PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / md / persistent-data / dm-btree.c
blob416060c2570981d5035376fc02b100f3b6430e5b
1 /*
2 * Copyright (C) 2011 Red Hat, Inc.
4 * This file is released under the GPL.
5 */
7 #include "dm-btree-internal.h"
8 #include "dm-space-map.h"
9 #include "dm-transaction-manager.h"
11 #include <linux/export.h>
12 #include <linux/device-mapper.h>
14 #define DM_MSG_PREFIX "btree"
16 /*----------------------------------------------------------------
17 * Array manipulation
18 *--------------------------------------------------------------*/
19 static void memcpy_disk(void *dest, const void *src, size_t len)
20 __dm_written_to_disk(src)
22 memcpy(dest, src, len);
23 __dm_unbless_for_disk(src);
26 static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
27 unsigned index, void *elt)
28 __dm_written_to_disk(elt)
30 if (index < nr_elts)
31 memmove(base + (elt_size * (index + 1)),
32 base + (elt_size * index),
33 (nr_elts - index) * elt_size);
35 memcpy_disk(base + (elt_size * index), elt, elt_size);
38 /*----------------------------------------------------------------*/
40 /* makes the assumption that no two keys are the same. */
41 static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
43 int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
45 while (hi - lo > 1) {
46 int mid = lo + ((hi - lo) / 2);
47 uint64_t mid_key = le64_to_cpu(n->keys[mid]);
49 if (mid_key == key)
50 return mid;
52 if (mid_key < key)
53 lo = mid;
54 else
55 hi = mid;
58 return want_hi ? hi : lo;
61 int lower_bound(struct btree_node *n, uint64_t key)
63 return bsearch(n, key, 0);
66 void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
67 struct dm_btree_value_type *vt)
69 unsigned i;
70 uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
72 if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
73 for (i = 0; i < nr_entries; i++)
74 dm_tm_inc(tm, value64(n, i));
75 else if (vt->inc)
76 for (i = 0; i < nr_entries; i++)
77 vt->inc(vt->context, value_ptr(n, i));
80 static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
81 uint64_t key, void *value)
82 __dm_written_to_disk(value)
84 uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
85 __le64 key_le = cpu_to_le64(key);
87 if (index > nr_entries ||
88 index >= le32_to_cpu(node->header.max_entries)) {
89 DMERR("too many entries in btree node for insert");
90 __dm_unbless_for_disk(value);
91 return -ENOMEM;
94 __dm_bless_for_disk(&key_le);
96 array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
97 array_insert(value_base(node), value_size, nr_entries, index, value);
98 node->header.nr_entries = cpu_to_le32(nr_entries + 1);
100 return 0;
103 /*----------------------------------------------------------------*/
106 * We want 3n entries (for some n). This works more nicely for repeated
107 * insert remove loops than (2n + 1).
109 static uint32_t calc_max_entries(size_t value_size, size_t block_size)
111 uint32_t total, n;
112 size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
114 block_size -= sizeof(struct node_header);
115 total = block_size / elt_size;
116 n = total / 3; /* rounds down */
118 return 3 * n;
121 int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
123 int r;
124 struct dm_block *b;
125 struct btree_node *n;
126 size_t block_size;
127 uint32_t max_entries;
129 r = new_block(info, &b);
130 if (r < 0)
131 return r;
133 block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
134 max_entries = calc_max_entries(info->value_type.size, block_size);
136 n = dm_block_data(b);
137 memset(n, 0, block_size);
138 n->header.flags = cpu_to_le32(LEAF_NODE);
139 n->header.nr_entries = cpu_to_le32(0);
140 n->header.max_entries = cpu_to_le32(max_entries);
141 n->header.value_size = cpu_to_le32(info->value_type.size);
143 *root = dm_block_location(b);
144 return unlock_block(info, b);
146 EXPORT_SYMBOL_GPL(dm_btree_empty);
148 /*----------------------------------------------------------------*/
151 * Deletion uses a recursive algorithm, since we have limited stack space
152 * we explicitly manage our own stack on the heap.
154 #define MAX_SPINE_DEPTH 64
155 struct frame {
156 struct dm_block *b;
157 struct btree_node *n;
158 unsigned level;
159 unsigned nr_children;
160 unsigned current_child;
163 struct del_stack {
164 struct dm_btree_info *info;
165 struct dm_transaction_manager *tm;
166 int top;
167 struct frame spine[MAX_SPINE_DEPTH];
170 static int top_frame(struct del_stack *s, struct frame **f)
172 if (s->top < 0) {
173 DMERR("btree deletion stack empty");
174 return -EINVAL;
177 *f = s->spine + s->top;
179 return 0;
182 static int unprocessed_frames(struct del_stack *s)
184 return s->top >= 0;
187 static void prefetch_children(struct del_stack *s, struct frame *f)
189 unsigned i;
190 struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
192 for (i = 0; i < f->nr_children; i++)
193 dm_bm_prefetch(bm, value64(f->n, i));
196 static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
198 return f->level < (info->levels - 1);
201 static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
203 int r;
204 uint32_t ref_count;
206 if (s->top >= MAX_SPINE_DEPTH - 1) {
207 DMERR("btree deletion stack out of memory");
208 return -ENOMEM;
211 r = dm_tm_ref(s->tm, b, &ref_count);
212 if (r)
213 return r;
215 if (ref_count > 1)
217 * This is a shared node, so we can just decrement it's
218 * reference counter and leave the children.
220 dm_tm_dec(s->tm, b);
222 else {
223 uint32_t flags;
224 struct frame *f = s->spine + ++s->top;
226 r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
227 if (r) {
228 s->top--;
229 return r;
232 f->n = dm_block_data(f->b);
233 f->level = level;
234 f->nr_children = le32_to_cpu(f->n->header.nr_entries);
235 f->current_child = 0;
237 flags = le32_to_cpu(f->n->header.flags);
238 if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
239 prefetch_children(s, f);
242 return 0;
245 static void pop_frame(struct del_stack *s)
247 struct frame *f = s->spine + s->top--;
249 dm_tm_dec(s->tm, dm_block_location(f->b));
250 dm_tm_unlock(s->tm, f->b);
253 int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
255 int r;
256 struct del_stack *s;
258 s = kmalloc(sizeof(*s), GFP_KERNEL);
259 if (!s)
260 return -ENOMEM;
261 s->info = info;
262 s->tm = info->tm;
263 s->top = -1;
265 r = push_frame(s, root, 0);
266 if (r)
267 goto out;
269 while (unprocessed_frames(s)) {
270 uint32_t flags;
271 struct frame *f;
272 dm_block_t b;
274 r = top_frame(s, &f);
275 if (r)
276 goto out;
278 if (f->current_child >= f->nr_children) {
279 pop_frame(s);
280 continue;
283 flags = le32_to_cpu(f->n->header.flags);
284 if (flags & INTERNAL_NODE) {
285 b = value64(f->n, f->current_child);
286 f->current_child++;
287 r = push_frame(s, b, f->level);
288 if (r)
289 goto out;
291 } else if (is_internal_level(info, f)) {
292 b = value64(f->n, f->current_child);
293 f->current_child++;
294 r = push_frame(s, b, f->level + 1);
295 if (r)
296 goto out;
298 } else {
299 if (info->value_type.dec) {
300 unsigned i;
302 for (i = 0; i < f->nr_children; i++)
303 info->value_type.dec(info->value_type.context,
304 value_ptr(f->n, i));
306 pop_frame(s);
310 out:
311 kfree(s);
312 return r;
314 EXPORT_SYMBOL_GPL(dm_btree_del);
316 /*----------------------------------------------------------------*/
318 static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
319 int (*search_fn)(struct btree_node *, uint64_t),
320 uint64_t *result_key, void *v, size_t value_size)
322 int i, r;
323 uint32_t flags, nr_entries;
325 do {
326 r = ro_step(s, block);
327 if (r < 0)
328 return r;
330 i = search_fn(ro_node(s), key);
332 flags = le32_to_cpu(ro_node(s)->header.flags);
333 nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
334 if (i < 0 || i >= nr_entries)
335 return -ENODATA;
337 if (flags & INTERNAL_NODE)
338 block = value64(ro_node(s), i);
340 } while (!(flags & LEAF_NODE));
342 *result_key = le64_to_cpu(ro_node(s)->keys[i]);
343 memcpy(v, value_ptr(ro_node(s), i), value_size);
345 return 0;
348 int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
349 uint64_t *keys, void *value_le)
351 unsigned level, last_level = info->levels - 1;
352 int r = -ENODATA;
353 uint64_t rkey;
354 __le64 internal_value_le;
355 struct ro_spine spine;
357 init_ro_spine(&spine, info);
358 for (level = 0; level < info->levels; level++) {
359 size_t size;
360 void *value_p;
362 if (level == last_level) {
363 value_p = value_le;
364 size = info->value_type.size;
366 } else {
367 value_p = &internal_value_le;
368 size = sizeof(uint64_t);
371 r = btree_lookup_raw(&spine, root, keys[level],
372 lower_bound, &rkey,
373 value_p, size);
375 if (!r) {
376 if (rkey != keys[level]) {
377 exit_ro_spine(&spine);
378 return -ENODATA;
380 } else {
381 exit_ro_spine(&spine);
382 return r;
385 root = le64_to_cpu(internal_value_le);
387 exit_ro_spine(&spine);
389 return r;
391 EXPORT_SYMBOL_GPL(dm_btree_lookup);
394 * Splits a node by creating a sibling node and shifting half the nodes
395 * contents across. Assumes there is a parent node, and it has room for
396 * another child.
398 * Before:
399 * +--------+
400 * | Parent |
401 * +--------+
404 * +----------+
405 * | A ++++++ |
406 * +----------+
409 * After:
410 * +--------+
411 * | Parent |
412 * +--------+
413 * | |
414 * v +------+
415 * +---------+ |
416 * | A* +++ | v
417 * +---------+ +-------+
418 * | B +++ |
419 * +-------+
421 * Where A* is a shadow of A.
423 static int btree_split_sibling(struct shadow_spine *s, dm_block_t root,
424 unsigned parent_index, uint64_t key)
426 int r;
427 size_t size;
428 unsigned nr_left, nr_right;
429 struct dm_block *left, *right, *parent;
430 struct btree_node *ln, *rn, *pn;
431 __le64 location;
433 left = shadow_current(s);
435 r = new_block(s->info, &right);
436 if (r < 0)
437 return r;
439 ln = dm_block_data(left);
440 rn = dm_block_data(right);
442 nr_left = le32_to_cpu(ln->header.nr_entries) / 2;
443 nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left;
445 ln->header.nr_entries = cpu_to_le32(nr_left);
447 rn->header.flags = ln->header.flags;
448 rn->header.nr_entries = cpu_to_le32(nr_right);
449 rn->header.max_entries = ln->header.max_entries;
450 rn->header.value_size = ln->header.value_size;
451 memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0]));
453 size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ?
454 sizeof(uint64_t) : s->info->value_type.size;
455 memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left),
456 size * nr_right);
459 * Patch up the parent
461 parent = shadow_parent(s);
463 pn = dm_block_data(parent);
464 location = cpu_to_le64(dm_block_location(left));
465 __dm_bless_for_disk(&location);
466 memcpy_disk(value_ptr(pn, parent_index),
467 &location, sizeof(__le64));
469 location = cpu_to_le64(dm_block_location(right));
470 __dm_bless_for_disk(&location);
472 r = insert_at(sizeof(__le64), pn, parent_index + 1,
473 le64_to_cpu(rn->keys[0]), &location);
474 if (r)
475 return r;
477 if (key < le64_to_cpu(rn->keys[0])) {
478 unlock_block(s->info, right);
479 s->nodes[1] = left;
480 } else {
481 unlock_block(s->info, left);
482 s->nodes[1] = right;
485 return 0;
489 * Splits a node by creating two new children beneath the given node.
491 * Before:
492 * +----------+
493 * | A ++++++ |
494 * +----------+
497 * After:
498 * +------------+
499 * | A (shadow) |
500 * +------------+
501 * | |
502 * +------+ +----+
503 * | |
504 * v v
505 * +-------+ +-------+
506 * | B +++ | | C +++ |
507 * +-------+ +-------+
509 static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
511 int r;
512 size_t size;
513 unsigned nr_left, nr_right;
514 struct dm_block *left, *right, *new_parent;
515 struct btree_node *pn, *ln, *rn;
516 __le64 val;
518 new_parent = shadow_current(s);
520 r = new_block(s->info, &left);
521 if (r < 0)
522 return r;
524 r = new_block(s->info, &right);
525 if (r < 0) {
526 /* FIXME: put left */
527 return r;
530 pn = dm_block_data(new_parent);
531 ln = dm_block_data(left);
532 rn = dm_block_data(right);
534 nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
535 nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
537 ln->header.flags = pn->header.flags;
538 ln->header.nr_entries = cpu_to_le32(nr_left);
539 ln->header.max_entries = pn->header.max_entries;
540 ln->header.value_size = pn->header.value_size;
542 rn->header.flags = pn->header.flags;
543 rn->header.nr_entries = cpu_to_le32(nr_right);
544 rn->header.max_entries = pn->header.max_entries;
545 rn->header.value_size = pn->header.value_size;
547 memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
548 memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
550 size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
551 sizeof(__le64) : s->info->value_type.size;
552 memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
553 memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
554 nr_right * size);
556 /* new_parent should just point to l and r now */
557 pn->header.flags = cpu_to_le32(INTERNAL_NODE);
558 pn->header.nr_entries = cpu_to_le32(2);
559 pn->header.max_entries = cpu_to_le32(
560 calc_max_entries(sizeof(__le64),
561 dm_bm_block_size(
562 dm_tm_get_bm(s->info->tm))));
563 pn->header.value_size = cpu_to_le32(sizeof(__le64));
565 val = cpu_to_le64(dm_block_location(left));
566 __dm_bless_for_disk(&val);
567 pn->keys[0] = ln->keys[0];
568 memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
570 val = cpu_to_le64(dm_block_location(right));
571 __dm_bless_for_disk(&val);
572 pn->keys[1] = rn->keys[0];
573 memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
576 * rejig the spine. This is ugly, since it knows too
577 * much about the spine
579 if (s->nodes[0] != new_parent) {
580 unlock_block(s->info, s->nodes[0]);
581 s->nodes[0] = new_parent;
583 if (key < le64_to_cpu(rn->keys[0])) {
584 unlock_block(s->info, right);
585 s->nodes[1] = left;
586 } else {
587 unlock_block(s->info, left);
588 s->nodes[1] = right;
590 s->count = 2;
592 return 0;
595 static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
596 struct dm_btree_value_type *vt,
597 uint64_t key, unsigned *index)
599 int r, i = *index, top = 1;
600 struct btree_node *node;
602 for (;;) {
603 r = shadow_step(s, root, vt);
604 if (r < 0)
605 return r;
607 node = dm_block_data(shadow_current(s));
610 * We have to patch up the parent node, ugly, but I don't
611 * see a way to do this automatically as part of the spine
612 * op.
614 if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
615 __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
617 __dm_bless_for_disk(&location);
618 memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
619 &location, sizeof(__le64));
622 node = dm_block_data(shadow_current(s));
624 if (node->header.nr_entries == node->header.max_entries) {
625 if (top)
626 r = btree_split_beneath(s, key);
627 else
628 r = btree_split_sibling(s, root, i, key);
630 if (r < 0)
631 return r;
634 node = dm_block_data(shadow_current(s));
636 i = lower_bound(node, key);
638 if (le32_to_cpu(node->header.flags) & LEAF_NODE)
639 break;
641 if (i < 0) {
642 /* change the bounds on the lowest key */
643 node->keys[0] = cpu_to_le64(key);
644 i = 0;
647 root = value64(node, i);
648 top = 0;
651 if (i < 0 || le64_to_cpu(node->keys[i]) != key)
652 i++;
654 *index = i;
655 return 0;
658 static int insert(struct dm_btree_info *info, dm_block_t root,
659 uint64_t *keys, void *value, dm_block_t *new_root,
660 int *inserted)
661 __dm_written_to_disk(value)
663 int r, need_insert;
664 unsigned level, index = -1, last_level = info->levels - 1;
665 dm_block_t block = root;
666 struct shadow_spine spine;
667 struct btree_node *n;
668 struct dm_btree_value_type le64_type;
670 le64_type.context = NULL;
671 le64_type.size = sizeof(__le64);
672 le64_type.inc = NULL;
673 le64_type.dec = NULL;
674 le64_type.equal = NULL;
676 init_shadow_spine(&spine, info);
678 for (level = 0; level < (info->levels - 1); level++) {
679 r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
680 if (r < 0)
681 goto bad;
683 n = dm_block_data(shadow_current(&spine));
684 need_insert = ((index >= le32_to_cpu(n->header.nr_entries)) ||
685 (le64_to_cpu(n->keys[index]) != keys[level]));
687 if (need_insert) {
688 dm_block_t new_tree;
689 __le64 new_le;
691 r = dm_btree_empty(info, &new_tree);
692 if (r < 0)
693 goto bad;
695 new_le = cpu_to_le64(new_tree);
696 __dm_bless_for_disk(&new_le);
698 r = insert_at(sizeof(uint64_t), n, index,
699 keys[level], &new_le);
700 if (r)
701 goto bad;
704 if (level < last_level)
705 block = value64(n, index);
708 r = btree_insert_raw(&spine, block, &info->value_type,
709 keys[level], &index);
710 if (r < 0)
711 goto bad;
713 n = dm_block_data(shadow_current(&spine));
714 need_insert = ((index >= le32_to_cpu(n->header.nr_entries)) ||
715 (le64_to_cpu(n->keys[index]) != keys[level]));
717 if (need_insert) {
718 if (inserted)
719 *inserted = 1;
721 r = insert_at(info->value_type.size, n, index,
722 keys[level], value);
723 if (r)
724 goto bad_unblessed;
725 } else {
726 if (inserted)
727 *inserted = 0;
729 if (info->value_type.dec &&
730 (!info->value_type.equal ||
731 !info->value_type.equal(
732 info->value_type.context,
733 value_ptr(n, index),
734 value))) {
735 info->value_type.dec(info->value_type.context,
736 value_ptr(n, index));
738 memcpy_disk(value_ptr(n, index),
739 value, info->value_type.size);
742 *new_root = shadow_root(&spine);
743 exit_shadow_spine(&spine);
745 return 0;
747 bad:
748 __dm_unbless_for_disk(value);
749 bad_unblessed:
750 exit_shadow_spine(&spine);
751 return r;
754 int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
755 uint64_t *keys, void *value, dm_block_t *new_root)
756 __dm_written_to_disk(value)
758 return insert(info, root, keys, value, new_root, NULL);
760 EXPORT_SYMBOL_GPL(dm_btree_insert);
762 int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
763 uint64_t *keys, void *value, dm_block_t *new_root,
764 int *inserted)
765 __dm_written_to_disk(value)
767 return insert(info, root, keys, value, new_root, inserted);
769 EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
771 /*----------------------------------------------------------------*/
773 static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
774 uint64_t *result_key, dm_block_t *next_block)
776 int i, r;
777 uint32_t flags;
779 do {
780 r = ro_step(s, block);
781 if (r < 0)
782 return r;
784 flags = le32_to_cpu(ro_node(s)->header.flags);
785 i = le32_to_cpu(ro_node(s)->header.nr_entries);
786 if (!i)
787 return -ENODATA;
788 else
789 i--;
791 if (find_highest)
792 *result_key = le64_to_cpu(ro_node(s)->keys[i]);
793 else
794 *result_key = le64_to_cpu(ro_node(s)->keys[0]);
796 if (next_block || flags & INTERNAL_NODE)
797 block = value64(ro_node(s), i);
799 } while (flags & INTERNAL_NODE);
801 if (next_block)
802 *next_block = block;
803 return 0;
806 static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
807 bool find_highest, uint64_t *result_keys)
809 int r = 0, count = 0, level;
810 struct ro_spine spine;
812 init_ro_spine(&spine, info);
813 for (level = 0; level < info->levels; level++) {
814 r = find_key(&spine, root, find_highest, result_keys + level,
815 level == info->levels - 1 ? NULL : &root);
816 if (r == -ENODATA) {
817 r = 0;
818 break;
820 } else if (r)
821 break;
823 count++;
825 exit_ro_spine(&spine);
827 return r ? r : count;
830 int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
831 uint64_t *result_keys)
833 return dm_btree_find_key(info, root, true, result_keys);
835 EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
837 int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
838 uint64_t *result_keys)
840 return dm_btree_find_key(info, root, false, result_keys);
842 EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
844 /*----------------------------------------------------------------*/
847 * FIXME: We shouldn't use a recursive algorithm when we have limited stack
848 * space. Also this only works for single level trees.
850 static int walk_node(struct ro_spine *s, dm_block_t block,
851 int (*fn)(void *context, uint64_t *keys, void *leaf),
852 void *context)
854 int r;
855 unsigned i, nr;
856 struct btree_node *n;
857 uint64_t keys;
859 r = ro_step(s, block);
860 n = ro_node(s);
862 nr = le32_to_cpu(n->header.nr_entries);
863 for (i = 0; i < nr; i++) {
864 if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
865 r = walk_node(s, value64(n, i), fn, context);
866 if (r)
867 goto out;
868 } else {
869 keys = le64_to_cpu(*key_ptr(n, i));
870 r = fn(context, &keys, value_ptr(n, i));
871 if (r)
872 goto out;
876 out:
877 ro_pop(s);
878 return r;
881 int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
882 int (*fn)(void *context, uint64_t *keys, void *leaf),
883 void *context)
885 int r;
886 struct ro_spine spine;
888 BUG_ON(info->levels > 1);
890 init_ro_spine(&spine, info);
891 r = walk_node(&spine, root, fn, context);
892 exit_ro_spine(&spine);
894 return r;
896 EXPORT_SYMBOL_GPL(dm_btree_walk);