2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
45 * Number of guaranteed r1bios in case of extreme VM load:
47 #define NR_RAID1_BIOS 256
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
59 #define IO_MADE_GOOD ((struct bio *)2)
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
67 static int max_queued_requests
= 1024;
69 static void allow_barrier(struct r1conf
*conf
, sector_t start_next_window
,
71 static void lower_barrier(struct r1conf
*conf
);
73 static void * r1bio_pool_alloc(gfp_t gfp_flags
, void *data
)
75 struct pool_info
*pi
= data
;
76 int size
= offsetof(struct r1bio
, bios
[pi
->raid_disks
]);
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
79 return kzalloc(size
, gfp_flags
);
82 static void r1bio_pool_free(void *r1_bio
, void *data
)
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
95 static void * r1buf_pool_alloc(gfp_t gfp_flags
, void *data
)
97 struct pool_info
*pi
= data
;
102 r1_bio
= r1bio_pool_alloc(gfp_flags
, pi
);
107 * Allocate bios : 1 for reading, n-1 for writing
109 for (j
= pi
->raid_disks
; j
-- ; ) {
110 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
113 r1_bio
->bios
[j
] = bio
;
116 * Allocate RESYNC_PAGES data pages and attach them to
118 * If this is a user-requested check/repair, allocate
119 * RESYNC_PAGES for each bio.
121 if (test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
))
126 bio
= r1_bio
->bios
[j
];
127 bio
->bi_vcnt
= RESYNC_PAGES
;
129 if (bio_alloc_pages(bio
, gfp_flags
))
132 /* If not user-requests, copy the page pointers to all bios */
133 if (!test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
)) {
134 for (i
=0; i
<RESYNC_PAGES
; i
++)
135 for (j
=1; j
<pi
->raid_disks
; j
++)
136 r1_bio
->bios
[j
]->bi_io_vec
[i
].bv_page
=
137 r1_bio
->bios
[0]->bi_io_vec
[i
].bv_page
;
140 r1_bio
->master_bio
= NULL
;
145 while (++j
< pi
->raid_disks
)
146 bio_put(r1_bio
->bios
[j
]);
147 r1bio_pool_free(r1_bio
, data
);
151 static void r1buf_pool_free(void *__r1_bio
, void *data
)
153 struct pool_info
*pi
= data
;
155 struct r1bio
*r1bio
= __r1_bio
;
157 for (i
= 0; i
< RESYNC_PAGES
; i
++)
158 for (j
= pi
->raid_disks
; j
-- ;) {
160 r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
!=
161 r1bio
->bios
[0]->bi_io_vec
[i
].bv_page
)
162 safe_put_page(r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
);
164 for (i
=0 ; i
< pi
->raid_disks
; i
++)
165 bio_put(r1bio
->bios
[i
]);
167 r1bio_pool_free(r1bio
, data
);
170 static void put_all_bios(struct r1conf
*conf
, struct r1bio
*r1_bio
)
174 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
175 struct bio
**bio
= r1_bio
->bios
+ i
;
176 if (!BIO_SPECIAL(*bio
))
182 static void free_r1bio(struct r1bio
*r1_bio
)
184 struct r1conf
*conf
= r1_bio
->mddev
->private;
186 put_all_bios(conf
, r1_bio
);
187 mempool_free(r1_bio
, conf
->r1bio_pool
);
190 static void put_buf(struct r1bio
*r1_bio
)
192 struct r1conf
*conf
= r1_bio
->mddev
->private;
195 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
196 struct bio
*bio
= r1_bio
->bios
[i
];
198 rdev_dec_pending(conf
->mirrors
[i
].rdev
, r1_bio
->mddev
);
201 mempool_free(r1_bio
, conf
->r1buf_pool
);
206 static void reschedule_retry(struct r1bio
*r1_bio
)
209 struct mddev
*mddev
= r1_bio
->mddev
;
210 struct r1conf
*conf
= mddev
->private;
212 spin_lock_irqsave(&conf
->device_lock
, flags
);
213 list_add(&r1_bio
->retry_list
, &conf
->retry_list
);
215 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
217 wake_up(&conf
->wait_barrier
);
218 md_wakeup_thread(mddev
->thread
);
222 * raid_end_bio_io() is called when we have finished servicing a mirrored
223 * operation and are ready to return a success/failure code to the buffer
226 static void call_bio_endio(struct r1bio
*r1_bio
)
228 struct bio
*bio
= r1_bio
->master_bio
;
230 struct r1conf
*conf
= r1_bio
->mddev
->private;
231 sector_t start_next_window
= r1_bio
->start_next_window
;
232 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
234 if (bio
->bi_phys_segments
) {
236 spin_lock_irqsave(&conf
->device_lock
, flags
);
237 bio
->bi_phys_segments
--;
238 done
= (bio
->bi_phys_segments
== 0);
239 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
241 * make_request() might be waiting for
242 * bi_phys_segments to decrease
244 wake_up(&conf
->wait_barrier
);
248 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
249 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
253 * Wake up any possible resync thread that waits for the device
256 allow_barrier(conf
, start_next_window
, bi_sector
);
260 static void raid_end_bio_io(struct r1bio
*r1_bio
)
262 struct bio
*bio
= r1_bio
->master_bio
;
264 /* if nobody has done the final endio yet, do it now */
265 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
266 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
267 (bio_data_dir(bio
) == WRITE
) ? "write" : "read",
268 (unsigned long long) bio
->bi_iter
.bi_sector
,
269 (unsigned long long) bio_end_sector(bio
) - 1);
271 call_bio_endio(r1_bio
);
277 * Update disk head position estimator based on IRQ completion info.
279 static inline void update_head_pos(int disk
, struct r1bio
*r1_bio
)
281 struct r1conf
*conf
= r1_bio
->mddev
->private;
283 conf
->mirrors
[disk
].head_position
=
284 r1_bio
->sector
+ (r1_bio
->sectors
);
288 * Find the disk number which triggered given bio
290 static int find_bio_disk(struct r1bio
*r1_bio
, struct bio
*bio
)
293 struct r1conf
*conf
= r1_bio
->mddev
->private;
294 int raid_disks
= conf
->raid_disks
;
296 for (mirror
= 0; mirror
< raid_disks
* 2; mirror
++)
297 if (r1_bio
->bios
[mirror
] == bio
)
300 BUG_ON(mirror
== raid_disks
* 2);
301 update_head_pos(mirror
, r1_bio
);
306 static void raid1_end_read_request(struct bio
*bio
, int error
)
308 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
309 struct r1bio
*r1_bio
= bio
->bi_private
;
311 struct r1conf
*conf
= r1_bio
->mddev
->private;
313 mirror
= r1_bio
->read_disk
;
315 * this branch is our 'one mirror IO has finished' event handler:
317 update_head_pos(mirror
, r1_bio
);
320 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
322 /* If all other devices have failed, we want to return
323 * the error upwards rather than fail the last device.
324 * Here we redefine "uptodate" to mean "Don't want to retry"
327 spin_lock_irqsave(&conf
->device_lock
, flags
);
328 if (r1_bio
->mddev
->degraded
== conf
->raid_disks
||
329 (r1_bio
->mddev
->degraded
== conf
->raid_disks
-1 &&
330 !test_bit(Faulty
, &conf
->mirrors
[mirror
].rdev
->flags
)))
332 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
336 raid_end_bio_io(r1_bio
);
337 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
, conf
->mddev
);
342 char b
[BDEVNAME_SIZE
];
344 KERN_ERR
"md/raid1:%s: %s: "
345 "rescheduling sector %llu\n",
347 bdevname(conf
->mirrors
[mirror
].rdev
->bdev
,
349 (unsigned long long)r1_bio
->sector
);
350 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
351 reschedule_retry(r1_bio
);
352 /* don't drop the reference on read_disk yet */
356 static void close_write(struct r1bio
*r1_bio
)
358 /* it really is the end of this request */
359 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
360 /* free extra copy of the data pages */
361 int i
= r1_bio
->behind_page_count
;
363 safe_put_page(r1_bio
->behind_bvecs
[i
].bv_page
);
364 kfree(r1_bio
->behind_bvecs
);
365 r1_bio
->behind_bvecs
= NULL
;
367 /* clear the bitmap if all writes complete successfully */
368 bitmap_endwrite(r1_bio
->mddev
->bitmap
, r1_bio
->sector
,
370 !test_bit(R1BIO_Degraded
, &r1_bio
->state
),
371 test_bit(R1BIO_BehindIO
, &r1_bio
->state
));
372 md_write_end(r1_bio
->mddev
);
375 static void r1_bio_write_done(struct r1bio
*r1_bio
)
377 if (!atomic_dec_and_test(&r1_bio
->remaining
))
380 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
381 reschedule_retry(r1_bio
);
384 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
))
385 reschedule_retry(r1_bio
);
387 raid_end_bio_io(r1_bio
);
391 static void raid1_end_write_request(struct bio
*bio
, int error
)
393 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
394 struct r1bio
*r1_bio
= bio
->bi_private
;
395 int mirror
, behind
= test_bit(R1BIO_BehindIO
, &r1_bio
->state
);
396 struct r1conf
*conf
= r1_bio
->mddev
->private;
397 struct bio
*to_put
= NULL
;
399 mirror
= find_bio_disk(r1_bio
, bio
);
402 * 'one mirror IO has finished' event handler:
405 set_bit(WriteErrorSeen
,
406 &conf
->mirrors
[mirror
].rdev
->flags
);
407 if (!test_and_set_bit(WantReplacement
,
408 &conf
->mirrors
[mirror
].rdev
->flags
))
409 set_bit(MD_RECOVERY_NEEDED
, &
410 conf
->mddev
->recovery
);
412 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
415 * Set R1BIO_Uptodate in our master bio, so that we
416 * will return a good error code for to the higher
417 * levels even if IO on some other mirrored buffer
420 * The 'master' represents the composite IO operation
421 * to user-side. So if something waits for IO, then it
422 * will wait for the 'master' bio.
427 r1_bio
->bios
[mirror
] = NULL
;
430 * Do not set R1BIO_Uptodate if the current device is
431 * rebuilding or Faulty. This is because we cannot use
432 * such device for properly reading the data back (we could
433 * potentially use it, if the current write would have felt
434 * before rdev->recovery_offset, but for simplicity we don't
437 if (test_bit(In_sync
, &conf
->mirrors
[mirror
].rdev
->flags
) &&
438 !test_bit(Faulty
, &conf
->mirrors
[mirror
].rdev
->flags
))
439 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
441 /* Maybe we can clear some bad blocks. */
442 if (is_badblock(conf
->mirrors
[mirror
].rdev
,
443 r1_bio
->sector
, r1_bio
->sectors
,
444 &first_bad
, &bad_sectors
)) {
445 r1_bio
->bios
[mirror
] = IO_MADE_GOOD
;
446 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
451 if (test_bit(WriteMostly
, &conf
->mirrors
[mirror
].rdev
->flags
))
452 atomic_dec(&r1_bio
->behind_remaining
);
455 * In behind mode, we ACK the master bio once the I/O
456 * has safely reached all non-writemostly
457 * disks. Setting the Returned bit ensures that this
458 * gets done only once -- we don't ever want to return
459 * -EIO here, instead we'll wait
461 if (atomic_read(&r1_bio
->behind_remaining
) >= (atomic_read(&r1_bio
->remaining
)-1) &&
462 test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
463 /* Maybe we can return now */
464 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
465 struct bio
*mbio
= r1_bio
->master_bio
;
466 pr_debug("raid1: behind end write sectors"
468 (unsigned long long) mbio
->bi_iter
.bi_sector
,
469 (unsigned long long) bio_end_sector(mbio
) - 1);
470 call_bio_endio(r1_bio
);
474 if (r1_bio
->bios
[mirror
] == NULL
)
475 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
,
479 * Let's see if all mirrored write operations have finished
482 r1_bio_write_done(r1_bio
);
490 * This routine returns the disk from which the requested read should
491 * be done. There is a per-array 'next expected sequential IO' sector
492 * number - if this matches on the next IO then we use the last disk.
493 * There is also a per-disk 'last know head position' sector that is
494 * maintained from IRQ contexts, both the normal and the resync IO
495 * completion handlers update this position correctly. If there is no
496 * perfect sequential match then we pick the disk whose head is closest.
498 * If there are 2 mirrors in the same 2 devices, performance degrades
499 * because position is mirror, not device based.
501 * The rdev for the device selected will have nr_pending incremented.
503 static int read_balance(struct r1conf
*conf
, struct r1bio
*r1_bio
, int *max_sectors
)
505 const sector_t this_sector
= r1_bio
->sector
;
507 int best_good_sectors
;
508 int best_disk
, best_dist_disk
, best_pending_disk
;
512 unsigned int min_pending
;
513 struct md_rdev
*rdev
;
515 int choose_next_idle
;
519 * Check if we can balance. We can balance on the whole
520 * device if no resync is going on, or below the resync window.
521 * We take the first readable disk when above the resync window.
524 sectors
= r1_bio
->sectors
;
527 best_dist
= MaxSector
;
528 best_pending_disk
= -1;
529 min_pending
= UINT_MAX
;
530 best_good_sectors
= 0;
532 choose_next_idle
= 0;
534 if (conf
->mddev
->recovery_cp
< MaxSector
&&
535 (this_sector
+ sectors
>= conf
->next_resync
))
540 for (disk
= 0 ; disk
< conf
->raid_disks
* 2 ; disk
++) {
544 unsigned int pending
;
547 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
548 if (r1_bio
->bios
[disk
] == IO_BLOCKED
550 || test_bit(Unmerged
, &rdev
->flags
)
551 || test_bit(Faulty
, &rdev
->flags
))
553 if (!test_bit(In_sync
, &rdev
->flags
) &&
554 rdev
->recovery_offset
< this_sector
+ sectors
)
556 if (test_bit(WriteMostly
, &rdev
->flags
)) {
557 /* Don't balance among write-mostly, just
558 * use the first as a last resort */
560 if (is_badblock(rdev
, this_sector
, sectors
,
561 &first_bad
, &bad_sectors
)) {
562 if (first_bad
< this_sector
)
563 /* Cannot use this */
565 best_good_sectors
= first_bad
- this_sector
;
567 best_good_sectors
= sectors
;
572 /* This is a reasonable device to use. It might
575 if (is_badblock(rdev
, this_sector
, sectors
,
576 &first_bad
, &bad_sectors
)) {
577 if (best_dist
< MaxSector
)
578 /* already have a better device */
580 if (first_bad
<= this_sector
) {
581 /* cannot read here. If this is the 'primary'
582 * device, then we must not read beyond
583 * bad_sectors from another device..
585 bad_sectors
-= (this_sector
- first_bad
);
586 if (choose_first
&& sectors
> bad_sectors
)
587 sectors
= bad_sectors
;
588 if (best_good_sectors
> sectors
)
589 best_good_sectors
= sectors
;
592 sector_t good_sectors
= first_bad
- this_sector
;
593 if (good_sectors
> best_good_sectors
) {
594 best_good_sectors
= good_sectors
;
602 best_good_sectors
= sectors
;
604 nonrot
= blk_queue_nonrot(bdev_get_queue(rdev
->bdev
));
605 has_nonrot_disk
|= nonrot
;
606 pending
= atomic_read(&rdev
->nr_pending
);
607 dist
= abs(this_sector
- conf
->mirrors
[disk
].head_position
);
612 /* Don't change to another disk for sequential reads */
613 if (conf
->mirrors
[disk
].next_seq_sect
== this_sector
615 int opt_iosize
= bdev_io_opt(rdev
->bdev
) >> 9;
616 struct raid1_info
*mirror
= &conf
->mirrors
[disk
];
620 * If buffered sequential IO size exceeds optimal
621 * iosize, check if there is idle disk. If yes, choose
622 * the idle disk. read_balance could already choose an
623 * idle disk before noticing it's a sequential IO in
624 * this disk. This doesn't matter because this disk
625 * will idle, next time it will be utilized after the
626 * first disk has IO size exceeds optimal iosize. In
627 * this way, iosize of the first disk will be optimal
628 * iosize at least. iosize of the second disk might be
629 * small, but not a big deal since when the second disk
630 * starts IO, the first disk is likely still busy.
632 if (nonrot
&& opt_iosize
> 0 &&
633 mirror
->seq_start
!= MaxSector
&&
634 mirror
->next_seq_sect
> opt_iosize
&&
635 mirror
->next_seq_sect
- opt_iosize
>=
637 choose_next_idle
= 1;
642 /* If device is idle, use it */
648 if (choose_next_idle
)
651 if (min_pending
> pending
) {
652 min_pending
= pending
;
653 best_pending_disk
= disk
;
656 if (dist
< best_dist
) {
658 best_dist_disk
= disk
;
663 * If all disks are rotational, choose the closest disk. If any disk is
664 * non-rotational, choose the disk with less pending request even the
665 * disk is rotational, which might/might not be optimal for raids with
666 * mixed ratation/non-rotational disks depending on workload.
668 if (best_disk
== -1) {
670 best_disk
= best_pending_disk
;
672 best_disk
= best_dist_disk
;
675 if (best_disk
>= 0) {
676 rdev
= rcu_dereference(conf
->mirrors
[best_disk
].rdev
);
679 atomic_inc(&rdev
->nr_pending
);
680 if (test_bit(Faulty
, &rdev
->flags
)) {
681 /* cannot risk returning a device that failed
682 * before we inc'ed nr_pending
684 rdev_dec_pending(rdev
, conf
->mddev
);
687 sectors
= best_good_sectors
;
689 if (conf
->mirrors
[best_disk
].next_seq_sect
!= this_sector
)
690 conf
->mirrors
[best_disk
].seq_start
= this_sector
;
692 conf
->mirrors
[best_disk
].next_seq_sect
= this_sector
+ sectors
;
695 *max_sectors
= sectors
;
700 static int raid1_mergeable_bvec(struct request_queue
*q
,
701 struct bvec_merge_data
*bvm
,
702 struct bio_vec
*biovec
)
704 struct mddev
*mddev
= q
->queuedata
;
705 struct r1conf
*conf
= mddev
->private;
706 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
707 int max
= biovec
->bv_len
;
709 if (mddev
->merge_check_needed
) {
712 for (disk
= 0; disk
< conf
->raid_disks
* 2; disk
++) {
713 struct md_rdev
*rdev
= rcu_dereference(
714 conf
->mirrors
[disk
].rdev
);
715 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
716 struct request_queue
*q
=
717 bdev_get_queue(rdev
->bdev
);
718 if (q
->merge_bvec_fn
) {
719 bvm
->bi_sector
= sector
+
721 bvm
->bi_bdev
= rdev
->bdev
;
722 max
= min(max
, q
->merge_bvec_fn(
733 int md_raid1_congested(struct mddev
*mddev
, int bits
)
735 struct r1conf
*conf
= mddev
->private;
738 if ((bits
& (1 << BDI_async_congested
)) &&
739 conf
->pending_count
>= max_queued_requests
)
743 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
744 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
745 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
746 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
750 /* Note the '|| 1' - when read_balance prefers
751 * non-congested targets, it can be removed
753 if ((bits
& (1<<BDI_async_congested
)) || 1)
754 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
756 ret
&= bdi_congested(&q
->backing_dev_info
, bits
);
762 EXPORT_SYMBOL_GPL(md_raid1_congested
);
764 static int raid1_congested(void *data
, int bits
)
766 struct mddev
*mddev
= data
;
768 return mddev_congested(mddev
, bits
) ||
769 md_raid1_congested(mddev
, bits
);
772 static void flush_pending_writes(struct r1conf
*conf
)
774 /* Any writes that have been queued but are awaiting
775 * bitmap updates get flushed here.
777 spin_lock_irq(&conf
->device_lock
);
779 if (conf
->pending_bio_list
.head
) {
781 bio
= bio_list_get(&conf
->pending_bio_list
);
782 conf
->pending_count
= 0;
783 spin_unlock_irq(&conf
->device_lock
);
784 /* flush any pending bitmap writes to
785 * disk before proceeding w/ I/O */
786 bitmap_unplug(conf
->mddev
->bitmap
);
787 wake_up(&conf
->wait_barrier
);
789 while (bio
) { /* submit pending writes */
790 struct bio
*next
= bio
->bi_next
;
792 if (unlikely((bio
->bi_rw
& REQ_DISCARD
) &&
793 !blk_queue_discard(bdev_get_queue(bio
->bi_bdev
))))
797 generic_make_request(bio
);
801 spin_unlock_irq(&conf
->device_lock
);
805 * Sometimes we need to suspend IO while we do something else,
806 * either some resync/recovery, or reconfigure the array.
807 * To do this we raise a 'barrier'.
808 * The 'barrier' is a counter that can be raised multiple times
809 * to count how many activities are happening which preclude
811 * We can only raise the barrier if there is no pending IO.
812 * i.e. if nr_pending == 0.
813 * We choose only to raise the barrier if no-one is waiting for the
814 * barrier to go down. This means that as soon as an IO request
815 * is ready, no other operations which require a barrier will start
816 * until the IO request has had a chance.
818 * So: regular IO calls 'wait_barrier'. When that returns there
819 * is no backgroup IO happening, It must arrange to call
820 * allow_barrier when it has finished its IO.
821 * backgroup IO calls must call raise_barrier. Once that returns
822 * there is no normal IO happeing. It must arrange to call
823 * lower_barrier when the particular background IO completes.
825 static void raise_barrier(struct r1conf
*conf
)
827 spin_lock_irq(&conf
->resync_lock
);
829 /* Wait until no block IO is waiting */
830 wait_event_lock_irq(conf
->wait_barrier
, !conf
->nr_waiting
,
833 /* block any new IO from starting */
836 /* For these conditions we must wait:
837 * A: while the array is in frozen state
838 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
839 * the max count which allowed.
840 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
841 * next resync will reach to the window which normal bios are
844 wait_event_lock_irq(conf
->wait_barrier
,
845 !conf
->array_frozen
&&
846 conf
->barrier
< RESYNC_DEPTH
&&
847 (conf
->start_next_window
>=
848 conf
->next_resync
+ RESYNC_SECTORS
),
851 spin_unlock_irq(&conf
->resync_lock
);
854 static void lower_barrier(struct r1conf
*conf
)
857 BUG_ON(conf
->barrier
<= 0);
858 spin_lock_irqsave(&conf
->resync_lock
, flags
);
860 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
861 wake_up(&conf
->wait_barrier
);
864 static bool need_to_wait_for_sync(struct r1conf
*conf
, struct bio
*bio
)
868 if (conf
->array_frozen
|| !bio
)
870 else if (conf
->barrier
&& bio_data_dir(bio
) == WRITE
) {
871 if (conf
->next_resync
< RESYNC_WINDOW_SECTORS
)
873 else if ((conf
->next_resync
- RESYNC_WINDOW_SECTORS
874 >= bio_end_sector(bio
)) ||
875 (conf
->next_resync
+ NEXT_NORMALIO_DISTANCE
876 <= bio
->bi_iter
.bi_sector
))
885 static sector_t
wait_barrier(struct r1conf
*conf
, struct bio
*bio
)
889 spin_lock_irq(&conf
->resync_lock
);
890 if (need_to_wait_for_sync(conf
, bio
)) {
892 /* Wait for the barrier to drop.
893 * However if there are already pending
894 * requests (preventing the barrier from
895 * rising completely), and the
896 * pre-process bio queue isn't empty,
897 * then don't wait, as we need to empty
898 * that queue to get the nr_pending
901 wait_event_lock_irq(conf
->wait_barrier
,
902 !conf
->array_frozen
&&
904 ((conf
->start_next_window
<
905 conf
->next_resync
+ RESYNC_SECTORS
) &&
907 !bio_list_empty(current
->bio_list
))),
912 if (bio
&& bio_data_dir(bio
) == WRITE
) {
913 if (conf
->next_resync
+ NEXT_NORMALIO_DISTANCE
914 <= bio
->bi_iter
.bi_sector
) {
915 if (conf
->start_next_window
== MaxSector
)
916 conf
->start_next_window
=
918 NEXT_NORMALIO_DISTANCE
;
920 if ((conf
->start_next_window
+ NEXT_NORMALIO_DISTANCE
)
921 <= bio
->bi_iter
.bi_sector
)
922 conf
->next_window_requests
++;
924 conf
->current_window_requests
++;
925 sector
= conf
->start_next_window
;
930 spin_unlock_irq(&conf
->resync_lock
);
934 static void allow_barrier(struct r1conf
*conf
, sector_t start_next_window
,
939 spin_lock_irqsave(&conf
->resync_lock
, flags
);
941 if (start_next_window
) {
942 if (start_next_window
== conf
->start_next_window
) {
943 if (conf
->start_next_window
+ NEXT_NORMALIO_DISTANCE
945 conf
->next_window_requests
--;
947 conf
->current_window_requests
--;
949 conf
->current_window_requests
--;
951 if (!conf
->current_window_requests
) {
952 if (conf
->next_window_requests
) {
953 conf
->current_window_requests
=
954 conf
->next_window_requests
;
955 conf
->next_window_requests
= 0;
956 conf
->start_next_window
+=
957 NEXT_NORMALIO_DISTANCE
;
959 conf
->start_next_window
= MaxSector
;
962 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
963 wake_up(&conf
->wait_barrier
);
966 static void freeze_array(struct r1conf
*conf
, int extra
)
968 /* stop syncio and normal IO and wait for everything to
970 * We wait until nr_pending match nr_queued+extra
971 * This is called in the context of one normal IO request
972 * that has failed. Thus any sync request that might be pending
973 * will be blocked by nr_pending, and we need to wait for
974 * pending IO requests to complete or be queued for re-try.
975 * Thus the number queued (nr_queued) plus this request (extra)
976 * must match the number of pending IOs (nr_pending) before
979 spin_lock_irq(&conf
->resync_lock
);
980 conf
->array_frozen
= 1;
981 wait_event_lock_irq_cmd(conf
->wait_barrier
,
982 conf
->nr_pending
== conf
->nr_queued
+extra
,
984 flush_pending_writes(conf
));
985 spin_unlock_irq(&conf
->resync_lock
);
987 static void unfreeze_array(struct r1conf
*conf
)
989 /* reverse the effect of the freeze */
990 spin_lock_irq(&conf
->resync_lock
);
991 conf
->array_frozen
= 0;
992 wake_up(&conf
->wait_barrier
);
993 spin_unlock_irq(&conf
->resync_lock
);
997 /* duplicate the data pages for behind I/O
999 static void alloc_behind_pages(struct bio
*bio
, struct r1bio
*r1_bio
)
1002 struct bio_vec
*bvec
;
1003 struct bio_vec
*bvecs
= kzalloc(bio
->bi_vcnt
* sizeof(struct bio_vec
),
1005 if (unlikely(!bvecs
))
1008 bio_for_each_segment_all(bvec
, bio
, i
) {
1010 bvecs
[i
].bv_page
= alloc_page(GFP_NOIO
);
1011 if (unlikely(!bvecs
[i
].bv_page
))
1013 memcpy(kmap(bvecs
[i
].bv_page
) + bvec
->bv_offset
,
1014 kmap(bvec
->bv_page
) + bvec
->bv_offset
, bvec
->bv_len
);
1015 kunmap(bvecs
[i
].bv_page
);
1016 kunmap(bvec
->bv_page
);
1018 r1_bio
->behind_bvecs
= bvecs
;
1019 r1_bio
->behind_page_count
= bio
->bi_vcnt
;
1020 set_bit(R1BIO_BehindIO
, &r1_bio
->state
);
1024 for (i
= 0; i
< bio
->bi_vcnt
; i
++)
1025 if (bvecs
[i
].bv_page
)
1026 put_page(bvecs
[i
].bv_page
);
1028 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1029 bio
->bi_iter
.bi_size
);
1032 struct raid1_plug_cb
{
1033 struct blk_plug_cb cb
;
1034 struct bio_list pending
;
1038 static void raid1_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
1040 struct raid1_plug_cb
*plug
= container_of(cb
, struct raid1_plug_cb
,
1042 struct mddev
*mddev
= plug
->cb
.data
;
1043 struct r1conf
*conf
= mddev
->private;
1046 if (from_schedule
|| current
->bio_list
) {
1047 spin_lock_irq(&conf
->device_lock
);
1048 bio_list_merge(&conf
->pending_bio_list
, &plug
->pending
);
1049 conf
->pending_count
+= plug
->pending_cnt
;
1050 spin_unlock_irq(&conf
->device_lock
);
1051 wake_up(&conf
->wait_barrier
);
1052 md_wakeup_thread(mddev
->thread
);
1057 /* we aren't scheduling, so we can do the write-out directly. */
1058 bio
= bio_list_get(&plug
->pending
);
1059 bitmap_unplug(mddev
->bitmap
);
1060 wake_up(&conf
->wait_barrier
);
1062 while (bio
) { /* submit pending writes */
1063 struct bio
*next
= bio
->bi_next
;
1064 bio
->bi_next
= NULL
;
1065 if (unlikely((bio
->bi_rw
& REQ_DISCARD
) &&
1066 !blk_queue_discard(bdev_get_queue(bio
->bi_bdev
))))
1067 /* Just ignore it */
1070 generic_make_request(bio
);
1076 static void make_request(struct mddev
*mddev
, struct bio
* bio
)
1078 struct r1conf
*conf
= mddev
->private;
1079 struct raid1_info
*mirror
;
1080 struct r1bio
*r1_bio
;
1081 struct bio
*read_bio
;
1083 struct bitmap
*bitmap
;
1084 unsigned long flags
;
1085 const int rw
= bio_data_dir(bio
);
1086 const unsigned long do_sync
= (bio
->bi_rw
& REQ_SYNC
);
1087 const unsigned long do_flush_fua
= (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
));
1088 const unsigned long do_discard
= (bio
->bi_rw
1089 & (REQ_DISCARD
| REQ_SECURE
));
1090 const unsigned long do_same
= (bio
->bi_rw
& REQ_WRITE_SAME
);
1091 struct md_rdev
*blocked_rdev
;
1092 struct blk_plug_cb
*cb
;
1093 struct raid1_plug_cb
*plug
= NULL
;
1095 int sectors_handled
;
1097 sector_t start_next_window
;
1100 * Register the new request and wait if the reconstruction
1101 * thread has put up a bar for new requests.
1102 * Continue immediately if no resync is active currently.
1105 md_write_start(mddev
, bio
); /* wait on superblock update early */
1107 if (bio_data_dir(bio
) == WRITE
&&
1108 bio_end_sector(bio
) > mddev
->suspend_lo
&&
1109 bio
->bi_iter
.bi_sector
< mddev
->suspend_hi
) {
1110 /* As the suspend_* range is controlled by
1111 * userspace, we want an interruptible
1116 flush_signals(current
);
1117 prepare_to_wait(&conf
->wait_barrier
,
1118 &w
, TASK_INTERRUPTIBLE
);
1119 if (bio_end_sector(bio
) <= mddev
->suspend_lo
||
1120 bio
->bi_iter
.bi_sector
>= mddev
->suspend_hi
)
1124 finish_wait(&conf
->wait_barrier
, &w
);
1127 start_next_window
= wait_barrier(conf
, bio
);
1129 bitmap
= mddev
->bitmap
;
1132 * make_request() can abort the operation when READA is being
1133 * used and no empty request is available.
1136 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1138 r1_bio
->master_bio
= bio
;
1139 r1_bio
->sectors
= bio_sectors(bio
);
1141 r1_bio
->mddev
= mddev
;
1142 r1_bio
->sector
= bio
->bi_iter
.bi_sector
;
1144 /* We might need to issue multiple reads to different
1145 * devices if there are bad blocks around, so we keep
1146 * track of the number of reads in bio->bi_phys_segments.
1147 * If this is 0, there is only one r1_bio and no locking
1148 * will be needed when requests complete. If it is
1149 * non-zero, then it is the number of not-completed requests.
1151 bio
->bi_phys_segments
= 0;
1152 clear_bit(BIO_SEG_VALID
, &bio
->bi_flags
);
1156 * read balancing logic:
1161 rdisk
= read_balance(conf
, r1_bio
, &max_sectors
);
1164 /* couldn't find anywhere to read from */
1165 raid_end_bio_io(r1_bio
);
1168 mirror
= conf
->mirrors
+ rdisk
;
1170 if (test_bit(WriteMostly
, &mirror
->rdev
->flags
) &&
1172 /* Reading from a write-mostly device must
1173 * take care not to over-take any writes
1176 wait_event(bitmap
->behind_wait
,
1177 atomic_read(&bitmap
->behind_writes
) == 0);
1179 r1_bio
->read_disk
= rdisk
;
1181 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1182 bio_trim(read_bio
, r1_bio
->sector
- bio
->bi_iter
.bi_sector
,
1185 r1_bio
->bios
[rdisk
] = read_bio
;
1187 read_bio
->bi_iter
.bi_sector
= r1_bio
->sector
+
1188 mirror
->rdev
->data_offset
;
1189 read_bio
->bi_bdev
= mirror
->rdev
->bdev
;
1190 read_bio
->bi_end_io
= raid1_end_read_request
;
1191 read_bio
->bi_rw
= READ
| do_sync
;
1192 read_bio
->bi_private
= r1_bio
;
1194 if (max_sectors
< r1_bio
->sectors
) {
1195 /* could not read all from this device, so we will
1196 * need another r1_bio.
1199 sectors_handled
= (r1_bio
->sector
+ max_sectors
1200 - bio
->bi_iter
.bi_sector
);
1201 r1_bio
->sectors
= max_sectors
;
1202 spin_lock_irq(&conf
->device_lock
);
1203 if (bio
->bi_phys_segments
== 0)
1204 bio
->bi_phys_segments
= 2;
1206 bio
->bi_phys_segments
++;
1207 spin_unlock_irq(&conf
->device_lock
);
1208 /* Cannot call generic_make_request directly
1209 * as that will be queued in __make_request
1210 * and subsequent mempool_alloc might block waiting
1211 * for it. So hand bio over to raid1d.
1213 reschedule_retry(r1_bio
);
1215 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1217 r1_bio
->master_bio
= bio
;
1218 r1_bio
->sectors
= bio_sectors(bio
) - sectors_handled
;
1220 r1_bio
->mddev
= mddev
;
1221 r1_bio
->sector
= bio
->bi_iter
.bi_sector
+
1225 generic_make_request(read_bio
);
1232 if (conf
->pending_count
>= max_queued_requests
) {
1233 md_wakeup_thread(mddev
->thread
);
1234 wait_event(conf
->wait_barrier
,
1235 conf
->pending_count
< max_queued_requests
);
1237 /* first select target devices under rcu_lock and
1238 * inc refcount on their rdev. Record them by setting
1240 * If there are known/acknowledged bad blocks on any device on
1241 * which we have seen a write error, we want to avoid writing those
1243 * This potentially requires several writes to write around
1244 * the bad blocks. Each set of writes gets it's own r1bio
1245 * with a set of bios attached.
1248 disks
= conf
->raid_disks
* 2;
1250 r1_bio
->start_next_window
= start_next_window
;
1251 blocked_rdev
= NULL
;
1253 max_sectors
= r1_bio
->sectors
;
1254 for (i
= 0; i
< disks
; i
++) {
1255 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1256 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1257 atomic_inc(&rdev
->nr_pending
);
1258 blocked_rdev
= rdev
;
1261 r1_bio
->bios
[i
] = NULL
;
1262 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)
1263 || test_bit(Unmerged
, &rdev
->flags
)) {
1264 if (i
< conf
->raid_disks
)
1265 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
1269 atomic_inc(&rdev
->nr_pending
);
1270 if (test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1275 is_bad
= is_badblock(rdev
, r1_bio
->sector
,
1277 &first_bad
, &bad_sectors
);
1279 /* mustn't write here until the bad block is
1281 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1282 blocked_rdev
= rdev
;
1285 if (is_bad
&& first_bad
<= r1_bio
->sector
) {
1286 /* Cannot write here at all */
1287 bad_sectors
-= (r1_bio
->sector
- first_bad
);
1288 if (bad_sectors
< max_sectors
)
1289 /* mustn't write more than bad_sectors
1290 * to other devices yet
1292 max_sectors
= bad_sectors
;
1293 rdev_dec_pending(rdev
, mddev
);
1294 /* We don't set R1BIO_Degraded as that
1295 * only applies if the disk is
1296 * missing, so it might be re-added,
1297 * and we want to know to recover this
1299 * In this case the device is here,
1300 * and the fact that this chunk is not
1301 * in-sync is recorded in the bad
1307 int good_sectors
= first_bad
- r1_bio
->sector
;
1308 if (good_sectors
< max_sectors
)
1309 max_sectors
= good_sectors
;
1312 r1_bio
->bios
[i
] = bio
;
1316 if (unlikely(blocked_rdev
)) {
1317 /* Wait for this device to become unblocked */
1319 sector_t old
= start_next_window
;
1321 for (j
= 0; j
< i
; j
++)
1322 if (r1_bio
->bios
[j
])
1323 rdev_dec_pending(conf
->mirrors
[j
].rdev
, mddev
);
1325 allow_barrier(conf
, start_next_window
, bio
->bi_iter
.bi_sector
);
1326 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1327 start_next_window
= wait_barrier(conf
, bio
);
1329 * We must make sure the multi r1bios of bio have
1330 * the same value of bi_phys_segments
1332 if (bio
->bi_phys_segments
&& old
&&
1333 old
!= start_next_window
)
1334 /* Wait for the former r1bio(s) to complete */
1335 wait_event(conf
->wait_barrier
,
1336 bio
->bi_phys_segments
== 1);
1340 if (max_sectors
< r1_bio
->sectors
) {
1341 /* We are splitting this write into multiple parts, so
1342 * we need to prepare for allocating another r1_bio.
1344 r1_bio
->sectors
= max_sectors
;
1345 spin_lock_irq(&conf
->device_lock
);
1346 if (bio
->bi_phys_segments
== 0)
1347 bio
->bi_phys_segments
= 2;
1349 bio
->bi_phys_segments
++;
1350 spin_unlock_irq(&conf
->device_lock
);
1352 sectors_handled
= r1_bio
->sector
+ max_sectors
- bio
->bi_iter
.bi_sector
;
1354 atomic_set(&r1_bio
->remaining
, 1);
1355 atomic_set(&r1_bio
->behind_remaining
, 0);
1358 for (i
= 0; i
< disks
; i
++) {
1360 if (!r1_bio
->bios
[i
])
1363 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1364 bio_trim(mbio
, r1_bio
->sector
- bio
->bi_iter
.bi_sector
, max_sectors
);
1368 * Not if there are too many, or cannot
1369 * allocate memory, or a reader on WriteMostly
1370 * is waiting for behind writes to flush */
1372 (atomic_read(&bitmap
->behind_writes
)
1373 < mddev
->bitmap_info
.max_write_behind
) &&
1374 !waitqueue_active(&bitmap
->behind_wait
))
1375 alloc_behind_pages(mbio
, r1_bio
);
1377 bitmap_startwrite(bitmap
, r1_bio
->sector
,
1379 test_bit(R1BIO_BehindIO
,
1383 if (r1_bio
->behind_bvecs
) {
1384 struct bio_vec
*bvec
;
1388 * We trimmed the bio, so _all is legit
1390 bio_for_each_segment_all(bvec
, mbio
, j
)
1391 bvec
->bv_page
= r1_bio
->behind_bvecs
[j
].bv_page
;
1392 if (test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
))
1393 atomic_inc(&r1_bio
->behind_remaining
);
1396 r1_bio
->bios
[i
] = mbio
;
1398 mbio
->bi_iter
.bi_sector
= (r1_bio
->sector
+
1399 conf
->mirrors
[i
].rdev
->data_offset
);
1400 mbio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1401 mbio
->bi_end_io
= raid1_end_write_request
;
1403 WRITE
| do_flush_fua
| do_sync
| do_discard
| do_same
;
1404 mbio
->bi_private
= r1_bio
;
1406 atomic_inc(&r1_bio
->remaining
);
1408 cb
= blk_check_plugged(raid1_unplug
, mddev
, sizeof(*plug
));
1410 plug
= container_of(cb
, struct raid1_plug_cb
, cb
);
1413 spin_lock_irqsave(&conf
->device_lock
, flags
);
1415 bio_list_add(&plug
->pending
, mbio
);
1416 plug
->pending_cnt
++;
1418 bio_list_add(&conf
->pending_bio_list
, mbio
);
1419 conf
->pending_count
++;
1421 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1423 md_wakeup_thread(mddev
->thread
);
1425 /* Mustn't call r1_bio_write_done before this next test,
1426 * as it could result in the bio being freed.
1428 if (sectors_handled
< bio_sectors(bio
)) {
1429 r1_bio_write_done(r1_bio
);
1430 /* We need another r1_bio. It has already been counted
1431 * in bio->bi_phys_segments
1433 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1434 r1_bio
->master_bio
= bio
;
1435 r1_bio
->sectors
= bio_sectors(bio
) - sectors_handled
;
1437 r1_bio
->mddev
= mddev
;
1438 r1_bio
->sector
= bio
->bi_iter
.bi_sector
+ sectors_handled
;
1442 r1_bio_write_done(r1_bio
);
1444 /* In case raid1d snuck in to freeze_array */
1445 wake_up(&conf
->wait_barrier
);
1448 static void status(struct seq_file
*seq
, struct mddev
*mddev
)
1450 struct r1conf
*conf
= mddev
->private;
1453 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
1454 conf
->raid_disks
- mddev
->degraded
);
1456 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1457 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1458 seq_printf(seq
, "%s",
1459 rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
1462 seq_printf(seq
, "]");
1466 static void error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1468 char b
[BDEVNAME_SIZE
];
1469 struct r1conf
*conf
= mddev
->private;
1472 * If it is not operational, then we have already marked it as dead
1473 * else if it is the last working disks, ignore the error, let the
1474 * next level up know.
1475 * else mark the drive as failed
1477 if (test_bit(In_sync
, &rdev
->flags
)
1478 && (conf
->raid_disks
- mddev
->degraded
) == 1) {
1480 * Don't fail the drive, act as though we were just a
1481 * normal single drive.
1482 * However don't try a recovery from this drive as
1483 * it is very likely to fail.
1485 conf
->recovery_disabled
= mddev
->recovery_disabled
;
1488 set_bit(Blocked
, &rdev
->flags
);
1489 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1490 unsigned long flags
;
1491 spin_lock_irqsave(&conf
->device_lock
, flags
);
1493 set_bit(Faulty
, &rdev
->flags
);
1494 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1496 * if recovery is running, make sure it aborts.
1498 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1500 set_bit(Faulty
, &rdev
->flags
);
1501 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1503 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1504 "md/raid1:%s: Operation continuing on %d devices.\n",
1505 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1506 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
1509 static void print_conf(struct r1conf
*conf
)
1513 printk(KERN_DEBUG
"RAID1 conf printout:\n");
1515 printk(KERN_DEBUG
"(!conf)\n");
1518 printk(KERN_DEBUG
" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1522 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1523 char b
[BDEVNAME_SIZE
];
1524 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1526 printk(KERN_DEBUG
" disk %d, wo:%d, o:%d, dev:%s\n",
1527 i
, !test_bit(In_sync
, &rdev
->flags
),
1528 !test_bit(Faulty
, &rdev
->flags
),
1529 bdevname(rdev
->bdev
,b
));
1534 static void close_sync(struct r1conf
*conf
)
1536 wait_barrier(conf
, NULL
);
1537 allow_barrier(conf
, 0, 0);
1539 mempool_destroy(conf
->r1buf_pool
);
1540 conf
->r1buf_pool
= NULL
;
1542 conf
->next_resync
= 0;
1543 conf
->start_next_window
= MaxSector
;
1546 static int raid1_spare_active(struct mddev
*mddev
)
1549 struct r1conf
*conf
= mddev
->private;
1551 unsigned long flags
;
1554 * Find all failed disks within the RAID1 configuration
1555 * and mark them readable.
1556 * Called under mddev lock, so rcu protection not needed.
1558 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1559 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
1560 struct md_rdev
*repl
= conf
->mirrors
[conf
->raid_disks
+ i
].rdev
;
1562 && repl
->recovery_offset
== MaxSector
1563 && !test_bit(Faulty
, &repl
->flags
)
1564 && !test_and_set_bit(In_sync
, &repl
->flags
)) {
1565 /* replacement has just become active */
1567 !test_and_clear_bit(In_sync
, &rdev
->flags
))
1570 /* Replaced device not technically
1571 * faulty, but we need to be sure
1572 * it gets removed and never re-added
1574 set_bit(Faulty
, &rdev
->flags
);
1575 sysfs_notify_dirent_safe(
1580 && rdev
->recovery_offset
== MaxSector
1581 && !test_bit(Faulty
, &rdev
->flags
)
1582 && !test_and_set_bit(In_sync
, &rdev
->flags
)) {
1584 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
1587 spin_lock_irqsave(&conf
->device_lock
, flags
);
1588 mddev
->degraded
-= count
;
1589 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1596 static int raid1_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1598 struct r1conf
*conf
= mddev
->private;
1601 struct raid1_info
*p
;
1603 int last
= conf
->raid_disks
- 1;
1604 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
1606 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
1609 if (rdev
->raid_disk
>= 0)
1610 first
= last
= rdev
->raid_disk
;
1612 if (q
->merge_bvec_fn
) {
1613 set_bit(Unmerged
, &rdev
->flags
);
1614 mddev
->merge_check_needed
= 1;
1617 for (mirror
= first
; mirror
<= last
; mirror
++) {
1618 p
= conf
->mirrors
+mirror
;
1622 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1623 rdev
->data_offset
<< 9);
1625 p
->head_position
= 0;
1626 rdev
->raid_disk
= mirror
;
1628 /* As all devices are equivalent, we don't need a full recovery
1629 * if this was recently any drive of the array
1631 if (rdev
->saved_raid_disk
< 0)
1633 rcu_assign_pointer(p
->rdev
, rdev
);
1636 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
1637 p
[conf
->raid_disks
].rdev
== NULL
) {
1638 /* Add this device as a replacement */
1639 clear_bit(In_sync
, &rdev
->flags
);
1640 set_bit(Replacement
, &rdev
->flags
);
1641 rdev
->raid_disk
= mirror
;
1644 rcu_assign_pointer(p
[conf
->raid_disks
].rdev
, rdev
);
1648 if (err
== 0 && test_bit(Unmerged
, &rdev
->flags
)) {
1649 /* Some requests might not have seen this new
1650 * merge_bvec_fn. We must wait for them to complete
1651 * before merging the device fully.
1652 * First we make sure any code which has tested
1653 * our function has submitted the request, then
1654 * we wait for all outstanding requests to complete.
1656 synchronize_sched();
1657 freeze_array(conf
, 0);
1658 unfreeze_array(conf
);
1659 clear_bit(Unmerged
, &rdev
->flags
);
1661 md_integrity_add_rdev(rdev
, mddev
);
1662 if (mddev
->queue
&& blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
1663 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, mddev
->queue
);
1668 static int raid1_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1670 struct r1conf
*conf
= mddev
->private;
1672 int number
= rdev
->raid_disk
;
1673 struct raid1_info
*p
= conf
->mirrors
+ number
;
1675 if (rdev
!= p
->rdev
)
1676 p
= conf
->mirrors
+ conf
->raid_disks
+ number
;
1679 if (rdev
== p
->rdev
) {
1680 if (test_bit(In_sync
, &rdev
->flags
) ||
1681 atomic_read(&rdev
->nr_pending
)) {
1685 /* Only remove non-faulty devices if recovery
1688 if (!test_bit(Faulty
, &rdev
->flags
) &&
1689 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
1690 mddev
->degraded
< conf
->raid_disks
) {
1696 if (atomic_read(&rdev
->nr_pending
)) {
1697 /* lost the race, try later */
1701 } else if (conf
->mirrors
[conf
->raid_disks
+ number
].rdev
) {
1702 /* We just removed a device that is being replaced.
1703 * Move down the replacement. We drain all IO before
1704 * doing this to avoid confusion.
1706 struct md_rdev
*repl
=
1707 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
;
1708 freeze_array(conf
, 0);
1709 clear_bit(Replacement
, &repl
->flags
);
1711 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
= NULL
;
1712 unfreeze_array(conf
);
1713 clear_bit(WantReplacement
, &rdev
->flags
);
1715 clear_bit(WantReplacement
, &rdev
->flags
);
1716 err
= md_integrity_register(mddev
);
1725 static void end_sync_read(struct bio
*bio
, int error
)
1727 struct r1bio
*r1_bio
= bio
->bi_private
;
1729 update_head_pos(r1_bio
->read_disk
, r1_bio
);
1732 * we have read a block, now it needs to be re-written,
1733 * or re-read if the read failed.
1734 * We don't do much here, just schedule handling by raid1d
1736 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1737 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1739 if (atomic_dec_and_test(&r1_bio
->remaining
))
1740 reschedule_retry(r1_bio
);
1743 static void end_sync_write(struct bio
*bio
, int error
)
1745 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1746 struct r1bio
*r1_bio
= bio
->bi_private
;
1747 struct mddev
*mddev
= r1_bio
->mddev
;
1748 struct r1conf
*conf
= mddev
->private;
1753 mirror
= find_bio_disk(r1_bio
, bio
);
1756 sector_t sync_blocks
= 0;
1757 sector_t s
= r1_bio
->sector
;
1758 long sectors_to_go
= r1_bio
->sectors
;
1759 /* make sure these bits doesn't get cleared. */
1761 bitmap_end_sync(mddev
->bitmap
, s
,
1764 sectors_to_go
-= sync_blocks
;
1765 } while (sectors_to_go
> 0);
1766 set_bit(WriteErrorSeen
,
1767 &conf
->mirrors
[mirror
].rdev
->flags
);
1768 if (!test_and_set_bit(WantReplacement
,
1769 &conf
->mirrors
[mirror
].rdev
->flags
))
1770 set_bit(MD_RECOVERY_NEEDED
, &
1772 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
1773 } else if (is_badblock(conf
->mirrors
[mirror
].rdev
,
1776 &first_bad
, &bad_sectors
) &&
1777 !is_badblock(conf
->mirrors
[r1_bio
->read_disk
].rdev
,
1780 &first_bad
, &bad_sectors
)
1782 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
1784 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1785 int s
= r1_bio
->sectors
;
1786 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
1787 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
1788 reschedule_retry(r1_bio
);
1791 md_done_sync(mddev
, s
, uptodate
);
1796 static int r1_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
1797 int sectors
, struct page
*page
, int rw
)
1799 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, false))
1803 set_bit(WriteErrorSeen
, &rdev
->flags
);
1804 if (!test_and_set_bit(WantReplacement
,
1806 set_bit(MD_RECOVERY_NEEDED
, &
1807 rdev
->mddev
->recovery
);
1809 /* need to record an error - either for the block or the device */
1810 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
1811 md_error(rdev
->mddev
, rdev
);
1815 static int fix_sync_read_error(struct r1bio
*r1_bio
)
1817 /* Try some synchronous reads of other devices to get
1818 * good data, much like with normal read errors. Only
1819 * read into the pages we already have so we don't
1820 * need to re-issue the read request.
1821 * We don't need to freeze the array, because being in an
1822 * active sync request, there is no normal IO, and
1823 * no overlapping syncs.
1824 * We don't need to check is_badblock() again as we
1825 * made sure that anything with a bad block in range
1826 * will have bi_end_io clear.
1828 struct mddev
*mddev
= r1_bio
->mddev
;
1829 struct r1conf
*conf
= mddev
->private;
1830 struct bio
*bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1831 sector_t sect
= r1_bio
->sector
;
1832 int sectors
= r1_bio
->sectors
;
1837 int d
= r1_bio
->read_disk
;
1839 struct md_rdev
*rdev
;
1842 if (s
> (PAGE_SIZE
>>9))
1845 if (r1_bio
->bios
[d
]->bi_end_io
== end_sync_read
) {
1846 /* No rcu protection needed here devices
1847 * can only be removed when no resync is
1848 * active, and resync is currently active
1850 rdev
= conf
->mirrors
[d
].rdev
;
1851 if (sync_page_io(rdev
, sect
, s
<<9,
1852 bio
->bi_io_vec
[idx
].bv_page
,
1859 if (d
== conf
->raid_disks
* 2)
1861 } while (!success
&& d
!= r1_bio
->read_disk
);
1864 char b
[BDEVNAME_SIZE
];
1866 /* Cannot read from anywhere, this block is lost.
1867 * Record a bad block on each device. If that doesn't
1868 * work just disable and interrupt the recovery.
1869 * Don't fail devices as that won't really help.
1871 printk(KERN_ALERT
"md/raid1:%s: %s: unrecoverable I/O read error"
1872 " for block %llu\n",
1874 bdevname(bio
->bi_bdev
, b
),
1875 (unsigned long long)r1_bio
->sector
);
1876 for (d
= 0; d
< conf
->raid_disks
* 2; d
++) {
1877 rdev
= conf
->mirrors
[d
].rdev
;
1878 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
1880 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
1884 conf
->recovery_disabled
=
1885 mddev
->recovery_disabled
;
1886 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1887 md_done_sync(mddev
, r1_bio
->sectors
, 0);
1899 /* write it back and re-read */
1900 while (d
!= r1_bio
->read_disk
) {
1902 d
= conf
->raid_disks
* 2;
1904 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1906 rdev
= conf
->mirrors
[d
].rdev
;
1907 if (r1_sync_page_io(rdev
, sect
, s
,
1908 bio
->bi_io_vec
[idx
].bv_page
,
1910 r1_bio
->bios
[d
]->bi_end_io
= NULL
;
1911 rdev_dec_pending(rdev
, mddev
);
1915 while (d
!= r1_bio
->read_disk
) {
1917 d
= conf
->raid_disks
* 2;
1919 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1921 rdev
= conf
->mirrors
[d
].rdev
;
1922 if (r1_sync_page_io(rdev
, sect
, s
,
1923 bio
->bi_io_vec
[idx
].bv_page
,
1925 atomic_add(s
, &rdev
->corrected_errors
);
1931 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1932 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1936 static int process_checks(struct r1bio
*r1_bio
)
1938 /* We have read all readable devices. If we haven't
1939 * got the block, then there is no hope left.
1940 * If we have, then we want to do a comparison
1941 * and skip the write if everything is the same.
1942 * If any blocks failed to read, then we need to
1943 * attempt an over-write
1945 struct mddev
*mddev
= r1_bio
->mddev
;
1946 struct r1conf
*conf
= mddev
->private;
1951 /* Fix variable parts of all bios */
1952 vcnt
= (r1_bio
->sectors
+ PAGE_SIZE
/ 512 - 1) >> (PAGE_SHIFT
- 9);
1953 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
1957 struct bio
*b
= r1_bio
->bios
[i
];
1958 if (b
->bi_end_io
!= end_sync_read
)
1960 /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1961 uptodate
= test_bit(BIO_UPTODATE
, &b
->bi_flags
);
1964 clear_bit(BIO_UPTODATE
, &b
->bi_flags
);
1966 b
->bi_iter
.bi_size
= r1_bio
->sectors
<< 9;
1967 b
->bi_iter
.bi_sector
= r1_bio
->sector
+
1968 conf
->mirrors
[i
].rdev
->data_offset
;
1969 b
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1970 b
->bi_end_io
= end_sync_read
;
1971 b
->bi_private
= r1_bio
;
1973 size
= b
->bi_iter
.bi_size
;
1974 for (j
= 0; j
< vcnt
; j
++) {
1976 bi
= &b
->bi_io_vec
[j
];
1978 if (size
> PAGE_SIZE
)
1979 bi
->bv_len
= PAGE_SIZE
;
1985 for (primary
= 0; primary
< conf
->raid_disks
* 2; primary
++)
1986 if (r1_bio
->bios
[primary
]->bi_end_io
== end_sync_read
&&
1987 test_bit(BIO_UPTODATE
, &r1_bio
->bios
[primary
]->bi_flags
)) {
1988 r1_bio
->bios
[primary
]->bi_end_io
= NULL
;
1989 rdev_dec_pending(conf
->mirrors
[primary
].rdev
, mddev
);
1992 r1_bio
->read_disk
= primary
;
1993 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
1995 struct bio
*pbio
= r1_bio
->bios
[primary
];
1996 struct bio
*sbio
= r1_bio
->bios
[i
];
1997 int uptodate
= test_bit(BIO_UPTODATE
, &sbio
->bi_flags
);
1999 if (sbio
->bi_end_io
!= end_sync_read
)
2001 /* Now we can 'fixup' the BIO_UPTODATE flag */
2002 set_bit(BIO_UPTODATE
, &sbio
->bi_flags
);
2005 for (j
= vcnt
; j
-- ; ) {
2007 p
= pbio
->bi_io_vec
[j
].bv_page
;
2008 s
= sbio
->bi_io_vec
[j
].bv_page
;
2009 if (memcmp(page_address(p
),
2011 sbio
->bi_io_vec
[j
].bv_len
))
2017 atomic64_add(r1_bio
->sectors
, &mddev
->resync_mismatches
);
2018 if (j
< 0 || (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)
2020 /* No need to write to this device. */
2021 sbio
->bi_end_io
= NULL
;
2022 rdev_dec_pending(conf
->mirrors
[i
].rdev
, mddev
);
2026 bio_copy_data(sbio
, pbio
);
2031 static void sync_request_write(struct mddev
*mddev
, struct r1bio
*r1_bio
)
2033 struct r1conf
*conf
= mddev
->private;
2035 int disks
= conf
->raid_disks
* 2;
2036 struct bio
*bio
, *wbio
;
2038 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2040 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
2041 /* ouch - failed to read all of that. */
2042 if (!fix_sync_read_error(r1_bio
))
2045 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2046 if (process_checks(r1_bio
) < 0)
2051 atomic_set(&r1_bio
->remaining
, 1);
2052 for (i
= 0; i
< disks
; i
++) {
2053 wbio
= r1_bio
->bios
[i
];
2054 if (wbio
->bi_end_io
== NULL
||
2055 (wbio
->bi_end_io
== end_sync_read
&&
2056 (i
== r1_bio
->read_disk
||
2057 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))))
2060 wbio
->bi_rw
= WRITE
;
2061 wbio
->bi_end_io
= end_sync_write
;
2062 atomic_inc(&r1_bio
->remaining
);
2063 md_sync_acct(conf
->mirrors
[i
].rdev
->bdev
, bio_sectors(wbio
));
2065 generic_make_request(wbio
);
2068 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
2069 /* if we're here, all write(s) have completed, so clean up */
2070 int s
= r1_bio
->sectors
;
2071 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2072 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2073 reschedule_retry(r1_bio
);
2076 md_done_sync(mddev
, s
, 1);
2082 * This is a kernel thread which:
2084 * 1. Retries failed read operations on working mirrors.
2085 * 2. Updates the raid superblock when problems encounter.
2086 * 3. Performs writes following reads for array synchronising.
2089 static void fix_read_error(struct r1conf
*conf
, int read_disk
,
2090 sector_t sect
, int sectors
)
2092 struct mddev
*mddev
= conf
->mddev
;
2098 struct md_rdev
*rdev
;
2100 if (s
> (PAGE_SIZE
>>9))
2104 /* Note: no rcu protection needed here
2105 * as this is synchronous in the raid1d thread
2106 * which is the thread that might remove
2107 * a device. If raid1d ever becomes multi-threaded....
2112 rdev
= conf
->mirrors
[d
].rdev
;
2114 (test_bit(In_sync
, &rdev
->flags
) ||
2115 (!test_bit(Faulty
, &rdev
->flags
) &&
2116 rdev
->recovery_offset
>= sect
+ s
)) &&
2117 is_badblock(rdev
, sect
, s
,
2118 &first_bad
, &bad_sectors
) == 0 &&
2119 sync_page_io(rdev
, sect
, s
<<9,
2120 conf
->tmppage
, READ
, false))
2124 if (d
== conf
->raid_disks
* 2)
2127 } while (!success
&& d
!= read_disk
);
2130 /* Cannot read from anywhere - mark it bad */
2131 struct md_rdev
*rdev
= conf
->mirrors
[read_disk
].rdev
;
2132 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
2133 md_error(mddev
, rdev
);
2136 /* write it back and re-read */
2138 while (d
!= read_disk
) {
2140 d
= conf
->raid_disks
* 2;
2142 rdev
= conf
->mirrors
[d
].rdev
;
2144 test_bit(In_sync
, &rdev
->flags
))
2145 r1_sync_page_io(rdev
, sect
, s
,
2146 conf
->tmppage
, WRITE
);
2149 while (d
!= read_disk
) {
2150 char b
[BDEVNAME_SIZE
];
2152 d
= conf
->raid_disks
* 2;
2154 rdev
= conf
->mirrors
[d
].rdev
;
2156 test_bit(In_sync
, &rdev
->flags
)) {
2157 if (r1_sync_page_io(rdev
, sect
, s
,
2158 conf
->tmppage
, READ
)) {
2159 atomic_add(s
, &rdev
->corrected_errors
);
2161 "md/raid1:%s: read error corrected "
2162 "(%d sectors at %llu on %s)\n",
2164 (unsigned long long)(sect
+
2166 bdevname(rdev
->bdev
, b
));
2175 static int narrow_write_error(struct r1bio
*r1_bio
, int i
)
2177 struct mddev
*mddev
= r1_bio
->mddev
;
2178 struct r1conf
*conf
= mddev
->private;
2179 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2181 /* bio has the data to be written to device 'i' where
2182 * we just recently had a write error.
2183 * We repeatedly clone the bio and trim down to one block,
2184 * then try the write. Where the write fails we record
2186 * It is conceivable that the bio doesn't exactly align with
2187 * blocks. We must handle this somehow.
2189 * We currently own a reference on the rdev.
2195 int sect_to_write
= r1_bio
->sectors
;
2198 if (rdev
->badblocks
.shift
< 0)
2201 block_sectors
= 1 << rdev
->badblocks
.shift
;
2202 sector
= r1_bio
->sector
;
2203 sectors
= ((sector
+ block_sectors
)
2204 & ~(sector_t
)(block_sectors
- 1))
2207 while (sect_to_write
) {
2209 if (sectors
> sect_to_write
)
2210 sectors
= sect_to_write
;
2211 /* Write at 'sector' for 'sectors'*/
2213 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
2214 unsigned vcnt
= r1_bio
->behind_page_count
;
2215 struct bio_vec
*vec
= r1_bio
->behind_bvecs
;
2217 while (!vec
->bv_page
) {
2222 wbio
= bio_alloc_mddev(GFP_NOIO
, vcnt
, mddev
);
2223 memcpy(wbio
->bi_io_vec
, vec
, vcnt
* sizeof(struct bio_vec
));
2225 wbio
->bi_vcnt
= vcnt
;
2227 wbio
= bio_clone_mddev(r1_bio
->master_bio
, GFP_NOIO
, mddev
);
2230 wbio
->bi_rw
= WRITE
;
2231 wbio
->bi_iter
.bi_sector
= r1_bio
->sector
;
2232 wbio
->bi_iter
.bi_size
= r1_bio
->sectors
<< 9;
2234 bio_trim(wbio
, sector
- r1_bio
->sector
, sectors
);
2235 wbio
->bi_iter
.bi_sector
+= rdev
->data_offset
;
2236 wbio
->bi_bdev
= rdev
->bdev
;
2237 if (submit_bio_wait(WRITE
, wbio
) == 0)
2239 ok
= rdev_set_badblocks(rdev
, sector
,
2244 sect_to_write
-= sectors
;
2246 sectors
= block_sectors
;
2251 static void handle_sync_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2254 int s
= r1_bio
->sectors
;
2255 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++) {
2256 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2257 struct bio
*bio
= r1_bio
->bios
[m
];
2258 if (bio
->bi_end_io
== NULL
)
2260 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
) &&
2261 test_bit(R1BIO_MadeGood
, &r1_bio
->state
)) {
2262 rdev_clear_badblocks(rdev
, r1_bio
->sector
, s
, 0);
2264 if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
) &&
2265 test_bit(R1BIO_WriteError
, &r1_bio
->state
)) {
2266 if (!rdev_set_badblocks(rdev
, r1_bio
->sector
, s
, 0))
2267 md_error(conf
->mddev
, rdev
);
2271 md_done_sync(conf
->mddev
, s
, 1);
2274 static void handle_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2277 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++)
2278 if (r1_bio
->bios
[m
] == IO_MADE_GOOD
) {
2279 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2280 rdev_clear_badblocks(rdev
,
2282 r1_bio
->sectors
, 0);
2283 rdev_dec_pending(rdev
, conf
->mddev
);
2284 } else if (r1_bio
->bios
[m
] != NULL
) {
2285 /* This drive got a write error. We need to
2286 * narrow down and record precise write
2289 if (!narrow_write_error(r1_bio
, m
)) {
2290 md_error(conf
->mddev
,
2291 conf
->mirrors
[m
].rdev
);
2292 /* an I/O failed, we can't clear the bitmap */
2293 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
2295 rdev_dec_pending(conf
->mirrors
[m
].rdev
,
2298 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2299 close_write(r1_bio
);
2300 raid_end_bio_io(r1_bio
);
2303 static void handle_read_error(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2307 struct mddev
*mddev
= conf
->mddev
;
2309 char b
[BDEVNAME_SIZE
];
2310 struct md_rdev
*rdev
;
2312 clear_bit(R1BIO_ReadError
, &r1_bio
->state
);
2313 /* we got a read error. Maybe the drive is bad. Maybe just
2314 * the block and we can fix it.
2315 * We freeze all other IO, and try reading the block from
2316 * other devices. When we find one, we re-write
2317 * and check it that fixes the read error.
2318 * This is all done synchronously while the array is
2321 if (mddev
->ro
== 0) {
2322 freeze_array(conf
, 1);
2323 fix_read_error(conf
, r1_bio
->read_disk
,
2324 r1_bio
->sector
, r1_bio
->sectors
);
2325 unfreeze_array(conf
);
2327 md_error(mddev
, conf
->mirrors
[r1_bio
->read_disk
].rdev
);
2328 rdev_dec_pending(conf
->mirrors
[r1_bio
->read_disk
].rdev
, conf
->mddev
);
2330 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2331 bdevname(bio
->bi_bdev
, b
);
2333 disk
= read_balance(conf
, r1_bio
, &max_sectors
);
2335 printk(KERN_ALERT
"md/raid1:%s: %s: unrecoverable I/O"
2336 " read error for block %llu\n",
2337 mdname(mddev
), b
, (unsigned long long)r1_bio
->sector
);
2338 raid_end_bio_io(r1_bio
);
2340 const unsigned long do_sync
2341 = r1_bio
->master_bio
->bi_rw
& REQ_SYNC
;
2343 r1_bio
->bios
[r1_bio
->read_disk
] =
2344 mddev
->ro
? IO_BLOCKED
: NULL
;
2347 r1_bio
->read_disk
= disk
;
2348 bio
= bio_clone_mddev(r1_bio
->master_bio
, GFP_NOIO
, mddev
);
2349 bio_trim(bio
, r1_bio
->sector
- bio
->bi_iter
.bi_sector
,
2351 r1_bio
->bios
[r1_bio
->read_disk
] = bio
;
2352 rdev
= conf
->mirrors
[disk
].rdev
;
2353 printk_ratelimited(KERN_ERR
2354 "md/raid1:%s: redirecting sector %llu"
2355 " to other mirror: %s\n",
2357 (unsigned long long)r1_bio
->sector
,
2358 bdevname(rdev
->bdev
, b
));
2359 bio
->bi_iter
.bi_sector
= r1_bio
->sector
+ rdev
->data_offset
;
2360 bio
->bi_bdev
= rdev
->bdev
;
2361 bio
->bi_end_io
= raid1_end_read_request
;
2362 bio
->bi_rw
= READ
| do_sync
;
2363 bio
->bi_private
= r1_bio
;
2364 if (max_sectors
< r1_bio
->sectors
) {
2365 /* Drat - have to split this up more */
2366 struct bio
*mbio
= r1_bio
->master_bio
;
2367 int sectors_handled
= (r1_bio
->sector
+ max_sectors
2368 - mbio
->bi_iter
.bi_sector
);
2369 r1_bio
->sectors
= max_sectors
;
2370 spin_lock_irq(&conf
->device_lock
);
2371 if (mbio
->bi_phys_segments
== 0)
2372 mbio
->bi_phys_segments
= 2;
2374 mbio
->bi_phys_segments
++;
2375 spin_unlock_irq(&conf
->device_lock
);
2376 generic_make_request(bio
);
2379 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
2381 r1_bio
->master_bio
= mbio
;
2382 r1_bio
->sectors
= bio_sectors(mbio
) - sectors_handled
;
2384 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
2385 r1_bio
->mddev
= mddev
;
2386 r1_bio
->sector
= mbio
->bi_iter
.bi_sector
+
2391 generic_make_request(bio
);
2395 static void raid1d(struct md_thread
*thread
)
2397 struct mddev
*mddev
= thread
->mddev
;
2398 struct r1bio
*r1_bio
;
2399 unsigned long flags
;
2400 struct r1conf
*conf
= mddev
->private;
2401 struct list_head
*head
= &conf
->retry_list
;
2402 struct blk_plug plug
;
2404 md_check_recovery(mddev
);
2406 blk_start_plug(&plug
);
2409 flush_pending_writes(conf
);
2411 spin_lock_irqsave(&conf
->device_lock
, flags
);
2412 if (list_empty(head
)) {
2413 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2416 r1_bio
= list_entry(head
->prev
, struct r1bio
, retry_list
);
2417 list_del(head
->prev
);
2419 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2421 mddev
= r1_bio
->mddev
;
2422 conf
= mddev
->private;
2423 if (test_bit(R1BIO_IsSync
, &r1_bio
->state
)) {
2424 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2425 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2426 handle_sync_write_finished(conf
, r1_bio
);
2428 sync_request_write(mddev
, r1_bio
);
2429 } else if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2430 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2431 handle_write_finished(conf
, r1_bio
);
2432 else if (test_bit(R1BIO_ReadError
, &r1_bio
->state
))
2433 handle_read_error(conf
, r1_bio
);
2435 /* just a partial read to be scheduled from separate
2438 generic_make_request(r1_bio
->bios
[r1_bio
->read_disk
]);
2441 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
))
2442 md_check_recovery(mddev
);
2444 blk_finish_plug(&plug
);
2448 static int init_resync(struct r1conf
*conf
)
2452 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2453 BUG_ON(conf
->r1buf_pool
);
2454 conf
->r1buf_pool
= mempool_create(buffs
, r1buf_pool_alloc
, r1buf_pool_free
,
2456 if (!conf
->r1buf_pool
)
2458 conf
->next_resync
= 0;
2463 * perform a "sync" on one "block"
2465 * We need to make sure that no normal I/O request - particularly write
2466 * requests - conflict with active sync requests.
2468 * This is achieved by tracking pending requests and a 'barrier' concept
2469 * that can be installed to exclude normal IO requests.
2472 static sector_t
sync_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
2474 struct r1conf
*conf
= mddev
->private;
2475 struct r1bio
*r1_bio
;
2477 sector_t max_sector
, nr_sectors
;
2481 int write_targets
= 0, read_targets
= 0;
2482 sector_t sync_blocks
;
2483 int still_degraded
= 0;
2484 int good_sectors
= RESYNC_SECTORS
;
2485 int min_bad
= 0; /* number of sectors that are bad in all devices */
2487 if (!conf
->r1buf_pool
)
2488 if (init_resync(conf
))
2491 max_sector
= mddev
->dev_sectors
;
2492 if (sector_nr
>= max_sector
) {
2493 /* If we aborted, we need to abort the
2494 * sync on the 'current' bitmap chunk (there will
2495 * only be one in raid1 resync.
2496 * We can find the current addess in mddev->curr_resync
2498 if (mddev
->curr_resync
< max_sector
) /* aborted */
2499 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2501 else /* completed sync */
2504 bitmap_close_sync(mddev
->bitmap
);
2509 if (mddev
->bitmap
== NULL
&&
2510 mddev
->recovery_cp
== MaxSector
&&
2511 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2512 conf
->fullsync
== 0) {
2514 return max_sector
- sector_nr
;
2516 /* before building a request, check if we can skip these blocks..
2517 * This call the bitmap_start_sync doesn't actually record anything
2519 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
2520 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2521 /* We can skip this block, and probably several more */
2526 * If there is non-resync activity waiting for a turn,
2527 * and resync is going fast enough,
2528 * then let it though before starting on this new sync request.
2530 if (!go_faster
&& conf
->nr_waiting
)
2531 msleep_interruptible(1000);
2533 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
2534 r1_bio
= mempool_alloc(conf
->r1buf_pool
, GFP_NOIO
);
2535 raise_barrier(conf
);
2537 conf
->next_resync
= sector_nr
;
2541 * If we get a correctably read error during resync or recovery,
2542 * we might want to read from a different device. So we
2543 * flag all drives that could conceivably be read from for READ,
2544 * and any others (which will be non-In_sync devices) for WRITE.
2545 * If a read fails, we try reading from something else for which READ
2549 r1_bio
->mddev
= mddev
;
2550 r1_bio
->sector
= sector_nr
;
2552 set_bit(R1BIO_IsSync
, &r1_bio
->state
);
2554 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2555 struct md_rdev
*rdev
;
2556 bio
= r1_bio
->bios
[i
];
2559 rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
2561 test_bit(Faulty
, &rdev
->flags
)) {
2562 if (i
< conf
->raid_disks
)
2564 } else if (!test_bit(In_sync
, &rdev
->flags
)) {
2566 bio
->bi_end_io
= end_sync_write
;
2569 /* may need to read from here */
2570 sector_t first_bad
= MaxSector
;
2573 if (is_badblock(rdev
, sector_nr
, good_sectors
,
2574 &first_bad
, &bad_sectors
)) {
2575 if (first_bad
> sector_nr
)
2576 good_sectors
= first_bad
- sector_nr
;
2578 bad_sectors
-= (sector_nr
- first_bad
);
2580 min_bad
> bad_sectors
)
2581 min_bad
= bad_sectors
;
2584 if (sector_nr
< first_bad
) {
2585 if (test_bit(WriteMostly
, &rdev
->flags
)) {
2593 bio
->bi_end_io
= end_sync_read
;
2595 } else if (!test_bit(WriteErrorSeen
, &rdev
->flags
) &&
2596 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) &&
2597 !test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)) {
2599 * The device is suitable for reading (InSync),
2600 * but has bad block(s) here. Let's try to correct them,
2601 * if we are doing resync or repair. Otherwise, leave
2602 * this device alone for this sync request.
2605 bio
->bi_end_io
= end_sync_write
;
2609 if (bio
->bi_end_io
) {
2610 atomic_inc(&rdev
->nr_pending
);
2611 bio
->bi_iter
.bi_sector
= sector_nr
+ rdev
->data_offset
;
2612 bio
->bi_bdev
= rdev
->bdev
;
2613 bio
->bi_private
= r1_bio
;
2619 r1_bio
->read_disk
= disk
;
2621 if (read_targets
== 0 && min_bad
> 0) {
2622 /* These sectors are bad on all InSync devices, so we
2623 * need to mark them bad on all write targets
2626 for (i
= 0 ; i
< conf
->raid_disks
* 2 ; i
++)
2627 if (r1_bio
->bios
[i
]->bi_end_io
== end_sync_write
) {
2628 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2629 ok
= rdev_set_badblocks(rdev
, sector_nr
,
2633 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
2638 /* Cannot record the badblocks, so need to
2640 * If there are multiple read targets, could just
2641 * fail the really bad ones ???
2643 conf
->recovery_disabled
= mddev
->recovery_disabled
;
2644 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2650 if (min_bad
> 0 && min_bad
< good_sectors
) {
2651 /* only resync enough to reach the next bad->good
2653 good_sectors
= min_bad
;
2656 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) && read_targets
> 0)
2657 /* extra read targets are also write targets */
2658 write_targets
+= read_targets
-1;
2660 if (write_targets
== 0 || read_targets
== 0) {
2661 /* There is nowhere to write, so all non-sync
2662 * drives must be failed - so we are finished
2666 max_sector
= sector_nr
+ min_bad
;
2667 rv
= max_sector
- sector_nr
;
2673 if (max_sector
> mddev
->resync_max
)
2674 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2675 if (max_sector
> sector_nr
+ good_sectors
)
2676 max_sector
= sector_nr
+ good_sectors
;
2681 int len
= PAGE_SIZE
;
2682 if (sector_nr
+ (len
>>9) > max_sector
)
2683 len
= (max_sector
- sector_nr
) << 9;
2686 if (sync_blocks
== 0) {
2687 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
2688 &sync_blocks
, still_degraded
) &&
2690 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2692 BUG_ON(sync_blocks
< (PAGE_SIZE
>>9));
2693 if ((len
>> 9) > sync_blocks
)
2694 len
= sync_blocks
<<9;
2697 for (i
= 0 ; i
< conf
->raid_disks
* 2; i
++) {
2698 bio
= r1_bio
->bios
[i
];
2699 if (bio
->bi_end_io
) {
2700 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
2701 if (bio_add_page(bio
, page
, len
, 0) == 0) {
2703 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
2706 bio
= r1_bio
->bios
[i
];
2707 if (bio
->bi_end_io
==NULL
)
2709 /* remove last page from this bio */
2711 bio
->bi_iter
.bi_size
-= len
;
2712 bio
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
2718 nr_sectors
+= len
>>9;
2719 sector_nr
+= len
>>9;
2720 sync_blocks
-= (len
>>9);
2721 } while (r1_bio
->bios
[disk
]->bi_vcnt
< RESYNC_PAGES
);
2723 r1_bio
->sectors
= nr_sectors
;
2725 /* For a user-requested sync, we read all readable devices and do a
2728 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2729 atomic_set(&r1_bio
->remaining
, read_targets
);
2730 for (i
= 0; i
< conf
->raid_disks
* 2 && read_targets
; i
++) {
2731 bio
= r1_bio
->bios
[i
];
2732 if (bio
->bi_end_io
== end_sync_read
) {
2734 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2735 generic_make_request(bio
);
2739 atomic_set(&r1_bio
->remaining
, 1);
2740 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2741 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2742 generic_make_request(bio
);
2748 static sector_t
raid1_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
2753 return mddev
->dev_sectors
;
2756 static struct r1conf
*setup_conf(struct mddev
*mddev
)
2758 struct r1conf
*conf
;
2760 struct raid1_info
*disk
;
2761 struct md_rdev
*rdev
;
2764 conf
= kzalloc(sizeof(struct r1conf
), GFP_KERNEL
);
2768 conf
->mirrors
= kzalloc(sizeof(struct raid1_info
)
2769 * mddev
->raid_disks
* 2,
2774 conf
->tmppage
= alloc_page(GFP_KERNEL
);
2778 conf
->poolinfo
= kzalloc(sizeof(*conf
->poolinfo
), GFP_KERNEL
);
2779 if (!conf
->poolinfo
)
2781 conf
->poolinfo
->raid_disks
= mddev
->raid_disks
* 2;
2782 conf
->r1bio_pool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
2785 if (!conf
->r1bio_pool
)
2788 conf
->poolinfo
->mddev
= mddev
;
2791 spin_lock_init(&conf
->device_lock
);
2792 rdev_for_each(rdev
, mddev
) {
2793 struct request_queue
*q
;
2794 int disk_idx
= rdev
->raid_disk
;
2795 if (disk_idx
>= mddev
->raid_disks
2798 if (test_bit(Replacement
, &rdev
->flags
))
2799 disk
= conf
->mirrors
+ mddev
->raid_disks
+ disk_idx
;
2801 disk
= conf
->mirrors
+ disk_idx
;
2806 q
= bdev_get_queue(rdev
->bdev
);
2807 if (q
->merge_bvec_fn
)
2808 mddev
->merge_check_needed
= 1;
2810 disk
->head_position
= 0;
2811 disk
->seq_start
= MaxSector
;
2813 conf
->raid_disks
= mddev
->raid_disks
;
2814 conf
->mddev
= mddev
;
2815 INIT_LIST_HEAD(&conf
->retry_list
);
2817 spin_lock_init(&conf
->resync_lock
);
2818 init_waitqueue_head(&conf
->wait_barrier
);
2820 bio_list_init(&conf
->pending_bio_list
);
2821 conf
->pending_count
= 0;
2822 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
2824 conf
->start_next_window
= MaxSector
;
2825 conf
->current_window_requests
= conf
->next_window_requests
= 0;
2828 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2830 disk
= conf
->mirrors
+ i
;
2832 if (i
< conf
->raid_disks
&&
2833 disk
[conf
->raid_disks
].rdev
) {
2834 /* This slot has a replacement. */
2836 /* No original, just make the replacement
2837 * a recovering spare
2840 disk
[conf
->raid_disks
].rdev
;
2841 disk
[conf
->raid_disks
].rdev
= NULL
;
2842 } else if (!test_bit(In_sync
, &disk
->rdev
->flags
))
2843 /* Original is not in_sync - bad */
2848 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
2849 disk
->head_position
= 0;
2851 (disk
->rdev
->saved_raid_disk
< 0))
2857 conf
->thread
= md_register_thread(raid1d
, mddev
, "raid1");
2858 if (!conf
->thread
) {
2860 "md/raid1:%s: couldn't allocate thread\n",
2869 if (conf
->r1bio_pool
)
2870 mempool_destroy(conf
->r1bio_pool
);
2871 kfree(conf
->mirrors
);
2872 safe_put_page(conf
->tmppage
);
2873 kfree(conf
->poolinfo
);
2876 return ERR_PTR(err
);
2879 static int stop(struct mddev
*mddev
);
2880 static int run(struct mddev
*mddev
)
2882 struct r1conf
*conf
;
2884 struct md_rdev
*rdev
;
2886 bool discard_supported
= false;
2888 if (mddev
->level
!= 1) {
2889 printk(KERN_ERR
"md/raid1:%s: raid level not set to mirroring (%d)\n",
2890 mdname(mddev
), mddev
->level
);
2893 if (mddev
->reshape_position
!= MaxSector
) {
2894 printk(KERN_ERR
"md/raid1:%s: reshape_position set but not supported\n",
2899 * copy the already verified devices into our private RAID1
2900 * bookkeeping area. [whatever we allocate in run(),
2901 * should be freed in stop()]
2903 if (mddev
->private == NULL
)
2904 conf
= setup_conf(mddev
);
2906 conf
= mddev
->private;
2909 return PTR_ERR(conf
);
2912 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
2914 rdev_for_each(rdev
, mddev
) {
2915 if (!mddev
->gendisk
)
2917 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
2918 rdev
->data_offset
<< 9);
2919 if (blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
2920 discard_supported
= true;
2923 mddev
->degraded
= 0;
2924 for (i
=0; i
< conf
->raid_disks
; i
++)
2925 if (conf
->mirrors
[i
].rdev
== NULL
||
2926 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ||
2927 test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
))
2930 if (conf
->raid_disks
- mddev
->degraded
== 1)
2931 mddev
->recovery_cp
= MaxSector
;
2933 if (mddev
->recovery_cp
!= MaxSector
)
2934 printk(KERN_NOTICE
"md/raid1:%s: not clean"
2935 " -- starting background reconstruction\n",
2938 "md/raid1:%s: active with %d out of %d mirrors\n",
2939 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
2943 * Ok, everything is just fine now
2945 mddev
->thread
= conf
->thread
;
2946 conf
->thread
= NULL
;
2947 mddev
->private = conf
;
2949 md_set_array_sectors(mddev
, raid1_size(mddev
, 0, 0));
2952 mddev
->queue
->backing_dev_info
.congested_fn
= raid1_congested
;
2953 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
2954 blk_queue_merge_bvec(mddev
->queue
, raid1_mergeable_bvec
);
2956 if (discard_supported
)
2957 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
,
2960 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
,
2964 ret
= md_integrity_register(mddev
);
2970 static int stop(struct mddev
*mddev
)
2972 struct r1conf
*conf
= mddev
->private;
2973 struct bitmap
*bitmap
= mddev
->bitmap
;
2975 /* wait for behind writes to complete */
2976 if (bitmap
&& atomic_read(&bitmap
->behind_writes
) > 0) {
2977 printk(KERN_INFO
"md/raid1:%s: behind writes in progress - waiting to stop.\n",
2979 /* need to kick something here to make sure I/O goes? */
2980 wait_event(bitmap
->behind_wait
,
2981 atomic_read(&bitmap
->behind_writes
) == 0);
2984 freeze_array(conf
, 0);
2985 unfreeze_array(conf
);
2987 md_unregister_thread(&mddev
->thread
);
2988 if (conf
->r1bio_pool
)
2989 mempool_destroy(conf
->r1bio_pool
);
2990 kfree(conf
->mirrors
);
2991 safe_put_page(conf
->tmppage
);
2992 kfree(conf
->poolinfo
);
2994 mddev
->private = NULL
;
2998 static int raid1_resize(struct mddev
*mddev
, sector_t sectors
)
3000 /* no resync is happening, and there is enough space
3001 * on all devices, so we can resize.
3002 * We need to make sure resync covers any new space.
3003 * If the array is shrinking we should possibly wait until
3004 * any io in the removed space completes, but it hardly seems
3007 sector_t newsize
= raid1_size(mddev
, sectors
, 0);
3008 if (mddev
->external_size
&&
3009 mddev
->array_sectors
> newsize
)
3011 if (mddev
->bitmap
) {
3012 int ret
= bitmap_resize(mddev
->bitmap
, newsize
, 0, 0);
3016 md_set_array_sectors(mddev
, newsize
);
3017 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
3018 revalidate_disk(mddev
->gendisk
);
3019 if (sectors
> mddev
->dev_sectors
&&
3020 mddev
->recovery_cp
> mddev
->dev_sectors
) {
3021 mddev
->recovery_cp
= mddev
->dev_sectors
;
3022 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3024 mddev
->dev_sectors
= sectors
;
3025 mddev
->resync_max_sectors
= sectors
;
3029 static int raid1_reshape(struct mddev
*mddev
)
3032 * 1/ resize the r1bio_pool
3033 * 2/ resize conf->mirrors
3035 * We allocate a new r1bio_pool if we can.
3036 * Then raise a device barrier and wait until all IO stops.
3037 * Then resize conf->mirrors and swap in the new r1bio pool.
3039 * At the same time, we "pack" the devices so that all the missing
3040 * devices have the higher raid_disk numbers.
3042 mempool_t
*newpool
, *oldpool
;
3043 struct pool_info
*newpoolinfo
;
3044 struct raid1_info
*newmirrors
;
3045 struct r1conf
*conf
= mddev
->private;
3046 int cnt
, raid_disks
;
3047 unsigned long flags
;
3050 /* Cannot change chunk_size, layout, or level */
3051 if (mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
||
3052 mddev
->layout
!= mddev
->new_layout
||
3053 mddev
->level
!= mddev
->new_level
) {
3054 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3055 mddev
->new_layout
= mddev
->layout
;
3056 mddev
->new_level
= mddev
->level
;
3060 err
= md_allow_write(mddev
);
3064 raid_disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
3066 if (raid_disks
< conf
->raid_disks
) {
3068 for (d
= 0; d
< conf
->raid_disks
; d
++)
3069 if (conf
->mirrors
[d
].rdev
)
3071 if (cnt
> raid_disks
)
3075 newpoolinfo
= kmalloc(sizeof(*newpoolinfo
), GFP_KERNEL
);
3078 newpoolinfo
->mddev
= mddev
;
3079 newpoolinfo
->raid_disks
= raid_disks
* 2;
3081 newpool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
3082 r1bio_pool_free
, newpoolinfo
);
3087 newmirrors
= kzalloc(sizeof(struct raid1_info
) * raid_disks
* 2,
3091 mempool_destroy(newpool
);
3095 freeze_array(conf
, 0);
3097 /* ok, everything is stopped */
3098 oldpool
= conf
->r1bio_pool
;
3099 conf
->r1bio_pool
= newpool
;
3101 for (d
= d2
= 0; d
< conf
->raid_disks
; d
++) {
3102 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
3103 if (rdev
&& rdev
->raid_disk
!= d2
) {
3104 sysfs_unlink_rdev(mddev
, rdev
);
3105 rdev
->raid_disk
= d2
;
3106 sysfs_unlink_rdev(mddev
, rdev
);
3107 if (sysfs_link_rdev(mddev
, rdev
))
3109 "md/raid1:%s: cannot register rd%d\n",
3110 mdname(mddev
), rdev
->raid_disk
);
3113 newmirrors
[d2
++].rdev
= rdev
;
3115 kfree(conf
->mirrors
);
3116 conf
->mirrors
= newmirrors
;
3117 kfree(conf
->poolinfo
);
3118 conf
->poolinfo
= newpoolinfo
;
3120 spin_lock_irqsave(&conf
->device_lock
, flags
);
3121 mddev
->degraded
+= (raid_disks
- conf
->raid_disks
);
3122 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3123 conf
->raid_disks
= mddev
->raid_disks
= raid_disks
;
3124 mddev
->delta_disks
= 0;
3126 unfreeze_array(conf
);
3128 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3129 md_wakeup_thread(mddev
->thread
);
3131 mempool_destroy(oldpool
);
3135 static void raid1_quiesce(struct mddev
*mddev
, int state
)
3137 struct r1conf
*conf
= mddev
->private;
3140 case 2: /* wake for suspend */
3141 wake_up(&conf
->wait_barrier
);
3144 freeze_array(conf
, 0);
3147 unfreeze_array(conf
);
3152 static void *raid1_takeover(struct mddev
*mddev
)
3154 /* raid1 can take over:
3155 * raid5 with 2 devices, any layout or chunk size
3157 if (mddev
->level
== 5 && mddev
->raid_disks
== 2) {
3158 struct r1conf
*conf
;
3159 mddev
->new_level
= 1;
3160 mddev
->new_layout
= 0;
3161 mddev
->new_chunk_sectors
= 0;
3162 conf
= setup_conf(mddev
);
3164 /* Array must appear to be quiesced */
3165 conf
->array_frozen
= 1;
3168 return ERR_PTR(-EINVAL
);
3171 static struct md_personality raid1_personality
=
3175 .owner
= THIS_MODULE
,
3176 .make_request
= make_request
,
3180 .error_handler
= error
,
3181 .hot_add_disk
= raid1_add_disk
,
3182 .hot_remove_disk
= raid1_remove_disk
,
3183 .spare_active
= raid1_spare_active
,
3184 .sync_request
= sync_request
,
3185 .resize
= raid1_resize
,
3187 .check_reshape
= raid1_reshape
,
3188 .quiesce
= raid1_quiesce
,
3189 .takeover
= raid1_takeover
,
3192 static int __init
raid_init(void)
3194 return register_md_personality(&raid1_personality
);
3197 static void raid_exit(void)
3199 unregister_md_personality(&raid1_personality
);
3202 module_init(raid_init
);
3203 module_exit(raid_exit
);
3204 MODULE_LICENSE("GPL");
3205 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3206 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3207 MODULE_ALIAS("md-raid1");
3208 MODULE_ALIAS("md-level-1");
3210 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);