock_irqrestore(&pool->lock, flags);
493 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
495 remap_to_origin(tc, bio);
496 issue(tc, bio);
499 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
500 dm_block_t block)
502 remap(tc, bio, block);
503 issue(tc, bio);
506 /*----------------------------------------------------------------*/
509 * Bio endio functions.
511 struct dm_thin_new_mapping {
512 struct list_head list;
514 bool quiesced:1;
515 bool prepared:1;
516 bool pass_discard:1;
517 bool definitely_not_shared:1;
519 int err;
520 struct thin_c *tc;
521 dm_block_t virt_block;
522 dm_block_t data_block;
523 struct dm_bio_prison_cell *cell, *cell2;
526 * If the bio covers the whole area of a block then we can avoid
527 * zeroing or copying. Instead this bio is hooked. The bio will
528 * still be in the cell, so care has to be taken to avoid issuing
529 * the bio twice.
531 struct bio *bio;
532 bio_end_io_t *saved_bi_end_io;
535 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
537 struct pool *pool = m->tc->pool;
539 if (m->quiesced && m->prepared) {
540 list_add_tail(&m->list, &pool->prepared_mappings);
541 wake_worker(pool);
545 static void copy_complete(int read_err, unsigned long write_err, void *context)
547 unsigned long flags;
548 struct dm_thin_new_mapping *m = context;
549 struct pool *pool = m->tc->pool;
551 m->err = read_err || write_err ? -EIO : 0;
553 spin_lock_irqsave(&pool->lock, flags);
554 m->prepared = true;
555 __maybe_add_mapping(m);
556 spin_unlock_irqrestore(&pool->lock, flags);
559 static void overwrite_endio(struct bio *bio, int err)
561 unsigned long flags;
562 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
563 struct dm_thin_new_mapping *m = h->overwrite_mapping;
564 struct pool *pool = m->tc->pool;
566 m->err = err;
568 spin_lock_irqsave(&pool->lock, flags);
569 m->prepared = true;
570 __maybe_add_mapping(m);
571 spin_unlock_irqrestore(&pool->lock, flags);
574 /*----------------------------------------------------------------*/
577 * Workqueue.
581 * Prepared mapping jobs.
585 * This sends the bios in the cell back to the deferred_bios list.
587 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
589 struct pool *pool = tc->pool;
590 unsigned long flags;
592 spin_lock_irqsave(&pool->lock, flags);
593 cell_release(pool, cell, &pool->deferred_bios);
594 spin_unlock_irqrestore(&tc->pool->lock, flags);
596 wake_worker(pool);
600 * Same as cell_defer above, except it omits the original holder of the cell.
602 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
604 struct pool *pool = tc->pool;
605 unsigned long flags;
607 spin_lock_irqsave(&pool->lock, flags);
608 cell_release_no_holder(pool, cell, &pool->deferred_bios);
609 spin_unlock_irqrestore(&pool->lock, flags);
611 wake_worker(pool);
614 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
616 if (m->bio) {
617 m->bio->bi_end_io = m->saved_bi_end_io;
618 atomic_inc(&m->bio->bi_remaining);
620 cell_error(m->tc->pool, m->cell);
621 list_del(&m->list);
622 mempool_free(m, m->tc->pool->mapping_pool);
625 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
627 struct thin_c *tc = m->tc;
628 struct pool *pool = tc->pool;
629 struct bio *bio;
630 int r;
632 bio = m->bio;
633 if (bio) {
634 bio->bi_end_io = m->saved_bi_end_io;
635 atomic_inc(&bio->bi_remaining);
638 if (m->err) {
639 cell_error(pool, m->cell);
640 goto out;
644 * Commit the prepared block into the mapping btree.
645 * Any I/O for this block arriving after this point will get
646 * remapped to it directly.
648 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
649 if (r) {
650 metadata_operation_failed(pool, "dm_thin_insert_block", r);
651 cell_error(pool, m->cell);
652 goto out;
656 * Release any bios held while the block was being provisioned.
657 * If we are processing a write bio that completely covers the block,
658 * we already processed it so can ignore it now when processing
659 * the bios in the cell.
661 if (bio) {
662 cell_defer_no_holder(tc, m->cell);
663 bio_endio(bio, 0);
664 } else
665 cell_defer(tc, m->cell);
667 out:
668 list_del(&m->list);
669 mempool_free(m, pool->mapping_pool);
672 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
674 struct thin_c *tc = m->tc;
676 bio_io_error(m->bio);
677 cell_defer_no_holder(tc, m->cell);
678 cell_defer_no_holder(tc, m->cell2);
679 mempool_free(m, tc->pool->mapping_pool);
682 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
684 struct thin_c *tc = m->tc;
686 inc_all_io_entry(tc->pool, m->bio);
687 cell_defer_no_holder(tc, m->cell);
688 cell_defer_no_holder(tc, m->cell2);
690 if (m->pass_discard)
691 if (m->definitely_not_shared)
692 remap_and_issue(tc, m->bio, m->data_block);
693 else {
694 bool used = false;
695 if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
696 bio_endio(m->bio, 0);
697 else
698 remap_and_issue(tc, m->bio, m->data_block);
700 else
701 bio_endio(m->bio, 0);
703 mempool_free(m, tc->pool->mapping_pool);
706 static void process_prepared_discard(struct dm_thin_new_mapping *m)
708 int r;
709 struct thin_c *tc = m->tc;
711 r = dm_thin_remove_block(tc->td, m->virt_block);
712 if (r)
713 DMERR_LIMIT("dm_thin_remove_block() failed");
715 process_prepared_discard_passdown(m);
718 static void process_prepared(struct pool *pool, struct list_head *head,
719 process_mapping_fn *fn)
721 unsigned long flags;
722 struct list_head maps;
723 struct dm_thin_new_mapping *m, *tmp;
725 INIT_LIST_HEAD(&maps);
726 spin_lock_irqsave(&pool->lock, flags);
727 list_splice_init(head, &maps);
728 spin_unlock_irqrestore(&pool->lock, flags);
730 list_for_each_entry_safe(m, tmp, &maps, list)
731 (*fn)(m);
735 * Deferred bio jobs.
737 static int io_overlaps_block(struct pool *pool, struct bio *bio)
739 return bio->bi_iter.bi_size ==
740 (pool->sectors_per_block << SECTOR_SHIFT);
743 static int io_overwrites_block(struct pool *pool, struct bio *bio)
745 return (bio_data_dir(bio) == WRITE) &&
746 io_overlaps_block(pool, bio);
749 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
750 bio_end_io_t *fn)
752 *save = bio->bi_end_io;
753 bio->bi_end_io = fn;
756 static int ensure_next_mapping(struct pool *pool)
758 if (pool->next_mapping)
759 return 0;
761 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
763 return pool->next_mapping ? 0 : -ENOMEM;
766 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
768 struct dm_thin_new_mapping *m = pool->next_mapping;
770 BUG_ON(!pool->next_mapping);
772 memset(m, 0, sizeof(struct dm_thin_new_mapping));
773 INIT_LIST_HEAD(&m->list);
774 m->bio = NULL;
776 pool->next_mapping = NULL;
778 return m;
781 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
782 struct dm_dev *origin, dm_block_t data_origin,
783 dm_block_t data_dest,
784 struct dm_bio_prison_cell *cell, struct bio *bio)
786 int r;
787 struct pool *pool = tc->pool;
788 struct dm_thin_new_mapping *m = get_next_mapping(pool);
790 m->tc = tc;
791 m->virt_block = virt_block;
792 m->data_block = data_dest;
793 m->cell = cell;
795 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
796 m->quiesced = true;
799 * IO to pool_dev remaps to the pool target's data_dev.
801 * If the whole block of data is being overwritten, we can issue the
802 * bio immediately. Otherwise we use kcopyd to clone the data first.
804 if (io_overwrites_block(pool, bio)) {
805 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
807 h->overwrite_mapping = m;
808 m->bio = bio;
809 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
810 inc_all_io_entry(pool, bio);
811 remap_and_issue(tc, bio, data_dest);
812 } else {
813 struct dm_io_region from, to;
815 from.bdev = origin->bdev;
816 from.sector = data_origin * pool->sectors_per_block;
817 from.count = pool->sectors_per_block;
819 to.bdev = tc->pool_dev->bdev;
820 to.sector = data_dest * pool->sectors_per_block;
821 to.count = pool->sectors_per_block;
823 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
824 0, copy_complete, m);
825 if (r < 0) {
826 mempool_free(m, pool->mapping_pool);
827 DMERR_LIMIT("dm_kcopyd_copy() failed");
828 cell_error(pool, cell);
833 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
834 dm_block_t data_origin, dm_block_t data_dest,
835 struct dm_bio_prison_cell *cell, struct bio *bio)
837 schedule_copy(tc, virt_block, tc->pool_dev,
838 data_origin, data_dest, cell, bio);
841 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
842 dm_block_t data_dest,
843 struct dm_bio_prison_cell *cell, struct bio *bio)
845 schedule_copy(tc, virt_block, tc->origin_dev,
846 virt_block, data_dest, cell, bio);
849 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
850 dm_block_t data_block, struct dm_bio_prison_cell *cell,
851 struct bio *bio)
853 struct pool *pool = tc->pool;
854 struct dm_thin_new_mapping *m = get_next_mapping(pool);
856 m->quiesced = true;
857 m->prepared = false;
858 m->tc = tc;
859 m->virt_block = virt_block;
860 m->data_block = data_block;
861 m->cell = cell;
864 * If the whole block of data is being overwritten or we are not
865 * zeroing pre-existing data, we can issue the bio immediately.
866 * Otherwise we use kcopyd to zero the data first.
868 if (!pool->pf.zero_new_blocks)
869 process_prepared_mapping(m);
871 else if (io_overwrites_block(pool, bio)) {
872 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
874 h->overwrite_mapping = m;
875 m->bio = bio;
876 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
877 inc_all_io_entry(pool, bio);
878 remap_and_issue(tc, bio, data_block);
879 } else {
880 int r;
881 struct dm_io_region to;
883 to.bdev = tc->pool_dev->bdev;
884 to.sector = data_block * pool->sectors_per_block;
885 to.count = pool->sectors_per_block;
887 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
888 if (r < 0) {
889 mempool_free(m, pool->mapping_pool);
890 DMERR_LIMIT("dm_kcopyd_zero() failed");
891 cell_error(pool, cell);
897 * A non-zero return indicates read_only or fail_io mode.
898 * Many callers don't care about the return value.
900 static int commit(struct pool *pool)
902 int r;
904 if (get_pool_mode(pool) != PM_WRITE)
905 return -EINVAL;
907 r = dm_pool_commit_metadata(pool->pmd);
908 if (r)
909 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
911 return r;
914 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
916 unsigned long flags;
918 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
919 DMWARN("%s: reached low water mark for data device: sending event.",
920 dm_device_name(pool->pool_md));
921 spin_lock_irqsave(&pool->lock, flags);
922 pool->low_water_triggered = true;
923 spin_unlock_irqrestore(&pool->lock, flags);
924 dm_table_event(pool->ti->table);
928 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
930 int r;
931 dm_block_t free_blocks;
932 struct pool *pool = tc->pool;
934 if (get_pool_mode(pool) != PM_WRITE)
935 return -EINVAL;
937 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
938 if (r) {
939 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
940 return r;
943 check_low_water_mark(pool, free_blocks);
945 if (!free_blocks) {
947 * Try to commit to see if that will free up some
948 * more space.
950 r = commit(pool);
951 if (r)
952 return r;
954 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
955 if (r) {
956 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
957 return r;
960 if (!free_blocks) {
961 out_of_data_space(pool);
962 return -ENOSPC;
966 r = dm_pool_alloc_data_block(pool->pmd, result);
967 if (r) {
968 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
969 return r;
972 return 0;
976 * If we have run out of space, queue bios until the device is
977 * resumed, presumably after having been reloaded with more space.
979 static void retry_on_resume(struct bio *bio)
981 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
982 struct thin_c *tc = h->tc;
983 struct pool *pool = tc->pool;
984 unsigned long flags;
986 spin_lock_irqsave(&pool->lock, flags);
987 bio_list_add(&pool->retry_on_resume_list, bio);
988 spin_unlock_irqrestore(&pool->lock, flags);
991 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
994 * When pool is read-only, no cell locking is needed because
995 * nothing is changing.
997 WARN_ON_ONCE(get_pool_mode(pool) != PM_READ_ONLY);
999 if (pool->pf.error_if_no_space)
1000 bio_io_error(bio);
1001 else
1002 retry_on_resume(bio);
1005 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1007 struct bio *bio;
1008 struct bio_list bios;
1010 bio_list_init(&bios);
1011 cell_release(pool, cell, &bios);
1013 while ((bio = bio_list_pop(&bios)))
1014 handle_unserviceable_bio(pool, bio);
1017 static void process_discard(struct thin_c *tc, struct bio *bio)
1019 int r;
1020 unsigned long flags;
1021 struct pool *pool = tc->pool;
1022 struct dm_bio_prison_cell *cell, *cell2;
1023 struct dm_cell_key key, key2;
1024 dm_block_t block = get_bio_block(tc, bio);
1025 struct dm_thin_lookup_result lookup_result;
1026 struct dm_thin_new_mapping *m;
1028 build_virtual_key(tc->td, block, &key);
1029 if (bio_detain(tc->pool, &key, bio, &cell))
1030 return;
1032 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1033 switch (r) {
1034 case 0:
1036 * Check nobody is fiddling with this pool block. This can
1037 * happen if someone's in the process of breaking sharing
1038 * on this block.
1040 build_data_key(tc->td, lookup_result.block, &key2);
1041 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1042 cell_defer_no_holder(tc, cell);
1043 break;
1046 if (io_overlaps_block(pool, bio)) {
1048 * IO may still be going to the destination block. We must
1049 * quiesce before we can do the removal.
1051 m = get_next_mapping(pool);
1052 m->tc = tc;
1053 m->pass_discard = pool->pf.discard_passdown;
1054 m->definitely_not_shared = !lookup_result.shared;
1055 m->virt_block = block;
1056 m->data_block = lookup_result.block;
1057 m->cell = cell;
1058 m->cell2 = cell2;
1059 m->bio = bio;
1061 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1062 spin_lock_irqsave(&pool->lock, flags);
1063 list_add_tail(&m->list, &pool->prepared_discards);
1064 spin_unlock_irqrestore(&pool->lock, flags);
1065 wake_worker(pool);
1067 } else {
1068 inc_all_io_entry(pool, bio);
1069 cell_defer_no_holder(tc, cell);
1070 cell_defer_no_holder(tc, cell2);
1073 * The DM core makes sure that the discard doesn't span
1074 * a block boundary. So we submit the discard of a
1075 * partial block appropriately.
1077 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1078 remap_and_issue(tc, bio, lookup_result.block);
1079 else
1080 bio_endio(bio, 0);
1082 break;
1084 case -ENODATA:
1086 * It isn't provisioned, just forget it.
1088 cell_defer_no_holder(tc, cell);
1089 bio_endio(bio, 0);
1090 break;
1092 default:
1093 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1094 __func__, r);
1095 cell_defer_no_holder(tc, cell);
1096 bio_io_error(bio);
1097 break;
1101 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1102 struct dm_cell_key *key,
1103 struct dm_thin_lookup_result *lookup_result,
1104 struct dm_bio_prison_cell *cell)
1106 int r;
1107 dm_block_t data_block;
1108 struct pool *pool = tc->pool;
1110 r = alloc_data_block(tc, &data_block);
1111 switch (r) {
1112 case 0:
1113 schedule_internal_copy(tc, block, lookup_result->block,
1114 data_block, cell, bio);
1115 break;
1117 case -ENOSPC:
1118 retry_bios_on_resume(pool, cell);
1119 break;
1121 default:
1122 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1123 __func__, r);
1124 cell_error(pool, cell);
1125 break;
1129 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1130 dm_block_t block,
1131 struct dm_thin_lookup_result *lookup_result)
1133 struct dm_bio_prison_cell *cell;
1134 struct pool *pool = tc->pool;
1135 struct dm_cell_key key;
1138 * If cell is already occupied, then sharing is already in the process
1139 * of being broken so we have nothing further to do here.
1141 build_data_key(tc->td, lookup_result->block, &key);
1142 if (bio_detain(pool, &key, bio, &cell))
1143 return;
1145 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1146 break_sharing(tc, bio, block, &key, lookup_result, cell);
1147 else {
1148 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1150 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1151 inc_all_io_entry(pool, bio);
1152 cell_defer_no_holder(tc, cell);
1154 remap_and_issue(tc, bio, lookup_result->block);
1158 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1159 struct dm_bio_prison_cell *cell)
1161 int r;
1162 dm_block_t data_block;
1163 struct pool *pool = tc->pool;
1166 * Remap empty bios (flushes) immediately, without provisioning.
1168 if (!bio->bi_iter.bi_size) {
1169 inc_all_io_entry(pool, bio);
1170 cell_defer_no_holder(tc, cell);
1172 remap_and_issue(tc, bio, 0);
1173 return;
1177 * Fill read bios with zeroes and complete them immediately.
1179 if (bio_data_dir(bio) == READ) {
1180 zero_fill_bio(bio);
1181 cell_defer_no_holder(tc, cell);
1182 bio_endio(bio, 0);
1183 return;
1186 r = alloc_data_block(tc, &data_block);
1187 switch (r) {
1188 case 0:
1189 if (tc->origin_dev)
1190 schedule_external_copy(tc, block, data_block, cell, bio);
1191 else
1192 schedule_zero(tc, block, data_block, cell, bio);
1193 break;
1195 case -ENOSPC:
1196 retry_bios_on_resume(pool, cell);
1197 break;
1199 default:
1200 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1201 __func__, r);
1202 cell_error(pool, cell);
1203 break;
1207 static void process_bio(struct thin_c *tc, struct bio *bio)
1209 int r;
1210 struct pool *pool = tc->pool;
1211 dm_block_t block = get_bio_block(tc, bio);
1212 struct dm_bio_prison_cell *cell;
1213 struct dm_cell_key key;
1214 struct dm_thin_lookup_result lookup_result;
1217 * If cell is already occupied, then the block is already
1218 * being provisioned so we have nothing further to do here.
1220 build_virtual_key(tc->td, block, &key);
1221 if (bio_detain(pool, &key, bio, &cell))
1222 return;
1224 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1225 switch (r) {
1226 case 0:
1227 if (lookup_result.shared) {
1228 process_shared_bio(tc, bio, block, &lookup_result);
1229 cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1230 } else {
1231 inc_all_io_entry(pool, bio);
1232 cell_defer_no_holder(tc, cell);
1234 remap_and_issue(tc, bio, lookup_result.block);
1236 break;
1238 case -ENODATA:
1239 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1240 inc_all_io_entry(pool, bio);
1241 cell_defer_no_holder(tc, cell);
1243 remap_to_origin_and_issue(tc, bio);
1244 } else
1245 provision_block(tc, bio, block, cell);
1246 break;
1248 default:
1249 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1250 __func__, r);
1251 cell_defer_no_holder(tc, cell);
1252 bio_io_error(bio);
1253 break;
1257 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1259 int r;
1260 int rw = bio_data_dir(bio);
1261 dm_block_t block = get_bio_block(tc, bio);
1262 struct dm_thin_lookup_result lookup_result;
1264 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1265 switch (r) {
1266 case 0:
1267 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
1268 handle_unserviceable_bio(tc->pool, bio);
1269 else {
1270 inc_all_io_entry(tc->pool, bio);
1271 remap_and_issue(tc, bio, lookup_result.block);
1273 break;
1275 case -ENODATA:
1276 if (rw != READ) {
1277 handle_unserviceable_bio(tc->pool, bio);
1278 break;
1281 if (tc->origin_dev) {
1282 inc_all_io_entry(tc->pool, bio);
1283 remap_to_origin_and_issue(tc, bio);
1284 break;
1287 zero_fill_bio(bio);
1288 bio_endio(bio, 0);
1289 break;
1291 default:
1292 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1293 __func__, r);
1294 bio_io_error(bio);
1295 break;
1299 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1301 bio_io_error(bio);
1305 * FIXME: should we also commit due to size of transaction, measured in
1306 * metadata blocks?
1308 static int need_commit_due_to_time(struct pool *pool)
1310 return jiffies < pool->last_commit_jiffies ||
1311 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1314 static void process_deferred_bios(struct pool *pool)
1316 unsigned long flags;
1317 struct bio *bio;
1318 struct bio_list bios;
1320 bio_list_init(&bios);
1322 spin_lock_irqsave(&pool->lock, flags);
1323 bio_list_merge(&bios, &pool->deferred_bios);
1324 bio_list_init(&pool->deferred_bios);
1325 spin_unlock_irqrestore(&pool->lock, flags);
1327 while ((bio = bio_list_pop(&bios))) {
1328 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1329 struct thin_c *tc = h->tc;
1332 * If we've got no free new_mapping structs, and processing
1333 * this bio might require one, we pause until there are some
1334 * prepared mappings to process.
1336 if (ensure_next_mapping(pool)) {
1337 spin_lock_irqsave(&pool->lock, flags);
1338 bio_list_merge(&pool->deferred_bios, &bios);
1339 spin_unlock_irqrestore(&pool->lock, flags);
1341 break;
1344 if (bio->bi_rw & REQ_DISCARD)
1345 pool->process_discard(tc, bio);
1346 else
1347 pool->process_bio(tc, bio);
1351 * If there are any deferred flush bios, we must commit
1352 * the metadata before issuing them.
1354 bio_list_init(&bios);
1355 spin_lock_irqsave(&pool->lock, flags);
1356 bio_list_merge(&bios, &pool->deferred_flush_bios);
1357 bio_list_init(&pool->deferred_flush_bios);
1358 spin_unlock_irqrestore(&pool->lock, flags);
1360 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1361 return;
1363 if (commit(pool)) {
1364 while ((bio = bio_list_pop(&bios)))
1365 bio_io_error(bio);
1366 return;
1368 pool->last_commit_jiffies = jiffies;
1370 while ((bio = bio_list_pop(&bios)))
1371 generic_make_request(bio);
1374 static void do_worker(struct work_struct *ws)
1376 struct pool *pool = container_of(ws, struct pool, worker);
1378 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1379 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1380 process_deferred_bios(pool);
1384 * We want to commit periodically so that not too much
1385 * unwritten data builds up.
1387 static void do_waker(struct work_struct *ws)
1389 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1390 wake_worker(pool);
1391 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1394 /*----------------------------------------------------------------*/
1396 static enum pool_mode get_pool_mode(struct pool *pool)
1398 return pool->pf.mode;
1401 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
1403 int r;
1404 enum pool_mode old_mode = pool->pf.mode;
1406 switch (new_mode) {
1407 case PM_FAIL:
1408 if (old_mode != new_mode)
1409 DMERR("%s: switching pool to failure mode",
1410 dm_device_name(pool->pool_md));
1411 dm_pool_metadata_read_only(pool->pmd);
1412 pool->process_bio = process_bio_fail;
1413 pool->process_discard = process_bio_fail;
1414 pool->process_prepared_mapping = process_prepared_mapping_fail;
1415 pool->process_prepared_discard = process_prepared_discard_fail;
1416 break;
1418 case PM_READ_ONLY:
1419 if (old_mode != new_mode)
1420 DMERR("%s: switching pool to read-only mode",
1421 dm_device_name(pool->pool_md));
1422 r = dm_pool_abort_metadata(pool->pmd);
1423 if (r) {
1424 DMERR("%s: aborting transaction failed",
1425 dm_device_name(pool->pool_md));
1426 new_mode = PM_FAIL;
1427 set_pool_mode(pool, new_mode);
1428 } else {
1429 dm_pool_metadata_read_only(pool->pmd);
1430 pool->process_bio = process_bio_read_only;
1431 pool->process_discard = process_discard;
1432 pool->process_prepared_mapping = process_prepared_mapping_fail;
1433 pool->process_prepared_discard = process_prepared_discard_passdown;
1435 break;
1437 case PM_WRITE:
1438 if (old_mode != new_mode)
1439 DMINFO("%s: switching pool to write mode",
1440 dm_device_name(pool->pool_md));
1441 dm_pool_metadata_read_write(pool->pmd);
1442 pool->process_bio = process_bio;
1443 pool->process_discard = process_discard;
1444 pool->process_prepared_mapping = process_prepared_mapping;
1445 pool->process_prepared_discard = process_prepared_discard;
1446 break;
1449 pool->pf.mode = new_mode;
1453 * Rather than calling set_pool_mode directly, use these which describe the
1454 * reason for mode degradation.
1456 static void out_of_data_space(struct pool *pool)
1458 DMERR_LIMIT("%s: no free data space available.",
1459 dm_device_name(pool->pool_md));
1460 set_pool_mode(pool, PM_READ_ONLY);
1463 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1465 dm_block_t free_blocks;
1467 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1468 dm_device_name(pool->pool_md), op, r);
1470 if (r == -ENOSPC &&
1471 !dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks) &&
1472 !free_blocks)
1473 DMERR_LIMIT("%s: no free metadata space available.",
1474 dm_device_name(pool->pool_md));
1476 set_pool_mode(pool, PM_READ_ONLY);
1479 /*----------------------------------------------------------------*/
1482 * Mapping functions.
1486 * Called only while mapping a thin bio to hand it over to the workqueue.
1488 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1490 unsigned long flags;
1491 struct pool *pool = tc->pool;
1493 spin_lock_irqsave(&pool->lock, flags);
1494 bio_list_add(&pool->deferred_bios, bio);
1495 spin_unlock_irqrestore(&pool->lock, flags);
1497 wake_worker(pool);
1500 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1502 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1504 h->tc = tc;
1505 h->shared_read_entry = NULL;
1506 h->all_io_entry = NULL;
1507 h->overwrite_mapping = NULL;
1511 * Non-blocking function called from the thin target's map function.
1513 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1515 int r;
1516 struct thin_c *tc = ti->private;
1517 dm_block_t block = get_bio_block(tc, bio);
1518 struct dm_thin_device *td = tc->td;
1519 struct dm_thin_lookup_result result;
1520 struct dm_bio_prison_cell cell1, cell2;
1521 struct dm_bio_prison_cell *cell_result;
1522 struct dm_cell_key key;
1524 thin_hook_bio(tc, bio);
1526 if (get_pool_mode(tc->pool) == PM_FAIL) {
1527 bio_io_error(bio);
1528 return DM_MAPIO_SUBMITTED;
1531 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1532 thin_defer_bio(tc, bio);
1533 return DM_MAPIO_SUBMITTED;
1536 r = dm_thin_find_block(td, block, 0, &result);
1539 * Note that we defer readahead too.
1541 switch (r) {
1542 case 0:
1543 if (unlikely(result.shared)) {
1545 * We have a race condition here between the
1546 * result.shared value returned by the lookup and
1547 * snapshot creation, which may cause new
1548 * sharing.
1550 * To avoid this always quiesce the origin before
1551 * taking the snap. You want to do this anyway to
1552 * ensure a consistent application view
1553 * (i.e. lockfs).
1555 * More distant ancestors are irrelevant. The
1556 * shared flag will be set in their case.
1558 thin_defer_bio(tc, bio);
1559 return DM_MAPIO_SUBMITTED;
1562 build_virtual_key(tc->td, block, &key);
1563 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1564 return DM_MAPIO_SUBMITTED;
1566 build_data_key(tc->td, result.block, &key);
1567 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1568 cell_defer_no_holder_no_free(tc, &cell1);
1569 return DM_MAPIO_SUBMITTED;
1572 inc_all_io_entry(tc->pool, bio);
1573 cell_defer_no_holder_no_free(tc, &cell2);
1574 cell_defer_no_holder_no_free(tc, &cell1);
1576 remap(tc, bio, result.block);
1577 return DM_MAPIO_REMAPPED;
1579 case -ENODATA:
1580 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1582 * This block isn't provisioned, and we have no way
1583 * of doing so.
1585 handle_unserviceable_bio(tc->pool, bio);
1586 return DM_MAPIO_SUBMITTED;
1588 /* fall through */
1590 case -EWOULDBLOCK:
1592 * In future, the failed dm_thin_find_block above could
1593 * provide the hint to load the metadata into cache.
1595 thin_defer_bio(tc, bio);
1596 return DM_MAPIO_SUBMITTED;
1598 default:
1600 * Must always call bio_io_error on failure.
1601 * dm_thin_find_block can fail with -EINVAL if the
1602 * pool is switched to fail-io mode.
1604 bio_io_error(bio);
1605 return DM_MAPIO_SUBMITTED;
1609 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1611 int r;
1612 unsigned long flags;
1613 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1615 spin_lock_irqsave(&pt->pool->lock, flags);
1616 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1617 spin_unlock_irqrestore(&pt->pool->lock, flags);
1619 if (!r) {
1620 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1621 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1624 return r;
1627 static void __requeue_bios(struct pool *pool)
1629 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1630 bio_list_init(&pool->retry_on_resume_list);
1633 /*----------------------------------------------------------------
1634 * Binding of control targets to a pool object
1635 *--------------------------------------------------------------*/
1636 static bool data_dev_supports_discard(struct pool_c *pt)
1638 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1640 return q && blk_queue_discard(q);
1643 static bool is_factor(sector_t block_size, uint32_t n)
1645 return !sector_div(block_size, n);
1649 * If discard_passdown was enabled verify that the data device
1650 * supports discards. Disable discard_passdown if not.
1652 static void disable_passdown_if_not_supported(struct pool_c *pt)
1654 struct pool *pool = pt->pool;
1655 struct block_device *data_bdev = pt->data_dev->bdev;
1656 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1657 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1658 const char *reason = NULL;
1659 char buf[BDEVNAME_SIZE];
1661 if (!pt->adjusted_pf.discard_passdown)
1662 return;
1664 if (!data_dev_supports_discard(pt))
1665 reason = "discard unsupported";
1667 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1668 reason = "max discard sectors smaller than a block";
1670 else if (data_limits->discard_granularity > block_size)
1671 reason = "discard granularity larger than a block";
1673 else if (!is_factor(block_size, data_limits->discard_granularity))
1674 reason = "discard granularity not a factor of block size";
1676 if (reason) {
1677 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1678 pt->adjusted_pf.discard_passdown = false;
1682 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1684 struct pool_c *pt = ti->private;
1687 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
1689 enum pool_mode old_mode = pool->pf.mode;
1690 enum pool_mode new_mode = pt->adjusted_pf.mode;
1693 * Don't change the pool's mode until set_pool_mode() below.
1694 * Otherwise the pool's process_* function pointers may
1695 * not match the desired pool mode.
1697 pt->adjusted_pf.mode = old_mode;
1699 pool->ti = ti;
1700 pool->pf = pt->adjusted_pf;
1701 pool->low_water_blocks = pt->low_water_blocks;
1704 * If we were in PM_FAIL mode, rollback of metadata failed. We're
1705 * not going to recover without a thin_repair. So we never let the
1706 * pool move out of the old mode. On the other hand a PM_READ_ONLY
1707 * may have been due to a lack of metadata or data space, and may
1708 * now work (ie. if the underlying devices have been resized).
1710 if (old_mode == PM_FAIL)
1711 new_mode = old_mode;
1713 set_pool_mode(pool, new_mode);
1715 return 0;
1718 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1720 if (pool->ti == ti)
1721 pool->ti = NULL;
1724 /*----------------------------------------------------------------
1725 * Pool creation
1726 *--------------------------------------------------------------*/
1727 /* Initialize pool features. */
1728 static void pool_features_init(struct pool_features *pf)
1730 pf->mode = PM_WRITE;
1731 pf->zero_new_blocks = true;
1732 pf->discard_enabled = true;
1733 pf->discard_passdown = true;
1734 pf->error_if_no_space = false;
1737 static void __pool_destroy(struct pool *pool)
1739 __pool_table_remove(pool);
1741 if (dm_pool_metadata_close(pool->pmd) < 0)
1742 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1744 dm_bio_prison_destroy(pool->prison);
1745 dm_kcopyd_client_destroy(pool->copier);
1747 if (pool->wq)
1748 destroy_workqueue(pool->wq);
1750 if (pool->next_mapping)
1751 mempool_free(pool->next_mapping, pool->mapping_pool);
1752 mempool_destroy(pool->mapping_pool);
1753 dm_deferred_set_destroy(pool->shared_read_ds);
1754 dm_deferred_set_destroy(pool->all_io_ds);
1755 kfree(pool);
1758 static struct kmem_cache *_new_mapping_cache;
1760 static struct pool *pool_create(struct mapped_device *pool_md,
1761 struct block_device *metadata_dev,
1762 unsigned long block_size,
1763 int read_only, char **error)
1765 int r;
1766 void *err_p;
1767 struct pool *pool;
1768 struct dm_pool_metadata *pmd;
1769 bool format_device = read_only ? false : true;
1771 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1772 if (IS_ERR(pmd)) {
1773 *error = "Error creating metadata object";
1774 return (struct pool *)pmd;
1777 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1778 if (!pool) {
1779 *error = "Error allocating memory for pool";
1780 err_p = ERR_PTR(-ENOMEM);
1781 goto bad_pool;
1784 pool->pmd = pmd;
1785 pool->sectors_per_block = block_size;
1786 if (block_size & (block_size - 1))
1787 pool->sectors_per_block_shift = -1;
1788 else
1789 pool->sectors_per_block_shift = __ffs(block_size);
1790 pool->low_water_blocks = 0;
1791 pool_features_init(&pool->pf);
1792 pool->prison = dm_bio_prison_create(PRISON_CELLS);
1793 if (!pool->prison) {
1794 *error = "Error creating pool's bio prison";
1795 err_p = ERR_PTR(-ENOMEM);
1796 goto bad_prison;
1799 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1800 if (IS_ERR(pool->copier)) {
1801 r = PTR_ERR(pool->copier);
1802 *error = "Error creating pool's kcopyd client";
1803 err_p = ERR_PTR(r);
1804 goto bad_kcopyd_client;
1808 * Create singlethreaded workqueue that will service all devices
1809 * that use this metadata.
1811 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1812 if (!pool->wq) {
1813 *error = "Error creating pool's workqueue";
1814 err_p = ERR_PTR(-ENOMEM);
1815 goto bad_wq;
1818 INIT_WORK(&pool->worker, do_worker);
1819 INIT_DELAYED_WORK(&pool->waker, do_waker);
1820 spin_lock_init(&pool->lock);
1821 bio_list_init(&pool->deferred_bios);
1822 bio_list_init(&pool->deferred_flush_bios);
1823 INIT_LIST_HEAD(&pool->prepared_mappings);
1824 INIT_LIST_HEAD(&pool->prepared_discards);
1825 pool->low_water_triggered = false;
1826 bio_list_init(&pool->retry_on_resume_list);
1828 pool->shared_read_ds = dm_deferred_set_create();
1829 if (!pool->shared_read_ds) {
1830 *error = "Error creating pool's shared read deferred set";
1831 err_p = ERR_PTR(-ENOMEM);
1832 goto bad_shared_read_ds;
1835 pool->all_io_ds = dm_deferred_set_create();
1836 if (!pool->all_io_ds) {
1837 *error = "Error creating pool's all io deferred set";
1838 err_p = ERR_PTR(-ENOMEM);
1839 goto bad_all_io_ds;
1842 pool->next_mapping = NULL;
1843 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1844 _new_mapping_cache);
1845 if (!pool->mapping_pool) {
1846 *error = "Error creating pool's mapping mempool";
1847 err_p = ERR_PTR(-ENOMEM);
1848 goto bad_mapping_pool;
1851 pool->ref_count = 1;
1852 pool->last_commit_jiffies = jiffies;
1853 pool->pool_md = pool_md;
1854 pool->md_dev = metadata_dev;
1855 __pool_table_insert(pool);
1857 return pool;
1859 bad_mapping_pool:
1860 dm_deferred_set_destroy(pool->all_io_ds);
1861 bad_all_io_ds:
1862 dm_deferred_set_destroy(pool->shared_read_ds);
1863 bad_shared_read_ds:
1864 destroy_workqueue(pool->wq);
1865 bad_wq:
1866 dm_kcopyd_client_destroy(pool->copier);
1867 bad_kcopyd_client:
1868 dm_bio_prison_destroy(pool->prison);
1869 bad_prison:
1870 kfree(pool);
1871 bad_pool:
1872 if (dm_pool_metadata_close(pmd))
1873 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1875 return err_p;
1878 static void __pool_inc(struct pool *pool)
1880 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1881 pool->ref_count++;
1884 static void __pool_dec(struct pool *pool)
1886 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1887 BUG_ON(!pool->ref_count);
1888 if (!--pool->ref_count)
1889 __pool_destroy(pool);
1892 static struct pool *__pool_find(struct mapped_device *pool_md,
1893 struct block_device *metadata_dev,
1894 unsigned long block_size, int read_only,
1895 char **error, int *created)
1897 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1899 if (pool) {
1900 if (pool->pool_md != pool_md) {
1901 *error = "metadata device already in use by a pool";
1902 return ERR_PTR(-EBUSY);
1904 __pool_inc(pool);
1906 } else {
1907 pool = __pool_table_lookup(pool_md);
1908 if (pool) {
1909 if (pool->md_dev != metadata_dev) {
1910 *error = "different pool cannot replace a pool";
1911 return ERR_PTR(-EINVAL);
1913 __pool_inc(pool);
1915 } else {
1916 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1917 *created = 1;
1921 return pool;
1924 /*----------------------------------------------------------------
1925 * Pool target methods
1926 *--------------------------------------------------------------*/
1927 static void pool_dtr(struct dm_target *ti)
1929 struct pool_c *pt = ti->private;
1931 mutex_lock(&dm_thin_pool_table.mutex);
1933 unbind_control_target(pt->pool, ti);
1934 __pool_dec(pt->pool);
1935 dm_put_device(ti, pt->metadata_dev);
1936 dm_put_device(ti, pt->data_dev);
1937 kfree(pt);
1939 mutex_unlock(&dm_thin_pool_table.mutex);
1942 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1943 struct dm_target *ti)
1945 int r;
1946 unsigned argc;
1947 const char *arg_name;
1949 static struct dm_arg _args[] = {
1950 {0, 4, "Invalid number of pool feature arguments"},
1954 * No feature arguments supplied.
1956 if (!as->argc)
1957 return 0;
1959 r = dm_read_arg_group(_args, as, &argc, &ti->error);
1960 if (r)
1961 return -EINVAL;
1963 while (argc && !r) {
1964 arg_name = dm_shift_arg(as);
1965 argc--;
1967 if (!strcasecmp(arg_name, "skip_block_zeroing"))
1968 pf->zero_new_blocks = false;
1970 else if (!strcasecmp(arg_name, "ignore_discard"))
1971 pf->discard_enabled = false;
1973 else if (!strcasecmp(arg_name, "no_discard_passdown"))
1974 pf->discard_passdown = false;
1976 else if (!strcasecmp(arg_name, "read_only"))
1977 pf->mode = PM_READ_ONLY;
1979 else if (!strcasecmp(arg_name, "error_if_no_space"))
1980 pf->error_if_no_space = true;
1982 else {
1983 ti->error = "Unrecognised pool feature requested";
1984 r = -EINVAL;
1985 break;
1989 return r;
1992 static void metadata_low_callback(void *context)
1994 struct pool *pool = context;
1996 DMWARN("%s: reached low water mark for metadata device: sending event.",
1997 dm_device_name(pool->pool_md));
1999 dm_table_event(pool->ti->table);
2002 static sector_t get_metadata_dev_size(struct block_device *bdev)
2004 sector_t metadata_dev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2005 char buffer[BDEVNAME_SIZE];
2007 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) {
2008 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2009 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2010 metadata_dev_size = THIN_METADATA_MAX_SECTORS_WARNING;
2013 return metadata_dev_size;
2016 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2018 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2020 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
2022 return metadata_dev_size;
2026 * When a metadata threshold is crossed a dm event is triggered, and
2027 * userland should respond by growing the metadata device. We could let
2028 * userland set the threshold, like we do with the data threshold, but I'm
2029 * not sure they know enough to do this well.
2031 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2034 * 4M is ample for all ops with the possible exception of thin
2035 * device deletion which is harmless if it fails (just retry the
2036 * delete after you've grown the device).
2038 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2039 return min((dm_block_t)1024ULL /* 4M */, quarter);
2043 * thin-pool <metadata dev> <data dev>
2044 * <data block size (sectors)>
2045 * <low water mark (blocks)>
2046 * [<#feature args> [<arg>]*]
2048 * Optional feature arguments are:
2049 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2050 * ignore_discard: disable discard
2051 * no_discard_passdown: don't pass discards down to the data device
2052 * read_only: Don't allow any changes to be made to the pool metadata.
2053 * error_if_no_space: error IOs, instead of queueing, if no space.
2055 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2057 int r, pool_created = 0;
2058 struct pool_c *pt;
2059 struct pool *pool;
2060 struct pool_features pf;
2061 struct dm_arg_set as;
2062 struct dm_dev *data_dev;
2063 unsigned long block_size;
2064 dm_block_t low_water_blocks;
2065 struct dm_dev *metadata_dev;
2066 fmode_t metadata_mode;
2069 * FIXME Remove validation from scope of lock.
2071 mutex_lock(&dm_thin_pool_table.mutex);
2073 if (argc < 4) {
2074 ti->error = "Invalid argument count";
2075 r = -EINVAL;
2076 goto out_unlock;
2079 as.argc = argc;
2080 as.argv = argv;
2083 * Set default pool features.
2085 pool_features_init(&pf);
2087 dm_consume_args(&as, 4);
2088 r = parse_pool_features(&as, &pf, ti);
2089 if (r)
2090 goto out_unlock;
2092 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2093 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2094 if (r) {
2095 ti->error = "Error opening metadata block device";
2096 goto out_unlock;
2100 * Run for the side-effect of possibly issuing a warning if the
2101 * device is too big.
2103 (void) get_metadata_dev_size(metadata_dev->bdev);
2105 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2106 if (r) {
2107 ti->error = "Error getting data device";
2108 goto out_metadata;
2111 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2112 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2113 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2114 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2115 ti->error = "Invalid block size";
2116 r = -EINVAL;
2117 goto out;
2120 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2121 ti->error = "Invalid low water mark";
2122 r = -EINVAL;
2123 goto out;
2126 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2127 if (!pt) {
2128 r = -ENOMEM;
2129 goto out;
2132 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2133 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2134 if (IS_ERR(pool)) {
2135 r = PTR_ERR(pool);
2136 goto out_free_pt;
2140 * 'pool_created' reflects whether this is the first table load.
2141 * Top level discard support is not allowed to be changed after
2142 * initial load. This would require a pool reload to trigger thin
2143 * device changes.
2145 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2146 ti->error = "Discard support cannot be disabled once enabled";
2147 r = -EINVAL;
2148 goto out_flags_changed;
2151 pt->pool = pool;
2152 pt->ti = ti;
2153 pt->metadata_dev = metadata_dev;
2154 pt->data_dev = data_dev;
2155 pt->low_water_blocks = low_water_blocks;
2156 pt->adjusted_pf = pt->requested_pf = pf;
2157 ti->num_flush_bios = 1;
2160 * Only need to enable discards if the pool should pass
2161 * them down to the data device. The thin device's discard
2162 * processing will cause mappings to be removed from the btree.
2164 ti->discard_zeroes_data_unsupported = true;
2165 if (pf.discard_enabled && pf.discard_passdown) {
2166 ti->num_discard_bios = 1;
2169 * Setting 'discards_supported' circumvents the normal
2170 * stacking of discard limits (this keeps the pool and
2171 * thin devices' discard limits consistent).
2173 ti->discards_supported = true;
2175 ti->private = pt;
2177 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2178 calc_metadata_threshold(pt),
2179 metadata_low_callback,
2180 pool);
2181 if (r)
2182 goto out_free_pt;
2184 pt->callbacks.congested_fn = pool_is_congested;
2185 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2187 mutex_unlock(&dm_thin_pool_table.mutex);
2189 return 0;
2191 out_flags_changed:
2192 __pool_dec(pool);
2193 out_free_pt:
2194 kfree(pt);
2195 out:
2196 dm_put_device(ti, data_dev);
2197 out_metadata:
2198 dm_put_device(ti, metadata_dev);
2199 out_unlock:
2200 mutex_unlock(&dm_thin_pool_table.mutex);
2202 return r;
2205 static int pool_map(struct dm_target *ti, struct bio *bio)
2207 int r;
2208 struct pool_c *pt = ti->private;
2209 struct pool *pool = pt->pool;
2210 unsigned long flags;
2213 * As this is a singleton target, ti->begin is always zero.
2215 spin_lock_irqsave(&pool->lock, flags);
2216 bio->bi_bdev = pt->data_dev->bdev;
2217 r = DM_MAPIO_REMAPPED;
2218 spin_unlock_irqrestore(&pool->lock, flags);
2220 return r;
2223 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2225 int r;
2226 struct pool_c *pt = ti->private;
2227 struct pool *pool = pt->pool;
2228 sector_t data_size = ti->len;
2229 dm_block_t sb_data_size;
2231 *need_commit = false;
2233 (void) sector_div(data_size, pool->sectors_per_block);
2235 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2236 if (r) {
2237 DMERR("%s: failed to retrieve data device size",
2238 dm_device_name(pool->pool_md));
2239 return r;
2242 if (data_size < sb_data_size) {
2243 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2244 dm_device_name(pool->pool_md),
2245 (unsigned long long)data_size, sb_data_size);
2246 return -EINVAL;
2248 } else if (data_size > sb_data_size) {
2249 if (sb_data_size)
2250 DMINFO("%s: growing the data device from %llu to %llu blocks",
2251 dm_device_name(pool->pool_md),
2252 sb_data_size, (unsigned long long)data_size);
2253 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2254 if (r) {
2255 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2256 return r;
2259 *need_commit = true;
2262 return 0;
2265 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2267 int r;
2268 struct pool_c *pt = ti->private;
2269 struct pool *pool = pt->pool;
2270 dm_block_t metadata_dev_size, sb_metadata_dev_size;
2272 *need_commit = false;
2274 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2276 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2277 if (r) {
2278 DMERR("%s: failed to retrieve metadata device size",
2279 dm_device_name(pool->pool_md));
2280 return r;
2283 if (metadata_dev_size < sb_metadata_dev_size) {
2284 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2285 dm_device_name(pool->pool_md),
2286 metadata_dev_size, sb_metadata_dev_size);
2287 return -EINVAL;
2289 } else if (metadata_dev_size > sb_metadata_dev_size) {
2290 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2291 dm_device_name(pool->pool_md),
2292 sb_metadata_dev_size, metadata_dev_size);
2293 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2294 if (r) {
2295 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2296 return r;
2299 *need_commit = true;
2302 return 0;
2306 * Retrieves the number of blocks of the data device from
2307 * the superblock and compares it to the actual device size,
2308 * thus resizing the data device in case it has grown.
2310 * This both copes with opening preallocated data devices in the ctr
2311 * being followed by a resume
2312 * -and-
2313 * calling the resume method individually after userspace has
2314 * grown the data device in reaction to a table event.
2316 static int pool_preresume(struct dm_target *ti)
2318 int r;
2319 bool need_commit1, need_commit2;
2320 struct pool_c *pt = ti->private;
2321 struct pool *pool = pt->pool;
2324 * Take control of the pool object.
2326 r = bind_control_target(pool, ti);
2327 if (r)
2328 return r;
2330 r = maybe_resize_data_dev(ti, &need_commit1);
2331 if (r)
2332 return r;
2334 r = maybe_resize_metadata_dev(ti, &need_commit2);
2335 if (r)
2336 return r;
2338 if (need_commit1 || need_commit2)
2339 (void) commit(pool);
2341 return 0;
2344 static void pool_resume(struct dm_target *ti)
2346 struct pool_c *pt = ti->private;
2347 struct pool *pool = pt->pool;
2348 unsigned long flags;
2350 spin_lock_irqsave(&pool->lock, flags);
2351 pool->low_water_triggered = false;
2352 __requeue_bios(pool);
2353 spin_unlock_irqrestore(&pool->lock, flags);
2355 do_waker(&pool->waker.work);
2358 static void pool_postsuspend(struct dm_target *ti)
2360 struct pool_c *pt = ti->private;
2361 struct pool *pool = pt->pool;
2363 cancel_delayed_work(&pool->waker);
2364 flush_workqueue(pool->wq);
2365 (void) commit(pool);
2368 static int check_arg_count(unsigned argc, unsigned args_required)
2370 if (argc != args_required) {
2371 DMWARN("Message received with %u arguments instead of %u.",
2372 argc, args_required);
2373 return -EINVAL;
2376 return 0;
2379 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2381 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2382 *dev_id <= MAX_DEV_ID)
2383 return 0;
2385 if (warning)
2386 DMWARN("Message received with invalid device id: %s", arg);
2388 return -EINVAL;
2391 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2393 dm_thin_id dev_id;
2394 int r;
2396 r = check_arg_count(argc, 2);
2397 if (r)
2398 return r;
2400 r = read_dev_id(argv[1], &dev_id, 1);
2401 if (r)
2402 return r;
2404 r = dm_pool_create_thin(pool->pmd, dev_id);
2405 if (r) {
2406 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2407 argv[1]);
2408 return r;
2411 return 0;
2414 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2416 dm_thin_id dev_id;
2417 dm_thin_id origin_dev_id;
2418 int r;
2420 r = check_arg_count(argc, 3);
2421 if (r)
2422 return r;
2424 r = read_dev_id(argv[1], &dev_id, 1);
2425 if (r)
2426 return r;
2428 r = read_dev_id(argv[2], &origin_dev_id, 1);
2429 if (r)
2430 return r;
2432 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2433 if (r) {
2434 DMWARN("Creation of new snapshot %s of device %s failed.",
2435 argv[1], argv[2]);
2436 return r;
2439 return 0;
2442 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2444 dm_thin_id dev_id;
2445 int r;
2447 r = check_arg_count(argc, 2);
2448 if (r)
2449 return r;
2451 r = read_dev_id(argv[1], &dev_id, 1);
2452 if (r)
2453 return r;
2455 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2456 if (r)
2457 DMWARN("Deletion of thin device %s failed.", argv[1]);
2459 return r;
2462 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2464 dm_thin_id old_id, new_id;
2465 int r;
2467 r = check_arg_count(argc, 3);
2468 if (r)
2469 return r;
2471 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2472 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2473 return -EINVAL;
2476 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2477 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2478 return -EINVAL;
2481 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2482 if (r) {
2483 DMWARN("Failed to change transaction id from %s to %s.",
2484 argv[1], argv[2]);
2485 return r;
2488 return 0;
2491 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2493 int r;
2495 r = check_arg_count(argc, 1);
2496 if (r)
2497 return r;
2499 (void) commit(pool);
2501 r = dm_pool_reserve_metadata_snap(pool->pmd);
2502 if (r)
2503 DMWARN("reserve_metadata_snap message failed.");
2505 return r;
2508 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2510 int r;
2512 r = check_arg_count(argc, 1);
2513 if (r)
2514 return r;
2516 r = dm_pool_release_metadata_snap(pool->pmd);
2517 if (r)
2518 DMWARN("release_metadata_snap message failed.");
2520 return r;
2524 * Messages supported:
2525 * create_thin <dev_id>
2526 * create_snap <dev_id> <origin_id>
2527 * delete <dev_id>
2528 * trim <dev_id> <new_size_in_sectors>
2529 * set_transaction_id <current_trans_id> <new_trans_id>
2530 * reserve_metadata_snap
2531 * release_metadata_snap
2533 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2535 int r = -EINVAL;
2536 struct pool_c *pt = ti->private;
2537 struct pool *pool = pt->pool;
2539 if (!strcasecmp(argv[0], "create_thin"))
2540 r = process_create_thin_mesg(argc, argv, pool);
2542 else if (!strcasecmp(argv[0], "create_snap"))
2543 r = process_create_snap_mesg(argc, argv, pool);
2545 else if (!strcasecmp(argv[0], "delete"))
2546 r = process_delete_mesg(argc, argv, pool);
2548 else if (!strcasecmp(argv[0], "set_transaction_id"))
2549 r = process_set_transaction_id_mesg(argc, argv, pool);
2551 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2552 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2554 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2555 r = process_release_metadata_snap_mesg(argc, argv, pool);
2557 else
2558 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2560 if (!r)
2561 (void) commit(pool);
2563 return r;
2566 static void emit_flags(struct pool_features *pf, char *result,
2567 unsigned sz, unsigned maxlen)
2569 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2570 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
2571 pf->error_if_no_space;
2572 DMEMIT("%u ", count);
2574 if (!pf->zero_new_blocks)
2575 DMEMIT("skip_block_zeroing ");
2577 if (!pf->discard_enabled)
2578 DMEMIT("ignore_discard ");
2580 if (!pf->discard_passdown)
2581 DMEMIT("no_discard_passdown ");
2583 if (pf->mode == PM_READ_ONLY)
2584 DMEMIT("read_only ");
2586 if (pf->error_if_no_space)
2587 DMEMIT("error_if_no_space ");
2591 * Status line is:
2592 * <transaction id> <used metadata sectors>/<total metadata sectors>
2593 * <used data sectors>/<total data sectors> <held metadata root>
2595 static void pool_status(struct dm_target *ti, status_type_t type,
2596 unsigned status_flags, char *result, unsigned maxlen)
2598 int r;
2599 unsigned sz = 0;
2600 uint64_t transaction_id;
2601 dm_block_t nr_free_blocks_data;
2602 dm_block_t nr_free_blocks_metadata;
2603 dm_block_t nr_blocks_data;
2604 dm_block_t nr_blocks_metadata;
2605 dm_block_t held_root;
2606 char buf[BDEVNAME_SIZE];
2607 char buf2[BDEVNAME_SIZE];
2608 struct pool_c *pt = ti->private;
2609 struct pool *pool = pt->pool;
2611 switch (type) {
2612 case STATUSTYPE_INFO:
2613 if (get_pool_mode(pool) == PM_FAIL) {
2614 DMEMIT("Fail");
2615 break;
2618 /* Commit to ensure statistics aren't out-of-date */
2619 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2620 (void) commit(pool);
2622 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2623 if (r) {
2624 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2625 dm_device_name(pool->pool_md), r);
2626 goto err;
2629 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2630 if (r) {
2631 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2632 dm_device_name(pool->pool_md), r);
2633 goto err;
2636 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2637 if (r) {
2638 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2639 dm_device_name(pool->pool_md), r);
2640 goto err;
2643 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2644 if (r) {
2645 DMERR("%s: dm_pool_get_free_block_count returned %d",
2646 dm_device_name(pool->pool_md), r);
2647 goto err;
2650 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2651 if (r) {
2652 DMERR("%s: dm_pool_get_data_dev_size returned %d",
2653 dm_device_name(pool->pool_md), r);
2654 goto err;
2657 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2658 if (r) {
2659 DMERR("%s: dm_pool_get_metadata_snap returned %d",
2660 dm_device_name(pool->pool_md), r);
2661 goto err;
2664 DMEMIT("%llu %llu/%llu %llu/%llu ",
2665 (unsigned long long)transaction_id,
2666 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2667 (unsigned long long)nr_blocks_metadata,
2668 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2669 (unsigned long long)nr_blocks_data);
2671 if (held_root)
2672 DMEMIT("%llu ", held_root);
2673 else
2674 DMEMIT("- ");
2676 if (pool->pf.mode == PM_READ_ONLY)
2677 DMEMIT("ro ");
2678 else
2679 DMEMIT("rw ");
2681 if (!pool->pf.discard_enabled)
2682 DMEMIT("ignore_discard ");
2683 else if (pool->pf.discard_passdown)
2684 DMEMIT("discard_passdown ");
2685 else
2686 DMEMIT("no_discard_passdown ");
2688 if (pool->pf.error_if_no_space)
2689 DMEMIT("error_if_no_space ");
2690 else
2691 DMEMIT("queue_if_no_space ");
2693 break;
2695 case STATUSTYPE_TABLE:
2696 DMEMIT("%s %s %lu %llu ",
2697 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2698 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2699 (unsigned long)pool->sectors_per_block,
2700 (unsigned long long)pt->low_water_blocks);
2701 emit_flags(&pt->requested_pf, result, sz, maxlen);
2702 break;
2704 return;
2706 err:
2707 DMEMIT("Error");
2710 static int pool_iterate_devices(struct dm_target *ti,
2711 iterate_devices_callout_fn fn, void *data)
2713 struct pool_c *pt = ti->private;
2715 return fn(ti, pt->data_dev, 0, ti->len, data);
2718 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2719 struct bio_vec *biovec, int max_size)
2721 struct pool_c *pt = ti->private;
2722 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2724 if (!q->merge_bvec_fn)
2725 return max_size;
2727 bvm->bi_bdev = pt->data_dev->bdev;
2729 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2732 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2734 struct pool *pool = pt->pool;
2735 struct queue_limits *data_limits;
2737 limits->max_discard_sectors = pool->sectors_per_block;
2740 * discard_granularity is just a hint, and not enforced.
2742 if (pt->adjusted_pf.discard_passdown) {
2743 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2744 limits->discard_granularity = data_limits->discard_granularity;
2745 } else
2746 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2749 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2751 struct pool_c *pt = ti->private;
2752 struct pool *pool = pt->pool;
2753 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
2756 * If the system-determined stacked limits are compatible with the
2757 * pool's blocksize (io_opt is a factor) do not override them.
2759 if (io_opt_sectors < pool->sectors_per_block ||
2760 do_div(io_opt_sectors, pool->sectors_per_block)) {
2761 blk_limits_io_min(limits, 0);
2762 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2766 * pt->adjusted_pf is a staging area for the actual features to use.
2767 * They get transferred to the live pool in bind_control_target()
2768 * called from pool_preresume().
2770 if (!pt->adjusted_pf.discard_enabled) {
2772 * Must explicitly disallow stacking discard limits otherwise the
2773 * block layer will stack them if pool's data device has support.
2774 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
2775 * user to see that, so make sure to set all discard limits to 0.
2777 limits->discard_granularity = 0;
2778 return;
2781 disable_passdown_if_not_supported(pt);
2783 set_discard_limits(pt, limits);
2786 static struct target_type pool_target = {
2787 .name = "thin-pool",
2788 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2789 DM_TARGET_IMMUTABLE,
2790 .version = {1, 10, 0},
2791 .module = THIS_MODULE,
2792 .ctr = pool_ctr,
2793 .dtr = pool_dtr,
2794 .map = pool_map,
2795 .postsuspend = pool_postsuspend,
2796 .preresume = pool_preresume,
2797 .resume = pool_resume,
2798 .message = pool_message,
2799 .status = pool_status,
2800 .merge = pool_merge,
2801 .iterate_devices = pool_iterate_devices,
2802 .io_hints = pool_io_hints,
2805 /*----------------------------------------------------------------
2806 * Thin target methods
2807 *--------------------------------------------------------------*/
2808 static void thin_dtr(struct dm_target *ti)
2810 struct thin_c *tc = ti->private;
2812 mutex_lock(&dm_thin_pool_table.mutex);
2814 __pool_dec(tc->pool);
2815 dm_pool_close_thin_device(tc->td);
2816 dm_put_device(ti, tc->pool_dev);
2817 if (tc->origin_dev)
2818 dm_put_device(ti, tc->origin_dev);
2819 kfree(tc);
2821 mutex_unlock(&dm_thin_pool_table.mutex);
2825 * Thin target parameters:
2827 * <pool_dev> <dev_id> [origin_dev]
2829 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2830 * dev_id: the internal device identifier
2831 * origin_dev: a device external to the pool that should act as the origin
2833 * If the pool device has discards disabled, they get disabled for the thin
2834 * device as well.
2836 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2838 int r;
2839 struct thin_c *tc;
2840 struct dm_dev *pool_dev, *origin_dev;
2841 struct mapped_device *pool_md;
2843 mutex_lock(&dm_thin_pool_table.mutex);
2845 if (argc != 2 && argc != 3) {
2846 ti->error = "Invalid argument count";
2847 r = -EINVAL;
2848 goto out_unlock;
2851 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2852 if (!tc) {
2853 ti->error = "Out of memory";
2854 r = -ENOMEM;
2855 goto out_unlock;
2858 if (argc == 3) {
2859 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2860 if (r) {
2861 ti->error = "Error opening origin device";
2862 goto bad_origin_dev;
2864 tc->origin_dev = origin_dev;
2867 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2868 if (r) {
2869 ti->error = "Error opening pool device";
2870 goto bad_pool_dev;
2872 tc->pool_dev = pool_dev;
2874 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2875 ti->error = "Invalid device id";
2876 r = -EINVAL;
2877 goto bad_common;
2880 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2881 if (!pool_md) {
2882 ti->error = "Couldn't get pool mapped device";
2883 r = -EINVAL;
2884 goto bad_common;
2887 tc->pool = __pool_table_lookup(pool_md);
2888 if (!tc->pool) {
2889 ti->error = "Couldn't find pool object";
2890 r = -EINVAL;
2891 goto bad_pool_lookup;
2893 __pool_inc(tc->pool);
2895 if (get_pool_mode(tc->pool) == PM_FAIL) {
2896 ti->error = "Couldn't open thin device, Pool is in fail mode";
2897 goto bad_thin_open;
2900 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2901 if (r) {
2902 ti->error = "Couldn't open thin internal device";
2903 goto bad_thin_open;
2906 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2907 if (r)
2908 goto bad_thin_open;
2910 ti->num_flush_bios = 1;
2911 ti->flush_supported = true;
2912 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2914 /* In case the pool supports discards, pass them on. */
2915 ti->discard_zeroes_data_unsupported = true;
2916 if (tc->pool->pf.discard_enabled) {
2917 ti->discards_supported = true;
2918 ti->num_discard_bios = 1;
2919 /* Discard bios must be split on a block boundary */
2920 ti->split_discard_bios = true;
2923 dm_put(pool_md);
2925 mutex_unlock(&dm_thin_pool_table.mutex);
2927 return 0;
2929 bad_thin_open:
2930 __pool_dec(tc->pool);
2931 bad_pool_lookup:
2932 dm_put(pool_md);
2933 bad_common:
2934 dm_put_device(ti, tc->pool_dev);
2935 bad_pool_dev:
2936 if (tc->origin_dev)
2937 dm_put_device(ti, tc->origin_dev);
2938 bad_origin_dev:
2939 kfree(tc);
2940 out_unlock:
2941 mutex_unlock(&dm_thin_pool_table.mutex);
2943 return r;
2946 static int thin_map(struct dm_target *ti, struct bio *bio)
2948 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
2950 return thin_bio_map(ti, bio);
2953 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2955 unsigned long flags;
2956 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2957 struct list_head work;
2958 struct dm_thin_new_mapping *m, *tmp;
2959 struct pool *pool = h->tc->pool;
2961 if (h->shared_read_entry) {
2962 INIT_LIST_HEAD(&work);
2963 dm_deferred_entry_dec(h->shared_read_entry, &work);
2965 spin_lock_irqsave(&pool->lock, flags);
2966 list_for_each_entry_safe(m, tmp, &work, list) {
2967 list_del(&m->list);
2968 m->quiesced = true;
2969 __maybe_add_mapping(m);
2971 spin_unlock_irqrestore(&pool->lock, flags);
2974 if (h->all_io_entry) {
2975 INIT_LIST_HEAD(&work);
2976 dm_deferred_entry_dec(h->all_io_entry, &work);
2977 if (!list_empty(&work)) {
2978 spin_lock_irqsave(&pool->lock, flags);
2979 list_for_each_entry_safe(m, tmp, &work, list)
2980 list_add_tail(&m->list, &pool->prepared_discards);
2981 spin_unlock_irqrestore(&pool->lock, flags);
2982 wake_worker(pool);
2986 return 0;
2989 static void thin_postsuspend(struct dm_target *ti)
2991 if (dm_noflush_suspending(ti))
2992 requeue_io((struct thin_c *)ti->private);
2996 * <nr mapped sectors> <highest mapped sector>
2998 static void thin_status(struct dm_target *ti, status_type_t type,
2999 unsigned status_flags, char *result, unsigned maxlen)
3001 int r;
3002 ssize_t sz = 0;
3003 dm_block_t mapped, highest;
3004 char buf[BDEVNAME_SIZE];
3005 struct thin_c *tc = ti->private;
3007 if (get_pool_mode(tc->pool) == PM_FAIL) {
3008 DMEMIT("Fail");
3009 return;
3012 if (!tc->td)
3013 DMEMIT("-");
3014 else {
3015 switch (type) {
3016 case STATUSTYPE_INFO:
3017 r = dm_thin_get_mapped_count(tc->td, &mapped);
3018 if (r) {
3019 DMERR("dm_thin_get_mapped_count returned %d", r);
3020 goto err;
3023 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3024 if (r < 0) {
3025 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3026 goto err;
3029 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3030 if (r)
3031 DMEMIT("%llu", ((highest + 1) *
3032 tc->pool->sectors_per_block) - 1);
3033 else
3034 DMEMIT("-");
3035 break;
3037 case STATUSTYPE_TABLE:
3038 DMEMIT("%s %lu",
3039 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3040 (unsigned long) tc->dev_id);
3041 if (tc->origin_dev)
3042 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3043 break;
3047 return;
3049 err:
3050 DMEMIT("Error");
3053 static int thin_iterate_devices(struct dm_target *ti,
3054 iterate_devices_callout_fn fn, void *data)
3056 sector_t blocks;
3057 struct thin_c *tc = ti->private;
3058 struct pool *pool = tc->pool;
3061 * We can't call dm_pool_get_data_dev_size() since that blocks. So
3062 * we follow a more convoluted path through to the pool's target.
3064 if (!pool->ti)
3065 return 0; /* nothing is bound */
3067 blocks = pool->ti->len;
3068 (void) sector_div(blocks, pool->sectors_per_block);
3069 if (blocks)
3070 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3072 return 0;
3075 static struct target_type thin_target = {
3076 .name = "thin",
3077 .version = {1, 10, 0},
3078 .module = THIS_MODULE,
3079 .ctr = thin_ctr,
3080 .dtr = thin_dtr,
3081 .map = thin_map,
3082 .end_io = thin_endio,
3083 .postsuspend = thin_postsuspend,
3084 .status = thin_status,
3085 .iterate_devices = thin_iterate_devices,
3088 /*----------------------------------------------------------------*/
3090 static int __init dm_thin_init(void)
3092 int r;
3094 pool_table_init();
3096 r = dm_register_target(&thin_target);
3097 if (r)
3098 return r;
3100 r = dm_register_target(&pool_target);
3101 if (r)
3102 goto bad_pool_target;
3104 r = -ENOMEM;
3106 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3107 if (!_new_mapping_cache)
3108 goto bad_new_mapping_cache;
3110 return 0;
3112 bad_new_mapping_cache:
3113 dm_unregister_target(&pool_target);
3114 bad_pool_target:
3115 dm_unregister_target(&thin_target);
3117 return r;
3120 static void dm_thin_exit(void)
3122 dm_unregister_target(&thin_target);
3123 dm_unregister_target(&pool_target);
3125 kmem_cache_destroy(_new_mapping_cache);
3128 module_init(dm_thin_init);
3129 module_exit(dm_thin_exit);
3131 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3132 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3133 MODULE_LICENSE("GPL");