2 * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
4 * Copyright (C) 2003-2007 Micronas
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * version 2 only, as published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 * Or, point your browser to http://www.gnu.org/copyleft/gpl.html
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/firmware.h>
30 #include <linux/i2c.h>
31 #include <asm/div64.h>
33 #include "dvb_frontend.h"
35 #include "drxd_firm.h"
37 #define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw"
38 #define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw"
42 #define DRX_I2C_RMW 0x10
43 #define DRX_I2C_BROADCAST 0x20
44 #define DRX_I2C_CLEARCRC 0x80
45 #define DRX_I2C_SINGLE_MASTER 0xC0
46 #define DRX_I2C_MODEFLAGS 0xC0
47 #define DRX_I2C_FLAGS 0xF0
49 #define DEFAULT_LOCK_TIMEOUT 1100
51 #define DRX_CHANNEL_AUTO 0
52 #define DRX_CHANNEL_HIGH 1
53 #define DRX_CHANNEL_LOW 2
55 #define DRX_LOCK_MPEG 1
56 #define DRX_LOCK_FEC 2
57 #define DRX_LOCK_DEMOD 4
59 /****************************************************************************/
68 DRXD_UNINITIALIZED
= 0,
81 OM_DVBT_Diversity_Front
,
86 enum AGC_CTRL_MODE ctrlMode
;
87 u16 outputLevel
; /* range [0, ... , 1023], 1/n of fullscale range */
88 u16 settleLevel
; /* range [0, ... , 1023], 1/n of fullscale range */
89 u16 minOutputLevel
; /* range [0, ... , 1023], 1/n of fullscale range */
90 u16 maxOutputLevel
; /* range [0, ... , 1023], 1/n of fullscale range */
91 u16 speed
; /* range [0, ... , 1023], 1/n of fullscale range */
113 IFFILTER_DISCRETE
= 1
117 struct dvb_frontend frontend
;
118 struct dvb_frontend_ops ops
;
119 struct dtv_frontend_properties props
;
121 const struct firmware
*fw
;
124 struct i2c_adapter
*i2c
;
126 struct drxd_config config
;
133 u16 hi_cfg_timing_div
;
134 u16 hi_cfg_bridge_delay
;
135 u16 hi_cfg_wakeup_key
;
138 u16 intermediate_freq
;
141 enum CSCDState cscd_state
;
142 enum CDrxdState drxd_state
;
145 s16 osc_clock_deviation
;
146 u16 expected_sys_clock_freq
;
153 struct SCfgAgc if_agc_cfg
;
154 struct SCfgAgc rf_agc_cfg
;
156 struct SNoiseCal noise_cal
;
159 u32 org_fe_fs_add_incr
;
160 u16 current_fe_if_incr
;
163 u16 m_FeAgRegAgAgcSio
;
165 u16 m_EcOcRegOcModeLop
;
166 u16 m_EcOcRegSncSncLvl
;
167 u8
*m_InitAtomicRead
;
179 u8
*m_InitDiversityFront
;
180 u8
*m_InitDiversityEnd
;
181 u8
*m_DisableDiversity
;
182 u8
*m_StartDiversityFront
;
183 u8
*m_StartDiversityEnd
;
185 u8
*m_DiversityDelay8MHZ
;
186 u8
*m_DiversityDelay6MHZ
;
189 u32 microcode_length
;
196 enum app_env app_env_default
;
197 enum app_env app_env_diversity
;
201 /****************************************************************************/
202 /* I2C **********************************************************************/
203 /****************************************************************************/
205 static int i2c_write(struct i2c_adapter
*adap
, u8 adr
, u8
* data
, int len
)
207 struct i2c_msg msg
= {.addr
= adr
, .flags
= 0, .buf
= data
, .len
= len
};
209 if (i2c_transfer(adap
, &msg
, 1) != 1)
214 static int i2c_read(struct i2c_adapter
*adap
,
215 u8 adr
, u8
*msg
, int len
, u8
*answ
, int alen
)
217 struct i2c_msg msgs
[2] = {
219 .addr
= adr
, .flags
= 0,
220 .buf
= msg
, .len
= len
222 .addr
= adr
, .flags
= I2C_M_RD
,
223 .buf
= answ
, .len
= alen
226 if (i2c_transfer(adap
, msgs
, 2) != 2)
231 static inline u32
MulDiv32(u32 a
, u32 b
, u32 c
)
235 tmp64
= (u64
)a
* (u64
)b
;
241 static int Read16(struct drxd_state
*state
, u32 reg
, u16
*data
, u8 flags
)
243 u8 adr
= state
->config
.demod_address
;
244 u8 mm1
[4] = { reg
& 0xff, (reg
>> 16) & 0xff,
245 flags
| ((reg
>> 24) & 0xff), (reg
>> 8) & 0xff
248 if (i2c_read(state
->i2c
, adr
, mm1
, 4, mm2
, 2) < 0)
251 *data
= mm2
[0] | (mm2
[1] << 8);
252 return mm2
[0] | (mm2
[1] << 8);
255 static int Read32(struct drxd_state
*state
, u32 reg
, u32
*data
, u8 flags
)
257 u8 adr
= state
->config
.demod_address
;
258 u8 mm1
[4] = { reg
& 0xff, (reg
>> 16) & 0xff,
259 flags
| ((reg
>> 24) & 0xff), (reg
>> 8) & 0xff
263 if (i2c_read(state
->i2c
, adr
, mm1
, 4, mm2
, 4) < 0)
267 mm2
[0] | (mm2
[1] << 8) | (mm2
[2] << 16) | (mm2
[3] << 24);
271 static int Write16(struct drxd_state
*state
, u32 reg
, u16 data
, u8 flags
)
273 u8 adr
= state
->config
.demod_address
;
274 u8 mm
[6] = { reg
& 0xff, (reg
>> 16) & 0xff,
275 flags
| ((reg
>> 24) & 0xff), (reg
>> 8) & 0xff,
276 data
& 0xff, (data
>> 8) & 0xff
279 if (i2c_write(state
->i2c
, adr
, mm
, 6) < 0)
284 static int Write32(struct drxd_state
*state
, u32 reg
, u32 data
, u8 flags
)
286 u8 adr
= state
->config
.demod_address
;
287 u8 mm
[8] = { reg
& 0xff, (reg
>> 16) & 0xff,
288 flags
| ((reg
>> 24) & 0xff), (reg
>> 8) & 0xff,
289 data
& 0xff, (data
>> 8) & 0xff,
290 (data
>> 16) & 0xff, (data
>> 24) & 0xff
293 if (i2c_write(state
->i2c
, adr
, mm
, 8) < 0)
298 static int write_chunk(struct drxd_state
*state
,
299 u32 reg
, u8
*data
, u32 len
, u8 flags
)
301 u8 adr
= state
->config
.demod_address
;
302 u8 mm
[CHUNK_SIZE
+ 4] = { reg
& 0xff, (reg
>> 16) & 0xff,
303 flags
| ((reg
>> 24) & 0xff), (reg
>> 8) & 0xff
307 for (i
= 0; i
< len
; i
++)
309 if (i2c_write(state
->i2c
, adr
, mm
, 4 + len
) < 0) {
310 printk(KERN_ERR
"error in write_chunk\n");
316 static int WriteBlock(struct drxd_state
*state
,
317 u32 Address
, u16 BlockSize
, u8
*pBlock
, u8 Flags
)
319 while (BlockSize
> 0) {
320 u16 Chunk
= BlockSize
> CHUNK_SIZE
? CHUNK_SIZE
: BlockSize
;
322 if (write_chunk(state
, Address
, pBlock
, Chunk
, Flags
) < 0)
325 Address
+= (Chunk
>> 1);
331 static int WriteTable(struct drxd_state
*state
, u8
* pTable
)
340 u32 Address
= pTable
[0] | (pTable
[1] << 8) |
341 (pTable
[2] << 16) | (pTable
[3] << 24);
343 if (Address
== 0xFFFFFFFF)
345 pTable
+= sizeof(u32
);
347 Length
= pTable
[0] | (pTable
[1] << 8);
348 pTable
+= sizeof(u16
);
351 status
= WriteBlock(state
, Address
, Length
* 2, pTable
, 0);
352 pTable
+= (Length
* 2);
357 /****************************************************************************/
358 /****************************************************************************/
359 /****************************************************************************/
361 static int ResetCEFR(struct drxd_state
*state
)
363 return WriteTable(state
, state
->m_ResetCEFR
);
366 static int InitCP(struct drxd_state
*state
)
368 return WriteTable(state
, state
->m_InitCP
);
371 static int InitCE(struct drxd_state
*state
)
374 enum app_env AppEnv
= state
->app_env_default
;
377 status
= WriteTable(state
, state
->m_InitCE
);
381 if (state
->operation_mode
== OM_DVBT_Diversity_Front
||
382 state
->operation_mode
== OM_DVBT_Diversity_End
) {
383 AppEnv
= state
->app_env_diversity
;
385 if (AppEnv
== APPENV_STATIC
) {
386 status
= Write16(state
, CE_REG_TAPSET__A
, 0x0000, 0);
389 } else if (AppEnv
== APPENV_PORTABLE
) {
390 status
= Write16(state
, CE_REG_TAPSET__A
, 0x0001, 0);
393 } else if (AppEnv
== APPENV_MOBILE
&& state
->type_A
) {
394 status
= Write16(state
, CE_REG_TAPSET__A
, 0x0002, 0);
397 } else if (AppEnv
== APPENV_MOBILE
&& !state
->type_A
) {
398 status
= Write16(state
, CE_REG_TAPSET__A
, 0x0006, 0);
404 status
= Write16(state
, B_CE_REG_COMM_EXEC__A
, 0x0001, 0);
411 static int StopOC(struct drxd_state
*state
)
415 u16 ocModeLop
= state
->m_EcOcRegOcModeLop
;
420 /* Store output configuration */
421 status
= Read16(state
, EC_OC_REG_SNC_ISC_LVL__A
, &ocSyncLvl
, 0);
424 /* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */
425 state
->m_EcOcRegSncSncLvl
= ocSyncLvl
;
426 /* m_EcOcRegOcModeLop = ocModeLop; */
428 /* Flush FIFO (byte-boundary) at fixed rate */
429 status
= Read16(state
, EC_OC_REG_RCN_MAP_LOP__A
, &dtoIncLop
, 0);
432 status
= Read16(state
, EC_OC_REG_RCN_MAP_HIP__A
, &dtoIncHip
, 0);
435 status
= Write16(state
, EC_OC_REG_DTO_INC_LOP__A
, dtoIncLop
, 0);
438 status
= Write16(state
, EC_OC_REG_DTO_INC_HIP__A
, dtoIncHip
, 0);
441 ocModeLop
&= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M
);
442 ocModeLop
|= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC
;
443 status
= Write16(state
, EC_OC_REG_OC_MODE_LOP__A
, ocModeLop
, 0);
446 status
= Write16(state
, EC_OC_REG_COMM_EXEC__A
, EC_OC_REG_COMM_EXEC_CTL_HOLD
, 0);
451 /* Output pins to '0' */
452 status
= Write16(state
, EC_OC_REG_OCR_MPG_UOS__A
, EC_OC_REG_OCR_MPG_UOS__M
, 0);
456 /* Force the OC out of sync */
457 ocSyncLvl
&= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M
);
458 status
= Write16(state
, EC_OC_REG_SNC_ISC_LVL__A
, ocSyncLvl
, 0);
461 ocModeLop
&= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M
);
462 ocModeLop
|= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE
;
463 ocModeLop
|= 0x2; /* Magically-out-of-sync */
464 status
= Write16(state
, EC_OC_REG_OC_MODE_LOP__A
, ocModeLop
, 0);
467 status
= Write16(state
, EC_OC_REG_COMM_INT_STA__A
, 0x0, 0);
470 status
= Write16(state
, EC_OC_REG_COMM_EXEC__A
, EC_OC_REG_COMM_EXEC_CTL_ACTIVE
, 0);
478 static int StartOC(struct drxd_state
*state
)
484 status
= Write16(state
, EC_OC_REG_COMM_EXEC__A
, EC_OC_REG_COMM_EXEC_CTL_HOLD
, 0);
488 /* Restore output configuration */
489 status
= Write16(state
, EC_OC_REG_SNC_ISC_LVL__A
, state
->m_EcOcRegSncSncLvl
, 0);
492 status
= Write16(state
, EC_OC_REG_OC_MODE_LOP__A
, state
->m_EcOcRegOcModeLop
, 0);
496 /* Output pins active again */
497 status
= Write16(state
, EC_OC_REG_OCR_MPG_UOS__A
, EC_OC_REG_OCR_MPG_UOS_INIT
, 0);
502 status
= Write16(state
, EC_OC_REG_COMM_EXEC__A
, EC_OC_REG_COMM_EXEC_CTL_ACTIVE
, 0);
509 static int InitEQ(struct drxd_state
*state
)
511 return WriteTable(state
, state
->m_InitEQ
);
514 static int InitEC(struct drxd_state
*state
)
516 return WriteTable(state
, state
->m_InitEC
);
519 static int InitSC(struct drxd_state
*state
)
521 return WriteTable(state
, state
->m_InitSC
);
524 static int InitAtomicRead(struct drxd_state
*state
)
526 return WriteTable(state
, state
->m_InitAtomicRead
);
529 static int CorrectSysClockDeviation(struct drxd_state
*state
);
531 static int DRX_GetLockStatus(struct drxd_state
*state
, u32
* pLockStatus
)
534 const u16 mpeg_lock_mask
= (SC_RA_RAM_LOCK_MPEG__M
|
535 SC_RA_RAM_LOCK_FEC__M
|
536 SC_RA_RAM_LOCK_DEMOD__M
);
537 const u16 fec_lock_mask
= (SC_RA_RAM_LOCK_FEC__M
|
538 SC_RA_RAM_LOCK_DEMOD__M
);
539 const u16 demod_lock_mask
= SC_RA_RAM_LOCK_DEMOD__M
;
545 status
= Read16(state
, SC_RA_RAM_LOCK__A
, &ScRaRamLock
, 0x0000);
547 printk(KERN_ERR
"Can't read SC_RA_RAM_LOCK__A status = %08x\n", status
);
551 if (state
->drxd_state
!= DRXD_STARTED
)
554 if ((ScRaRamLock
& mpeg_lock_mask
) == mpeg_lock_mask
) {
555 *pLockStatus
|= DRX_LOCK_MPEG
;
556 CorrectSysClockDeviation(state
);
559 if ((ScRaRamLock
& fec_lock_mask
) == fec_lock_mask
)
560 *pLockStatus
|= DRX_LOCK_FEC
;
562 if ((ScRaRamLock
& demod_lock_mask
) == demod_lock_mask
)
563 *pLockStatus
|= DRX_LOCK_DEMOD
;
567 /****************************************************************************/
569 static int SetCfgIfAgc(struct drxd_state
*state
, struct SCfgAgc
*cfg
)
573 if (cfg
->outputLevel
> DRXD_FE_CTRL_MAX
)
576 if (cfg
->ctrlMode
== AGC_CTRL_USER
) {
578 u16 FeAgRegPm1AgcWri
;
579 u16 FeAgRegAgModeLop
;
581 status
= Read16(state
, FE_AG_REG_AG_MODE_LOP__A
, &FeAgRegAgModeLop
, 0);
584 FeAgRegAgModeLop
&= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M
);
585 FeAgRegAgModeLop
|= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC
;
586 status
= Write16(state
, FE_AG_REG_AG_MODE_LOP__A
, FeAgRegAgModeLop
, 0);
590 FeAgRegPm1AgcWri
= (u16
) (cfg
->outputLevel
&
591 FE_AG_REG_PM1_AGC_WRI__M
);
592 status
= Write16(state
, FE_AG_REG_PM1_AGC_WRI__A
, FeAgRegPm1AgcWri
, 0);
596 } else if (cfg
->ctrlMode
== AGC_CTRL_AUTO
) {
597 if (((cfg
->maxOutputLevel
) < (cfg
->minOutputLevel
)) ||
598 ((cfg
->maxOutputLevel
) > DRXD_FE_CTRL_MAX
) ||
599 ((cfg
->speed
) > DRXD_FE_CTRL_MAX
) ||
600 ((cfg
->settleLevel
) > DRXD_FE_CTRL_MAX
)
604 u16 FeAgRegAgModeLop
;
605 u16 FeAgRegEgcSetLvl
;
610 status
= Read16(state
, FE_AG_REG_AG_MODE_LOP__A
, &FeAgRegAgModeLop
, 0);
613 FeAgRegAgModeLop
&= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M
);
615 FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC
;
616 status
= Write16(state
, FE_AG_REG_AG_MODE_LOP__A
, FeAgRegAgModeLop
, 0);
620 /* == Settle level == */
622 FeAgRegEgcSetLvl
= (u16
) ((cfg
->settleLevel
>> 1) &
623 FE_AG_REG_EGC_SET_LVL__M
);
624 status
= Write16(state
, FE_AG_REG_EGC_SET_LVL__A
, FeAgRegEgcSetLvl
, 0);
630 slope
= (u16
) ((cfg
->maxOutputLevel
-
631 cfg
->minOutputLevel
) / 2);
632 offset
= (u16
) ((cfg
->maxOutputLevel
+
633 cfg
->minOutputLevel
) / 2 - 511);
635 status
= Write16(state
, FE_AG_REG_GC1_AGC_RIC__A
, slope
, 0);
638 status
= Write16(state
, FE_AG_REG_GC1_AGC_OFF__A
, offset
, 0);
644 const u16 maxRur
= 8;
645 const u16 slowIncrDecLUT
[] = { 3, 4, 4, 5, 6 };
646 const u16 fastIncrDecLUT
[] = { 14, 15, 15, 16,
653 u16 fineSteps
= (DRXD_FE_CTRL_MAX
+ 1) /
655 u16 fineSpeed
= (u16
) (cfg
->speed
-
659 u16 invRurCount
= (u16
) (cfg
->speed
/
662 if (invRurCount
> maxRur
) {
664 fineSpeed
+= fineSteps
;
666 rurCount
= maxRur
- invRurCount
;
671 (2^(fineSpeed/fineSteps))
672 => range[default...2*default>
674 (2^(fineSpeed/fineSteps))
678 fastIncrDecLUT
[fineSpeed
/
682 slowIncrDecLUT
[fineSpeed
/
686 status
= Write16(state
, FE_AG_REG_EGC_RUR_CNT__A
, rurCount
, 0);
689 status
= Write16(state
, FE_AG_REG_EGC_FAS_INC__A
, fastIncrDec
, 0);
692 status
= Write16(state
, FE_AG_REG_EGC_FAS_DEC__A
, fastIncrDec
, 0);
695 status
= Write16(state
, FE_AG_REG_EGC_SLO_INC__A
, slowIncrDec
, 0);
698 status
= Write16(state
, FE_AG_REG_EGC_SLO_DEC__A
, slowIncrDec
, 0);
706 /* No OFF mode for IF control */
712 static int SetCfgRfAgc(struct drxd_state
*state
, struct SCfgAgc
*cfg
)
716 if (cfg
->outputLevel
> DRXD_FE_CTRL_MAX
)
719 if (cfg
->ctrlMode
== AGC_CTRL_USER
) {
722 u16 level
= (cfg
->outputLevel
);
724 if (level
== DRXD_FE_CTRL_MAX
)
727 status
= Write16(state
, FE_AG_REG_PM2_AGC_WRI__A
, level
, 0x0000);
733 /* Powerdown PD2, WRI source */
734 state
->m_FeAgRegAgPwd
&= ~(FE_AG_REG_AG_PWD_PWD_PD2__M
);
735 state
->m_FeAgRegAgPwd
|=
736 FE_AG_REG_AG_PWD_PWD_PD2_DISABLE
;
737 status
= Write16(state
, FE_AG_REG_AG_PWD__A
, state
->m_FeAgRegAgPwd
, 0x0000);
741 status
= Read16(state
, FE_AG_REG_AG_MODE_LOP__A
, &AgModeLop
, 0x0000);
744 AgModeLop
&= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M
|
745 FE_AG_REG_AG_MODE_LOP_MODE_E__M
));
746 AgModeLop
|= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC
|
747 FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC
);
748 status
= Write16(state
, FE_AG_REG_AG_MODE_LOP__A
, AgModeLop
, 0x0000);
752 /* enable AGC2 pin */
754 u16 FeAgRegAgAgcSio
= 0;
755 status
= Read16(state
, FE_AG_REG_AG_AGC_SIO__A
, &FeAgRegAgAgcSio
, 0x0000);
759 ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M
);
761 FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT
;
762 status
= Write16(state
, FE_AG_REG_AG_AGC_SIO__A
, FeAgRegAgAgcSio
, 0x0000);
768 } else if (cfg
->ctrlMode
== AGC_CTRL_AUTO
) {
773 /* Automatic control */
774 /* Powerup PD2, AGC2 as output, TGC source */
775 (state
->m_FeAgRegAgPwd
) &=
776 ~(FE_AG_REG_AG_PWD_PWD_PD2__M
);
777 (state
->m_FeAgRegAgPwd
) |=
778 FE_AG_REG_AG_PWD_PWD_PD2_DISABLE
;
779 status
= Write16(state
, FE_AG_REG_AG_PWD__A
, (state
->m_FeAgRegAgPwd
), 0x0000);
783 status
= Read16(state
, FE_AG_REG_AG_MODE_LOP__A
, &AgModeLop
, 0x0000);
786 AgModeLop
&= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M
|
787 FE_AG_REG_AG_MODE_LOP_MODE_E__M
));
788 AgModeLop
|= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC
|
789 FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC
);
790 status
= Write16(state
, FE_AG_REG_AG_MODE_LOP__A
, AgModeLop
, 0x0000);
794 level
= (((cfg
->settleLevel
) >> 4) &
795 FE_AG_REG_TGC_SET_LVL__M
);
796 status
= Write16(state
, FE_AG_REG_TGC_SET_LVL__A
, level
, 0x0000);
800 /* Min/max: don't care */
804 /* enable AGC2 pin */
806 u16 FeAgRegAgAgcSio
= 0;
807 status
= Read16(state
, FE_AG_REG_AG_AGC_SIO__A
, &FeAgRegAgAgcSio
, 0x0000);
811 ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M
);
813 FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT
;
814 status
= Write16(state
, FE_AG_REG_AG_AGC_SIO__A
, FeAgRegAgAgcSio
, 0x0000);
824 /* No RF AGC control */
825 /* Powerdown PD2, AGC2 as output, WRI source */
826 (state
->m_FeAgRegAgPwd
) &=
827 ~(FE_AG_REG_AG_PWD_PWD_PD2__M
);
828 (state
->m_FeAgRegAgPwd
) |=
829 FE_AG_REG_AG_PWD_PWD_PD2_ENABLE
;
830 status
= Write16(state
, FE_AG_REG_AG_PWD__A
, (state
->m_FeAgRegAgPwd
), 0x0000);
834 status
= Read16(state
, FE_AG_REG_AG_MODE_LOP__A
, &AgModeLop
, 0x0000);
837 AgModeLop
&= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M
|
838 FE_AG_REG_AG_MODE_LOP_MODE_E__M
));
839 AgModeLop
|= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC
|
840 FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC
);
841 status
= Write16(state
, FE_AG_REG_AG_MODE_LOP__A
, AgModeLop
, 0x0000);
845 /* set FeAgRegAgAgcSio AGC2 (RF) as input */
847 u16 FeAgRegAgAgcSio
= 0;
848 status
= Read16(state
, FE_AG_REG_AG_AGC_SIO__A
, &FeAgRegAgAgcSio
, 0x0000);
852 ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M
);
854 FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT
;
855 status
= Write16(state
, FE_AG_REG_AG_AGC_SIO__A
, FeAgRegAgAgcSio
, 0x0000);
864 static int ReadIFAgc(struct drxd_state
*state
, u32
* pValue
)
869 if (state
->if_agc_cfg
.ctrlMode
!= AGC_CTRL_OFF
) {
871 status
= Read16(state
, FE_AG_REG_GC1_AGC_DAT__A
, &Value
, 0);
872 Value
&= FE_AG_REG_GC1_AGC_DAT__M
;
884 u32 R1
= state
->if_agc_cfg
.R1
;
885 u32 R2
= state
->if_agc_cfg
.R2
;
886 u32 R3
= state
->if_agc_cfg
.R3
;
888 u32 Vmax
, Rpar
, Vmin
, Vout
;
890 if (R2
== 0 && (R1
== 0 || R3
== 0))
893 Vmax
= (3300 * R2
) / (R1
+ R2
);
894 Rpar
= (R2
* R3
) / (R3
+ R2
);
895 Vmin
= (3300 * Rpar
) / (R1
+ Rpar
);
896 Vout
= Vmin
+ ((Vmax
- Vmin
) * Value
) / 1024;
904 static int load_firmware(struct drxd_state
*state
, const char *fw_name
)
906 const struct firmware
*fw
;
908 if (request_firmware(&fw
, fw_name
, state
->dev
) < 0) {
909 printk(KERN_ERR
"drxd: firmware load failure [%s]\n", fw_name
);
913 state
->microcode
= kmemdup(fw
->data
, fw
->size
, GFP_KERNEL
);
914 if (state
->microcode
== NULL
) {
915 release_firmware(fw
);
916 printk(KERN_ERR
"drxd: firmware load failure: no memory\n");
920 state
->microcode_length
= fw
->size
;
921 release_firmware(fw
);
925 static int DownloadMicrocode(struct drxd_state
*state
,
926 const u8
*pMCImage
, u32 Length
)
935 pSrc
= (u8
*) pMCImage
;
936 /* We're not using Flags */
937 /* Flags = (pSrc[0] << 8) | pSrc[1]; */
939 offset
+= sizeof(u16
);
940 nBlocks
= (pSrc
[0] << 8) | pSrc
[1];
942 offset
+= sizeof(u16
);
944 for (i
= 0; i
< nBlocks
; i
++) {
945 Address
= (pSrc
[0] << 24) | (pSrc
[1] << 16) |
946 (pSrc
[2] << 8) | pSrc
[3];
948 offset
+= sizeof(u32
);
950 BlockSize
= ((pSrc
[0] << 8) | pSrc
[1]) * sizeof(u16
);
952 offset
+= sizeof(u16
);
954 /* We're not using Flags */
955 /* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */
957 offset
+= sizeof(u16
);
959 /* We're not using BlockCRC */
960 /* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */
962 offset
+= sizeof(u16
);
964 status
= WriteBlock(state
, Address
, BlockSize
,
965 pSrc
, DRX_I2C_CLEARCRC
);
975 static int HI_Command(struct drxd_state
*state
, u16 cmd
, u16
* pResult
)
981 status
= Write16(state
, HI_RA_RAM_SRV_CMD__A
, cmd
, 0);
987 if (nrRetries
> DRXD_MAX_RETRIES
) {
991 status
= Read16(state
, HI_RA_RAM_SRV_CMD__A
, &waitCmd
, 0);
992 } while (waitCmd
!= 0);
995 status
= Read16(state
, HI_RA_RAM_SRV_RES__A
, pResult
, 0);
999 static int HI_CfgCommand(struct drxd_state
*state
)
1003 mutex_lock(&state
->mutex
);
1004 Write16(state
, HI_RA_RAM_SRV_CFG_KEY__A
, HI_RA_RAM_SRV_RST_KEY_ACT
, 0);
1005 Write16(state
, HI_RA_RAM_SRV_CFG_DIV__A
, state
->hi_cfg_timing_div
, 0);
1006 Write16(state
, HI_RA_RAM_SRV_CFG_BDL__A
, state
->hi_cfg_bridge_delay
, 0);
1007 Write16(state
, HI_RA_RAM_SRV_CFG_WUP__A
, state
->hi_cfg_wakeup_key
, 0);
1008 Write16(state
, HI_RA_RAM_SRV_CFG_ACT__A
, state
->hi_cfg_ctrl
, 0);
1010 Write16(state
, HI_RA_RAM_SRV_CFG_KEY__A
, HI_RA_RAM_SRV_RST_KEY_ACT
, 0);
1012 if ((state
->hi_cfg_ctrl
& HI_RA_RAM_SRV_CFG_ACT_PWD_EXE
) ==
1013 HI_RA_RAM_SRV_CFG_ACT_PWD_EXE
)
1014 status
= Write16(state
, HI_RA_RAM_SRV_CMD__A
,
1015 HI_RA_RAM_SRV_CMD_CONFIG
, 0);
1017 status
= HI_Command(state
, HI_RA_RAM_SRV_CMD_CONFIG
, NULL
);
1018 mutex_unlock(&state
->mutex
);
1022 static int InitHI(struct drxd_state
*state
)
1024 state
->hi_cfg_wakeup_key
= (state
->chip_adr
);
1025 /* port/bridge/power down ctrl */
1026 state
->hi_cfg_ctrl
= HI_RA_RAM_SRV_CFG_ACT_SLV0_ON
;
1027 return HI_CfgCommand(state
);
1030 static int HI_ResetCommand(struct drxd_state
*state
)
1034 mutex_lock(&state
->mutex
);
1035 status
= Write16(state
, HI_RA_RAM_SRV_RST_KEY__A
,
1036 HI_RA_RAM_SRV_RST_KEY_ACT
, 0);
1038 status
= HI_Command(state
, HI_RA_RAM_SRV_CMD_RESET
, NULL
);
1039 mutex_unlock(&state
->mutex
);
1044 static int DRX_ConfigureI2CBridge(struct drxd_state
*state
, int bEnableBridge
)
1046 state
->hi_cfg_ctrl
&= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M
);
1048 state
->hi_cfg_ctrl
|= HI_RA_RAM_SRV_CFG_ACT_BRD_ON
;
1050 state
->hi_cfg_ctrl
|= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF
;
1052 return HI_CfgCommand(state
);
1055 #define HI_TR_WRITE 0x9
1056 #define HI_TR_READ 0xA
1057 #define HI_TR_READ_WRITE 0xB
1058 #define HI_TR_BROADCAST 0x4
1061 static int AtomicReadBlock(struct drxd_state
*state
,
1062 u32 Addr
, u16 DataSize
, u8
*pData
, u8 Flags
)
1067 /* Parameter check */
1068 if ((!pData
) || ((DataSize
& 1) != 0))
1071 mutex_lock(&state
->mutex
);
1074 /* Instruct HI to read n bytes */
1075 /* TODO use proper names forthese egisters */
1076 status
= Write16(state
, HI_RA_RAM_SRV_CFG_KEY__A
, (HI_TR_FUNC_ADDR
& 0xFFFF), 0);
1079 status
= Write16(state
, HI_RA_RAM_SRV_CFG_DIV__A
, (u16
) (Addr
>> 16), 0);
1082 status
= Write16(state
, HI_RA_RAM_SRV_CFG_BDL__A
, (u16
) (Addr
& 0xFFFF), 0);
1085 status
= Write16(state
, HI_RA_RAM_SRV_CFG_WUP__A
, (u16
) ((DataSize
/ 2) - 1), 0);
1088 status
= Write16(state
, HI_RA_RAM_SRV_CFG_ACT__A
, HI_TR_READ
, 0);
1092 status
= HI_Command(state
, HI_RA_RAM_SRV_CMD_EXECUTE
, 0);
1099 for (i
= 0; i
< (DataSize
/ 2); i
+= 1) {
1102 status
= Read16(state
, (HI_RA_RAM_USR_BEGIN__A
+ i
),
1106 pData
[2 * i
] = (u8
) (word
& 0xFF);
1107 pData
[(2 * i
) + 1] = (u8
) (word
>> 8);
1110 mutex_unlock(&state
->mutex
);
1114 static int AtomicReadReg32(struct drxd_state
*state
,
1115 u32 Addr
, u32
*pData
, u8 Flags
)
1117 u8 buf
[sizeof(u32
)];
1122 status
= AtomicReadBlock(state
, Addr
, sizeof(u32
), buf
, Flags
);
1123 *pData
= (((u32
) buf
[0]) << 0) +
1124 (((u32
) buf
[1]) << 8) +
1125 (((u32
) buf
[2]) << 16) + (((u32
) buf
[3]) << 24);
1130 static int StopAllProcessors(struct drxd_state
*state
)
1132 return Write16(state
, HI_COMM_EXEC__A
,
1133 SC_COMM_EXEC_CTL_STOP
, DRX_I2C_BROADCAST
);
1136 static int EnableAndResetMB(struct drxd_state
*state
)
1138 if (state
->type_A
) {
1139 /* disable? monitor bus observe @ EC_OC */
1140 Write16(state
, EC_OC_REG_OC_MON_SIO__A
, 0x0000, 0x0000);
1143 /* do inverse broadcast, followed by explicit write to HI */
1144 Write16(state
, HI_COMM_MB__A
, 0x0000, DRX_I2C_BROADCAST
);
1145 Write16(state
, HI_COMM_MB__A
, 0x0000, 0x0000);
1149 static int InitCC(struct drxd_state
*state
)
1151 if (state
->osc_clock_freq
== 0 ||
1152 state
->osc_clock_freq
> 20000 ||
1153 (state
->osc_clock_freq
% 4000) != 0) {
1154 printk(KERN_ERR
"invalid osc frequency %d\n", state
->osc_clock_freq
);
1158 Write16(state
, CC_REG_OSC_MODE__A
, CC_REG_OSC_MODE_M20
, 0);
1159 Write16(state
, CC_REG_PLL_MODE__A
, CC_REG_PLL_MODE_BYPASS_PLL
|
1160 CC_REG_PLL_MODE_PUMP_CUR_12
, 0);
1161 Write16(state
, CC_REG_REF_DIVIDE__A
, state
->osc_clock_freq
/ 4000, 0);
1162 Write16(state
, CC_REG_PWD_MODE__A
, CC_REG_PWD_MODE_DOWN_PLL
, 0);
1163 Write16(state
, CC_REG_UPDATE__A
, CC_REG_UPDATE_KEY
, 0);
1168 static int ResetECOD(struct drxd_state
*state
)
1173 status
= Write16(state
, EC_OD_REG_SYNC__A
, 0x0664, 0);
1175 status
= Write16(state
, B_EC_OD_REG_SYNC__A
, 0x0664, 0);
1178 status
= WriteTable(state
, state
->m_ResetECRAM
);
1180 status
= Write16(state
, EC_OD_REG_COMM_EXEC__A
, 0x0001, 0);
1184 /* Configure PGA switch */
1186 static int SetCfgPga(struct drxd_state
*state
, int pgaSwitch
)
1195 status
= Read16(state
, B_FE_AG_REG_AG_MODE_LOP__A
, &AgModeLop
, 0x0000);
1198 AgModeLop
&= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M
));
1199 AgModeLop
|= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC
;
1200 status
= Write16(state
, B_FE_AG_REG_AG_MODE_LOP__A
, AgModeLop
, 0x0000);
1205 status
= Read16(state
, B_FE_AG_REG_AG_MODE_HIP__A
, &AgModeHip
, 0x0000);
1208 AgModeHip
&= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M
));
1209 AgModeHip
|= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC
;
1210 status
= Write16(state
, B_FE_AG_REG_AG_MODE_HIP__A
, AgModeHip
, 0x0000);
1214 /* enable fine and coarse gain, enable AAF,
1216 status
= Write16(state
, B_FE_AG_REG_AG_PGA_MODE__A
, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN
, 0x0000);
1220 /* PGA off, bypass */
1223 status
= Read16(state
, B_FE_AG_REG_AG_MODE_LOP__A
, &AgModeLop
, 0x0000);
1226 AgModeLop
&= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M
));
1227 AgModeLop
|= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC
;
1228 status
= Write16(state
, B_FE_AG_REG_AG_MODE_LOP__A
, AgModeLop
, 0x0000);
1233 status
= Read16(state
, B_FE_AG_REG_AG_MODE_HIP__A
, &AgModeHip
, 0x0000);
1236 AgModeHip
&= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M
));
1237 AgModeHip
|= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC
;
1238 status
= Write16(state
, B_FE_AG_REG_AG_MODE_HIP__A
, AgModeHip
, 0x0000);
1242 /* disable fine and coarse gain, enable AAF,
1244 status
= Write16(state
, B_FE_AG_REG_AG_PGA_MODE__A
, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN
, 0x0000);
1252 static int InitFE(struct drxd_state
*state
)
1257 status
= WriteTable(state
, state
->m_InitFE_1
);
1261 if (state
->type_A
) {
1262 status
= Write16(state
, FE_AG_REG_AG_PGA_MODE__A
,
1263 FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN
,
1267 status
= SetCfgPga(state
, 0);
1270 Write16(state
, B_FE_AG_REG_AG_PGA_MODE__A
,
1271 B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN
,
1277 status
= Write16(state
, FE_AG_REG_AG_AGC_SIO__A
, state
->m_FeAgRegAgAgcSio
, 0x0000);
1280 status
= Write16(state
, FE_AG_REG_AG_PWD__A
, state
->m_FeAgRegAgPwd
, 0x0000);
1284 status
= WriteTable(state
, state
->m_InitFE_2
);
1293 static int InitFT(struct drxd_state
*state
)
1296 norm OFFSET, MB says =2 voor 8K en =3 voor 2K waarschijnlijk
1299 return Write16(state
, FT_REG_COMM_EXEC__A
, 0x0001, 0x0000);
1302 static int SC_WaitForReady(struct drxd_state
*state
)
1307 for (i
= 0; i
< DRXD_MAX_RETRIES
; i
+= 1) {
1308 int status
= Read16(state
, SC_RA_RAM_CMD__A
, &curCmd
, 0);
1309 if (status
== 0 || curCmd
== 0)
1315 static int SC_SendCommand(struct drxd_state
*state
, u16 cmd
)
1320 Write16(state
, SC_RA_RAM_CMD__A
, cmd
, 0);
1321 SC_WaitForReady(state
);
1323 Read16(state
, SC_RA_RAM_CMD_ADDR__A
, &errCode
, 0);
1325 if (errCode
== 0xFFFF) {
1326 printk(KERN_ERR
"Command Error\n");
1333 static int SC_ProcStartCommand(struct drxd_state
*state
,
1334 u16 subCmd
, u16 param0
, u16 param1
)
1339 mutex_lock(&state
->mutex
);
1341 Read16(state
, SC_COMM_EXEC__A
, &scExec
, 0);
1346 SC_WaitForReady(state
);
1347 Write16(state
, SC_RA_RAM_CMD_ADDR__A
, subCmd
, 0);
1348 Write16(state
, SC_RA_RAM_PARAM1__A
, param1
, 0);
1349 Write16(state
, SC_RA_RAM_PARAM0__A
, param0
, 0);
1351 SC_SendCommand(state
, SC_RA_RAM_CMD_PROC_START
);
1353 mutex_unlock(&state
->mutex
);
1357 static int SC_SetPrefParamCommand(struct drxd_state
*state
,
1358 u16 subCmd
, u16 param0
, u16 param1
)
1362 mutex_lock(&state
->mutex
);
1364 status
= SC_WaitForReady(state
);
1367 status
= Write16(state
, SC_RA_RAM_CMD_ADDR__A
, subCmd
, 0);
1370 status
= Write16(state
, SC_RA_RAM_PARAM1__A
, param1
, 0);
1373 status
= Write16(state
, SC_RA_RAM_PARAM0__A
, param0
, 0);
1377 status
= SC_SendCommand(state
, SC_RA_RAM_CMD_SET_PREF_PARAM
);
1381 mutex_unlock(&state
->mutex
);
1386 static int SC_GetOpParamCommand(struct drxd_state
*state
, u16
* result
)
1390 mutex_lock(&state
->mutex
);
1392 status
= SC_WaitForReady(state
);
1395 status
= SC_SendCommand(state
, SC_RA_RAM_CMD_GET_OP_PARAM
);
1398 status
= Read16(state
, SC_RA_RAM_PARAM0__A
, result
, 0);
1402 mutex_unlock(&state
->mutex
);
1407 static int ConfigureMPEGOutput(struct drxd_state
*state
, int bEnableOutput
)
1412 u16 EcOcRegIprInvMpg
= 0;
1413 u16 EcOcRegOcModeLop
= 0;
1414 u16 EcOcRegOcModeHip
= 0;
1415 u16 EcOcRegOcMpgSio
= 0;
1417 /*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */
1419 if (state
->operation_mode
== OM_DVBT_Diversity_Front
) {
1420 if (bEnableOutput
) {
1422 B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR
;
1424 EcOcRegOcMpgSio
|= EC_OC_REG_OC_MPG_SIO__M
;
1426 EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE
;
1428 EcOcRegOcModeLop
= state
->m_EcOcRegOcModeLop
;
1431 EcOcRegOcMpgSio
&= (~(EC_OC_REG_OC_MPG_SIO__M
));
1433 EcOcRegOcMpgSio
|= EC_OC_REG_OC_MPG_SIO__M
;
1435 /* Don't Insert RS Byte */
1436 if (state
->insert_rs_byte
) {
1438 (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M
));
1440 (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M
);
1442 EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE
;
1445 EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE
;
1447 (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M
);
1449 EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE
;
1452 /* Mode = Parallel */
1453 if (state
->enable_parallel
)
1455 (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M
));
1458 EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL
;
1461 /* EcOcRegIprInvMpg |= 0x00FF; */
1462 EcOcRegIprInvMpg
&= (~(0x00FF));
1464 /* Invert Error ( we don't use the pin ) */
1465 /* EcOcRegIprInvMpg |= 0x0100; */
1466 EcOcRegIprInvMpg
&= (~(0x0100));
1468 /* Invert Start ( we don't use the pin ) */
1469 /* EcOcRegIprInvMpg |= 0x0200; */
1470 EcOcRegIprInvMpg
&= (~(0x0200));
1472 /* Invert Valid ( we don't use the pin ) */
1473 /* EcOcRegIprInvMpg |= 0x0400; */
1474 EcOcRegIprInvMpg
&= (~(0x0400));
1477 /* EcOcRegIprInvMpg |= 0x0800; */
1478 EcOcRegIprInvMpg
&= (~(0x0800));
1480 /* EcOcRegOcModeLop =0x05; */
1481 status
= Write16(state
, EC_OC_REG_IPR_INV_MPG__A
, EcOcRegIprInvMpg
, 0);
1484 status
= Write16(state
, EC_OC_REG_OC_MODE_LOP__A
, EcOcRegOcModeLop
, 0);
1487 status
= Write16(state
, EC_OC_REG_OC_MODE_HIP__A
, EcOcRegOcModeHip
, 0x0000);
1490 status
= Write16(state
, EC_OC_REG_OC_MPG_SIO__A
, EcOcRegOcMpgSio
, 0);
1497 static int SetDeviceTypeId(struct drxd_state
*state
)
1503 status
= Read16(state
, CC_REG_JTAGID_L__A
, &deviceId
, 0);
1506 /* TODO: why twice? */
1507 status
= Read16(state
, CC_REG_JTAGID_L__A
, &deviceId
, 0);
1510 printk(KERN_INFO
"drxd: deviceId = %04x\n", deviceId
);
1514 state
->diversity
= 0;
1515 if (deviceId
== 0) { /* on A2 only 3975 available */
1517 printk(KERN_INFO
"DRX3975D-A2\n");
1520 printk(KERN_INFO
"DRX397%dD-B1\n", deviceId
);
1523 state
->diversity
= 1;
1529 state
->diversity
= 1;
1543 /* Init Table selection */
1544 state
->m_InitAtomicRead
= DRXD_InitAtomicRead
;
1545 state
->m_InitSC
= DRXD_InitSC
;
1546 state
->m_ResetECRAM
= DRXD_ResetECRAM
;
1547 if (state
->type_A
) {
1548 state
->m_ResetCEFR
= DRXD_ResetCEFR
;
1549 state
->m_InitFE_1
= DRXD_InitFEA2_1
;
1550 state
->m_InitFE_2
= DRXD_InitFEA2_2
;
1551 state
->m_InitCP
= DRXD_InitCPA2
;
1552 state
->m_InitCE
= DRXD_InitCEA2
;
1553 state
->m_InitEQ
= DRXD_InitEQA2
;
1554 state
->m_InitEC
= DRXD_InitECA2
;
1555 if (load_firmware(state
, DRX_FW_FILENAME_A2
))
1558 state
->m_ResetCEFR
= NULL
;
1559 state
->m_InitFE_1
= DRXD_InitFEB1_1
;
1560 state
->m_InitFE_2
= DRXD_InitFEB1_2
;
1561 state
->m_InitCP
= DRXD_InitCPB1
;
1562 state
->m_InitCE
= DRXD_InitCEB1
;
1563 state
->m_InitEQ
= DRXD_InitEQB1
;
1564 state
->m_InitEC
= DRXD_InitECB1
;
1565 if (load_firmware(state
, DRX_FW_FILENAME_B1
))
1568 if (state
->diversity
) {
1569 state
->m_InitDiversityFront
= DRXD_InitDiversityFront
;
1570 state
->m_InitDiversityEnd
= DRXD_InitDiversityEnd
;
1571 state
->m_DisableDiversity
= DRXD_DisableDiversity
;
1572 state
->m_StartDiversityFront
= DRXD_StartDiversityFront
;
1573 state
->m_StartDiversityEnd
= DRXD_StartDiversityEnd
;
1574 state
->m_DiversityDelay8MHZ
= DRXD_DiversityDelay8MHZ
;
1575 state
->m_DiversityDelay6MHZ
= DRXD_DiversityDelay6MHZ
;
1577 state
->m_InitDiversityFront
= NULL
;
1578 state
->m_InitDiversityEnd
= NULL
;
1579 state
->m_DisableDiversity
= NULL
;
1580 state
->m_StartDiversityFront
= NULL
;
1581 state
->m_StartDiversityEnd
= NULL
;
1582 state
->m_DiversityDelay8MHZ
= NULL
;
1583 state
->m_DiversityDelay6MHZ
= NULL
;
1589 static int CorrectSysClockDeviation(struct drxd_state
*state
)
1595 u32 sysClockInHz
= 0;
1596 u32 sysClockFreq
= 0; /* in kHz */
1597 s16 oscClockDeviation
;
1601 /* Retrieve bandwidth and incr, sanity check */
1603 /* These accesses should be AtomicReadReg32, but that
1604 causes trouble (at least for diversity */
1605 status
= Read32(state
, LC_RA_RAM_IFINCR_NOM_L__A
, ((u32
*) &nomincr
), 0);
1608 status
= Read32(state
, FE_IF_REG_INCR0__A
, (u32
*) &incr
, 0);
1612 if (state
->type_A
) {
1613 if ((nomincr
- incr
< -500) || (nomincr
- incr
> 500))
1616 if ((nomincr
- incr
< -2000) || (nomincr
- incr
> 2000))
1620 switch (state
->props
.bandwidth_hz
) {
1622 bandwidth
= DRXD_BANDWIDTH_8MHZ_IN_HZ
;
1625 bandwidth
= DRXD_BANDWIDTH_7MHZ_IN_HZ
;
1628 bandwidth
= DRXD_BANDWIDTH_6MHZ_IN_HZ
;
1635 /* Compute new sysclock value
1636 sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
1638 sysClockInHz
= MulDiv32(incr
, bandwidth
, 1 << 21);
1639 sysClockFreq
= (u32
) (sysClockInHz
/ 1000);
1641 if ((sysClockInHz
% 1000) > 500)
1644 /* Compute clock deviation in ppm */
1645 oscClockDeviation
= (u16
) ((((s32
) (sysClockFreq
) -
1647 (state
->expected_sys_clock_freq
)) *
1650 (state
->expected_sys_clock_freq
));
1652 Diff
= oscClockDeviation
- state
->osc_clock_deviation
;
1653 /*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */
1654 if (Diff
>= -200 && Diff
<= 200) {
1655 state
->sys_clock_freq
= (u16
) sysClockFreq
;
1656 if (oscClockDeviation
!= state
->osc_clock_deviation
) {
1657 if (state
->config
.osc_deviation
) {
1658 state
->config
.osc_deviation(state
->priv
,
1661 state
->osc_clock_deviation
=
1665 /* switch OFF SRMM scan in SC */
1666 status
= Write16(state
, SC_RA_RAM_SAMPLE_RATE_COUNT__A
, DRXD_OSCDEV_DONT_SCAN
, 0);
1669 /* overrule FE_IF internal value for
1670 proper re-locking */
1671 status
= Write16(state
, SC_RA_RAM_IF_SAVE__AX
, state
->current_fe_if_incr
, 0);
1674 state
->cscd_state
= CSCD_SAVED
;
1681 static int DRX_Stop(struct drxd_state
*state
)
1685 if (state
->drxd_state
!= DRXD_STARTED
)
1689 if (state
->cscd_state
!= CSCD_SAVED
) {
1691 status
= DRX_GetLockStatus(state
, &lock
);
1696 status
= StopOC(state
);
1700 state
->drxd_state
= DRXD_STOPPED
;
1702 status
= ConfigureMPEGOutput(state
, 0);
1706 if (state
->type_A
) {
1707 /* Stop relevant processors off the device */
1708 status
= Write16(state
, EC_OD_REG_COMM_EXEC__A
, 0x0000, 0x0000);
1712 status
= Write16(state
, SC_COMM_EXEC__A
, SC_COMM_EXEC_CTL_STOP
, 0);
1715 status
= Write16(state
, LC_COMM_EXEC__A
, SC_COMM_EXEC_CTL_STOP
, 0);
1719 /* Stop all processors except HI & CC & FE */
1720 status
= Write16(state
, B_SC_COMM_EXEC__A
, SC_COMM_EXEC_CTL_STOP
, 0);
1723 status
= Write16(state
, B_LC_COMM_EXEC__A
, SC_COMM_EXEC_CTL_STOP
, 0);
1726 status
= Write16(state
, B_FT_COMM_EXEC__A
, SC_COMM_EXEC_CTL_STOP
, 0);
1729 status
= Write16(state
, B_CP_COMM_EXEC__A
, SC_COMM_EXEC_CTL_STOP
, 0);
1732 status
= Write16(state
, B_CE_COMM_EXEC__A
, SC_COMM_EXEC_CTL_STOP
, 0);
1735 status
= Write16(state
, B_EQ_COMM_EXEC__A
, SC_COMM_EXEC_CTL_STOP
, 0);
1738 status
= Write16(state
, EC_OD_REG_COMM_EXEC__A
, 0x0000, 0);
1747 #if 0 /* Currently unused */
1748 static int SetOperationMode(struct drxd_state
*state
, int oMode
)
1753 if (state
->drxd_state
!= DRXD_STOPPED
) {
1758 if (oMode
== state
->operation_mode
) {
1763 if (oMode
!= OM_Default
&& !state
->diversity
) {
1769 case OM_DVBT_Diversity_Front
:
1770 status
= WriteTable(state
, state
->m_InitDiversityFront
);
1772 case OM_DVBT_Diversity_End
:
1773 status
= WriteTable(state
, state
->m_InitDiversityEnd
);
1776 /* We need to check how to
1777 get DRXD out of diversity */
1779 status
= WriteTable(state
, state
->m_DisableDiversity
);
1785 state
->operation_mode
= oMode
;
1790 static int StartDiversity(struct drxd_state
*state
)
1796 if (state
->operation_mode
== OM_DVBT_Diversity_Front
) {
1797 status
= WriteTable(state
, state
->m_StartDiversityFront
);
1800 } else if (state
->operation_mode
== OM_DVBT_Diversity_End
) {
1801 status
= WriteTable(state
, state
->m_StartDiversityEnd
);
1804 if (state
->props
.bandwidth_hz
== 8000000) {
1805 status
= WriteTable(state
, state
->m_DiversityDelay8MHZ
);
1809 status
= WriteTable(state
, state
->m_DiversityDelay6MHZ
);
1814 status
= Read16(state
, B_EQ_REG_RC_SEL_CAR__A
, &rcControl
, 0);
1817 rcControl
&= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M
);
1818 rcControl
|= B_EQ_REG_RC_SEL_CAR_DIV_ON
|
1819 /* combining enabled */
1820 B_EQ_REG_RC_SEL_CAR_MEAS_A_CC
|
1821 B_EQ_REG_RC_SEL_CAR_PASS_A_CC
|
1822 B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC
;
1823 status
= Write16(state
, B_EQ_REG_RC_SEL_CAR__A
, rcControl
, 0);
1831 static int SetFrequencyShift(struct drxd_state
*state
,
1832 u32 offsetFreq
, int channelMirrored
)
1834 int negativeShift
= (state
->tuner_mirrors
== channelMirrored
);
1836 /* Handle all mirroring
1838 * Note: ADC mirroring (aliasing) is implictly handled by limiting
1839 * feFsRegAddInc to 28 bits below
1840 * (if the result before masking is more than 28 bits, this means
1841 * that the ADC is mirroring.
1842 * The masking is in fact the aliasing of the ADC)
1846 /* Compute register value, unsigned computation */
1847 state
->fe_fs_add_incr
= MulDiv32(state
->intermediate_freq
+
1849 1 << 28, state
->sys_clock_freq
);
1850 /* Remove integer part */
1851 state
->fe_fs_add_incr
&= 0x0FFFFFFFL
;
1853 state
->fe_fs_add_incr
= ((1 << 28) - state
->fe_fs_add_incr
);
1855 /* Save the frequency shift without tunerOffset compensation
1856 for CtrlGetChannel. */
1857 state
->org_fe_fs_add_incr
= MulDiv32(state
->intermediate_freq
,
1858 1 << 28, state
->sys_clock_freq
);
1859 /* Remove integer part */
1860 state
->org_fe_fs_add_incr
&= 0x0FFFFFFFL
;
1862 state
->org_fe_fs_add_incr
= ((1L << 28) -
1863 state
->org_fe_fs_add_incr
);
1865 return Write32(state
, FE_FS_REG_ADD_INC_LOP__A
,
1866 state
->fe_fs_add_incr
, 0);
1869 static int SetCfgNoiseCalibration(struct drxd_state
*state
,
1870 struct SNoiseCal
*noiseCal
)
1876 status
= Read16(state
, SC_RA_RAM_BE_OPT_ENA__A
, &beOptEna
, 0);
1879 if (noiseCal
->cpOpt
) {
1880 beOptEna
|= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT
);
1882 beOptEna
&= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT
);
1883 status
= Write16(state
, CP_REG_AC_NEXP_OFFS__A
, noiseCal
->cpNexpOfs
, 0);
1887 status
= Write16(state
, SC_RA_RAM_BE_OPT_ENA__A
, beOptEna
, 0);
1891 if (!state
->type_A
) {
1892 status
= Write16(state
, B_SC_RA_RAM_CO_TD_CAL_2K__A
, noiseCal
->tdCal2k
, 0);
1895 status
= Write16(state
, B_SC_RA_RAM_CO_TD_CAL_8K__A
, noiseCal
->tdCal8k
, 0);
1904 static int DRX_Start(struct drxd_state
*state
, s32 off
)
1906 struct dtv_frontend_properties
*p
= &state
->props
;
1909 u16 transmissionParams
= 0;
1910 u16 operationMode
= 0;
1911 u16 qpskTdTpsPwr
= 0;
1912 u16 qam16TdTpsPwr
= 0;
1913 u16 qam64TdTpsPwr
= 0;
1916 int mirrorFreqSpect
;
1918 u16 qpskSnCeGain
= 0;
1919 u16 qam16SnCeGain
= 0;
1920 u16 qam64SnCeGain
= 0;
1921 u16 qpskIsGainMan
= 0;
1922 u16 qam16IsGainMan
= 0;
1923 u16 qam64IsGainMan
= 0;
1924 u16 qpskIsGainExp
= 0;
1925 u16 qam16IsGainExp
= 0;
1926 u16 qam64IsGainExp
= 0;
1927 u16 bandwidthParam
= 0;
1930 off
= (off
- 500) / 1000;
1932 off
= (off
+ 500) / 1000;
1935 if (state
->drxd_state
!= DRXD_STOPPED
)
1937 status
= ResetECOD(state
);
1940 if (state
->type_A
) {
1941 status
= InitSC(state
);
1945 status
= InitFT(state
);
1948 status
= InitCP(state
);
1951 status
= InitCE(state
);
1954 status
= InitEQ(state
);
1957 status
= InitSC(state
);
1962 /* Restore current IF & RF AGC settings */
1964 status
= SetCfgIfAgc(state
, &state
->if_agc_cfg
);
1967 status
= SetCfgRfAgc(state
, &state
->rf_agc_cfg
);
1971 mirrorFreqSpect
= (state
->props
.inversion
== INVERSION_ON
);
1973 switch (p
->transmission_mode
) {
1974 default: /* Not set, detect it automatically */
1975 operationMode
|= SC_RA_RAM_OP_AUTO_MODE__M
;
1976 /* fall through , try first guess DRX_FFTMODE_8K */
1977 case TRANSMISSION_MODE_8K
:
1978 transmissionParams
|= SC_RA_RAM_OP_PARAM_MODE_8K
;
1979 if (state
->type_A
) {
1980 status
= Write16(state
, EC_SB_REG_TR_MODE__A
, EC_SB_REG_TR_MODE_8K
, 0x0000);
1988 case TRANSMISSION_MODE_2K
:
1989 transmissionParams
|= SC_RA_RAM_OP_PARAM_MODE_2K
;
1990 if (state
->type_A
) {
1991 status
= Write16(state
, EC_SB_REG_TR_MODE__A
, EC_SB_REG_TR_MODE_2K
, 0x0000);
2001 switch (p
->guard_interval
) {
2002 case GUARD_INTERVAL_1_4
:
2003 transmissionParams
|= SC_RA_RAM_OP_PARAM_GUARD_4
;
2005 case GUARD_INTERVAL_1_8
:
2006 transmissionParams
|= SC_RA_RAM_OP_PARAM_GUARD_8
;
2008 case GUARD_INTERVAL_1_16
:
2009 transmissionParams
|= SC_RA_RAM_OP_PARAM_GUARD_16
;
2011 case GUARD_INTERVAL_1_32
:
2012 transmissionParams
|= SC_RA_RAM_OP_PARAM_GUARD_32
;
2014 default: /* Not set, detect it automatically */
2015 operationMode
|= SC_RA_RAM_OP_AUTO_GUARD__M
;
2016 /* try first guess 1/4 */
2017 transmissionParams
|= SC_RA_RAM_OP_PARAM_GUARD_4
;
2021 switch (p
->hierarchy
) {
2023 transmissionParams
|= SC_RA_RAM_OP_PARAM_HIER_A1
;
2024 if (state
->type_A
) {
2025 status
= Write16(state
, EQ_REG_OT_ALPHA__A
, 0x0001, 0x0000);
2028 status
= Write16(state
, EC_SB_REG_ALPHA__A
, 0x0001, 0x0000);
2032 qpskTdTpsPwr
= EQ_TD_TPS_PWR_UNKNOWN
;
2033 qam16TdTpsPwr
= EQ_TD_TPS_PWR_QAM16_ALPHA1
;
2034 qam64TdTpsPwr
= EQ_TD_TPS_PWR_QAM64_ALPHA1
;
2037 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE
;
2039 SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE
;
2041 SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE
;
2044 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE
;
2046 SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE
;
2048 SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE
;
2053 transmissionParams
|= SC_RA_RAM_OP_PARAM_HIER_A2
;
2054 if (state
->type_A
) {
2055 status
= Write16(state
, EQ_REG_OT_ALPHA__A
, 0x0002, 0x0000);
2058 status
= Write16(state
, EC_SB_REG_ALPHA__A
, 0x0002, 0x0000);
2062 qpskTdTpsPwr
= EQ_TD_TPS_PWR_UNKNOWN
;
2063 qam16TdTpsPwr
= EQ_TD_TPS_PWR_QAM16_ALPHA2
;
2064 qam64TdTpsPwr
= EQ_TD_TPS_PWR_QAM64_ALPHA2
;
2067 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE
;
2069 SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE
;
2071 SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE
;
2074 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE
;
2076 SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE
;
2078 SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE
;
2082 transmissionParams
|= SC_RA_RAM_OP_PARAM_HIER_A4
;
2083 if (state
->type_A
) {
2084 status
= Write16(state
, EQ_REG_OT_ALPHA__A
, 0x0003, 0x0000);
2087 status
= Write16(state
, EC_SB_REG_ALPHA__A
, 0x0003, 0x0000);
2091 qpskTdTpsPwr
= EQ_TD_TPS_PWR_UNKNOWN
;
2092 qam16TdTpsPwr
= EQ_TD_TPS_PWR_QAM16_ALPHA4
;
2093 qam64TdTpsPwr
= EQ_TD_TPS_PWR_QAM64_ALPHA4
;
2096 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE
;
2098 SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE
;
2100 SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE
;
2103 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE
;
2105 SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE
;
2107 SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE
;
2110 case HIERARCHY_AUTO
:
2112 /* Not set, detect it automatically, start with none */
2113 operationMode
|= SC_RA_RAM_OP_AUTO_HIER__M
;
2114 transmissionParams
|= SC_RA_RAM_OP_PARAM_HIER_NO
;
2115 if (state
->type_A
) {
2116 status
= Write16(state
, EQ_REG_OT_ALPHA__A
, 0x0000, 0x0000);
2119 status
= Write16(state
, EC_SB_REG_ALPHA__A
, 0x0000, 0x0000);
2123 qpskTdTpsPwr
= EQ_TD_TPS_PWR_QPSK
;
2124 qam16TdTpsPwr
= EQ_TD_TPS_PWR_QAM16_ALPHAN
;
2125 qam64TdTpsPwr
= EQ_TD_TPS_PWR_QAM64_ALPHAN
;
2128 SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE
;
2130 SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE
;
2132 SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE
;
2135 SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE
;
2137 SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE
;
2139 SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE
;
2147 switch (p
->modulation
) {
2149 operationMode
|= SC_RA_RAM_OP_AUTO_CONST__M
;
2150 /* fall through , try first guess
2151 DRX_CONSTELLATION_QAM64 */
2153 transmissionParams
|= SC_RA_RAM_OP_PARAM_CONST_QAM64
;
2154 if (state
->type_A
) {
2155 status
= Write16(state
, EQ_REG_OT_CONST__A
, 0x0002, 0x0000);
2158 status
= Write16(state
, EC_SB_REG_CONST__A
, EC_SB_REG_CONST_64QAM
, 0x0000);
2161 status
= Write16(state
, EC_SB_REG_SCALE_MSB__A
, 0x0020, 0x0000);
2164 status
= Write16(state
, EC_SB_REG_SCALE_BIT2__A
, 0x0008, 0x0000);
2167 status
= Write16(state
, EC_SB_REG_SCALE_LSB__A
, 0x0002, 0x0000);
2171 status
= Write16(state
, EQ_REG_TD_TPS_PWR_OFS__A
, qam64TdTpsPwr
, 0x0000);
2174 status
= Write16(state
, EQ_REG_SN_CEGAIN__A
, qam64SnCeGain
, 0x0000);
2177 status
= Write16(state
, EQ_REG_IS_GAIN_MAN__A
, qam64IsGainMan
, 0x0000);
2180 status
= Write16(state
, EQ_REG_IS_GAIN_EXP__A
, qam64IsGainExp
, 0x0000);
2186 transmissionParams
|= SC_RA_RAM_OP_PARAM_CONST_QPSK
;
2187 if (state
->type_A
) {
2188 status
= Write16(state
, EQ_REG_OT_CONST__A
, 0x0000, 0x0000);
2191 status
= Write16(state
, EC_SB_REG_CONST__A
, EC_SB_REG_CONST_QPSK
, 0x0000);
2194 status
= Write16(state
, EC_SB_REG_SCALE_MSB__A
, 0x0010, 0x0000);
2197 status
= Write16(state
, EC_SB_REG_SCALE_BIT2__A
, 0x0000, 0x0000);
2200 status
= Write16(state
, EC_SB_REG_SCALE_LSB__A
, 0x0000, 0x0000);
2204 status
= Write16(state
, EQ_REG_TD_TPS_PWR_OFS__A
, qpskTdTpsPwr
, 0x0000);
2207 status
= Write16(state
, EQ_REG_SN_CEGAIN__A
, qpskSnCeGain
, 0x0000);
2210 status
= Write16(state
, EQ_REG_IS_GAIN_MAN__A
, qpskIsGainMan
, 0x0000);
2213 status
= Write16(state
, EQ_REG_IS_GAIN_EXP__A
, qpskIsGainExp
, 0x0000);
2220 transmissionParams
|= SC_RA_RAM_OP_PARAM_CONST_QAM16
;
2221 if (state
->type_A
) {
2222 status
= Write16(state
, EQ_REG_OT_CONST__A
, 0x0001, 0x0000);
2225 status
= Write16(state
, EC_SB_REG_CONST__A
, EC_SB_REG_CONST_16QAM
, 0x0000);
2228 status
= Write16(state
, EC_SB_REG_SCALE_MSB__A
, 0x0010, 0x0000);
2231 status
= Write16(state
, EC_SB_REG_SCALE_BIT2__A
, 0x0004, 0x0000);
2234 status
= Write16(state
, EC_SB_REG_SCALE_LSB__A
, 0x0000, 0x0000);
2238 status
= Write16(state
, EQ_REG_TD_TPS_PWR_OFS__A
, qam16TdTpsPwr
, 0x0000);
2241 status
= Write16(state
, EQ_REG_SN_CEGAIN__A
, qam16SnCeGain
, 0x0000);
2244 status
= Write16(state
, EQ_REG_IS_GAIN_MAN__A
, qam16IsGainMan
, 0x0000);
2247 status
= Write16(state
, EQ_REG_IS_GAIN_EXP__A
, qam16IsGainExp
, 0x0000);
2258 switch (DRX_CHANNEL_HIGH
) {
2260 case DRX_CHANNEL_AUTO
:
2261 case DRX_CHANNEL_LOW
:
2262 transmissionParams
|= SC_RA_RAM_OP_PARAM_PRIO_LO
;
2263 status
= Write16(state
, EC_SB_REG_PRIOR__A
, EC_SB_REG_PRIOR_LO
, 0x0000);
2267 case DRX_CHANNEL_HIGH
:
2268 transmissionParams
|= SC_RA_RAM_OP_PARAM_PRIO_HI
;
2269 status
= Write16(state
, EC_SB_REG_PRIOR__A
, EC_SB_REG_PRIOR_HI
, 0x0000);
2276 switch (p
->code_rate_HP
) {
2278 transmissionParams
|= SC_RA_RAM_OP_PARAM_RATE_1_2
;
2279 if (state
->type_A
) {
2280 status
= Write16(state
, EC_VD_REG_SET_CODERATE__A
, EC_VD_REG_SET_CODERATE_C1_2
, 0x0000);
2286 operationMode
|= SC_RA_RAM_OP_AUTO_RATE__M
;
2288 transmissionParams
|= SC_RA_RAM_OP_PARAM_RATE_2_3
;
2289 if (state
->type_A
) {
2290 status
= Write16(state
, EC_VD_REG_SET_CODERATE__A
, EC_VD_REG_SET_CODERATE_C2_3
, 0x0000);
2296 transmissionParams
|= SC_RA_RAM_OP_PARAM_RATE_3_4
;
2297 if (state
->type_A
) {
2298 status
= Write16(state
, EC_VD_REG_SET_CODERATE__A
, EC_VD_REG_SET_CODERATE_C3_4
, 0x0000);
2304 transmissionParams
|= SC_RA_RAM_OP_PARAM_RATE_5_6
;
2305 if (state
->type_A
) {
2306 status
= Write16(state
, EC_VD_REG_SET_CODERATE__A
, EC_VD_REG_SET_CODERATE_C5_6
, 0x0000);
2312 transmissionParams
|= SC_RA_RAM_OP_PARAM_RATE_7_8
;
2313 if (state
->type_A
) {
2314 status
= Write16(state
, EC_VD_REG_SET_CODERATE__A
, EC_VD_REG_SET_CODERATE_C7_8
, 0x0000);
2324 /* First determine real bandwidth (Hz) */
2325 /* Also set delay for impulse noise cruncher (only A2) */
2326 /* Also set parameters for EC_OC fix, note
2327 EC_OC_REG_TMD_HIL_MAR is changed
2328 by SC for fix for some 8K,1/8 guard but is restored by
2331 switch (p
->bandwidth_hz
) {
2333 p
->bandwidth_hz
= 8000000;
2336 /* (64/7)*(8/8)*1000000 */
2337 bandwidth
= DRXD_BANDWIDTH_8MHZ_IN_HZ
;
2340 status
= Write16(state
,
2341 FE_AG_REG_IND_DEL__A
, 50, 0x0000);
2344 /* (64/7)*(7/8)*1000000 */
2345 bandwidth
= DRXD_BANDWIDTH_7MHZ_IN_HZ
;
2346 bandwidthParam
= 0x4807; /*binary:0100 1000 0000 0111 */
2347 status
= Write16(state
,
2348 FE_AG_REG_IND_DEL__A
, 59, 0x0000);
2351 /* (64/7)*(6/8)*1000000 */
2352 bandwidth
= DRXD_BANDWIDTH_6MHZ_IN_HZ
;
2353 bandwidthParam
= 0x0F07; /*binary: 0000 1111 0000 0111 */
2354 status
= Write16(state
,
2355 FE_AG_REG_IND_DEL__A
, 71, 0x0000);
2363 status
= Write16(state
, SC_RA_RAM_BAND__A
, bandwidthParam
, 0x0000);
2369 status
= Read16(state
, SC_RA_RAM_CONFIG__A
, &sc_config
, 0);
2373 /* enable SLAVE mode in 2k 1/32 to
2374 prevent timing change glitches */
2375 if ((p
->transmission_mode
== TRANSMISSION_MODE_2K
) &&
2376 (p
->guard_interval
== GUARD_INTERVAL_1_32
)) {
2378 sc_config
|= SC_RA_RAM_CONFIG_SLAVE__M
;
2381 sc_config
&= ~SC_RA_RAM_CONFIG_SLAVE__M
;
2383 status
= Write16(state
, SC_RA_RAM_CONFIG__A
, sc_config
, 0);
2388 status
= SetCfgNoiseCalibration(state
, &state
->noise_cal
);
2392 if (state
->cscd_state
== CSCD_INIT
) {
2393 /* switch on SRMM scan in SC */
2394 status
= Write16(state
, SC_RA_RAM_SAMPLE_RATE_COUNT__A
, DRXD_OSCDEV_DO_SCAN
, 0x0000);
2397 /* CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/
2398 state
->cscd_state
= CSCD_SET
;
2401 /* Now compute FE_IF_REG_INCR */
2402 /*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
2403 ((SysFreq / BandWidth) * (2^21) ) - (2^23) */
2404 feIfIncr
= MulDiv32(state
->sys_clock_freq
* 1000,
2405 (1ULL << 21), bandwidth
) - (1 << 23);
2406 status
= Write16(state
, FE_IF_REG_INCR0__A
, (u16
) (feIfIncr
& FE_IF_REG_INCR0__M
), 0x0000);
2409 status
= Write16(state
, FE_IF_REG_INCR1__A
, (u16
) ((feIfIncr
>> FE_IF_REG_INCR0__W
) & FE_IF_REG_INCR1__M
), 0x0000);
2412 /* Bandwidth setting done */
2414 /* Mirror & frequency offset */
2415 SetFrequencyShift(state
, off
, mirrorFreqSpect
);
2417 /* Start SC, write channel settings to SC */
2419 /* Enable SC after setting all other parameters */
2420 status
= Write16(state
, SC_COMM_STATE__A
, 0, 0x0000);
2423 status
= Write16(state
, SC_COMM_EXEC__A
, 1, 0x0000);
2427 /* Write SC parameter registers, operation mode */
2429 operationMode
= (SC_RA_RAM_OP_AUTO_MODE__M
|
2430 SC_RA_RAM_OP_AUTO_GUARD__M
|
2431 SC_RA_RAM_OP_AUTO_CONST__M
|
2432 SC_RA_RAM_OP_AUTO_HIER__M
|
2433 SC_RA_RAM_OP_AUTO_RATE__M
);
2435 status
= SC_SetPrefParamCommand(state
, 0x0000, transmissionParams
, operationMode
);
2439 /* Start correct processes to get in lock */
2440 status
= SC_ProcStartCommand(state
, SC_RA_RAM_PROC_LOCKTRACK
, SC_RA_RAM_SW_EVENT_RUN_NMASK__M
, SC_RA_RAM_LOCKTRACK_MIN
);
2444 status
= StartOC(state
);
2448 if (state
->operation_mode
!= OM_Default
) {
2449 status
= StartDiversity(state
);
2454 state
->drxd_state
= DRXD_STARTED
;
2460 static int CDRXD(struct drxd_state
*state
, u32 IntermediateFrequency
)
2462 u32 ulRfAgcOutputLevel
= 0xffffffff;
2463 u32 ulRfAgcSettleLevel
= 528; /* Optimum value for MT2060 */
2464 u32 ulRfAgcMinLevel
= 0; /* Currently unused */
2465 u32 ulRfAgcMaxLevel
= DRXD_FE_CTRL_MAX
; /* Currently unused */
2466 u32 ulRfAgcSpeed
= 0; /* Currently unused */
2467 u32 ulRfAgcMode
= 0; /*2; Off */
2468 u32 ulRfAgcR1
= 820;
2469 u32 ulRfAgcR2
= 2200;
2470 u32 ulRfAgcR3
= 150;
2471 u32 ulIfAgcMode
= 0; /* Auto */
2472 u32 ulIfAgcOutputLevel
= 0xffffffff;
2473 u32 ulIfAgcSettleLevel
= 0xffffffff;
2474 u32 ulIfAgcMinLevel
= 0xffffffff;
2475 u32 ulIfAgcMaxLevel
= 0xffffffff;
2476 u32 ulIfAgcSpeed
= 0xffffffff;
2477 u32 ulIfAgcR1
= 820;
2478 u32 ulIfAgcR2
= 2200;
2479 u32 ulIfAgcR3
= 150;
2480 u32 ulClock
= state
->config
.clock
;
2481 u32 ulSerialMode
= 0;
2482 u32 ulEcOcRegOcModeLop
= 4; /* Dynamic DTO source */
2483 u32 ulHiI2cDelay
= HI_I2C_DELAY
;
2484 u32 ulHiI2cBridgeDelay
= HI_I2C_BRIDGE_DELAY
;
2485 u32 ulHiI2cPatch
= 0;
2486 u32 ulEnvironment
= APPENV_PORTABLE
;
2487 u32 ulEnvironmentDiversity
= APPENV_MOBILE
;
2488 u32 ulIFFilter
= IFFILTER_SAW
;
2490 state
->if_agc_cfg
.ctrlMode
= AGC_CTRL_AUTO
;
2491 state
->if_agc_cfg
.outputLevel
= 0;
2492 state
->if_agc_cfg
.settleLevel
= 140;
2493 state
->if_agc_cfg
.minOutputLevel
= 0;
2494 state
->if_agc_cfg
.maxOutputLevel
= 1023;
2495 state
->if_agc_cfg
.speed
= 904;
2497 if (ulIfAgcMode
== 1 && ulIfAgcOutputLevel
<= DRXD_FE_CTRL_MAX
) {
2498 state
->if_agc_cfg
.ctrlMode
= AGC_CTRL_USER
;
2499 state
->if_agc_cfg
.outputLevel
= (u16
) (ulIfAgcOutputLevel
);
2502 if (ulIfAgcMode
== 0 &&
2503 ulIfAgcSettleLevel
<= DRXD_FE_CTRL_MAX
&&
2504 ulIfAgcMinLevel
<= DRXD_FE_CTRL_MAX
&&
2505 ulIfAgcMaxLevel
<= DRXD_FE_CTRL_MAX
&&
2506 ulIfAgcSpeed
<= DRXD_FE_CTRL_MAX
) {
2507 state
->if_agc_cfg
.ctrlMode
= AGC_CTRL_AUTO
;
2508 state
->if_agc_cfg
.settleLevel
= (u16
) (ulIfAgcSettleLevel
);
2509 state
->if_agc_cfg
.minOutputLevel
= (u16
) (ulIfAgcMinLevel
);
2510 state
->if_agc_cfg
.maxOutputLevel
= (u16
) (ulIfAgcMaxLevel
);
2511 state
->if_agc_cfg
.speed
= (u16
) (ulIfAgcSpeed
);
2514 state
->if_agc_cfg
.R1
= (u16
) (ulIfAgcR1
);
2515 state
->if_agc_cfg
.R2
= (u16
) (ulIfAgcR2
);
2516 state
->if_agc_cfg
.R3
= (u16
) (ulIfAgcR3
);
2518 state
->rf_agc_cfg
.R1
= (u16
) (ulRfAgcR1
);
2519 state
->rf_agc_cfg
.R2
= (u16
) (ulRfAgcR2
);
2520 state
->rf_agc_cfg
.R3
= (u16
) (ulRfAgcR3
);
2522 state
->rf_agc_cfg
.ctrlMode
= AGC_CTRL_AUTO
;
2523 /* rest of the RFAgcCfg structure currently unused */
2524 if (ulRfAgcMode
== 1 && ulRfAgcOutputLevel
<= DRXD_FE_CTRL_MAX
) {
2525 state
->rf_agc_cfg
.ctrlMode
= AGC_CTRL_USER
;
2526 state
->rf_agc_cfg
.outputLevel
= (u16
) (ulRfAgcOutputLevel
);
2529 if (ulRfAgcMode
== 0 &&
2530 ulRfAgcSettleLevel
<= DRXD_FE_CTRL_MAX
&&
2531 ulRfAgcMinLevel
<= DRXD_FE_CTRL_MAX
&&
2532 ulRfAgcMaxLevel
<= DRXD_FE_CTRL_MAX
&&
2533 ulRfAgcSpeed
<= DRXD_FE_CTRL_MAX
) {
2534 state
->rf_agc_cfg
.ctrlMode
= AGC_CTRL_AUTO
;
2535 state
->rf_agc_cfg
.settleLevel
= (u16
) (ulRfAgcSettleLevel
);
2536 state
->rf_agc_cfg
.minOutputLevel
= (u16
) (ulRfAgcMinLevel
);
2537 state
->rf_agc_cfg
.maxOutputLevel
= (u16
) (ulRfAgcMaxLevel
);
2538 state
->rf_agc_cfg
.speed
= (u16
) (ulRfAgcSpeed
);
2541 if (ulRfAgcMode
== 2)
2542 state
->rf_agc_cfg
.ctrlMode
= AGC_CTRL_OFF
;
2544 if (ulEnvironment
<= 2)
2545 state
->app_env_default
= (enum app_env
)
2547 if (ulEnvironmentDiversity
<= 2)
2548 state
->app_env_diversity
= (enum app_env
)
2549 (ulEnvironmentDiversity
);
2551 if (ulIFFilter
== IFFILTER_DISCRETE
) {
2552 /* discrete filter */
2553 state
->noise_cal
.cpOpt
= 0;
2554 state
->noise_cal
.cpNexpOfs
= 40;
2555 state
->noise_cal
.tdCal2k
= -40;
2556 state
->noise_cal
.tdCal8k
= -24;
2559 state
->noise_cal
.cpOpt
= 1;
2560 state
->noise_cal
.cpNexpOfs
= 0;
2561 state
->noise_cal
.tdCal2k
= -21;
2562 state
->noise_cal
.tdCal8k
= -24;
2564 state
->m_EcOcRegOcModeLop
= (u16
) (ulEcOcRegOcModeLop
);
2566 state
->chip_adr
= (state
->config
.demod_address
<< 1) | 1;
2567 switch (ulHiI2cPatch
) {
2569 state
->m_HiI2cPatch
= DRXD_HiI2cPatch_1
;
2572 state
->m_HiI2cPatch
= DRXD_HiI2cPatch_3
;
2575 state
->m_HiI2cPatch
= NULL
;
2578 /* modify tuner and clock attributes */
2579 state
->intermediate_freq
= (u16
) (IntermediateFrequency
/ 1000);
2580 /* expected system clock frequency in kHz */
2581 state
->expected_sys_clock_freq
= 48000;
2582 /* real system clock frequency in kHz */
2583 state
->sys_clock_freq
= 48000;
2584 state
->osc_clock_freq
= (u16
) ulClock
;
2585 state
->osc_clock_deviation
= 0;
2586 state
->cscd_state
= CSCD_INIT
;
2587 state
->drxd_state
= DRXD_UNINITIALIZED
;
2591 state
->tuner_mirrors
= 0;
2593 /* modify MPEG output attributes */
2594 state
->insert_rs_byte
= state
->config
.insert_rs_byte
;
2595 state
->enable_parallel
= (ulSerialMode
!= 1);
2597 /* Timing div, 250ns/Psys */
2598 /* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
2600 state
->hi_cfg_timing_div
= (u16
) ((state
->sys_clock_freq
/ 1000) *
2601 ulHiI2cDelay
) / 1000;
2602 /* Bridge delay, uses oscilator clock */
2603 /* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
2604 state
->hi_cfg_bridge_delay
= (u16
) ((state
->osc_clock_freq
/ 1000) *
2605 ulHiI2cBridgeDelay
) / 1000;
2607 state
->m_FeAgRegAgPwd
= DRXD_DEF_AG_PWD_CONSUMER
;
2608 /* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
2609 state
->m_FeAgRegAgAgcSio
= DRXD_DEF_AG_AGC_SIO
;
2613 static int DRXD_init(struct drxd_state
*state
, const u8
*fw
, u32 fw_size
)
2618 if (state
->init_done
)
2621 CDRXD(state
, state
->config
.IF
? state
->config
.IF
: 36000000);
2624 state
->operation_mode
= OM_Default
;
2626 status
= SetDeviceTypeId(state
);
2630 /* Apply I2c address patch to B1 */
2631 if (!state
->type_A
&& state
->m_HiI2cPatch
!= NULL
)
2632 status
= WriteTable(state
, state
->m_HiI2cPatch
);
2636 if (state
->type_A
) {
2637 /* HI firmware patch for UIO readout,
2638 avoid clearing of result register */
2639 status
= Write16(state
, 0x43012D, 0x047f, 0);
2644 status
= HI_ResetCommand(state
);
2648 status
= StopAllProcessors(state
);
2651 status
= InitCC(state
);
2655 state
->osc_clock_deviation
= 0;
2657 if (state
->config
.osc_deviation
)
2658 state
->osc_clock_deviation
=
2659 state
->config
.osc_deviation(state
->priv
, 0, 0);
2661 /* Handle clock deviation */
2663 s32 devA
= (s32
) (state
->osc_clock_deviation
) *
2664 (s32
) (state
->expected_sys_clock_freq
);
2665 /* deviation in kHz */
2666 s32 deviation
= (devA
/ (1000000L));
2667 /* rounding, signed */
2672 if ((devB
* (devA
% 1000000L) > 1000000L)) {
2674 deviation
+= (devB
/ 2);
2677 state
->sys_clock_freq
=
2678 (u16
) ((state
->expected_sys_clock_freq
) +
2681 status
= InitHI(state
);
2684 status
= InitAtomicRead(state
);
2688 status
= EnableAndResetMB(state
);
2692 status
= ResetCEFR(state
);
2697 status
= DownloadMicrocode(state
, fw
, fw_size
);
2701 status
= DownloadMicrocode(state
, state
->microcode
, state
->microcode_length
);
2707 state
->m_FeAgRegAgPwd
= DRXD_DEF_AG_PWD_PRO
;
2708 SetCfgPga(state
, 0); /* PGA = 0 dB */
2710 state
->m_FeAgRegAgPwd
= DRXD_DEF_AG_PWD_CONSUMER
;
2713 state
->m_FeAgRegAgAgcSio
= DRXD_DEF_AG_AGC_SIO
;
2715 status
= InitFE(state
);
2718 status
= InitFT(state
);
2721 status
= InitCP(state
);
2724 status
= InitCE(state
);
2727 status
= InitEQ(state
);
2730 status
= InitEC(state
);
2733 status
= InitSC(state
);
2737 status
= SetCfgIfAgc(state
, &state
->if_agc_cfg
);
2740 status
= SetCfgRfAgc(state
, &state
->rf_agc_cfg
);
2744 state
->cscd_state
= CSCD_INIT
;
2745 status
= Write16(state
, SC_COMM_EXEC__A
, SC_COMM_EXEC_CTL_STOP
, 0);
2748 status
= Write16(state
, LC_COMM_EXEC__A
, SC_COMM_EXEC_CTL_STOP
, 0);
2752 driverVersion
= (((VERSION_MAJOR
/ 10) << 4) +
2753 (VERSION_MAJOR
% 10)) << 24;
2754 driverVersion
+= (((VERSION_MINOR
/ 10) << 4) +
2755 (VERSION_MINOR
% 10)) << 16;
2756 driverVersion
+= ((VERSION_PATCH
/ 1000) << 12) +
2757 ((VERSION_PATCH
/ 100) << 8) +
2758 ((VERSION_PATCH
/ 10) << 4) + (VERSION_PATCH
% 10);
2760 status
= Write32(state
, SC_RA_RAM_DRIVER_VERSION__AX
, driverVersion
, 0);
2764 status
= StopOC(state
);
2768 state
->drxd_state
= DRXD_STOPPED
;
2769 state
->init_done
= 1;
2775 static int DRXD_status(struct drxd_state
*state
, u32
*pLockStatus
)
2777 DRX_GetLockStatus(state
, pLockStatus
);
2779 /*if (*pLockStatus&DRX_LOCK_MPEG) */
2780 if (*pLockStatus
& DRX_LOCK_FEC
) {
2781 ConfigureMPEGOutput(state
, 1);
2782 /* Get status again, in case we have MPEG lock now */
2783 /*DRX_GetLockStatus(state, pLockStatus); */
2789 /****************************************************************************/
2790 /****************************************************************************/
2791 /****************************************************************************/
2793 static int drxd_read_signal_strength(struct dvb_frontend
*fe
, u16
* strength
)
2795 struct drxd_state
*state
= fe
->demodulator_priv
;
2799 res
= ReadIFAgc(state
, &value
);
2803 *strength
= 0xffff - (value
<< 4);
2807 static int drxd_read_status(struct dvb_frontend
*fe
, fe_status_t
* status
)
2809 struct drxd_state
*state
= fe
->demodulator_priv
;
2812 DRXD_status(state
, &lock
);
2814 /* No MPEG lock in V255 firmware, bug ? */
2816 if (lock
& DRX_LOCK_MPEG
)
2817 *status
|= FE_HAS_LOCK
;
2819 if (lock
& DRX_LOCK_FEC
)
2820 *status
|= FE_HAS_LOCK
;
2822 if (lock
& DRX_LOCK_FEC
)
2823 *status
|= FE_HAS_VITERBI
| FE_HAS_SYNC
;
2824 if (lock
& DRX_LOCK_DEMOD
)
2825 *status
|= FE_HAS_CARRIER
| FE_HAS_SIGNAL
;
2830 static int drxd_init(struct dvb_frontend
*fe
)
2832 struct drxd_state
*state
= fe
->demodulator_priv
;
2835 /* if (request_firmware(&state->fw, "drxd.fw", state->dev)<0) */
2836 return DRXD_init(state
, NULL
, 0);
2838 err
= DRXD_init(state
, state
->fw
->data
, state
->fw
->size
);
2839 release_firmware(state
->fw
);
2843 int drxd_config_i2c(struct dvb_frontend
*fe
, int onoff
)
2845 struct drxd_state
*state
= fe
->demodulator_priv
;
2847 if (state
->config
.disable_i2c_gate_ctrl
== 1)
2850 return DRX_ConfigureI2CBridge(state
, onoff
);
2852 EXPORT_SYMBOL(drxd_config_i2c
);
2854 static int drxd_get_tune_settings(struct dvb_frontend
*fe
,
2855 struct dvb_frontend_tune_settings
*sets
)
2857 sets
->min_delay_ms
= 10000;
2858 sets
->max_drift
= 0;
2859 sets
->step_size
= 0;
2863 static int drxd_read_ber(struct dvb_frontend
*fe
, u32
* ber
)
2869 static int drxd_read_snr(struct dvb_frontend
*fe
, u16
* snr
)
2875 static int drxd_read_ucblocks(struct dvb_frontend
*fe
, u32
* ucblocks
)
2881 static int drxd_sleep(struct dvb_frontend
*fe
)
2883 struct drxd_state
*state
= fe
->demodulator_priv
;
2885 ConfigureMPEGOutput(state
, 0);
2889 static int drxd_i2c_gate_ctrl(struct dvb_frontend
*fe
, int enable
)
2891 return drxd_config_i2c(fe
, enable
);
2894 static int drxd_set_frontend(struct dvb_frontend
*fe
)
2896 struct dtv_frontend_properties
*p
= &fe
->dtv_property_cache
;
2897 struct drxd_state
*state
= fe
->demodulator_priv
;
2903 if (fe
->ops
.tuner_ops
.set_params
) {
2904 fe
->ops
.tuner_ops
.set_params(fe
);
2905 if (fe
->ops
.i2c_gate_ctrl
)
2906 fe
->ops
.i2c_gate_ctrl(fe
, 0);
2911 return DRX_Start(state
, off
);
2914 static void drxd_release(struct dvb_frontend
*fe
)
2916 struct drxd_state
*state
= fe
->demodulator_priv
;
2921 static struct dvb_frontend_ops drxd_ops
= {
2922 .delsys
= { SYS_DVBT
},
2924 .name
= "Micronas DRXD DVB-T",
2925 .frequency_min
= 47125000,
2926 .frequency_max
= 855250000,
2927 .frequency_stepsize
= 166667,
2928 .frequency_tolerance
= 0,
2929 .caps
= FE_CAN_FEC_1_2
| FE_CAN_FEC_2_3
|
2930 FE_CAN_FEC_3_4
| FE_CAN_FEC_5_6
| FE_CAN_FEC_7_8
|
2932 FE_CAN_QAM_16
| FE_CAN_QAM_64
|
2934 FE_CAN_TRANSMISSION_MODE_AUTO
|
2935 FE_CAN_GUARD_INTERVAL_AUTO
|
2936 FE_CAN_HIERARCHY_AUTO
| FE_CAN_RECOVER
| FE_CAN_MUTE_TS
},
2938 .release
= drxd_release
,
2940 .sleep
= drxd_sleep
,
2941 .i2c_gate_ctrl
= drxd_i2c_gate_ctrl
,
2943 .set_frontend
= drxd_set_frontend
,
2944 .get_tune_settings
= drxd_get_tune_settings
,
2946 .read_status
= drxd_read_status
,
2947 .read_ber
= drxd_read_ber
,
2948 .read_signal_strength
= drxd_read_signal_strength
,
2949 .read_snr
= drxd_read_snr
,
2950 .read_ucblocks
= drxd_read_ucblocks
,
2953 struct dvb_frontend
*drxd_attach(const struct drxd_config
*config
,
2954 void *priv
, struct i2c_adapter
*i2c
,
2957 struct drxd_state
*state
= NULL
;
2959 state
= kmalloc(sizeof(struct drxd_state
), GFP_KERNEL
);
2962 memset(state
, 0, sizeof(*state
));
2964 state
->ops
= drxd_ops
;
2966 state
->config
= *config
;
2970 mutex_init(&state
->mutex
);
2972 if (Read16(state
, 0, NULL
, 0) < 0)
2975 state
->frontend
.ops
= drxd_ops
;
2976 state
->frontend
.demodulator_priv
= state
;
2977 ConfigureMPEGOutput(state
, 0);
2978 /* add few initialization to allow gate control */
2979 CDRXD(state
, state
->config
.IF
? state
->config
.IF
: 36000000);
2982 return &state
->frontend
;
2985 printk(KERN_ERR
"drxd: not found\n");
2989 EXPORT_SYMBOL(drxd_attach
);
2991 MODULE_DESCRIPTION("DRXD driver");
2992 MODULE_AUTHOR("Micronas");
2993 MODULE_LICENSE("GPL");